
Architecting for Usability; a Survey
Eelke Folmer and Jan Bosch

Department of Mathematics and Computing Science
University of Groningen, PO Box 800, 9700 AV the Netherlands

mail@eelke.com, Jan.Bosch@cs.rug.nl
http:// segroup.cs.rug.nl

Abstract
Over the years the software engineering community has
increasingly realized the important role software architecture
plays in fulfilling the quality requirements of a system. The
quality attributes of a software system are, to a large extent
determined by the system’s software architecture. In recent
years, the software engineering community has developed
various tools and techniques that allow for design for quality
attributes, such as performance or maintainability, at the
software architecture level. We believe this design approach
can be applied not only to “traditional” quality attributes such
as performance or maintainability but also to usability. This
survey explores the feasibility of such a design approach.
Current practice is surveyed from the perspective of a software
architect. Are there any design methods that allow for design
for usability at the architectural level? Are there any evaluation
tools that allow assessment of architectures for their support of
usability? What is usability? A framework is presented which
visualizes these three research questions. Usability should drive
design at all stages, but current usability engineering practice
fails to fully achieve this goal. Our survey shows that there are
no design techniques or assessment tools that allow for design
for usability at the architectural level.

Keywords
Software architecture, usability, design for quality attributes.

1. Introduction
In the last decades it has become clear that the most challenging
task for a software architect is not just to design for the required
functionality, but also focus on designing for specific attributes
such as performance, security or maintainability, which
contribute to the quality of software (Bengtson and Bosch,
2000). Evaluating the quality of software is very important, not
only from the perspective of a software engineer to determine
the level of provided quality but also from a business point of
view, such as when having to make a choice between two
similar but competing products. To evaluate the quality of a
software artifact, the way in which the software operates in its
application domain has to be taken into account, rather than
evaluate the software out of context. We believe usability is
inherent to software quality because it expresses the relationship
between the software and its application domain. Software is
developed with a particular purpose, to provide specific
functionality to allow a stakeholder to support a task in a
specific context. Stakeholders such as users and the context in
which they operate are an essential part of this application
domain. Issues such as whether a product is easy to learn to use,
whether it is responsive to the user and whether the user can
efficiently complete tasks using it determines to a large extend a
product’s acceptance and success in the marketplace, apart from
other factors such as marketing efforts and reputation. Software
that provides much functionality but is awkward to use will not
sell, nor will a product that provides little functionality but is

usable. In general one can identify a trend towards an increasing
focus on usability during software development.
One of the goals of software engineering is to construct
computer systems that people find usable and will use (Ovaska,
1991). Usability engineering specifically focuses on this goal.
Usability engineering is defined as according to the ACM
definition: “Usability engineering, also known as human-
computer interaction engineering, is a discipline concerned with
the design, evaluation and implementation of interactive
computing systems for human use and the study of major
phenomena surrounding them”. Within the software
engineering community, usability engineering has become an
established field of activity. Usability engineering has several
benefits:

� Improve software: Business constraints such as time and
money prevent the number of iterations that can be made
in the design process. This constraint in iterations often
leads to poor usability. User testing is often skipped when
approaching deadlines. Proper usability engineering leads
to software that is usable; which translates itself into
productive and satisfied customers.

� Save customer’s money: usability engineering may not be
directly beneficial for the developing organization.
However from a customer’s point of view, working with a
product which is easily understood, leads to increased
productivity and requires less training costs. The effort
spend on usability engineering eventually translates itself
into a better reputation for the product, hence increasing
sales.

� Minimize engineering costs: Studies of software
engineering projects (Nielsen, 1993), (Lederer and
Prassad, 1992) show that most projects do not get their
deadlines for delivery. The reasons that projects do not get
their deadlines are often concerned with usability
engineering: frequent requests for interface changes by
users, overlooked tasks and so on. Proper usability
engineering can reduce the cost overruns in software
projects.

1.1 Current software still has low usability
Software development organizations pay an increasing attention
to the usability of their software; however most modern day
software still has low usability. This statement not only holds
for public software such as word processors or email software
but also for custom developed software, such as enterprise
resource planning (ERP) or content management systems
(CMS) software.
An example of bad usability is for instance the undo
functionality in Framemaker©. The undo function goes back
only a few steps, therefore if one is used to working with
Word© or WordPerfect© where the undo function can undo
many steps, working with Framemaker can be frustrating if you
have become used to that particular functionality. A possible

reason for this case of bad usability is that in one of the first
versions of Framemaker© a choice was made to implement
only a limited ability to record user’s steps. Imagine some sort
of logging system that only keeps track of several steps,
modifying the undo function to record all steps would make it
more usable however this modification likely affects many parts
of Framemaker source code which makes it expensive to
implement. This example is only one of many cases of bad
usability where usability is limited because it is too expensive to
implement modifications that could improve usability. Several
of such cases of bad usability exist; therefore we have reasons
to believe that something fundamental goes wrong when
designing for usability with current design approaches.

1.2 Traditional design approaches fail
The research community has developed numerous techniques
and design methods such as design guidelines, design heuristics,
interface standards and so on, to design software which is
usable. Our survey of design techniques for usability as
presented in section 4 has identified two approaches to usability
engineering; distinct by their approach to the definition of
usability. These approaches have been depicted in Figure 1.
One of the first approaches towards usability engineering
considered usability to be primarily a property of the
presentation of information; the user interface. If an architecture
that separates the user interface from the application is used,
such as the model-view-controller architecture, usability can be
ensured. If usability needs to be improved, changes to the
interface can be easily applied after user testing, which does not
affect the functionality of the application. This approach is
considered to be naïve nowadays by the community. Most
usability issues do not depend on the interface but on
functionality, for example the undo function. The community
that takes this approach is called the interface engineering
community. The interface engineering community deals with
usability at a detailed design level when this approach is related
to the software design method. It has resulted in various
interface standards and guidelines (Apple, 1987), (Microsoft,
1992). Very detailed usability issues are suggested such as
window layout, interface colors and semiotics of buttons and so
on.

A different and broader approach towards usability engineering,
as suggested by (Bevan, 1995) defines the usability of a
software product to be a function of its interface as well as its
functionality in a specified context. This approach is considered
part of the requirement analysis phase. The focus lies on
achieving the right functionality; enabling the user to perform
specified goals in a specified context of use. Usability is
evaluated by measuring user performance issues; the resources
that have to be expended to achieve the intended goals and the
extent to which the intended goals of use are achieved such as
user performance issues and also the extent to which the user
finds the use of the product acceptable, such as user satisfaction
issues. The current definitions of usability are based on this
broad approach. Usability is often defined according to how it
should be measured is one of the conclusions of our survey of
usability definitions in section 2.
In order to design for usability various sources such as interface
guidelines, design heuristics or usability patterns, various
design techniques such as prototyping or user/task modeling
techniques may be consulted. These sources and techniques in
combination with usability evaluation tools allow for design for
usability.
Design for usability in general can be characterized as an
iterative design process. This approach has several
shortcomings:

� Most usability issues are only discovered late in the
development process, during testing and deployment. This
late detection of usability issues is largely due to the fact
that in order to do a usability evaluation, it is necessary to
have both a working system and a representative set of
users present. This evaluation can only be done at the end
of the design process. It is therefore expensive to go back
and make changes at this stage.

� Requirements change during or after development: it is
almost always the case that during the development
process, and even after a system is deployed, the
requirements have changed. The context in which the user
and the software operate is continually changing and
evolving, which makes it hard to capture all possible future
requirements at the outset. Sometimes users may find new
uses for a product, for which the product was not originally
intended. Design techniques such as task and user
modeling used during requirements gathering can only
partly model the future uses of the product.

Too often software systems prove to be inflexible for usability
improving modifications. Small modifications which are at the
detailed design level can be easily implemented but have little
effect on usability. Modifications that have a substantial effect
on usability are structural and therefore at the architectural
level. However such modifications are too expensive to
implement after implementation.
Iteratively designing for usability, as depicted in Figure 2, is
because of these shortcomings a relatively poor design method.

