
Behaviour Model Elaboration using
Partial Labelled Transition Systems

Sebastian Uchitel, Jeff Kramer, Jeff Magee
Department of Computing, Imperial College London

Huxley Building, South Kensington Campus
London, SW7 2AZ, U.K.

[s.uchitel, jk, jnm]@doc.ic.ac.uk

ABSTRACT
State machine based formalisms such as labelled transition
systems (LTS) are generally assumed to be complete descriptions
of system behaviour at some level of abstraction: if a labelled
transition system cannot exhibit a certain sequence of actions, it is
assumed that the system or component it models cannot or should
not exhibit that sequence. This assumption is a valid one at the
end of the modelling effort when reasoning about properties of the
completed model. However, it is not a valid assumption when
behaviour models are in the process of being developed. In this
setting, the distinction between proscribed behaviour and
behaviour that has not yet been defined is an important one.
Knowing where the gaps are in a behaviour model permits the
presentation of meaningful questions to stakeholders, which in
turn can lead to model exploration and thus more comprehensive
descriptions of the system behaviour. In this paper we propose
using partial labelled transition systems (PLTS) to capture what
remains to be defined of the system behaviour. In the context of
scenario synthesis, we show that PLTSs can be used to support
the iterative incremental elaboration of behaviour models.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Requirements, Specifications –
Languages, tools.

General Terms
Design, Languages, Verification.

Keywords
Partial LTS, Model elaboration, Synthesis, Scenarios

1. INTRODUCTION
1.1 Motivation
Behaviour models are precise, abstract descriptions of the
intended behaviour of a system. Behaviour models have solid
mathematical foundations that can be used to support rigorous

analysis and mechanical verification of properties. Effective
techniques and tools have been developed for this purpose and
have shown that behaviour modelling and analysis are successful
in uncovering the subtle errors that can appear when designing
concurrent and distributed systems [5, 6].

Although there is substantial benefit to be gained in using
behaviour models for developing complex systems, adoption of
behavioural modelling and verification technologies has been
slow. One of the main reasons for this is that the construction of
behaviour models remains a difficult task that requires
considerable expertise and effort. Our aim is to develop methods
and tools that support the construction and elaboration of
behaviour models. Such methods and tools are crucial for the
adoption of sound model-based engineering methods for
distributed software.

State machine based formalisms such as labelled transition
systems (LTS) [12] are commonly used to describe system
behaviour. These formalisms are generally assumed to be
complete descriptions of system behaviour at some level of
abstraction (a fixed alphabet of actions): if a labelled transition
system cannot exhibit a certain sequence of actions in its
alphabet, it is assumed that the system or component it models
cannot or should not exhibit that sequence.

Although this assumption can be a valid one when reasoning
about the properties of a finished design proposal, it is not so
when behaviour models are in the process of being developed,
such as during the requirements process. In this setting the
distinction between proscribed behaviour and behaviour that has
not yet been defined is an important one. Knowing where the gaps
are in a behaviour model permits the presentation of meaningful
questions to stakeholders, which in turn can lead to model
exploration and potentially more comprehensive descriptions of
the system behaviour [19]

In this paper we propose using partial labelled transition systems
(PLTS) to capture what remains undefined of the system
behaviour. PLTSs extend LTSs by explicitly modelling in each
state the set of actions that may not occur, i.e. the set of
proscribed actions at each state. Given a state, actions that are
neither in the state’s set of proscribed actions nor have an
outgoing transition from the state are actions for which the system
behaviour at that state is unknown. In this paper, we demonstrate
the usefulness of such models in the context of scenario synthesis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE ’03, September 1 - 9, 2003, Helsinki, Finland
Copyright 2000 ACM 1-58113-743-5/03/0009…$5.00.

1.2 Context
Scenario-based specifications (e.g. [1, 10]) are partial descriptions
of system behaviour. A scenario conveys instance level
information; it depicts an example of how system components
should interact. Hence, a scenario-based specification will
typically have many scenarios that cover most common system
behaviours and possibly some exceptional ones too. In contrast to
behaviour models, scenario-based specifications are not
particularly well suited for exhaustive description of all possible
system traces and it is natural to assume that the absence of a
scenario in a specification does not imply that it is an undesired
system trace.

Some scenario-based notations provide mechanisms for explicit
specification of undesired system behaviour (e.g. conditions [8,
11], negative scenarios [19]). Nevertheless scenario-based
specifications will generally leave gaps in the specification; that
is, examples of system behaviour that have not been described
explicitly as positive (intended) or negative (unintended) system
behaviour.

The difference in interpretation of scenarios and state machines is
one of the causes for the former to be used in early requirements
phases of the development life-cycle, where system descriptions
are relatively partial and require elaboration; while the latter tend
to be used at more advanced stages such as design, where a more
comprehensive knowledge of the system is available. This
separation has led to significant efforts in developing synthesis
techniques that support the construction of state-machine models
from scenario-based descriptions [1, 16, 20].

The issue of moving from a partial to complete specifications is
addressed by scenario synthesis techniques in many different
ways. However, they all make assumptions on what to do with
unspecified system behaviour because their target output requires
behaviours be either positive or negative behaviour.

