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Abstract 

 
Current approaches to scenario synthesis do not 

distinguish, in the resulting state machine models, 
proscribed behaviour from behaviour that has not yet 
been defined. In this paper we propose using partial 
labelled transition systems (PLTS) to capture what 
remains undefined of the system behaviour. In the context 
of scenario synthesis, we show that PLTSs can be used to 
provide feedback to stakeholders on the parts of the 
behaviour specification that need further elaboration. In 
this way we aim to support the iterative incremental 
elaboration of behaviour models. 
 
1. Introduction 
 

Scenario-based specifications are partial descriptions 
of system behaviour. A scenario conveys relatively little 
information; it depicts an example of how system 
components interact. Hence, a scenario-based 
specification will typically have many scenarios that 
cover most common system behaviours and possibly 
some exceptional ones too. Scenario-based specifications 
are not particularly well suited for exhaustive description 
of all possible system traces and it is natural to assume 
that the absence of a scenario in a specification does not 
imply that it is an undesired system trace.  

Some scenario-based notations do provide 
mechanisms for explicit specification of undesired system 
behaviour (e.g. conditions [3, 4], negative scenarios [8]); 
nevertheless scenario-based specifications will generally 
leave gaps in the specification; that is, examples of 
system behaviour that have not been described explicitly 
as positive (intended) or negative (unintended) system 
behaviour.  

Conversely, state machine based formalisms such as 
labelled transition systems (LTS) are generally assumed 
to be complete descriptions of system behaviour up to 
some level of abstraction (a fixed alphabet of actions): if a 
labelled transition system cannot exhibit a certain 
sequence of actions, it is assumed that the system or 
component it models cannot or should not exhibit that 
sequence.  

The difference in interpretation of scenarios and state 
machines is one of the causes for the former to be used in 
early requirements phases of the development life-cycle, 
where system descriptions are relatively partial and 
require elaboration; while the latter tend to be used more 
advanced stages such as design, where a more 
comprehensive knowledge of the system to be is 
available. This separation has also led to significant 
efforts in developing synthesis techniques that allow 
constructing state-machine models from scenario-based 
descriptions [5, 7, 9, 10].  

Clearly, a question that needs to be addressed is how 
scenario synthesis techniques cope with moving from a 
partial to complete specifications. What happens with 
those system traces that have not been described as 
positive or negative behaviour? In general, they all get 
bundled as negative behaviour (e.g. [5, 7, 9]). Some 
synthesis algorithms use information from other 
specifications to make the synthesised state machines 
more accurate (we shall be looking at one of these 
approaches: [10]). However, even in these cases, some 
system behaviour may remain unspecified and will 
invariable fall into the positive or negative behaviour 
modelled in the state machine model. 

Consequently, from the perspective described above, 
approaches to scenario synthesis lose the distinction 
between proscribed behaviour and behaviour that has not 
yet been defined. We believe that in the context of 
supporting the elaboration of behaviour models this is a 
missed opportunity. Knowing where the gaps are in a 
behaviour model permits the presentation of meaningful 
questions to stakeholders, which in turn can lead to model 
exploration and thus more comprehensive descriptions of 
the system behaviour [8]. Hence, there is a case for using, 
in the context of scenario synthesis, an extended notion of 
state machine that can explicitly capture undefined 
behaviour and support reasoning about aspects of system 
behaviour that need further elaboration.  

In this position paper we use partial labelled transition 
systems (PLTSs) as the target model for scenario 
synthesis. We follow Whittle and Shumman's approach 
[10] and show how additional and relevant feedback can 
be obtained when using PLTSs. More specifically, we 
start from a scenario-based specification of an ATM 



machine and an Object Constraint Language (OCL) based 
specification of message pre- and post-conditions. We use 
the synthesis approach of [10] to build a LTS, and then 
extend it to a PLTS that models which message 
preconditions do not hold on each state. We show that the 
resulting model can be used to identify behavioural 
aspects of the ATM system that were under-specified in 
the original specification. Furthermore, these undefined 
scenarios are not differentiated from proscribed 
behaviours in the synthesised model produced in [10]; 
hence missing an opportunity for model elicitation and 
elaboration. We also show how composition of PLTS can 
be used to combine different partial behaviour models 
and (potentially) reduce the number of undefined system 
scenarios. This supports detection and validation of gaps 
in the system behaviour, rather than on details of specific 
components, which may be irrelevant to the overall 
system behaviour. We conclude this position paper with 
some comments on future work. 
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Figure 1 – Scenarios SD1 and SD2  

 
2. LTS Synthesis 

 
The example we use to illustrate our approach is based 

on a version of the ATM case study presented by Whittle 
and Schumann in [10]. A number of sequence diagrams 