System

improvements

assessmentrequirements Architecture
Design

Detailed
design

Implemen
tation

System in context

Interface engineering

improvements

Figure 2: Current design for usability

Architecture
Design

Detailed
design

Requirements
analysis

Our approach

Interface

System in
context

Narrow

Broad
US

AB
IL
IT
Y

Figure 1: approaches to usability engineering

This method only allows for usability improving modifications
which are at the detailed design level.
Next to that limitation, iterative development prohibits the
preservation of “design knowledge” For instance, some
mistakes can be made over and over again without these being
recorded an learned from when making a new design. The
design knowledge that is captured in interface standards and
guidelines provides only suggestions for low-level detailed
design issues. The design knowledge captured in design
heuristics does not translate itself to solutions that can be
applied early on during design. Traditionally usability
requirements have been specified such that these can be verified
for an implemented system. However, such requirements are
largely useless in a forward engineering process. Usability
requirements need to take a more concrete form expressed in
terms of the solution domain to influence architectural design.
Concluding, current design for usability does not lead to
satisfactory usability results. We believe the software
engineering community should adopt another approach towards
designing for usability which is motivated by the following
reasoning.

1.3 Software architecture restricts usability
Over the years it is noticed that besides an increasing focus on
quality attributes, increasing attention is being paid to the
architecture of a software system. Software is still increasing in
size and complexity. An explicit defined architecture can be
used as a tool to manage this size and complexity. Although
there are many definitions of the term software architecture, one
commonly accepted definition of software architecture is the
following: “The software architecture is the fundamental
organization of a system embodied in its components, their
relationships to each other and to the environment and the
principles guiding its design and evolution (IEEE, 1998)“.
Within the software engineering community it is commonly
accepted that the quality attributes of a system such as
modifiability or performance are to a large extent, constrained
by its architecture. Our industrial experience leads us to believe
that this constraint is also true for usability. In software
engineering, an archetypal view of the software development
process is called “waterfall model”, also known as the systems
development life cycle model. The waterfall development has
distinct goals and deliverables for each phase of development.
The waterfall model depicted in Figure 3 shows the largely
linear structure of this process. In practice, the process adopted
in software development is often far from linear. Steps of the
design process are repeated in an iterative fashion. When it is
realized that a part of the design needs to be changed to meet
requirements, for example a modification to improve security,
steps of the design process are repeated until the desired change
has been effected. The goal of the software engineer is to keep

the number of iterations to a minimum in order to minimize the
engineering cost. The costs of reengineering rise with the level
at which the changes are made. The further back in the process
the designers have to go to make a change, the more it will cost
(Brooks, 1995). For instance, changes at the detailed design
level are less expensive to implement than changes at the
architectural level. This change in costs has the following
causes:
Modifications at the detailed design level can be realized by
changes in the already existing source code. Such changes have
only a small scale impact, often only at one variation point
(Bosch, 2000) which only influences a module or an object and
does not affect the software architecture. Thus by changing
source code and corresponding design documentation, such as
UML diagrams, these changes can be realized.
Modifications at the architecture design level however, have
structural impact. If some parts of the system have already been
implemented at the time that changes are made, modification
will likely affect many parts of the existing source code, which
is very expensive to modify. Software engineers therefore aim
to minimize the frequency of changes with architectural level
impact.
In practice it is noticed that such ‘architecture sensitive’
changes are implemented, but business constraints cause such
changes to be implemented in an ad-hoc fashion, rather than
structurally. Such modifications erode original architectural
design. An architectural design is based upon certain
requirements. For those requirements the architectural design
and source code that have been developed are optimal. If the
architecture and source code are changed because of one
structural modification, earlier design decisions may be
invalidated and original design is eroded design (Gurp and
Bosch, 2001). Next to taking care of how such modifications
are implemented it should be realized that apart from the effect
architectural changes have on each other, it is often unclear
what effect single architectural design decisions have on the
system and its quality attributes. Carelessly applying
architectural modifications without taking into account earlier
design decisions may have a dramatic effect on the quality
attributes.
Experience (Häggander et al 1999) and (Bengtsson et al 2000)
shows that that improvement or design for quality attributes
often requires the use of certain design patterns or styles. For
instance, to improve portability and modifiability it may be
beneficial to use a layered architecture style. It is our conjecture
that a large number of issues associated to usability may also
require architectural support in order to address them.
Because of the reasons discussed above, the software
engineering community has realized the crucial role the
software architecture plays in fulfilling the quality requirements
of a system. Therefore it is of major importance that the quality
requirements most central to the success of the software system
should drive the design, especially at the software architecture
level. In our opinion current design for usability fails to achieve
this goal.
The main problem is that systems prove to be inflexible. Certain
usability improving modifications which are only discovered
during deployment or after an initial design, or because
usability requirements have changed during development,
cannot be implemented. It is too expensive to implement such
modifications because of their structural impact. Therefore
being able to assess architectures during design for their support
of usability could reveal those usability issues for which the
system is not flexible.

Customer input

Requirements
analysis

Feature diagram

Architecture
description

Architecture design

Detailed design

UML diagram

Implementation

Source code

Assessment

representationprocess

Figure 3: waterfall model and its representations

Being able to iteratively design for and asses for usability at the
architectural level, as depicted in Figure 5, improves the
usability of systems, not only during design but also after
implementation. To achieve this design approach, a different
approach to usability engineering is required which is based on
a general design approach for quality attributes.

1.4 Architecting for quality
The quality attributes of a software system are to a considerable
extent defined by its software architecture. In addition, design
decisions in the beginning of the design process are the hardest
to revoke. Therefore it is important to have an explicit and
objective design process. The software engineering research
community has defined various software architecture design
methods: SAAM (Kazman et al, 1996), (Bass et al, 1998)
ATAM (Kazman et al, 1998) and QASAR (Bosch, 2000). The
latter, the Quality Attribute-oriented Software ARchitecture
design method (QASAR), is a method for software architecture
design that employs explicit assessment of, and design for the
quality requirements of a software system. The architecture
design process depicted in Figure 4 can be viewed as a function
that transforms a requirement specification to an architectural
design. The requirements are collected from the stakeholders;
the users, customers, technological developments and the
marketing departments. These groups often provide conflicting
requirements and have to agree on a specific set of requirements
before the design process can start. The design process starts
with a design of the software architecture based on the
functional requirements specified in the requirements
specification. Although software engineers will not purposely
design a system that is unreliable or performing badly, most non
functional requirements are typically not explicitly defined at
this stage.
The design process results in a preliminary version of the
software architecture design. This design is evaluated with
respect to the quality requirements by using a qualitative or

quantitative assessment technique. After that the estimated
quality attributes are compared to the values in the
specification. If these are satisfactory, then the design process is
finished. Otherwise, the architecture transformation or
improvement stage is entered. This stage improves the software
architecture by selecting appropriate quality attribute optimizing
or improving design decisions. When applying architecture
design decisions, generally one or more quality attributes are
improved whereas other attributes may be affected negatively.
By applying one or more architectural design decisions, a new
architectural design is created. This design is evaluated again
and the same process is repeated, if necessary, until all non
functional requirements have been satisfied as much as
possible. Generally some compromises are necessary with
respect to conflicting non functional requirements. This design
process depends on two requirements:

� It is required to determine when the software design
process is finished. Therefore, assessment techniques are
needed to provide quantitative or qualitative data, to
determine if our architecture meets the non functional
requirements.

� Development or identification of architectural design
decisions that improve usability.

Other design methods such as SAAM or ATAM take a similar
approach with respect to iterative refinement of the design. Our
goal is to use this design approach to design for usability. This
survey examines the feasibility of our design approach. The
requirements for this design approach, such as being able to
assess usability are surveyed in current practice. The design
method presented is used as a reference point for surveying
existing practice. Existing practice is thus surveyed from the
perspective of a software architect. Our interest is focused on
evaluation tools or design methods that allow design for
usability at the architectural level.
Three research questions have been formulated that are
surveyed in current practice and literature.

� How does current research community design for
usability? Are there techniques that can be used for
architectural design?

� How can software artifacts be assessed or evaluated for
their support of usability? Are there techniques that can be
used in our design approach?

� What is usability? Because assessing usability is closely
related to how usability is defined, the different definitions
of usability are surveyed to find out which definition suits
our approach best.

Design for usability relies on being able to assess or evaluate
usability. Most assessment techniques surveyed are based on
specific definitions of usability. Being able to assess usability
requires knowledge on how usability is defined. Therefore these
questions are surveyed in current practice in reverse order and

� User/ Customer
� Technological development
� Marketing department

Architecture
decisions

QA-optimizing
solutions

Estimate
Quality
attributes

Software
architecture

Functionality-based
architecture design

Requirement
specification

Not OK

OK

Figure 4: Software architecture design method

System

improvements

assesmentrequirements assesmentSoftware
Architecture

improvements

SA Design

Figure 5: desired design approach

they are presented in the next sections. The remainder of this
paper is organized as follows. In section 2, the different
definitions of usability are surveyed. Section 3 covers how
usability can be assessed and in section 4 it is discussed, how
current usability engineering community designs for usability.
In section 5 a framework is presented that is composed from
these three surveys. Finally in section 6 the issues that are raised
in this survey are discussed and the paper is concluded in
section 7.