Consequently, from the perspective described above, approaches
to scenario synthesis lose the distinction between positive and
negative behaviour and behaviour that has not yet been defined.
In the context of supporting the elaboration of behaviour models
this is at best a missed opportunity and at worst misleading. The
gaps in a behaviour model, if detected, can help raise questions to
stakeholders, which in turn can lead more comprehensive
descriptions of the system behaviour [19].

Hence, there is a case for using, in the context of scenario
synthesis, an extended notion of state machine that can explicitly
capture undefined behaviour and support reasoning about aspects
of system behaviour that need further elaboration.

1.3 Summary
In this paper we use PLTSs as the target model for scenario
synthesis. We follow Whittle and Shumman's approach [20] to
synthesis, but use PLTS models instead of standard LTS ones. We
show how additional and relevant feedback can be obtained when
using PLTSs.

More specifically, we start from a set of sequence diagrams [18]
of an ATM machine and an Object Constraint Language (OCL)
[18] based specification of message pre- and post-conditions. We
use the synthesis approach of [20] to build a LTS, and then extend
it to a PLTS that models which message preconditions do not hold

on each state. We show that the resulting model can be used to
identify behavioural aspects of the ATM system that were under-
specified in the original specification. These undefined scenarios
are not differentiated from proscribed behaviours in the
synthesised model produced in [20]; hence missing an opportunity
for model elicitation and elaboration. We show how composition
of PLTS can be used to combine different partial behaviour
models and (potentially) reduce the number of undefined system
scenarios. This supports detection and validation of gaps in the
system behaviour, rather than focusing on details of specific
components which may be irrelevant to the overall system
behaviour. Finally we discuss tools support for PLTSs and
conclude this paper with some comments on future work.

displayMainScreen

badAccount
badBankAccount

verifyAccount
verifyCardWithBank

badAccountMessage
printReceipt
ejectCard

takeCard
requestTakeCard

User ATM Consortium Bank

requestPassword
insertCard

enterPassword

SD1

displayMainScreen

User ATM Consortium Bank
SD2

cancelledMessage
cancel

displayMainScreen

requestPassword
insertCard

ejectCard

takeCard
requestTakeCard

displayMainScreen

enterPassword
verifyAccount

Figure 1 – Scenarios SD1 and SD2

2. LTS Synthesis
The example we use to illustrate our approach is based on a
version of the ATM case study presented by Whittle and
Schumann in [20]. A number of sequence diagrams (depicted in
Figure 1 and Figure 2) describe how a user operates a bank
account by interacting with an ATM. The ATM is connected to a
network run by a consortium, which in turn interacts with the
bank. In addition to the scenarios, pre- and post-conditions for
some scenario messages are given in OCL (Figure 3). The post-
conditions specify how messages modify the values of a set of
ATM state variables (cardIn, cardHalfway, passwdGiven, card,
and passwd). The pre-conditions specify the values these
variables are expected to have before a message occurs.

cancelledMessage

User ATM Consortium Bank

User ATM Consortium Bank

badPassword
badBankPassword

SD3

SD4

cancel

displayMainScreen

requestPassword
insertCard

enterPassword
verifyAccount verifyCardWithBank

requestPassword

ejectCard

takeCard
requestTakeCard

displayMainScreen

cancelledMessage
cancel

displayMainScreen

requestPassword
insertCard

ejectCard

takeCard
requestTakeCard

displayMainScreen

Figure 2 – Scenarios SD3 and SD4

cardIn, cardHalfway, passwdGiven : Boolean
card : Card
passwd : Sequence

insertCard(c : Card)
pre : cardIn = false
post: cardIn = true and card = c

enterPassword(p : Sequence)
pre : passwdGiven = false
post: passwdGiven = true and passwd = p

takeCard()
pre : cardHalfway = true
post: cardHalfway = false and cardIn = false

displayMainScreen()
pre: cardIn = false and cardHalfWay = false
post:

requestPassword()
pre : passwdGiven = false
post:

ejectCard()
pre : cardIn = true
post: cardIn = false and cardHalfway = false and card
= null and passwd = null and passwdGiven = false

requestTakeCard()
pre : cardHalfway = true
post:

canceledMessage()
pre : cardIn = true
post:

Figure 3 – OCL pre- and post-conditions

In [20] a synthesis procedure is presented for automatically
generating LTSs from the combination of the scenarios and the
pre- and post-conditions. Using the pre- and post conditions, the
procedure first infers the value of state variables at specific points

of the scenarios. For example, for displayMainScreen, the first
message in SD1, the OCL specification states a pre-condition that
allows inferring that the value of cardIn and cardHalfway should
be false at the beginning of SD1.

By considering all message pre- and post-conditions and using the
unification and frame action techniques defined in [20] it is
possible to infer further information on the value of state variables
throughout the available scenarios. Consequently, it is possible to
assign a (possibly partial) valuation of state variables to every
scenario state (the gap in a scenario instance between two
consecutive events). The valuations are then used to infer which
scenario states should be modelled with one state in the LTS to be
synthesised. For more details concerning the synthesis procedure,
the interested reader can refer to [20].

