

Modelling Undefined Behaviour in Scenario Synthesis

Sebastian Uchitel, Jeff Kramer, Jeff Magee
Department of Computing, Imperial College London

{su2, jk, jnm}@doc.ic.ac.uk

Abstract

Current approaches to scenario synthesis do not

distinguish, in the resulting state machine models,
proscribed behaviour from behaviour that has not yet
been defined. In this paper we propose using partial
labelled transition systems (PLTS) to capture what
remains undefined of the system behaviour. In the context
of scenario synthesis, we show that PLTSs can be used to
provide feedback to stakeholders on the parts of the
behaviour specification that need further elaboration. In
this way we aim to support the iterative incremental
elaboration of behaviour models.

1. Introduction

Scenario-based specifications are partial descriptions
of system behaviour. A scenario conveys relatively little
information; it depicts an example of how system
components interact. Hence, a scenario-based
specification will typically have many scenarios that
cover most common system behaviours and possibly
some exceptional ones too. Scenario-based specifications
are not particularly well suited for exhaustive description
of all possible system traces and it is natural to assume
that the absence of a scenario in a specification does not
imply that it is an undesired system trace.

Some scenario-based notations do provide
mechanisms for explicit specification of undesired system
behaviour (e.g. conditions [3, 4], negative scenarios [8]);
nevertheless scenario-based specifications will generally
leave gaps in the specification; that is, examples of
system behaviour that have not been described explicitly
as positive (intended) or negative (unintended) system
behaviour.

Conversely, state machine based formalisms such as
labelled transition systems (LTS) are generally assumed
to be complete descriptions of system behaviour up to
some level of abstraction (a fixed alphabet of actions): if a
labelled transition system cannot exhibit a certain
sequence of actions, it is assumed that the system or
component it models cannot or should not exhibit that
sequence.

The difference in interpretation of scenarios and state
machines is one of the causes for the former to be used in
early requirements phases of the development life-cycle,
where system descriptions are relatively partial and
require elaboration; while the latter tend to be used more
advanced stages such as design, where a more
comprehensive knowledge of the system to be is
available. This separation has also led to significant
efforts in developing synthesis techniques that allow
constructing state-machine models from scenario-based
descriptions [5, 7, 9, 10].

Clearly, a question that needs to be addressed is how
scenario synthesis techniques cope with moving from a
partial to complete specifications. What happens with
those system traces that have not been described as
positive or negative behaviour? In general, they all get
bundled as negative behaviour (e.g. [5, 7, 9]). Some
synthesis algorithms use information from other
specifications to make the synthesised state machines
more accurate (we shall be looking at one of these
approaches: [10]). However, even in these cases, some
system behaviour may remain unspecified and will
invariable fall into the positive or negative behaviour
modelled in the state machine model.

Consequently, from the perspective described above,
approaches to scenario synthesis lose the distinction
between proscribed behaviour and behaviour that has not
yet been defined. We believe that in the context of
supporting the elaboration of behaviour models this is a
missed opportunity. Knowing where the gaps are in a
behaviour model permits the presentation of meaningful
questions to stakeholders, which in turn can lead to model
exploration and thus more comprehensive descriptions of
the system behaviour [8]. Hence, there is a case for using,
in the context of scenario synthesis, an extended notion of
state machine that can explicitly capture undefined
behaviour and support reasoning about aspects of system
behaviour that need further elaboration.

In this position paper we use partial labelled transition
systems (PLTSs) as the target model for scenario
synthesis. We follow Whittle and Shumman's approach
[10] and show how additional and relevant feedback can
be obtained when using PLTSs. More specifically, we
start from a scenario-based specification of an ATM

machine and an Object Constraint Language (OCL) based
specification of message pre- and post-conditions. We use
the synthesis approach of [10] to build a LTS, and then
extend it to a PLTS that models which message
preconditions do not hold on each state. We show that the
resulting model can be used to identify behavioural
aspects of the ATM system that were under-specified in
the original specification. Furthermore, these undefined
scenarios are not differentiated from proscribed
behaviours in the synthesised model produced in [10];
hence missing an opportunity for model elicitation and
elaboration. We also show how composition of PLTS can
be used to combine different partial behaviour models
and (potentially) reduce the number of undefined system
scenarios. This supports detection and validation of gaps
in the system behaviour, rather than on details of specific
components, which may be irrelevant to the overall
system behaviour. We conclude this position paper with
some comments on future work.