2. What is usability?
Usability has become an established field of activity in software
development. Usability has, similar to many other software
engineering terms, many definitions. The term usability was
originally derived from the term “user friendly”. But this term
had acquired a host of undesirable vague and subjective
connotations (Bevan et al, 1991) therefore the term “usability”
was suggested to replace this term. Then again recently
“usability” was defined as an attribute of software quality as
well as a higher design objective. The term usability was
replaced with the term “quality in use” (Bevan, 1995b).
Although there is a consensus about the term usability, there are
many different approaches to how usability should be
measured; hence usability is defined in such a way as to allow
these measurements. This definition has resulted in different
definitions of usability, because authors have different opinions
on how to measure usability.
There are many definitions of usability (Constantine and
Lockwood, 1999), (Hix and Hartson, 1993), (ISO 9241-11),
(ISO 9126), (Shackel, 1991), (Preece et al, 1994), (Shackel,
1991), (Schneiderman, 1998) and (Wixon and Wilson, 1997).
Although not all authors call the entities, which to them
compose usability, usability attributes. Sometimes these entities
are defined as dimensions, components, scales or factors of
usability. It is our opinion that they mean the same and
therefore the term usability attributes is used, which is the term
most commonly used.
In our opinion, in usability research, authors spent much effort
trying to find the best way to define usability by defining
attributes that can be measured and compose usability. In this
survey, finding or giving the best or an exact definition of
usability is not the goal. Our interest in the concept of usability
reaches as far as whether it will be applicable in the context of a
design method. Our survey is therefore restricted to discuss in
detail only four approaches have been most widely recognized
and used in practice. In our opinion other definitions are
strongly related to these significant existing ones. The next
subsections will discuss four approaches to usability; appearing
in chronological order of initial work on the subject published
by the author(s).

2.1 Shackel
One of the first authors in the field to recognize the importance
of usability engineering and the relativity of the concept of
usability was (Shackel, 1991). His approach to usability has
been much used and modified. Shackel defines a model where
product acceptance is the highest concept. The user has to make
a trade-off between utility, the match between user needs and
functionality, usability, ability to utilize functionality in practice
and likeability, affective evaluation versus costs; financial costs
as well as social and organizational consequences when buying
a product. Usability is defined as: “the usability of a system is
the capability in human functional terms to be used easily and
effectively by the specified range of users, given specified
training and user support, to fulfill the specified range of tasks,

within the specified range of scenarios”. Shackel considers
usability to have two sides:

� Usability is a relative property of the system; being relative
in relation to its users, therefore evaluation is context
dependent; resulting in a subjective perception of the
product.

� The other side of usability relates to objective measures of
interaction.

Shackel does not explicitly define how to measure both sides,
but proposes to measure usability by its operational criteria, on
four dimensions.

For a system to be usable it has to achieve defined levels on the
following scales:

� Effectiveness: performance in accomplishment of tasks.

� Learnability: degree of learning to accomplish tasks.

� Flexibility: adaptation to variation in tasks.

� Attitude: user satisfaction with the system.
Figure 6 shows the usability concepts defined by Shackel.
Shackel provides a descriptive definition of the concept of
usability that refers to the complex framework of evaluation and
suggests concrete measurable usability criteria.

2.2 Nielsen
Another pioneer in the field of usability that recognized the
importance of usability engineering was Nielsen. (Nielsen,
1993) just as in the case of Shackel, considers usability to be an
aspect that influences product acceptance. Acceptability is
differentiated into practical and social acceptability as depicted
in Figure 7. Usability and utility; the ability to help the user
carry out a set of tasks, together form the usefulness of a
system.

Nielsen defines usability to consist of five kinds of attributes:

� Learnability: systems should be easy to learn. Users can
rapidly start getting some work done with the system.

� Efficiency: Systems should be efficient to use. When a
user has fully learned the system, productivity will be
possible on a high level.

� Memorability: Systems should be easy to remember,
making it possible for casual users to return to the system
after some period of not using the system, without having
to learn everything all over again.

Figure 7: Nielsen's definition of usability

Figure 6: Shackel's definition of usability

� Errors: The system should have a low error rate, which
enables users to make few errors during the use of the
system. When they do make errors they can easily recover
from them. Catastrophic errors should not occur.

� Satisfaction: The system should be pleasant to use; which
makes users subjectively satisfied when using it.

Nielsen does not give a precise definition of usability, but
presents the operational criteria that clearly define the concept.

2.3 ISO 9241-11
The ISO organization has developed various HCI and usability
standards over the last 15 years. The function of these ISO
standards is to provide and impose consistency. ISO standards
for interface components such as icons, cursor control and so
on, have not been widely adopted. Industry standards such as
IBM, Macintosh or Windows have been more successful in that
area. ISO standards (ISO 9241 DIS) on ergonomic requirements
such as VDT workstations, hardware and environment, on the
other hand, have been widely adopted by industry. These
standards have led to guidelines for software interfaces and
interaction based on research done by (Macleod, 1994) and
(Bevan, 1995a). (ISO 9241-11) provides the def inition of
usability that is used most often in ergonomic standards.
Usability is defined as: “the extent to which a product can be
used by specified users to achieve specified goals with
effectiveness; the extent to which the intended goals of use are
achieved, efficiency; the resources that have to be expended to
achieve the intended goals and satisfaction; the extent to which
the user finds the use of the product acceptable, in a specified
context of use”.

 According to ISO 9241-11 the attributes of usability are:

� Effectiveness: the accuracy and completeness with which
users achieve specified goals.

� Efficiency: the resources expended in relation to the
accuracy and completeness with which users achieve
goals.

� Satisfaction: the comfort and acceptability of use.
ISO 9241-11 presents a contextually oriented view of usability.
This definition incorporates a user performance view; issues
such as effectiveness and efficiency and a user view; issues
such as satisfaction. Standard ISO 9241-11 explains how to
identify the information which is necessary to take into account
when specifying or evaluating usability in terms of measures of
user performance and satisfaction. Guidance is given on how to
describe the context of use of the product; such as hardware,
software or service and the required measures of usability in an
explicit way. It includes an explanation of how the usability of a
product can be specified and evaluated as part of a quality
system, for instance, one that conforms to ISO 9001 standards.
It also explains how measures of user performance and
satisfaction can be used to measure how any component of a
work system affects the quality of the whole work system in
use. The standards and the evaluation tools that result from it
have been widely adopted by HCI practitioners.

2.4 ISO 9126
The software engineering community has always associated
usability with interface design. (ISO 9126) used to define
usability as a relatively independent contribution to software
quality associated with the design and evaluation of the user
interface and interaction. Usability is defined as: “a set of
attributes of software which bear on the effort needed for use
and on the individual assessment of such use by a stated or
implied set of users”.
This view has changed because new insights led to another
approach to usability. (ISO 9126-1 (2000)) defines a quality
model that describes six categories of software quality that are
relevant during product development: functionality, reliability,
usability, efficiency, maintainability and portability, as depicted
in Figure 9
Usability plays two roles in this model:

� Product oriented role: usability is part of a detailed
software design activity; it is a component of software
quality as defined in ISO 9126.

� Process oriented role: usability provides the final goal; it is
a design objective; the software should meet user needs as
defined in ISO 9241.

The latter objective is defined by the term “quality in use”. This
term is synonymous with the broad definition of usability.
Quality in use is the result of the combined effects of the six
categories of software quality when the product is used. Quality
in use is defined as: ‘the capability of the software product to
enable specified users to achieve specified goals with
effectiveness, productivity, safety and satisfaction in a specified
context of use”. This definition is similar to how quality of use
is defined in ISO 9241-11 except that it adds safety. In
ergonomic standards, health and safety is treated separately. It
is important to notice that a product has no intrinsic usability of
itself only a capability to be used in a particular context.
Usability is therefore defined as: “the capability of the software
product to be understood, learned, used and attractive to the
user, when used under specified conditions”. The two ISO
definitions of usability are complementary (Bevan, 2001). Both
standards define usability in measurable design objectives.
Software engineers generally use the product-oriented approach

Figure 8: ISO 9241-11 definition of usability

Figure 9: ISO 9126-1 Quality model

to usability in the design of appropriate product attributes, as
recommended in ISO 9241 parts 12-17 or specified as usability
metrics in ISO 9126 parts 2 and 3. During development of a
software product these two approaches to usability need to be
combined, the broad goal of quality in use is needed to support
user-centered design, while detailed concern with the interface
is necessary during development.
(ISO 9126-1 (2000)) specifies usability by the following
measurable attributes:

� Understandability: The capability of the software product
to enable the user to understand whether the software is
suitable, and how it can be used for particular tasks and
conditions of use.