3. Undefined Behaviour
3.1 Motivation
Figure 4 depicts the LTS for the ATM component synthesised
from the scenario and OCL specification. As expected, the model
captures the sequences of interactions the ATM component
performs in the scenarios. For instance the LTS models an ATM
that is capable of performing the sequence of actions
<displayMainScreen, insertCard, requestPassword,
enterPassword, verifyAccount…> of scenario SD1. Additionally,
by omission, the LTS also models the sequences of actions that
the ATM cannot perform. Thus, the ATM cannot perform
sequences with prefix <displayMainScreen, insertCard,
insertCard> because after performing displayMainScreen and
insertCard the LTS is in state 2, which does not have any
outgoing transitions labelled insertCard. For exactly the same
reasons, the ATM LTS cannot perform the following sequence:
<displayMainScreen, insertCard, ejectCard>.

However, a closer inspection of the LTS and the OCL
specification reveals that the LTS is over-specifying the
behaviours that the ATM should prohibit. Table 1 shows the value
of the OCL variables in each state of the ATM LTS (where t, f, p,
c, and – are respectively true, false, a password, a card, and null).
Considering that the pre-condition of message insertCard requires
variable cardIn to be false, we can infer that in state 2 insertCard
should not occur. This is consistent with the fact that the LTS for
the ATM component does not allow <displayMainScreen,
insertCard, insertCard>. On other hand, message ejectCard
requires cardIn to be true, hence its precondition is satisfied in
state 2. Consequently, there is no reason to dismiss the possibility
of the ATM performing the sequence <displayMainScreen,
insertCard, ejectCard>. However, the LTS for the ATM
component does not allow this sequence. Clearly, our knowledge
of sequences <displayMainScreen, insertCard, insertCard> and
<displayMainScreen, insertCard, ejectCard> is different. We
know the first one should not occur because it would violate the
insertCard pre-condition. For the second sequence we know it
does not violate any pre-conditions, thus it may be a valid ATM
behaviour. This means that it may well be a situation that has not
been explicitly specified or that has not even been considered by
stakeholders. Hence it is an opportunity for providing feedback
that may trigger new scenarios or strengthened pre-conditions.
Either way, it is an opportunity for eliciting further information
and elaborating the system's behaviour model.

Table 1 – Valuation of variables on states
 0 1 2 3 4 5 6 7 8 9 10 11 12 13
CardIn f f t t t t t t t f f t t t
cardHalfway f f f f f f f f f t t f f f
passwdGiven t t f f t t t t t f f t t f
Card - - c c c c c c c - - c c c
Passwd - - - - p p p p p - - p p -

3.2 Tool Support
We used the Labelled Transition System Analyser (LTSA) [15]
to automate the detection of undefined behaviour in the LTS
generated by the scenario synthesis approach of [20]. The LTSA
tool provides model checking and animation functionality over
behaviour models written in the Finite State Processes (FSP)
process algebra [15]. For this we first we extended the LTS
depicted in Figure 4 with an extra sink state to capture when an
action is not enabled in a state. In other words, we extended a the
LTS (S, L, ∆, q) into a LTS (S ∪ {⊥}, L ∪ {undef}, ∆', q) where
∆' = ∆ ∪ {(⊥, undef, ⊥)} ∪ {(s, l, ⊥) | ∀s'. (s, l, s') ∉ ∆). In this
extended model, all traces that lead to the sink state are potential
examples of traces that lead to states in which an action is
undefined. However, they will only be true examples if the
precondition for an action l that leads to the sink state holds
(because if it holds, the action could be fired, yet the synthesized
LTS did not have a transition for it). Hence, detection of examples
of traces that lead to states in which actions are undefined
depends on analysis of pre-conditions.
The approach to detection of undefined behaviour relies on the
fluent linear temporal logic (FLTL) model checking capabilities
of LTSA. FLTL is a linear temporal logic that allows reasoning
on the effects of actions on the state of the system. A fluent is an
abstract state that is defined on the occurrence of visible system
actions. FLTL allows expressing temporal properties over fluents.
We defined fluents to capture the value of the state variables that
appeared in the OCL specification of Figure 3. For instance
variable cardIn was modelled with the following fluent definition:
fluent CARDIN=<insertCard, {ejectCard , takeCard}>

The definition states that the fluent CARDIN becomes true when
insertCard occurs and remains true until either ejectCard or

takeCard occur. The fluent becomes false once ejectCard or
takeCard occur and remains false until insertCard occurs. Note
that the fluent CARDIN is defined from the OCL post-conditions
of Figure 3 in which variable cardIn appears: insertCard,
ejectCard, and takeCard.
Fluent generation was performed manually, however automating
this step, for a subset of OCL predicates, is possible.
Having modelled OCL state variables with fluents, FLTL
properties can be used to detect traces leading to states in which
the precondition of a certain message holds yet the message is
undefined in the state. For example, the following FLTL formula
asserts that it is always true that if the variable cardIn is not true,
then the sequence insertCard, undef does not occur1.
assert INSERTCARD_UNDEF =