(depicted in Figure 1 and Figure 2) describe how a user 
operates a bank account by interacting with an ATM. The 
ATM is connected to a network run by a consortium, 
which in turn interacts with the bank. In addition to the 
scenarios, pre- and post-conditions for some scenario 
messages are given in OCL (Figure 4). The post-
conditions specify how messages modify the values of a 
set of ATM state variables (cardIn, cardHalfway, 
passwdGiven, card, and passwd). The pre-conditions 
specify the values these variables are expected to have 
before a messages occurs.  
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Figure 2 – Scenarios SD3 and SD4  

 
In [10] a synthesis procedure is presented for 

automatically generating LTSs from the combination of 
the scenarios and the pre- and post-conditions. Using the 
pre- and post conditions, the procedure first infers the 
value of state variables at specific points of the scenarios. 
For example, for displayMainScreen, the first message in 
SD1, the OCL specification states a pre-condition that 
allows inferring that the value of cardIn and cardHalfway 
should be false at the beginning of SD1.  

By considering all message pre- and post-conditions 
and using the unification and frame action techniques 
defined in [10] it is possible to infer further information 
on the value of state variables throughout the available 
scenarios. Consequently, it is possible to assign a 



(possibly partial) valuation of state variables to every 
scenario state (the gap on a scenario instance between two 
consecutive events). The valuations are then used to infer 
which scenario states should be modelled with one state 
in the LTS to be synthesised. We do not go in to more 
details on the synthesis procedure; the interested reader 
can refer to [10] for more information.  
 
3. Undefined Versus Proscribed Behaviour 
 

Figure 3 depicts the LTS for the ATM component 
synthesised from the scenario and OCL specification. As 
expected, the model captures the sequences of 
interactions the ATM component performs in the 
scenarios. For instance the LTS models an ATM that is 
capable of performing the sequence of actions 
<displayMainScreen, insertCard, requestPassword, 
enterPassword, verifyAccount…> of scenario SD1. 
Additionally, by omission, the LTS also models the 
sequences of actions that the ATM cannot perform. Thus, 
the ATM cannot perform the sequence 
<displayMainScreen, insertCard, insertCard> because 
after performing displayMainScreen and insertCard the 
LTS is in state 2 which does not have any outgoing 
transitions labelled insertCard. For exactly the same 
reasons, the ATM LTS cannot perform the following 
sequence: <displayMainScreen, insertCard, ejectCard>.  

However, a closer inspection of the LTS and the OCL 
specification reveals that the LTS is over-specifying the 
behaviours that the ATM should not be capable of. Table 
1 shows the value of the OCL variables in each state of 
the ATM LTS. Considering that the pre-condition of 
message insertCard requires variable cardIn to be false, 
we can infer that in state 2 insertCard should not occur. 
This is consistent with the fact that the LTS for the ATM 
component does not allow <displayMainScreen, 
insertCard, insertCard>. Contrarily, message ejectCard 

requires cardIn to be true, hence its precondition is 
satisfied in state 2. Consequently, there is no reason to 
dismiss the possibility of the ATM performing the 
sequence <displayMainScreen, insertCard, ejectCard>. 
However, the LTS for the ATM component does not 
allow this sequence.  
cardIn, cardHalfway, passwdGiven : Boolean 
card : Card 
passwd : Sequence 

insertCard(c : Card) 
pre : cardIn = false 
post: cardIn = true and card = c 

enterPassword(p : Sequence) 
pre : passwdGiven = false  
post: passwdGiven = true and passwd = p 

takeCard() 
pre : cardHalfway = true 
post: cardHalfway = false and cardIn = false 

displayMainScreen() 
pre: cardIn = false and cardHalfWay = false 
post: 

requestPassword() 
pre : passwdGiven = false 
post:  

ejectCard() 
pre : cardIn = true 
post: cardIn = false and cardHalfway = false 
and card = null and passwd = null and 
passwdGiven = false 

requestTakeCard() 
pre : cardHalfway = true 
post: 

canceledMessage() 
pre : cardIn = true 
post: 

Figure 4 – OCL pre- and post-conditions 

Clearly, our knowledge of sequences 
<displayMainScreen, insertCard, insertCard> and 
<displayMainScreen, insertCard, ejectCard> is different. 
We know the first one should not occur because it would 
violate the insertCard pre-condition. Whilst for the 
second sequence we know it does not violate any pre-
conditions, thus it may be a valid ATM behaviour. This 
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Figure 3 – Synthesized LTS for the ATM component 



means that it may well be a situation that has not been 
explicitly specified or that has not even been considered 
by stakeholders. Hence it is an opportunity for providing 
feedback that may trigger new scenarios or strengthened 
pre-conditions. Either way, it is an opportunity for further 
elaborating the system's behaviour model. 