� Learnability: The capability of the software product to
enable the user to learn its application.

� Operability: The capability of the software product to
enable the user to operate and control it.

� Attractiveness: The capability of the software product to be
attractive to the user. For instance the use of colors or
nature of graphical design.

2.5 Overview
The different definitions of usability have been discussed to
understand where usability evaluation tools and methods, as
will be discussed in the next section, are based on. An overview
of definitions is provided in Table 1. From this survey the
following conclusions can be made.
The usability attributes can be divided into:

� Objective operational criteria: user performance attributes
such as efficiency and learnability.

� Subjective operational criteria; user view attributes such as
satisfaction and attractiveness.

The term usability attribute is quite ambiguous. Authors in the
field of usability have quite different perceptions of what they
consider to be a useful usability attribute. The approaches
discussed are widely adopted by the usability engineering
community but seem to coexist without interference. In our
opinion the different definitions, not only those that are
discussed but also other definitions stated earlier on, largely
overlap. Differences include:

� Attribute names, some authors use different names for the
same attribute such as memorability and learnability.

� Authors have different opinions on what they consider to
be a useful usability attribute. Learnability for instance is
only recognized by ISO 9126 standard.

� Authors use different ways of combining attributes which
compose usability. For example, in Nielsen’s definition
errors is part of usability, but in ISO 9126 errors is part of
efficiency which composes usability.

From Table 1 it can be concluded that the different definitions
of usability overlap. However, care has to be taken that even if
there seems to be a considerable amount of overlap, some
attributes differ when examined what is actually measured for
that attribute on a lower level. On the other hand there are also
similarities on a lower level for attributes that seem different.
For example, the number of errors made during a task, or the
time to learn a task, are measurable indicators for the
learnability attribute. On the other hand, the number of errors
made during a task is an indication to Nielsen’s errors attribute
but also to ISO 9216’s efficiency attribute. The errors attribute
and efficiency attribute are therefore closely related, although
authors put them at different places in the hierarchy of usability
composition. Further investigation on what exactly is measured
for each attribute is therefore required.
The framework as presented in section 5 provides the necessary
categorization of usability engineering. This framework is a
means to categorize and organize the different definitions of
usability and visualizes the differences and similarities between
the different usability definitions.
Relating these different definitions of usability to our design
approach for usability, the following conclusions can be made:

� In usability research authors spent a considerable amount
of effort trying to find the best way to define usability by
defining attributes that can be measured and compose
usability. For our design approach the definition of
usability is not an issue, the choice of whether to use a
particular definition will depend on how well an evaluation
tool based upon this definition, will support evaluation of
usability at the architectural level as required in our design
process.

� ISO 9126 standard is the only approach to usability that
recognizes usability to be a quality attribute of a product
that is also influenced by other quality attributes, which is
inline with our assumptions about usability being also
influenced by other quality attributes.

Next chapter will continue the analysis of our usability
engineering approach by discussing usability evaluation tools
and techniques that have been developed by usability
engineering community.

3. Evaluating usability
Many evaluation tools and techniques which are surveyed in
this chapter are based upon specific definitions of usability. The

Shackel, 1991 Nielsen, 1993 ISO 9241-11 ISO 9126

Learnability-time to learn Learnability Learnability

Learnability-retention Memorability

Effectiveness-errors Errors Effectiveness

Effectiveness- task time Efficiency Efficiency

Operability

Understandability

User
Performance

(objective)

Flexibility

User view
(subjective)

Attitude Satisfaction Satisfaction Attractiveness

Table 1: overview of usability definitions

previous chapter has surveyed various definitions of usability,
which provides the necessary background for discussing
evaluation techniques that are based upon such definitions.
(Zhang) has identified three types of usability evaluation
methods

� Testing

� Inspection

� Inquiry
The next subsections will present an overview of evaluation
tools and techniques for each type of evaluation method.

3.1 Usability testing
The usability testing approach requires representative users to
work on typical tasks using the system or the prototype.
Prototyping models final products and allows testing of the
attributes of the final product even if it is not ready yet, simply
the model is tested. The evaluators use the results to see how
the user interface supports the users to do their tasks. Testing
methods include the following:

� Coaching Method (Nielsen, 1993)

� Co-discovery Learning (Nielsen, 1993), (Dumas and
Redish 1993) and (Rubin 1994)

� Performance Measurement (Nielsen, 1993) and (Soken et
al 1993)

� Question-asking Protocol (Dumas and Redish 1993)

� Remote Testing (Hartson et al, 1996)

� Retrospective Testing (Nielsen, 1993)

� Teaching Method (Vora and Helander 1995)

� Thinking Aloud Protocol (Nielsen, 1993)

3.2 Usability inspection
The Usability Inspection approach requires usability specialists
or software developers, users and other professionals to
examine and judge whether each element of a user interface or
prototype follows established usability principles. Commonly
used inspection methods are:

� Heuristic Evaluation (Nielsen, 1994)

� Cognitive Walkthrough (Wharton et al 1994) and (Rowley
et al 1992)

� Feature Inspection (Nielsen, 1994)

� Pluralistic Walkthrough (Bias, R., 1994)

� Perspective-based Inspection (Zhang et al 1998-1) and
(Zhang et al 1998-2)

� Standards inspection/guideline checklists (Wixon et al,
1994)

3.3 Usability inquiry
Usability inquiry requires usability evaluators to obtain
information about users likes, dislikes, needs and understanding
of the system by talking to them, observing them using the
system in real work (not for the purpose of usability testing) or
letting them answer questions verbally or in written form.
Inquiry methods include:

� Field Observation (Nielsen, 1993)

� Interviews / Focus groups (Nielsen, 1993)

� Surveys (Alreck and Settle, 1994)

� Logging Actual Use (Nielsen, 1993)

� Proactive Field Study (Nielsen, 1993)

Questionnaires
Another inquiry method that is widely used at usability
evaluation are questionnaires. (Zhang) and various other web
resources provide an overview of web based interface
evaluation questionnaires:

� QUIS: Questionnaire for User Interface Satisfaction (Chin,
1988)

� PUEU: Perceived Usefulness and Ease of Use (Davis,
1989)

� NHE: Nielsen’s heuristic evaluation (Nielsen, 1993)

� NAU: Nielsen’s attributes of usability (Nielsen, 1993)

� PSSUQ: Post Study System Usability Questionnaire
(Lewis, 1992)

� CSUQ: Computer System Usability Questionnaire (Lewis,
1995)

� ASQ: After Scenario Questionnaire (Lewis, 1995)

� SUMI: Software Usability Measurement Inventory
(HFRG)

� MUMMS: Measurement of Usability of Multi Media
Software (HFRG)

� WAMMI: Website Analysis and Measurement Inventory
(HFRG)

� EUCSI: End user satisfaction instrument (Doll et al, 1994)

3.4 Overview
A wide variety of usability evaluation tools is available. Our
design approach requires a specific assessment technique to
assess architectures for their support of usability during the
architectural design phase. Table 2 gives an overview of
different techniques discussed in this chapter and at which
stages in the software development cycle they can be applied.

Table 2: Overview of evaluation methods

Though several techniques can be used during design, there are
no techniques that can be used during architectural design
phase. The techniques discussed as usability inspection and
usability testing techniques all require a user interface or a
prototype of an interface available for evaluation. Usability
inquiry focuses on evaluation of usability of real life systems.
Most of these techniques evaluate the system for usability
requirements/specifications that can actually be measured for
complete systems. Such evaluation methods are quite useless
when designing a new system from scratch. During architecture
design phase a prototype of an interface is not present or it is
too expensive to develop one. Furthermore we believe that most
usability issues do not depend on the interface but on
functionality, for example the undo functionality. Therefore
interface or system based evaluation techniques as presented in
this chapter are not useful for our design approach.
The only thing available for evaluation during architectural
design is a first version of the software architecture. Assessment
techniques should focus on assessing the architecture instead of
the interface or the system.
Based on our experience is our expectation that development of
a checklist or heuristic based approach where one identifies
architectural components that support usability, will lead to the
desired design approach.
Next chapter will continue the survey by discussing different
usability design techniques.

4. Design for usability
There are two approaches to designing for usability as identified
by (Keinonen, 1998).

� Process oriented approach; user-centered design.

� Product oriented approach; captured design knowledge.