[](!CARDIN -> !X(insertCard && X undef))

A violation to this assertion would be a trace modelling a situation
in which variable cardIn becomes false and action insertCard is
undefined. Using LTSA, the assertion can be checked producing
the following output.
Trace to property violation in INSERTCARD_UNDEF:

 displayMainScreen
 insertCard CARDIN
 requestPassword CARDIN
 cancel CARDIN
 canceledMessage CARDIN
 ejectCard
 insertCard CARDIN
 undef CARDIN
Analysed in: 40ms

The left column of the output is a trace that violates the FLTL
assertion. The violation is a scenario in which after a session, the
ATM ejects the card, which is left halfway in the machine, and
the user instead of taking the card pushes it back in. This scenario
is the one discussed previously and depicted in Figure 5.
However, in this case we have detected and generated the
scenario automatically using FLTL model checking. The right
column of the LTSA output shows CARDIN on lines in which the

1 [] and X correspond to the temporal operators always and next,
! and -> correspond to logical negation and logical
consequence.

ATM
displayMainScreen insertCard requestPassword

cancel

enterPassword verifyAccount

cancel

badPassword

badAccount badAccountMessage printReceipt ejectCard requestTakeCard

takeCard

canceledMessage

ejectCard

canceledMessage

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4 – Synthesized LTS for the ATM component

variable is true at that stage of the violation trace. Hence, the
variable is false until insertCard occurs, and remains so until eject
card occurs. Then insertCard makes the variable true again and it
remains true until the end of the violation trace.

4. Partial Labelled Transition Systems
As described above, there is benefit to be gained from
differentiating in LTS models behaviour that is known to be
undesired from behaviour that is not yet known to be positive or
negative. In the previous section, we used LTSs with FLTL to
detect undefined behaviour. However, the undefined behaviour is
not explicitly represented in the LTS model, it is inferred using
information that is in the OCL specification of Figure 3. As we
show in subsequent sections, distinguishing undefined behaviour
from proscribed behaviour explicitly in a behaviour model can
provide additional advantages.

To distinguish proscribed and undefined behaviour we extend the
notion of LTS to support explicit modelling of proscribed
behaviour. Each LTS state is associated with a set of labels. These
labels model actions that are explicitly proscribed at that state.

More formally, we define States as the universal set of states. We
define Labels as the universal set of action labels.

Definition 1 (Labelled Transition Systems) A labelled transition
system (LTS) P is a structure (S, L, ∆, q) where:
- S ⊆ States is a finite set of states
- L = α(P) where α(P)⊆Labels is a set of labels that denotes the

communicating alphabet of P
- ∆ ⊆ (S × L × S) defines the labelled transitions between states
- q ∈ S is the initial state

Definition 2 (Partial Labelled Transition Systems) A partial
labelled transition system (PLTS) P is a structure (S, L, Ψ, ∆, q)
where P' = (S, L, ∆, q) is a LTS, Ψ ⊆ (S × α(P')) defines the
proscribed labels on states and (s, a) ∈ Ψ implies that (s, a, s') ∉
∆ for all s'∈S.

Given a PLTS P = (S, L, Ψ, ∆, q), we use P →a P’ if P' = (S, L,
Ψ, ∆, q') and (q, a, q') ∈ ∆. We say that a is enabled in P if there
is P' such that P →a P’. We also say that a is proscribed in P,
denoted P →a if (q, a) ∈ Ψ.

Note that if an action is proscribed at a state then we require there
be no outgoing transitions from that state with the same label.
Consequently, we have that in each state every label of the PLTS
alphabet is enabled, proscribed or undefined. That is, the
following equation holds for each state s:

α(P) = enabled(s) ∪ proscribed(s) ∪ undefined(s)

where:

- enabled(s) = {a ∈ α(P) | ∃s'. (s,a,s') ∈ ∆},

- proscribed(s) = {a ∈ α(P) | (s,a) ∈ Ψ},

- undefined(s) = {a ∈ α(P) | (s,a) ∉ Ψ ∧ ∀s'. (s,a,s') ∉ ∆}.

In a sense, the set of proscribed actions on a state can be seen as
the refusal set in CSP semantics [9]. Apart from the fact that
refusals are defined considering unobservable actions, here we do
not require an action for which there is no enabled transition to be

refused. In addition, note that if for all s in S we have undefined(s)
= ∅, the PLTS can be considered a LTS.

If we contrast the preconditions of Figure 3 with the valuation of
state variables for each state of the ATM LTS (Table 1) we can
determine which messages should not occur in each state. For
instance, the precondition of insertCard determines that it cannot
occur in states 2 to 8, 11 to 13. Consequently, we can extend the
LTS of Figure 3 with a set Ψ modelling the messages proscribed
at each state. Cells marked "p" in Table 2 represent the pairs (s, a)
∈ Ψ for the ATM PLTS.

We can then add to Table 2, the information on enabled messages
for each state (cells marked "e"). For example, as a transition
labelled insertCard has been defined from state 1 to state 2,
insertCard is marked as enabled in state 1 in Table 2.