Table 1 – Valuation of variables on states  

 0 1 2 3 4 5 6 7 8 9 10 11 12 13
cardIn f f t t t t t t t f f t t t
cardHalfway f f f f f f f f f t t f f f
passwdGiven t t f f t t t t t f f t t f
card - - c c c c c c c - - c c c
passwd - - - - p p p p p - - p p -

 
4. Partial Labelled Transition Systems 
 
There is benefit to be gained from differentiating in LTS 
models behaviour that is known to be undesired from 
behaviour that is not yet known to be positive or negative. 
To capture this information we extend the notion of LTS 
as follows. Each LTS state is associated with a set of 
labels. These labels model actions that are explicitly 
proscribed at that state. Clearly, if an action is proscribed 
at a state then there can be no outgoing transitions from 
that state with the same label. Thus, we have that on each 
state every label of the PLTS alphabet is enabled, 
proscribed or undefined. That is, the following equation 
holds for each state s:  

α(P) = enabled(s) ∪ proscribed(s) ∪ undefined(s) 
where enabled(s) is the set of labels for which there is an 
outgoing transition form s and undefined(s) is the set of 
labels that are not enabled nor proscribed in state s. Note 
that if undefined(s) = ∅ for all states, the PLTS can be 
considered a LTS. 

If we contrast the preconditions of Figure 4 with the 
valuation of state variables for each state of the ATM 
LTS (Table 1) we can determine which message should 
not occur on each state. For instance, the precondition of 
insertCard determines that it cannot occur on states 2 to 
8, 11 to 13. Consequently, we can extend the LTS of 
Figure 4 with the sets modelling the messages proscribed 
at each state. Cells marked "p" in Table 2 represent the 
pairs of proscribed action labels at sets for the ATM 
PLTS.  

We can then add to Table 2, the information on 
enabled messages for each state (cells marked "e"). For 
example, as a transition labelled insertCard has been 
defined from state 1 to state 2, insertCard is marked  as 
enabled in state 1 in Table 2.  

Pairs of messages and labels that are not marked with 
either "e" or "p" are highlighted with "?" and model the 
states where messages could occur (according to their 
preconditions), but the consequences of such occurrences 
are not yet known. Thus, we have states 0, 9 and 10 

modelling that insertCard could occur, but the state to 
which its occurrence would lead to is not known.  

Table 2 can now be used to prompt stakeholders on 
hypothetical situations. For instance, the fact that in state 
0, insert card is undefined may prompt the following 
question: Can a card be inserted into the ATM before a 
message is displayed? 

Note that PLTS differ from multi-valued state-
machines (e.g. [1]), in that in the latter transitions are 
assigned truth values (e.g. true, false, unknown) rather 
than transition labels being undefined at states. Thus, 
multi-valued state-machines require much finer grained 
knowledge about what is unknown. For instance, in the 
ATM example we would have to speculate on all the 
possible destinations of insertCard from state 0: 
transitions labelled insertCard with value unknown 
would be needed from state 0 to all other states. In the 
setting we propose, this is not useful as the true transition 
from state 0 for insert card –supposing that it should exist, 
but has not appeared in the given scenarios– could lead to 
a new PLTS state altogether. 

Table 2 – Classification of ATM states 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13
insertCard ? e p p p p p p p ? ? p p p
enterPassword ? ? ? e p p p p p p p p p ?
takeCard p p p p p p p p p ? e p p p
displayMainScreen e ? p p p p p p p p p p p p
requestPassword ? ? e ? p p p p p p p p p ?
ejectCard p p ? ? ? ? ? ? e p p ? e ?
cancelledMessage p p ? ? ? ? ? ? ? p p e ? e
requestTakeCard p p p p p p p p p e ? p p p
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Figure 5 – Undefined insertCard scenario 

 
5. Composition of Partial Behaviour Models 

 
Although benefits may be obtained from inspecting a 

PLTS, a more appealing approach is to generate feedback 
in the form of scenarios. Thus, we want to compose 
partially specified models of the system components 
appearing in scenarios and to reason about how they 
interact and if they reach states for which certain message 



labels are undefined. For instance, if a PLTS for the user, 
consortium and bank where built, the scenario of Figure 5 
could automatically be generated through some kind of 
reachability analysis. The scenario depicts the case where 
after a session, the ATM ejects the card, which is left 
halfway in the machine, and the user instead of taking the 
card pushes it back in. 

Thus, we need to extend the notion of parallel 
composition of LTSs to PLTSs. Intuitively, parallel 
composition of LTSs models a system in which 
components execute asynchronously and synchronize on 
shared observable message labels. Given a shared label a, 
one LTSs can take an a-labelled transition if and only if 
the LTS it is being composed with can do so too. 
Consequently, a LTS in a state where a is not enabled, 
will prevent the other LTS from taking a transition 
labelled a.  