4.1.1 Process oriented
User-centered design is a process oriented approach towards
design for usability; usability is considered to be a design goal.
It is a collection of techniques that specifically focuses on
providing and collecting that functionality that makes software
usable. They are closely related with usability evaluation
principles and techniques discussed in section 3. The whole
process of design for usability, user testing, and redesign is
called user-centered design. This view is very important in
participatory design. One of its major benefits is that it ties
users to the process and lowers their resistance towards change
in organizations. Within user-centered design, numerous
techniques are used, such as: brainstorming, task analysis, direct
observation, questionnaire surveys, interviews, focus groups,
user panels, empathic modeling, scenario modeling, task
modeling, user modeling, prototyping, contextual enquiry,
usability laboratories, user trials, field trials, discount usability
engineering, co-operative evaluation, cognitive walkthroughs
and so on. Some of these techniques have been surveyed in
section 3. Specific user-centered design methods offer a
collection of these techniques, often including some sort of user
modeling technique and an evaluation technique that allow us to
design for usability.
Some examples of user-centered design suites:

� Discount Usability Engineering (Nielsen, J., 1995)

� IBM User-centered design process (Vredenburg et al,
2001)

� USER fit (Poulson et al, 1996)

4.1.2 Product oriented
The product oriented approach considers usability to be a
product attribute by naming examples of product or system
properties or qualities that influence usability. This approach
has collected and described design knowledge over many years
of software design. The design knowledge consists of a
collection of properties and qualities that have proven to have a
positive effect on usability. This approach can be divided into
three categories:

� Interface guidelines.

� Design- heuristics and principles.

� Usability patterns.

4.1.3 Interface Guidelines
These guidelines provide suggestions and recommendations for
low level interface components, for example: directions and
guidelines for icons, windows, panels, buttons, fields and so on.

� IBM CUA (IBM, 1991a), (IBM, 1991b), Guide to user
interface design.

� Windows (Microsoft, 1992) The Windows interface - An
application design guide.

� ISO 9241-14 (ISO 9241 DIS) Menu dialogues. This part
provides recommendations for the ergonomic design of
menus used in user-computer dialogues.

� ISO/IEC 11581: Icon symbols and functions. Contains a
framework for the development and design of icons,
including general requirements and recommendations
applicable to all icons.

� KDE user interface guidelines. (KDE)

� Macintosh human interface guidelines (Macintosh)
These and various other guidelines provide the raw material for
an interface. Usability depends on the extent to which a
dialogue implemented in a particular style is successful in
supporting the user's task.

4.1.4 Design heuristics and principles
Design heuristics and principles for usability suggest properties
and principles that have a positive effect on usability. The
following list of design heuristics and principles is created
based upon surveys provided in (Keinonen, 1998) and (Baecker
et al, 1995).

� Eight golden rules of dialogue design (Shneiderman, 1986)

� Usability heuristics (Nielsen, 1993)

� Usability principles (Constantine, 1999)

� Evaluation check list for software inspection (Ravden and
Johnson, 1989)

� Guidelines on user interaction design (Hix, 1993)

� Seven principles that make difficult task easy (Norman,
1988)

� Design for successful guessing (Polson and Lewis, 1990)

� Dialogue principles (ISO 9241 DIS)

� Design for successful guessing (Holcomb and Tharp,
1991)

� Design principles (Rubinstein and Hersh, 1984)
The principles stated above almost all address usability issues
mentioned below according to (Keinonen, 1998)

� Consistency; users should not have to wonder whether
different words, situations, or actions mean the same thing.
It is regarded as an essential design principle that
consistency should be used within applications.
Consistency makes learning easier because things have be
learned only once. The next time the same thing is faced in
another application, it is familiar. Visual consistency
increases perceived stability which increases user
confidence in different new environments.

� Task match; designers should provide just the information
that the users needs no more no less, and in the order that
the users prefers to use this information.

� Appropriate visual presentation; user interface design has
focused on this aspect of user control. This issue has
recently been extended to include multimedia, for
example, voice control applications. For a user to be
effectively in control he has to be provided with all
necessary information.

� User control; it is a design principle that direct
manipulation should be supported, for instance, the user
should feel that he is in control of the application.
Interaction is more rewarding if the users feel that they
directly influence the objects instead of just giving the
system instructions to act.

� Memory-load reduction; People do not remember
unrelated pieces of information exactly, thus where precise
recollection is required; for instance in a task, many errors
may be expected. Interaction therefore should rely more on
user recognition than on recall. Recall is prone to errors,
whereas people are very good at recognizing objects. The
allocation of work between humans and computers should
be such that computers present alternatives and patterns,
while people select and edit.

� Error handling; all usability principles address the issue of
error handling or error recovery. Error recovery relieves
anxiety, enabling users to discover new alternatives,
facilitating learning by doing.

� Guidance and support; In order to help the user understand
and use the system, informative, easy to use and relevant
guidance and support should be provided in both the
application and the user manual.

4.1.5 Usability patterns
Patterns and pattern languages for describing patterns are ways
to describe best practices, good designs, and capture experience
in a way that it is possible for others to reuse this experience.
Although patterns originate from software development, they
can be used for any design including user interface design.
According to (Alexander, 1979) patterns are defined as: "each
pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution.”
A usability pattern is not the same as a design pattern known in
software engineering such as discussed by (Gamma et al, 1995)
Design patterns specifically focus on implementation details
and its effect on particular quality attributes whereas usability
patterns refrain from specifying implementation details and
only state a specific relation with usability. One thing that
usability patterns share with design patterns is that their goal is
to capture design experience in a form that can be effectively
reused by software designers in order to improve the usability
of their software, without having to address each problem from
scratch. The aim is to take what was previously very much the
“art” of designing usable software and turn it into a repeatable
engineering process. Another aspect shared with design patterns

is that a usability pattern should not be the solution to a specific
problem, but should be able to be applied in order to solve a
number of related problems in a number of different systems, in
accordance with the principle of software reuse.
Various usability patterns collection have been described by
(Tidwell, 1998), (Perzel and Kane, 1999) or (Welie et al, 1999).
Some collections of usability patterns can be found on the
internet:

� Common ground: Tidwell’s usability pattern collection
(Tidwell)

� The Amsterdam Collection of Patterns in User Interface
Design (Welie)

� PoInter (Patterns of INTERaction) collection at Lancaster
University (PoInter)

� The Brighton Usability Pattern Collection (Brighton)
Most of these usability patterns collections refrain from
providing implementation details. (Bass et al, 2001) on the
other hand take a software architecture centered approach to
usability engineering. Usability is approached from a software
engineering perspective. (Bass et al, 2001) give examples of
architectural patterns that may aid usability. Several scenarios
have been identified that illustrate particular aspects of usability
that are architecture sensitive. Several architectural patterns are
presented for implementing these aspects of usability.

4.2 Overview
Various guidelines and heuristics that have been surveyed can
be integrated into traditional iterative development techniques
for software development; however, there are no specific design
techniques for usability that allow design for usability at the
architectural level. There are techniques that allow us to collect
those requirements that make software more usable, but there is
no explicit process that translates these requirements into
specific architectural solutions.
The current approach for designing for usability gives either
very detailed design directions; in the interface guidelines, such
as suggesting layout of icons and so on, or provides a wide
variety of usability principles. These principles are very useful
but are typically hard to correlate to the software architecture.
Specifically, part of these usability issues such as appropriate
visual presentation address the field of interface engineering but
large part addresses system engineering such as user control,
error handling and so on.
The following questions cannot be easily answered. When
designing for usability which architectural choices have to be
made? Or which design choices should a software architect
consider when designing for usability? There is no apparent
relationship between heuristics and architectural solutions yet.
The usability engineering community has collected and
developed various design solutions such as usability patterns
that can be applied to improve usability. Where these prescribe
sequences or styles of interaction between the system and the
user, they are likely to have architectural implications.
(Bass et al, 2001) have identified patterns that to them require
architectural support. To our opinion usability patterns can be
implemented quite differently, influencing architectural
sensitiveness, therefore the architectural sensitiveness of several
patterns is open to dispute. Next to that some of the scenarios
suggested by them are open to dispute whether they are related
to usability, in our opinion.
Evaluation of or designing for usability on the architectural
level as suggested by (Bass et al, 2001) appears to be just

running down a checklist of scenarios that (may) require
architectural support. This approach is not an ideal situation
because there is not a clearly documented and illustrated
relationship between those usability issues addressed by the
design principles and the software architecture design decisions
required to design for usability. To improve on this situation, it
would be beneficial for knowledge pertaining to usability to be
captured in a form that can be used to inform architectural
design, which allows for engineering for usability early on in
the design process.