Pairs of messages and labels that are not marked with either "e" or
"p" are highlighted with "?" and model the states where messages
could occur (according to their preconditions), but the
consequences of such occurrences are not yet known. Thus, we
have states 0, 9 and 10 modelling that insertCard could occur, but
the state to which its occurrence would lead to is not known.

Table 2 can now be used to prompt stakeholders on hypothetical
situations. For instance, the fact that in state 0, insert card is
undefined may prompt the following question: Can a card be
inserted into the ATM before a message is displayed?

Table 2 – Classification of ATM states
 0 1 2 3 4 5 6 7 8 9 10 11 12 13
insertCard ? e p p p p p p p ? ? p p p
enterPassword ? ? ? e p p p p p p p p p ?
takeCard p p p p p p p p p ? e p p p
displayMainScreen e ? p p p p p p p p p p p p
requestPassword ? ? e ? p p p p p p p p p ?
ejectCard p p ? ? ? ? ? ? e p p ? e ?
cancelledMessage p p ? ? ? ? ? ? ? p p e ? e
requestTakeCard p p p p p p p p p e ? p p p

Note that PLTS differ from multi-valued state-machines (e.g. [4]),
in that in the latter transitions are assigned truth values (e.g. true,
false, unknown) rather than transition labels being undefined at
states. Thus, multi-valued state-machines require much finer
grained knowledge about what is unknown. This is discussed
further in the section on related work.

5. Relations on PLTSs
In this section we discuss equivalence and simulation relations
between PLTSs. Equivalence relations provide a semantic
framework for constructing and comparing the behaviour
represented by PLTSs. Various notions of equivalence have been
used to compare the behaviour represented by two LTSs, these
include strong and weak (or observational) equivalence [17] and
trace and failures-divergence equivalence [9]. Equivalence
relations can also be used when reducing the state space LTSs to
simplify model analysis. We use the notion of PLTS equivalence
in the next section to simplify the discussion on how parallel
composition of PLTSs works. In this section we also define a
simulation relation between PLTSs. Simulation can be used to
capture the elaboration process of PLTSs in which the undefined
behaviour is gradually defined as either positive or negative

information, to yield a PLTS with no undefined behaviour, in
other words, to yield a LTS.
We first define strong equivalence, which equates PLTSs that
have identical structure. For this we define ℘ to be the set of all
PLTSs.

Definition 3 (Strong Equivalence) The strong equivalence “~” is
the union of all relations R⊆℘×℘ satisfying that (P, Q) ∈ R
implies
- α(P)=α(Q)
- ∀a ∈ α(P).

- P →a P’ implies ∃Q’. Q →a Q’ and (P’, Q’) ∈ R
- Q →a Q’ implies ∃P’. P →a P’ and (P’, Q’) ∈ R

- ∀a ∈ α(P). P →a if and only if Q →a

Strong equivalence of PLTSs extends that of LTSs in that
equivalent PLTSs are not only required to have transitions that
lead to equivalent PLTSs but also are required to proscribe the
same set of actions. A consequence of the requirement of
equivalent PLTSs to have the same alphabet is that they will also
be undefined on the same actions.

Weaker notions of equivalence can be defined on PLTS. If some
notion of abstraction is introduced, possibly distinguishing
between actions that are observable and unobservable for the
environment of a PLTS, then an equivalence relation similar to
that of observational equivalence between LTSs can be defined. A
weaker equivalence relation that may also prove to be useful is
that of trace equivalence.

A useful notion in the context of PLTSs and behaviour
elaboration is that of a PLTS being "more defined" than another
PLTS. The elaboration process can thought of as producing a
sequence of process in which each one is "more defined" than the
previous one. In principle, the process would start with a
completely undefined PLTS (i.e. ({q}, Labels, ∅, ∅, q)) and
finish with a PLTS where all actions are defined on all states, in
other words the process would finish with a LTS: (S, L, Ψ, ∆, q)
where for all state s in S, undefined(s) = ∅.

In essence, an elaboration process consists in iteratively replacing
unknown behaviour with either positive or negative behaviour
until there is a complete model of the system. This progression
from the PLTS in which everything is unknown to the one in
which there are no undefined actions can be captured with the
notion of simulation.

Definition 4 (Simulation) The simulation relation “≤” is the
union of all relations R⊆℘×℘ satisfying that (P, Q) ∈ R implies
that
- ∀a ∈ α(P)

- P →a P’, implies ∃Q’. Q →a Q’ and (P’, Q’) ∈ R,
- P →a implies Q →a

Intuitively, simulation captures the notion of "more defined than".
If Q simulates P (P≤Q) then Q has all of P's positive and negative
behaviour, but may be proscribe additional actions or exhibit
additional transitions. Additional positive or negative behaviour
corresponds to a step in the elaboration process were additional
information on system behaviour is acquired, possibly resulting
from user feedback. Note that we do not require the alphabets of
P and Q to be equal. The alphabet of Q may drop an action of P

as long as it was undefined in all of P’s states. Conversely, Q may
introduce actions that were not in the alphabet of P.