In the parallel composition of PLTSs this changes 
because a not being enabled does not imply that a is 
proscribed. For instance, suppose we are composing 
PLTSs P and Q, which are in states p and q respectively. 
In addition suppose there is a shared label a that is 
enabled in p. If a is undefined on state q then a should 
also be undefined in the composite process because we do 
not know if Q can synchronize on a when in q. Clearly, if 
a is proscribed in q, then a should be also proscribed in 
the composite process (as with standard LTSs).  

On the other hand, if a is undefined in state p. If a has 
been explicitly proscribed on state q then a should also be 
proscribed in the composite process. This means that the 
fact that a is undefined in p is irrelevant with respect to 
the composite behavior. In other words, although we have 
a gap in the specification of component P, providing 
feedback on it is not necessary in the context of Q.  

More generally this allows us to combine different 
partial behaviour models and (potentially) reduce the 
number of unclassified system scenarios. Allowing 
detection and validation of gaps in the behaviour 
specification to focus on the emerging behaviour of 
system components working together, rather than on 
details of components that may be irrelevant to the overall 
system behaviour.  

Table 3 provides a summary intuition as to how 
enabled, proscribed and undefined message labels work 
together in parallel composition of PLTSs.  

Table 3 – Proscribed, enabled and undefined 
messages in PLTS parallel composition  

 Enabled Proscribed Undefined 
Enabled Enabled Proscribed Undefined 

Proscribed Proscribed Proscribed Proscribed 
Undefined Undefined Proscribed Undefined 
 
Consider the ATM example, and suppose we have 

additional information on the how the card is managed 
between the ATM and the user, which we call for short 

the card protocol. We describe the behaviour with a 
PLTS depicted in Figure 6 and Table 4. If we compose 
the behaviour models for the card protocol and the ATM, 
the resulting PLTS will no longer have the following 
pairs of undefined behaviour (compare with Table 2): 
{(insertCard, 9), (insertCard, 10), (ejectCard, 3), 
(ejectCard, 4), (ejectCard, 5), (ejectCard, 6), (ejectCard, 
7), (requestTakeCard, 10), (takeCard, 9)}.  

As a consequence, we know have a composite 
behaviour model that has fewer gaps that need 
stakeholder validation. 

Although the preceding example reduces the number 
of undefined pairs of states and labels (compared to the 
ATM component on its own), this is not always the case. 
Clearly, composition of PLTSs can introduce new cases 
of undefinedness in the composite behaviour. Thus, 
parallel composition does not always reduce the number 
of gaps in the overall specification that need stakeholder 
validation.  

insertCard ejectCard requestTakeCard

takeCard

0 1 2 3

 
Figure 6 – Card Protocol 

Table 4 – Classification of Card Protocol states 
 0 1 2 3
insertCard e p p p
takeCard p p ? e
ejectCard p e p p
requestTakeCard p p e p

 
6. Future Work and Conclusions 

 
In this paper we have shown how explicit modelling of 

aspects of system behaviour that are unknown can be 
beneficial in the context of scenario-based specifications. 
Synthesis of PLTSs captures the gaps in the behaviour 
model that need to be elaborated. As a result undefined 
scenarios can be used as cues to stakeholders for 
providing the behaviour information that is missing from 
the model; hence, supporting the iterative incremental 
elaboration of behaviour models. 

Although we have used in this paper an example based 
on scenarios and OCL pre- and post-conditions, the use of 
PLTS can be useful when used with other sources of 
negative behavioural information such as MSC conditions 
[3, 4] or negative scenarios [8]. 

We envisage using PLTSs to support the elaboration 
of behaviour models. Unknown behaviour can be 
modelled explicitly, and then models can be used to query 
users on whether a particular scenario is possible or not. 
Our previous work on implied scenarios [18] shares this 
approach to model elaboration based on scenario 



generation and validation. However, implied scenarios 
address a very specific aspect of partial scenario-based 
descriptions while PLTSs provide a more general 
framework for model elaboration. This approach to model 
iterative construction  of scenario-based specifications is 
shared with work of Mäkinen and Systä [15]. However, 
in their work scenarios that are fed back to users are the 
result of over-generalisations of the synthesis procedures 
used. The scenarios we aim to generate are a result under-
specification.  

We are currently only starting to experiment with 
PLTSs as the target for scenario synthesis. We are 
working on the formal definitions of PLTS and PLTS 
parallel composition, implementing synthesis procedures 
and detection methods that allow detecting undefined 
scenarios. They are being developed on LTSA [6] 
exploiting its new fluent linear temporal logic (FLTL) 
model checking features. We are also looking into using 
undefined scenarios in the context of our simulation tool 
to guide model exploration and elaboration. Undefined 
scenarios could also provide a framework for guided 
play-in scenarios [2] 
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