displayMainScreen

badAccount
badBankAccount

verifyAccount
verifyCardWithBank

badAccountMessage
printReceipt
ejectCard

takeCard
requestTakeCard

User ATM Consortium Bank

requestPassword
insertCard

enterPassword

SD1

displayMainScreen

User ATM Consortium Bank
SD2

cancelledMessage
cancel

displayMainScreen

requestPassword
insertCard

ejectCard

takeCard
requestTakeCard

displayMainScreen

enterPassword
verifyAccount

Figure 1 – Scenarios SD1 and SD2

2. LTS Synthesis

The example we use to illustrate our approach is based

on a version of the ATM case study presented by Whittle
and Schumann in [10]. A number of sequence diagrams

(depicted in Figure 1 and Figure 2) describe how a user
operates a bank account by interacting with an ATM. The
ATM is connected to a network run by a consortium,
which in turn interacts with the bank. In addition to the
scenarios, pre- and post-conditions for some scenario
messages are given in OCL (Figure 4). The post-
conditions specify how messages modify the values of a
set of ATM state variables (cardIn, cardHalfway,
passwdGiven, card, and passwd). The pre-conditions
specify the values these variables are expected to have
before a messages occurs.

cancelledMessage

User ATM Consortium Bank

User ATM Consortium Bank

badPassword
badBankPassword

SD3

SD4

cancel

displayMainScreen

requestPassword
insertCard

enterPassword
verifyAccount

verifyCardWithBank

requestPassword

ejectCard

takeCard
requestTakeCard

displayMainScreen

cancelledMessage
cancel

displayMainScreen

requestPassword
insertCard

ejectCard

takeCard
requestTakeCard

displayMainScreen

Figure 2 – Scenarios SD3 and SD4

In [10] a synthesis procedure is presented for

automatically generating LTSs from the combination of
the scenarios and the pre- and post-conditions. Using the
pre- and post conditions, the procedure first infers the
value of state variables at specific points of the scenarios.
For example, for displayMainScreen, the first message in
SD1, the OCL specification states a pre-condition that
allows inferring that the value of cardIn and cardHalfway
should be false at the beginning of SD1.

By considering all message pre- and post-conditions
and using the unification and frame action techniques
defined in [10] it is possible to infer further information
on the value of state variables throughout the available
scenarios. Consequently, it is possible to assign a

(possibly partial) valuation of state variables to every
scenario state (the gap on a scenario instance between two
consecutive events). The valuations are then used to infer
which scenario states should be modelled with one state
in the LTS to be synthesised. We do not go in to more
details on the synthesis procedure; the interested reader
can refer to [10] for more information.

3. Undefined Versus Proscribed Behaviour

Figure 3 depicts the LTS for the ATM component
synthesised from the scenario and OCL specification. As
expected, the model captures the sequences of
interactions the ATM component performs in the
scenarios. For instance the LTS models an ATM that is
capable of performing the sequence of actions
<displayMainScreen, insertCard, requestPassword,
enterPassword, verifyAccount…> of scenario SD1.
Additionally, by omission, the LTS also models the
sequences of actions that the ATM cannot perform. Thus,
the ATM cannot perform the sequence
<displayMainScreen, insertCard, insertCard> because
after performing displayMainScreen and insertCard the
LTS is in state 2 which does not have any outgoing
transitions labelled insertCard. For exactly the same
reasons, the ATM LTS cannot perform the following
sequence: <displayMainScreen, insertCard, ejectCard>.

However, a closer inspection of the LTS and the OCL
specification reveals that the LTS is over-specifying the
behaviours that the ATM should not be capable of. Table
1 shows the value of the OCL variables in each state of
the ATM LTS. Considering that the pre-condition of
message insertCard requires variable cardIn to be false,
we can infer that in state 2 insertCard should not occur.
This is consistent with the fact that the LTS for the ATM
component does not allow <displayMainScreen,
insertCard, insertCard>. Contrarily, message ejectCard

requires cardIn to be true, hence its precondition is
satisfied in state 2. Consequently, there is no reason to
dismiss the possibility of the ATM performing the
sequence <displayMainScreen, insertCard, ejectCard>.
However, the LTS for the ATM component does not
allow this sequence.
cardIn, cardHalfway, passwdGiven : Boolean
card : Card
passwd : Sequence

insertCard(c : Card)
pre : cardIn = false
post: cardIn = true and card = c

enterPassword(p : Sequence)
pre : passwdGiven = false
post: passwdGiven = true and passwd = p

takeCard()
pre : cardHalfway = true
post: cardHalfway = false and cardIn = false

displayMainScreen()
pre: cardIn = false and cardHalfWay = false
post:

requestPassword()
pre : passwdGiven = false
post:

ejectCard()
pre : cardIn = true
post: cardIn = false and cardHalfway = false
and card = null and passwd = null and
passwdGiven = false

requestTakeCard()
pre : cardHalfway = true
post:

canceledMessage()
pre : cardIn = true
post:

Figure 4 – OCL pre- and post-conditions

Clearly, our knowledge of sequences
<displayMainScreen, insertCard, insertCard> and
<displayMainScreen, insertCard, ejectCard> is different.
We know the first one should not occur because it would
violate the insertCard pre-condition. Whilst for the
second sequence we know it does not violate any pre-
conditions, thus it may be a valid ATM behaviour. This

ATM
displayMainScreen insertCard requestPassword

cancel

enterPassword verifyAccount

cancel

badPassword

badAccount badAccountMessage printReceipt ejectCard requestTakeCard

takeCard

canceledMessage

ejectCard

canceledMessage

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3 – Synthesized LTS for the ATM component

means that it may well be a situation that has not been
explicitly specified or that has not even been considered
by stakeholders. Hence it is an opportunity for providing
feedback that may trigger new scenarios or strengthened
pre-conditions. Either way, it is an opportunity for further
elaborating the system's behaviour model.

Table 1 – Valuation of variables on states

 0 1 2 3 4 5 6 7 8 9 10 11 12 13
cardIn f f t t t t t t t f f t t t
cardHalfway f f f f f f f f f t t f f f
passwdGiven t t f f t t t t t f f t t f
card - - c c c c c c c - - c c c
passwd - - - - p p p p p - - p p -

4. Partial Labelled Transition Systems

There is benefit to be gained from differentiating in LTS
models behaviour that is known to be undesired from
behaviour that is not yet known to be positive or negative.
To capture this information we extend the notion of LTS
as follows. Each LTS state is associated with a set of
labels. These labels model actions that are explicitly
proscribed at that state. Clearly, if an action is proscribed
at a state then there can be no outgoing transitions from
that state with the same label. Thus, we have that on each
state every label of the PLTS alphabet is enabled,
proscribed or undefined. That is, the following equation
holds for each state s:

α(P) = enabled(s) ∪ proscribed(s) ∪ undefined(s)
where enabled(s) is the set of labels for which there is an
outgoing transition form s and undefined(s) is the set of
labels that are not enabled nor proscribed in state s. Note
that if undefined(s) = ∅ for all states, the PLTS can be
considered a LTS.

If we contrast the preconditions of Figure 4 with the
valuation of state variables for each state of the ATM
LTS (Table 1) we can determine which message should
not occur on each state. For instance, the precondition of
insertCard determines that it cannot occur on states 2 to
8, 11 to 13. Consequently, we can extend the LTS of
Figure 4 with the sets modelling the messages proscribed
at each state. Cells marked "p" in Table 2 represent the
pairs of proscribed action labels at sets for the ATM
PLTS.

We can then add to Table 2, the information on
enabled messages for each state (cells marked "e"). For
example, as a transition labelled insertCard has been
defined from state 1 to state 2, insertCard is marked as
enabled in state 1 in Table 2.

Pairs of messages and labels that are not marked with
either "e" or "p" are highlighted with "?" and model the
states where messages could occur (according to their
preconditions), but the consequences of such occurrences
are not yet known. Thus, we have states 0, 9 and 10

modelling that insertCard could occur, but the state to
which its occurrence would lead to is not known.

Table 2 can now be used to prompt stakeholders on
hypothetical situations. For instance, the fact that in state
0, insert card is undefined may prompt the following
question: Can a card be inserted into the ATM before a
message is displayed?

Note that PLTS differ from multi-valued state-
machines (e.g. [1]), in that in the latter transitions are
assigned truth values (e.g. true, false, unknown) rather
than transition labels being undefined at states. Thus,
multi-valued state-machines require much finer grained
knowledge about what is unknown. For instance, in the
ATM example we would have to speculate on all the
possible destinations of insertCard from state 0:
transitions labelled insertCard with value unknown
would be needed from state 0 to all other states. In the
setting we propose, this is not useful as the true transition
from state 0 for insert card –supposing that it should exist,
but has not appeared in the given scenarios– could lead to
a new PLTS state altogether.

Table 2 – Classification of ATM states

 0 1 2 3 4 5 6 7 8 9 10 11 12 13
insertCard ? e p p p p p p p ? ? p p p
enterPassword ? ? ? e p p p p p p p p p ?
takeCard p p p p p p p p p ? e p p p
displayMainScreen e ? p p p p p p p p p p p p
requestPassword ? ? e ? p p p p p p p p p ?
ejectCard p p ? ? ? ? ? ? e p p ? e ?
cancelledMessage p p ? ? ? ? ? ? ? p p e ? e
requestTakeCard p p p p p p p p p e ? p p p