In the context of scenario-based synthesis approaches,
preservation of the simulation relation between synthesised
models is desirable. Suppose we have scenario specification from
which a PLTS model is synthesised. In addition, suppose the
PLTS is used to generate feedback on behavioural aspects that
need further elaboration and as a consequence new scenarios
(either positive or negative) are added to the specification. In
principle, it would be reasonable to expect the new scenario
specification to yield a PLTS that can simulate (that is "more
defined than") the PLTS that was synthesized from the original
specification. We have not yet attempted to prove that the
simulation relation is preserved by the specific synthesis approach
we have used based on [20]. In this paper, our aim is to show how
PLTSs can support the elaboration of behaviour models. Research
into specific scenario synthesis approaches using PLTSs is
something we intend to do as future work

6. Composition of Partial Behaviour Models
Although benefits may be obtained from inspecting a PLTS, a
more appealing approach is to generate feedback in the form of
scenarios. We wish to compose partially specified models of the
system components appearing in scenarios, to reason about how
they interact, and to detect whether or not they reach states for
which certain message labels are undefined. For instance, if a
PLTS for the user, consortium and bank where built, the scenario
of Figure 5 could automatically be generated through some form
of reachability analysis. The scenario depicts the case where after
a session, the ATM ejects the card, which is left halfway in the
machine, and instead of taking the card the user pushes it back in.

displayMainScreen

badAccount
badBankAccount

verifyAccount
verifyCardWithBank

badAccountMessage
printReceipt
ejectCard

User ATM Consortium Bank

requestPassword
insertCard

enterPassword

Undecided insertCard scenario

insertCard

Figure 5 – Undefined insertCard scenario

We therefore need to extend the notion of parallel composition of
LTSs to PLTSs. Intuitively, parallel composition of LTSs models
a system in which components execute asynchronously and
synchronize on shared message labels. Given a shared label l, one
LTS can take an l-labelled transition if and only if the LTS it is
being composed with can do so too. Consequently, a LTS in a
state where l is not enabled will prevent the other LTS from
taking a transition labelled l.

In the parallel composition of PLTSs this changes because l not
being enabled does not imply that l is proscribed. For instance,
suppose we are composing PLTSs P and Q, which are in states p

and q respectively. In addition suppose there is a shared label l
that is enabled in p. If l is undefined in state q then l should also
be undefined in the composite process because we do not know if
Q can synchronize on l when in q. Clearly, if l is proscribed in q,
then l should be also proscribed in the composite process (as with
standard LTSs).

On the other hand, consider that l is undefined in state p. If l has
been explicitly proscribed on state q then l should also be
proscribed in the composite process. This means that the fact that
l is undefined in p is irrelevant with respect to the composite
behaviour. In other words, although we have a gap in the
specification of component P, providing feedback concerning it is
not necessary in the context of Q. In essence, proscribed takes
precedence over undefined that takes precedence over enabled.

Table 3 provides a summary intuition as to how enabled,
proscribed and undefined message labels work together in parallel
composition of PLTSs.

Table 3 – Proscribed, enabled and undefined messages in
PLTS parallel composition

 Enabled Proscribed Undefined
Enabled Enabled Proscribed Undefined

Proscribed Proscribed Proscribed Proscribed
Undefined Undefined Proscribed Undefined

Definition 5 (Parallel Composition) Let P1 and P2 be PLTSs
where Pi = (Si, Li, Ψi, ∆i, qi). Their parallel composition denoted
P1||P2 is a PLTS (S1×S2, L1∪L2, Ψ, ∆, (q1, q2)) where ∆ and Ψ are
the smallest relation that satisfies rules in Figure 6 and Figure 7
respectively.

))((
|||| 2

2121

11 Pa
PPPP

PP
a

a

α∉
′→

′→

))((
|||| 1

2121

22 Pa
PPPP

PP
a

a

α∉
′→

′→

2121

2211

|||| PPPP
PPPP

a

aa

′′→
′→′→

Figure 6 – Rules for PLTS transition relation

→

→
a

a

PP
P

21

1

||

→
→

a

a

PP
P

21

2

||

Figure 7 – Rules for PLTS proscribed relation

More generally, parallel composition of PLTSs allows us to
combine different partial behaviour models and (potentially)
reduce the number of unclassified system scenarios. Allowing
detection and validation of gaps in the behaviour specification
facilitates focusing on the emerging behaviour of system
components working together, rather than on details of
components that may be irrelevant to the overall system
behaviour.

Consider the ATM example, and suppose we have additional
information as to how the card is managed between the ATM and
the user, which for short we call "the card protocol". We describe
the behaviour with a PLTS depicted in Figure 8 and Table 4.

If we compose the behaviour models for the card protocol and the
ATM, the resulting PLTS will have, for instance prohibit the
following trace <displayMainScreen, insertCard, insertCard>
which, as explained previously, was undefined behaviour in the
ATM. Let us see why. The state space of the composite PLTs is
the Cartesian product of the state spaces of the card protocol
PLTS and the ATM PLTS. We shall refer to states of the
composite model as pairs (x, y) where x and y are digits referring
to states of the card protocol PLTS (Figure 8) and the ATM PLTS
(Figure 4) respectively.