5. Usability Framework
To conclude this survey a framework has been constructed
which visualizes the three research questions surveyed in
previous chapters. Before investigating the feasibility of our
design approach the different definitions of usability were
surveyed in existing literature. Our survey in section 2
discovered that the term usability attribute is quite ambiguous.
Next to the need to organize these different interpretations of
usability attributes, there was a need to relate usability to
software architecture to be able to specifically design for
usability at the architectural level. However, it is extremely
difficult to draw a direct relation between usability attributes
and software architecture. By refinement of the definition of
usability attributes, it was attempted to decompose the set of
attributes from our survey into more detailed elements, such as
“the number of errors made during a task”, which is an
indication of reliability, or “time to learn a specific task” which
is an indication of learnability, but this refinement still did not
lead to a convincing connecting relationship with architecture.
The only ‘obvious’ relation identified from our surveys between
usability and architecture is that there are some usability
patterns that have a positive effect on usability and are

architecture sensitive as also identified by (Bass et al, 2001).
These issues led us to define the framework depicted in Figure
10. This framework was derived from the layered view on
usability presented in (Welie et al, 1999).
The concept of designing for and assessing of usability can be
divided into parts relating to the problem domain and to the
solution domain:

� The problem domain part deals with the concept of
defining usability: what is usability? Which attributes
compose usability? How do we assess usability?

� The solution domain provides practice and experience to
improve usability by providing various design solutions
such as heuristics or usability patterns that exist in
literature and practice. How do we design for usability?

The framework created expresses:

� The relationships between the three questions surveyed in
existing practice.

� The relation between the problem domain (defining/
assessing of usability) and the solution domain (design for
usability).

� The different approaches towards the definition of
usability.

� The relation between usability and the software
architecture

To relate the problem domain to the solution domain, and hence
relate usability to software architecture several intermediate
layers have been defined which will be discussed in the next
subsections.

P
ra
ct
ic
e/

de
si
gn

kn
ow

le
dg

e
U
sa

bi
lit
y

de
fin

iti
on

s

retentionretentionretention

M
ea

su
ra
bl
e

in
di
ca

to
rs

retention

User view

 SA related

Usability patterns

 - task 1 - task 1 - task 1 - task 1
 - task 2 - task 2 - task 2 - task 2
 - - - -

ISO

� effectiveness

� efficiency

� satisfaction

Shackel

� effectiveness
� learn ability
� flexibility
� attitude

Nielsen

� learnability
� efficiency
� memorability
� errors
� satisfaction

errorsTime to learn

SA independent

alert

satisfactioncompleteness Performance
speed

Performance
speed

Performance
speed

heuristics/guidelines design
techniques

Progress
indication

AttitudeAttitudeAttitude

Design guidelines/
heuristics

� Nielsen’s Heuristics
� ISO 9124
� Norman’s principles

 Usability Problem domain

Others etc

� throughput
� learnability
� evolvability
� attitude
�

Others etc

� throughput
� learnability
� evolvability
� attitude
�

Others etc

� throughput
� learnability
� evolvability
� attitude
�

Interface standards
� IBM
� Macintosh
� KDE
� -

Design techniques
� user modeling
� task modeling
� prototyping

Consistent
views

undoundoundoundoundo
Unambiguous
data entry

Usability
 Properties

wizard

Error
management feedback guidanceconsistency User control

 Usability
 Indicators

Usability
 Definitions

 Design
 Knowledge

problem / solution domain boundary

Solution domain

Figure 10: usability framework

5.1 Problem domain
Each layer is discussed starting from the problem domain. The
framework consists of the following layers:

Usability definitions and attributes
The top layer consists of the concept of usability and its top
level decomposition in measurable components. This layer
consists of all the different definitions or classifications of
usability according to the attributes which define the abstract
concept of usability. In section 2 several definitions (Shackel,
1991), (Nielsen, 1993), (ISO 9241-11) and (ISO 9126) are
discussed which are considered to have had the most influence
in usability engineering.

Usability indicators
Usability attributes such as learnability or efficiency are abstract
concepts. These attributes compose usability but they do not
state exactly how these should be measured. Different authors
in the field use different indicators to measure usability
attributes. Learnability, for example, can be measured by
measuring the time it takes to learn a specific task but also by
measuring the number of errors made while performing such
tasks. Therefore, at the layer below the usability definitions the
usability indicators layer is defined. This layer consists of
concrete measurable indicators of usability which are related to
certain usability attributes. For instance, time to learn is a
concrete measurable indicator for learnability. Because these
indicators are very interaction dependent, they should be
defined for each type of interaction, for instance, time to learn
task one, or number of errors made performing task two. This
survey does not investigate nor gives a complete list of usability
indicators; they are stated here to illustrate the framework
presented. Our survey of usability attributes in section 2 shows
that usability attributes can be categorized into two
classifications. These two categories are user performance
attributes and user view attributes, which is the reason why the
usability indicators have been separated into these two
classifications.

5.2 Solution domain
The solution domain, for example, the current practice and
research in usability engineering, provides us with various
guidelines, tools and techniques that allow us to design for
usability.

Design knowledge
At the lowest layer the design knowledge layer is defined. This
layer expresses all “design knowledge” existing in the current
usability engineering community; it consists of design
heuristics, interface standards and design techniques such as
user modeling, task modeling or prototyping and so on. The
design knowledge provides design directives which can be very
detailed for example apple interface standards states
“concerning positioning windows, new document windows
should open horizontally centered”. Design knowledge such as
design heuristics provide abstract directives such as
“applications should provide feedback”.
Usability patterns are also part of design knowledge. Usability
patterns are proven solutions to a problem in a context; thus not
an actual implementation of such a pattern. An example of a
well-known and recognized usability pattern is the wizard
pattern. Our approach to usability patterns is to relate these
patterns to software architecture. A distinction is made between
patterns that require architectural support and those that do not.

5.3 Relating the problem to solution domain
The problem domain consists of a composition of usability
layer and usability indicators layer. The solution domain

consists of a design knowledge layer and usability patterns
layer. To relate the two domains an intermediate level is
defined, called “usability properties” which relates the usability
patterns layer to the usability indicators layer; hence relating the
problem to the solution domain.

Usability properties
Usability properties are higher level concepts to which patterns
and concrete solutions address; they are derived from design
heuristics and design principles and ergonomic principles that
suggest general “higher level” directions for design; such as
providing feedback at any time or providing consistency. They
are directly related to software design decisions. Concerning the
usability properties it has to be noted that they do not have a
strictly one to one relation with the usability indicators. For
instance, the wizard pattern uses the usability property of
guidance which decreases the time it takes to learn a task but it
also increases the time taken to perform a task. Therefore the
wizard pattern has a positive relationship to learnability, but a
negative relation to performance or efficiency. In the
framework only the obvious relations are stated.
The wizard pattern may be architectural sensitive because to
implement a wizard, a provision is needed in the architecture
for a wizard component. This component can be connected to
other relevant components: the one triggering the operation and
the one receiving the data gathered by the wizard. The wizard
patterns stated here is an example of a pattern that may be
architectural sensitive. We state “may” because usability
patterns can be implemented quite differently, influencing
architectural sensitiveness. Therefore verifying or proving the
architectural sensitiveness of usability patterns is quite
ambiguous.
Concluding, our framework visualizes the relation between
usability and software architecture by defining intermediate
terms such as usability properties which relates usability
patterns to usability attributes which eventually relates software
architecture to usability. Our objective was not to completely
fill in the content of all layer s but rather to present a framework
in such way that it clearly visualizes the usability – software
architecture relation.

6. Research issues
Several issues have been identified in these surveys that require
more research in order to be able to design for usability at the
architectural level.
Concerning the design approach taken to specifically design for
quality attributes at the architectural level:
The design process depends on two requirements:

� It is required to determine when the software design
process is finished. Therefore, assessment techniques are
needed to provide quantitative or qualitative data, to
determine if our architecture meets the non functional
requirements. Our survey has not identified suitable
assessment techniques that can be used hence such
techniques need to be developed.

� Development or identification of architectural design
decisions that improve usability, such as identification of
usability patterns.

Concerning specification of usability during requirement
analysis:

� Non functional requirements such as usability,
performance or maintainability are weakly specified in
requirement specifications. A more precise specification of

required usability allows identification of architectural
issues that are required to provide such a level of usability.

� Traditionally usability requirements have been specified
such that these can be verified for an implemented system.
However, such requirements are largely useless in a
forward engineering process. Usability requirements need
to take a more concrete form expressed in terms of the
solution domain to influence architectural design.