The composite model starts in state (0, 0) according to Definition
5. As the ATM has displayMainScreen enabled in state 0, and
displayMainScreen is not in the alphabet of the card protocol
PLTS, then according to the first second rule of in Figure 6, the
composite model can perform displayMainScreen and transition
into state (0, 1). Because insertCard is enabled in both state 0 and
1 of PLTSs Card Protocol and ATM, the third rule in Figure 6
indicates that the composite PLTS can transition to (1, 2). Now
the Card Protocol PLTS proscribes message insertCard in state 1
(see Table 4) while the ATM considers the same label as
undefined in state 2 (see Table 2). Thus, from the first rule of
Figure 7, the composite process will not be able to transition on
label insertCard. Considering that both the ATM and the Card
Protocol are deterministic it is easy to see that the composite
PLTS can never exhibit the trace <displayMainScreen,
insertCard, insertCard>

If we compute the composite model and minimise with respect to
the strong semantic equivalence (defined in the previous section),
the resulting PLTS will no longer have the following pairs of
undefined behaviour (compare with Table 2): {(insertCard, 2),
(insertCard, 9), (insertCard, 10), (ejectCard, 3), (ejectCard, 4),
(ejectCard, 5), (ejectCard, 6), (ejectCard, 7), (requestTakeCard,
10), (takeCard, 9)}.

As a consequence, we now have a composite behaviour model
that has fewer gaps requiring stakeholder intervention.

insertCard ejectCard requestTakeCard

takeCard

0 1 2 3

Figure 8 – Card Protocol

Table 4 – Classification of Card Protocol states
 0 1 2 3
insertCard e p p p
takeCard p p ? e
ejectCard p e p p
requestTakeCard p p e p

Although the preceding example reduces the number of
undefined pairs of states and labels (compared to the ATM
component on its own), this is not always the case. Clearly,
composition of PLTSs can introduce new cases of undefinedness
in the composite behaviour. Thus, parallel composition does not
always reduce the number of gaps in the overall specification.
This raises the following issue: If gaps are used to generate
feedback for users, we risk generating an unmanageable number
of scenarios that a user must validate. Although this is true, one

might argue that if there is a significant portion of the system
behaviour that is unknown surely assuming an answer from the
user in order to not overburden them can be dangerous. In
addition, the number of queries made to users can be reduced if
system level properties and constraints are modelled as LTSs and
composed in parallel with the partial behaviour model.

7. Related Work
An area that is closely related to the work presented in this paper
is that of multi-valued logics. Traditionally, logics allow only two
possible truth-values for any proposition, true and false. Multi-
valued logics allow for a range of truth-values. For instance three
values can be used to model uncertainty, disagreement [4], and
‘unknown’ [14]. There are, however, several important
differences with respect to our work. Firstly, PLTS are
compositional specifications that allow components to be
specified individually, composed into sub-systems and minimised
with respect to behaviour equivalence. In addition, PLTS do not
specify the internal component state; behaviour is described in
terms of the actions a component can and cannot perform, and
those for which it is not yet known if and how the component
would react. In approaches to multi-valued logics atomic
propositions are valued in each state, thus properties on actions
that produce state changes can only be modelled indirectly with
respect to state propositions.

Another related area is that of multi-valued state-machines (e.g.
[4]). In these machines multiple truth-values are assigned to
transitions. In a three-valued state machine values could be used
to model the positive, negative and unknown behaviour of the
state machine. With this interpretation, three-valued state-
machines require a much finer grain knowledge concerning what
is unknown. At a given state, one does not model that the
component cannot react to a certain action; rather, it is necessary
to model all the target states to which the component could reach
through the action, but is not yet known to do so. For instance, in
the ATM example we would have to speculate on all the possible
destinations of insertCard from state 0: transitions labelled
insertCard with value unknown would be needed from state 0 to
all other states. In the setting we propose, this is not useful as the
true transition from state 0 for insert card –supposing that it
should exist, but has not appeared in the given scenarios– could
lead to a new PLTS state altogether.

We envisage using PLTSs to support the elaboration of behaviour
models. Unknown behaviour can be modelled explicitly, and then
models can be used to query users on whether a particular
scenario is possible or not. Our previous work on implied
scenarios [19] shares this approach to model elaboration based on
scenario generation and validation. However, implied scenarios
address a very specific aspect of partial scenario-based
descriptions while PLTSs provide a more general framework for
model elaboration.
The use of PLTS in the context of scenario synthesis is related to
that of Mäkinen and Systä [16] who have worked on the iterative
construction of scenario-based specifications. However, scenarios
that are fed back to users are the result of over-generalisations of
the synthesis procedures used. The scenarios we generate are a
result of the behavioural aspects that have been under-specified.
In addition, in [16] feedback is given at a component level (i.e.
component traces) rather than at a system level.

8. Conclusions and Future Work
In this paper we have demonstrated the utility of using partial
labelled transition systems to support the elaboration of behaviour
models. By explicitly modelling the aspects of system behaviour
that are unknown, it is possible to generate meaningful feedback
to users leading to more comprehensive descriptions of the system
behaviour.

We have exemplified our approach using scenario-based notations
and scenario synthesis because they are being used increasingly to
support behaviour model construction. In particular, in this paper
we have used an example based on scenarios and OCL pre- and
post-conditions. However, PLTS can be used in a similar way to
support behaviour model elaboration in the context of other
scenario synthesis approaches that use MSC conditions [8, 11] or
negative scenarios [19] instead of OCL. Furthermore, we believe
that PLTSs can be used successfully to support behaviour model
elaboration in settings other than scenario synthesis.

We are currently experimenting with PLTSs as the target for
scenario synthesis. We aim to implement synthesis procedures
and to develop methods for constructing and reasoning on the
partial behaviour models. This work will extend our existing
MSC-LTSA tool [2]. We have ongoing work on modelling PLTSs
onto LTSs to allow some forms of PLTS analysis reusing existing
model checking technology. The difficulty of here is to ensure the
encoding is preserved by the parallel composition and
equivalence relations on LTSs. We are also looking into using
PLTSs in the context of our simulation tool [3] to guide model
exploration and elaboration. PLTSs could also provide a
framework for guided play-in scenarios [7] where a user using a
PLTS model-based simulation moves seamlessly from replaying
the already defined model to extending it with previously
undefined behaviour. Finally, we intend to use PLTSs to combine
goal directed requirement elaboration techniques such as in [13]
with scenario synthesis approaches.

9. Acknowledgements
We gratefully acknowledge the support of the European Union
under grant STATUS (IST-2001-32298), and EPSRC grant
READS GR/S03270/01.

10. References
[1] First ICSE Workshop on Scenarios and State Machines:

Model, Algorithms and Tools (SCESM'02). 2002.
[2] Chatley, R., et al. LTSA-MSC: Tool Support for

Behaviour Model Elaboration Using Implied Scenarios
in Ninth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS'03). 2003. Warswaw.

[3] Chatley, R., et al. Model-based Simulation of Web
Applications for Usability Assessment in ICSE
Workshop on "Bridging the Gaps Between Software
Engineering and Human-Computer Interaction". 2003.
Portland, May 2003.

[4] Chechik, M., S. Easterbrook, and B. Devereux. Model
Checking with Multi-Valued Temporal Logics in 31st
IEEE International Symposium on Multiple Valued
Logics (ISMVL'01). 2001. Warsaw.

[5] Clarke, E.M. and J.M. Wing, Formal Methods: State of
the Art and Future Directions. ACM Computing
Surveys, 1996. 28(4): p. 626-643.

[6] Cleaveland, R. and S.A. Smolka, Strategic Directions in
Concurrency Research. ACM Computing Surveys,
1996. 28(4): p. 607-625.

[7] Harel, D., From Play-In Scenarios to Code: An
achievable Dream. IEEE Software, 2001. 34(1): p. 53-
60.

[8] Harel, D. and W. Damm. LSCs: Breathing Life into
Message Sequence Charts in 3rd IFIP International
Conference on Formal Methods for Open Object-Based
Distributed Systems. 1999. New York: Kluwer
Academic.

[9] Hoare, C.A.R., Communicating Sequential Processes.
1985, Englewood Cliffs, New Jersey: Prentice Hall.

[10] ITU, Message Sequence Charts, 1996, International
Telecommunications Union. Telecommunication
Standardisation Sector.

[11] ITU, Message Sequence Charts, 2000, International
Telecommunications Union. Telecommunication
Standardisation Sector.

[12] Keller, R., Formal verification of parallel programs.
Communications of the ACM, 1976. 19(7): p. 371-384.

[13] Lamsweerde, A.v., R. Darimont, and P. Massonet.
Goal-Directed Elaboration of Requirements for a
Meeting Scheduler: Problems and Lessons Learnt in

Second IEEE International Symposium on Requirements
Engineering. 1995. York: IEEE CS Press.

[14] Lukasiewicz, J., Selected Works. 1970, Amsterdam:
North-Holland.

[15] Magee, J. and J. Kramer, Concurrency: State Models
and Java Programs. 1999, New York: John Wiley &
Sons Ltd.

[16] Mäkinen, E. and T. Systä. MAS – An Interactive
Synthesizer to Support Behavioral Modeling in UML, in
23rd IEEE International Conference on Software
Engineering (ICSE '01). 2001. Toronto.

[17] Milner, R., Communication and Concurrency. 1989,
London: Prentice-Hall.

[18] Rumbaugh, J., I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual. 1999, Harlow:
Addison-Wesley.

[19] Uchitel, S., J. Kramer, and J. Magee. Negative
Scenarios for Implied Scenario Elicitation in 10th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (FSE'02). 2002. Charleston.

[20] Whittle, J. and J. Schumann. Generating Statechart
Designs from Scenarios in 22nd International
Conference on Software Engineering (ICSE'00). 2000.
Limerick, Ireland.