Concerning the definition of usability:

� For our design approach the definition of usability is not an
issue, the choice of whether to use a particular definition
will depend on how well an evaluation tool based upon this
definition, will support evaluation of usability at the
architectural level. However since no suitable evaluation
techniques were found in current practice eventually a
suitable definition of usability should be used or defined.

Concerning design for usability:

� Due to the distance between the design and the evaluation
phase, where feedback is received about the design
decisions. Design for usability would benefit from design
heuristics which specifically suggest which architectural
styles and patterns to use for improving usability. Design
knowledge should be captured in a form that can be used
to inform architectural design, which allows for
engineering for usability early on in the design process.

The framework presented in section 5 is a first step in
identifying the relationship between usability and software
architecture. More research should be spent on the following
issues:

� Verifying the architectural sensitiveness of usability
patterns.

� The relationships depicted in the framework between
usability patterns, usability properties and usability
attributes/indicators, indicate potential relationships.
Further work is required to substantiate these relationships
and to provide models and assessment procedures for the
precise way that the relationships operate.

7. Conclusions
This survey has identified the weaknesses of current usability
engineering practice. Most usability issues are only discovered
late in the development process, during testing and deployment.
This late detection of usability issues is largely due to the fact
that in order to do a usability evaluation, it is necessary to have
both a working system and a representative set of users present.
This evaluation can only be done at the end of the design
process. It is therefore expensive to go back and make changes
at this stage. Most usability improving modifications are
structural and can hence not be implemented because of its cost.
The work presented in this paper is motivated by the increasing
realization in the software engineering community of the
importance of software architecture for fulfilling quality
requirements. The quality attributes of a software system are to
a considerable extent defined by its software architecture. It is
our conviction that designing for usability at the architectural
level has the greatest influence on the usability of a system.
Usability should drive design at all stages. There are no
techniques yet that can evaluate architectures for their support
of usability. Iteratively design for usability at the architectural
design phase is therefore not possible and hence it can be
concluded that the goal that usability should drive design at all
stages is not fully achieved.

A new approach towards design for usability is proposed that
has potential to improve current design for usability. Practice
shows that such a design approach is required to successfully
design for usability. This survey has explored the feasibility of
such a design approach.
The main conclusions of this paper are:

� This survey justifies our design approach.

� There are no design techniques in current practice that
allow for design for usability specifically at the
architectural level.

� In current practice there are no evaluation techniques that
can assess architectures for their support of usability.

A first step in further research could be identification of
usability patterns that are architecture sensitive and the relation
these usability patterns have with usability. Therefore closer
investigation is required to examine the relationship between
usability patterns, usability properties and usability attributes.
This experience is necessary for development of design
heuristics which specifically suggest which architectural styles
and patterns to use for improving of or designing for usability.
The design method presented is only a preliminary proposal for
a design method for usability; future case studies should
determine the validity of this method to refine it and make it
generally applicable.

8. REFERENCES

Alexander, C. , 1979. The timeless way of building. Oxford
University Press.

Alreck, P.L. and Settle, R.B., 1994. The Survey Research
Handbook, Irwin Professional Publishing, Chicago, IL.

Apple, 1987. Apple Computer Inc. Human interface guidelines:
the Apple desktop interface. Addison-Wesley, Reading, MA.

Baecker, R. M., Grudin, J., Buxton, W. A. S., Greenberg, S.
1995. Introduction to HCI. In Readings in Human-Computer
Interaction: Towards the Year 2000, edited by Baecker,
Grudin, Buxton, and Greenberg. Morgan Kaufmann ,San
Francisco, CA . pp. 1-3.

Bass, L., Clements, P., Kazman, R., 1998. Software
Architecture In Practice. Addison Wesley.

Bass, L., John, B.E., Kates, J., 2001 Achieving Usability
through software architecture. Technical report CMU/SEI-
2001.

Bengtsson, P.O., Bosch, J., 2000. Assessing optimal software
architecture maintainability. fifth European Conference on
Software Maintainability and Reengineering, September
2000.

Bengtsson, P.O., Lassing, N., Bosch, J., Vliet, H. van., 2000.
Analyzing Software Architectures for Modifiability,
Conditionally Accepted for the Journal of Systems and
Software, May 2000.

Bevan N., Kirakowski J., Maissel J., 1991. What is usability?
In: Bullinger H.J. Proceedings of the 4th International
Conference on Human Computer Interaction, Elsevier.

Bevan, N., 1995a. Measuring usability as quality of use. In
Journal of Software Quality Issue 4, pp 115-140.

Bevan, N., 1995b. Usability is quality of use In: Anzai and
Ogawa (eds) Proceedings of the 6th International
Conference on Human Computer Interaction, July 1995.
Elsevier.

Bevan, N., 2001. International standards for HCI and usability
In: International Journal of Human-Computer Studies, Vol.
55, No. 4, Oct 2001, pp. 533-552 .

Bias, R., 1994. The Pluralistic Usability Walkthrough:
Coordinated Empathies:, in Nielsen, J. and Mack, R.
Usability Inspection Methods, Chapter 3, page 63-76, John
Wiley.

Bosch, J., 2000. Design and use of Software Architectures:
Adopting and evolving a product line approach, Pearson
Education (Addison-Wesley and ACM Press) May 2000.

Brighton. The Brighton Usability Pattern Collection. Collection
of patterns for the design of usable software, maintained by
The Usability Group at the University of Brighton, UK.
http://www.cmis.brighton.ac.uk/research/patterns/home.html

Brooks, F. P. jr., 1995. The Mythical Man-Month: Essays on
Software Engineering, Twentieth Anniversary Edition,
Addison-Wesley.

Chin, J.P., Diehl, V.A., Norman, K.L., 1988. Development of
an instrument measuring user satisfaction of the human-
computer interface. Proceedings of the CHI `88 Conference
on Human Factors in Computing Systems, ACM Press, pp.
213-218.

Constantine, L.L., Lockwood, L. A. D., 1999. Software for Use:
A Practical Guide to the Models and Methods of Usage-
Centered Design. Addison-Wesley, New York, NY.

Davis, F.D., 1989. Perceived Usefulness, Perceived Ease of
Use, and User Acceptance of Information Technology. MIS
Quarterly, 13:3, 319-340.

Dumas J.S., Redish, J. A, 1993. Practical Guide to Usability
Testing, Ablex Publishing Norwood NJ.

Duyne, D. van., Landay, J., Hong, J., 2002. The Design of Sites,
Addison-Wesley.

Doll, W.J., Xia, W., Torkzadeh, G. A, 1994. Confirmatory
Factor Analysis of the End-User Computing Satisfaction
Instrument. MIS Quarterly, Vol. 18, No. 4, December 1994,
pp. 453-461.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design
Patterns Elements of Reusable Object-Orientated Software,
Addison -Wesley.

Gurp, J. van., Bosch, J., 2001. Design Erosion: Problems &
Causes, Journal of Systems & Software, 61(2), pp. 105-119,
Elsevier, March 2002.

Häggander, D., Bengtsson, P.O., Bosch, J., Lundberg, L.,1999.
Maintainability Myth Causes Performance Problems in
Parallel Applications. Proceedings of the IASTED 3rd
International Conference on Software Engineering and
Applications, pp. 288-294, October 1999.

Hartson, H.R., Castillo, J.C., Kelso, J., Kamler, J., Neale, W.C.,
1996. Remote Evaluation: The Network as an Extension of
the Usability Laboratory. Proceedings of CHI'96 Human
Factors in Computing Systems, 228-235.

HFRG. Human Factors Research Group http://www.ucc.ie/hfrg/
Hix, D., Hartson, H.R. 1993. Developing User Interfaces:

Ensuring usability through product and process, Chap. 2,
Wiley and Sons, NY.

Holcomb, R., Tharp, A.L., 1991 What users say about software
usability. International Journal of Human-Computer
Interaction, vol. 3 no. 1, 49-78.

IBM, 1991a. SAA CUA Guide to user interface design. IBM
Document SC34-4289-00.

IBM, 1991b. SAA CUA Advanced interface design. IBM
Document SC34-4290-00.

IEEE, 1990. Institute of Electrical and Electronics Engineers.
IEEE Standard Computer Dictionary: A Compilation of
IEEE Standard Computer Glossaries. New York, NY.

IEEE, 1998. IEEE Architecture Working Group. Recommended
practice for architectural description. Draft IEEE Standard
P1471/D4.1, IEEE, December 1998.

ISO 9126. Software product evaluations – Quality
characteristics and guidelines for their use, ISO DIS 9126.

ISO 9241-11. Ergonomic requirements for office work with
visual display terminals (VDTs) -- Part 11: Guidance on
usability.

ISO 9241 DIS. Ergonomic requirements for office work with
visual display terminals (VDTs).

ISO 9126-1 (2000). Software engineering – Product quality –
Part 1: Quality Model (2000).

Kazman, R., Abowd, G., Bass, L, Clements, P. 1996. Scenario-
based analysis of software architecture. IEEE Software, 13
(6) pp.47-56.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson,
H., Carriere, S.J., 1998. The Architecture Tradeoff Analysis
Method. In proceedings of the 4th International Conference
on Engineering of Complex Computer Systems. Montery,
CA: IEEE Computer Society Press. Pp. 68-78.

KDE. KDE user interface guidelines http://developer.kde.org
Keinonen, T. 1998. One-dimensional usability - influence of

usability on consumers' product preference publication A21.
Helsinki.

Lederer, A.L., Prassad, J., 1992. Nine Management Guidelines
for Better Cost Estimating. Communications of the ACM
35(2) (February 1992), 51-59.

Lewis, J. R. 1992. Psychometric evaluation of the post-study
system usability questionnaire: The PSSUQ. Proceedings of
the Human Factors Society 36th Annual Meeting, 1259-
1263. Santa Monica, CA: HFES.

Lewis, J. R, 1995. IBM Computer Usability Satisfaction
Questionnaires: Psychometric Evaluation and Instructions
for Use / James R. Lewis International Journal of Human-
Computer Interaction 1995 v.7 n.1 p.57-78.

Macintosh. Macintosh human interface guidelines
http://developer.apple.com

Macleod, M., 1994. Usability: Practical Methods for testing
and Improvement. In: Proceedings of the Norwegian
Computer Society Software '94 Conference, Sandvika,
Norway.

Microsoft, 1992. The Windows interface - An application
design guide. Microsoft Press, Redmond, USA.

Newman, W. M, Sproull, R. F., 1979. Principles of interactive
computer graphics. McGraw-Hill, New York.

Nielsen, J., 1993. Usability Engineering. Academic press, San
Diego, CA.

Nielsen, J., 1994. Heuristic Evaluation. In Nielsen, J., Mack, R.
L., Eds. Usability Inspection Methods. John Wiley & Sons,
New York, NY.

Nielsen, J., 1995. Scenarios in Discount Usability Engineering,
in Caroll, J.M., (ed.), Scenario-Based Design: Envisioning
Work and Technology in System Development, John Wiley
and Sons.

Norman, D.A., 1988. The psychology of everyday things. Basic
Books, New York.

Welie, M. van., Trætteberg, H., 2000. Interaction Patterns in
User Interfaces: In: PLoP2000 7th. Pattern Languages of
Programming Conference.

Ovaska, S. 1991. Usability as a Goal for the Design of
Computer Systems Scandinavian Journal of Information
Systems, vol 3.

Perlman, G. Web-Based User Interface Evaluation with
Questionnaires, http://www.acm.org/~perlman/question.html

Perzel, K., Kane, D., 1999. Usability Patterns for Applications
on the world wide web, PloP’99.

PoInter. Patterns of INTERaction collection at Lancaster
University
http://www.comp.lancs.ac.uk/computing/research/cseg/proje
cts/pointer/patterns.html

Polson, P. G., Lewis, C. H., 1990. Theory-based design for
easily learned interfaces. Human-Computer Interaction, vol.
5, p191-220.

Poulson, D., Ashby, M., Richardson, S., 1996. USERfit, A
practical handbook on user-centred design for Assistive
Technology, HUSAT Research Institute, UK.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and
Carey, T., 1994. Human-Computer Interaction. Addison
Wesley.

Ravden, S.J., Johnson, G.I., 1989. Evaluation usability of
human-computer interfaces: A practical method. Ellis
Horwood Limited, New York.

Rubin, J. 1994. Testing two participants at a time. Handbook of
Usability Testing. John Wiley and Sons. p. 240,

Rubinstein, R., Hersh, H., 1984. The Human Factor: Designing
Computer Systems for People. Digital Press, Bedford, MA.

Rowley, D.E., Rhoades, D.G. 1992 The Cognitive Jogthrough:
A Fast-Paced User Interface Evaluation Procedure. CHI `92
Proceedings, (May 3-7, 1992): 389-395.

Shneiderman, B., 1986. Designing the user interface: Strategies
for effective human-computer interaction. Addison-Wesley,
Reading MA.

Schneiderman, B. 1998. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley.

Shackel, B., 1991. Usability – context, framework, design and
evaluation. In Shackel, B., Richardson, S. (eds.). Human
Factors for Informatics Usability. Cambridge University
Press, Cambridge, 21-38.

Soken, N., Reinhart, B., Vora, P., Metz, S., 1993. Methods for
Evaluating Usability (Section 5B), Honeywell, Dec. 1993.

Tidwell, J., 1998. Interaction Design Patterns, PloP '98.
Tidwell. Jenifer Tidwell's Pattern collection http://time-

tripper.com/uipatterns/
Vredenburg, K., Isensee, S., Righi, C., 2001. User-Centered

Design: An Integrated Approach, Prentice Hall.
Vora, P., Helander, M., 1995. A Teaching method as an

alternative to the concurrent think-aloud method for usablity
testing. In Anzai, Y. Ogawa, K. and Mori, H. Symbiosis of
Human and Artifact, pp.375-380.

Welie, M. van., Veer, G.C. van der., Eliëns, A., 1999. Breaking
down Usability, In: Proceedings of Interact 99 In:

Proceedings of Interact 99, pp. 613-620, Edinburgh,
Scotland.

Welie, M. van, Trætteberg, H., 2000. Interaction Patterns in
User Interfaces. In: 7th. Pattern Languages of Programs
Conference, 13-16 August 2000, Allerton Park Monticello,
Illinois, USA.

Welie. The Amsterdam Collection of Patterns in User Interface
Design. http://www.welie.com/patterns/

Wharton, C., Rieman, J., Lewis, C. and Polson, P., 1994. The
Cognitive Walkthrough: A practitioner's guide. In Nielsen,
J., and Mack, R. L., Eds. Usability Inspection Methods. John
Wiley & Sons, New York, NY.

Wixon, D., Jones, S., Tse, L., and Casaday, G., 1994.
Inspections and Design Reviews: Framework, History, and
Reflection. In Usability Inspection Methods, J. Nielsen and
R.L. Mack, Eds. John Wiley & Sons, Inc. New York, 1994,
pp 77-103.

Wixon, D., Wilson, C., 1997. The usability Engineering
Framework for Product Design and Evaluation. In Handbook
of Human-Computer Interaction. pp. 653-688. Ed. by M. G.
Helander et al. Elsevier North-Holland.

Zhang, Z., Basili, V., and Shneider-man, B., 1998a. An An
empirical study of perspective-based usability inspection.
Proceedings of the Human Factors and Ergonomics Society
42nd Annual Meeting. pp. 1346-1350. Chicago.

Zhang, Z., Basili, V., and Shneider-man, B., 1998b.
Perspective-based usability inspection. Proceedings of the
Usability Professionals' Association Conference. pp. 281-
282. Washington DC.

Zhang, Z., Overview of usability evaluation methods.
http://www.cs.umd.edu/~zzj/UsabilityHome.html

Eelke Folmer
Eelke Folmer is a PhD student at the University of Groningen.
After obtaining an MSc at the University of Groningen, he
started work on his PhD under the supervision of Jan Bosch.

Jan Bosch
Prof. dr. ir. Jan Bosch is a professor of software engineering at
the University of Groningen, The Netherlands, where he heads
the software engineering research group. He received an MSc
degree from the University of Twente, The Netherlands, and a
PhD degree from Lund University, Sweden. His research
activities include software architecture design, software product
lines, object-oriented frameworks and component-oriented
programming. He is the author of a book "Design and Use of
Software Architectures: Adopting and Evolving a Product Line
Approach" published by Pearson Education (Addison-Wesley
& ACM Press), (co-)editor of three volumes in the Springer
LNCS series and has (co-)authored more than 50 refereed
journal and conference publications. He has organised
numerous workshops, served on many programme committees,
including the ICSR'6, CSMR'2000, ECBS'2000, GCSE, SPLC
and TOOLS conferences and is member of the steering groups
of the GCSE and WICSA conferences. He was the PC co-chair
of the 3rd IFIP (IEEE) Working Conference on Software
Architecture (WICSA-3) and is PC general-chair of the 4th IFIP
(IEEE) Working Conference on Software Architecture
(WICSA-4).