displayMainScreen

badAccount
badBankAccount

verifyAccount
verifyCardWithBank

badAccountMessage
printReceipt
ejectCard

User ATM Consortium Bank

requestPassword
insertCard

enterPassword

Undecided insertCard scenario

insertCard

Figure 5 – Undefined insertCard scenario

5. Composition of Partial Behaviour Models

Although benefits may be obtained from inspecting a

PLTS, a more appealing approach is to generate feedback
in the form of scenarios. Thus, we want to compose
partially specified models of the system components
appearing in scenarios and to reason about how they
interact and if they reach states for which certain message

labels are undefined. For instance, if a PLTS for the user,
consortium and bank where built, the scenario of Figure 5
could automatically be generated through some kind of
reachability analysis. The scenario depicts the case where
after a session, the ATM ejects the card, which is left
halfway in the machine, and the user instead of taking the
card pushes it back in.

Thus, we need to extend the notion of parallel
composition of LTSs to PLTSs. Intuitively, parallel
composition of LTSs models a system in which
components execute asynchronously and synchronize on
shared observable message labels. Given a shared label a,
one LTSs can take an a-labelled transition if and only if
the LTS it is being composed with can do so too.
Consequently, a LTS in a state where a is not enabled,
will prevent the other LTS from taking a transition
labelled a.

In the parallel composition of PLTSs this changes
because a not being enabled does not imply that a is
proscribed. For instance, suppose we are composing
PLTSs P and Q, which are in states p and q respectively.
In addition suppose there is a shared label a that is
enabled in p. If a is undefined on state q then a should
also be undefined in the composite process because we do
not know if Q can synchronize on a when in q. Clearly, if
a is proscribed in q, then a should be also proscribed in
the composite process (as with standard LTSs).

On the other hand, if a is undefined in state p. If a has
been explicitly proscribed on state q then a should also be
proscribed in the composite process. This means that the
fact that a is undefined in p is irrelevant with respect to
the composite behavior. In other words, although we have
a gap in the specification of component P, providing
feedback on it is not necessary in the context of Q.

More generally this allows us to combine different
partial behaviour models and (potentially) reduce the
number of unclassified system scenarios. Allowing
detection and validation of gaps in the behaviour
specification to focus on the emerging behaviour of
system components working together, rather than on
details of components that may be irrelevant to the overall
system behaviour.

Table 3 provides a summary intuition as to how
enabled, proscribed and undefined message labels work
together in parallel composition of PLTSs.

Table 3 – Proscribed, enabled and undefined
messages in PLTS parallel composition

 Enabled Proscribed Undefined
Enabled Enabled Proscribed Undefined

Proscribed Proscribed Proscribed Proscribed
Undefined Undefined Proscribed Undefined

Consider the ATM example, and suppose we have

additional information on the how the card is managed
between the ATM and the user, which we call for short

the card protocol. We describe the behaviour with a
PLTS depicted in Figure 6 and Table 4. If we compose
the behaviour models for the card protocol and the ATM,
the resulting PLTS will no longer have the following
pairs of undefined behaviour (compare with Table 2):
{(insertCard, 9), (insertCard, 10), (ejectCard, 3),
(ejectCard, 4), (ejectCard, 5), (ejectCard, 6), (ejectCard,
7), (requestTakeCard, 10), (takeCard, 9)}.

As a consequence, we know have a composite
behaviour model that has fewer gaps that need
stakeholder validation.

Although the preceding example reduces the number
of undefined pairs of states and labels (compared to the
ATM component on its own), this is not always the case.
Clearly, composition of PLTSs can introduce new cases
of undefinedness in the composite behaviour. Thus,
parallel composition does not always reduce the number
of gaps in the overall specification that need stakeholder
validation.

insertCard ejectCard requestTakeCard

takeCard

0 1 2 3

Figure 6 – Card Protocol

Table 4 – Classification of Card Protocol states
 0 1 2 3
insertCard e p p p
takeCard p p ? e
ejectCard p e p p
requestTakeCard p p e p

6. Future Work and Conclusions

In this paper we have shown how explicit modelling of

aspects of system behaviour that are unknown can be
beneficial in the context of scenario-based specifications.
Synthesis of PLTSs captures the gaps in the behaviour
model that need to be elaborated. As a result undefined
scenarios can be used as cues to stakeholders for
providing the behaviour information that is missing from
the model; hence, supporting the iterative incremental
elaboration of behaviour models.

Although we have used in this paper an example based
on scenarios and OCL pre- and post-conditions, the use of
PLTS can be useful when used with other sources of
negative behavioural information such as MSC conditions
[3, 4] or negative scenarios [8].

We envisage using PLTSs to support the elaboration
of behaviour models. Unknown behaviour can be
modelled explicitly, and then models can be used to query
users on whether a particular scenario is possible or not.
Our previous work on implied scenarios [18] shares this
approach to model elaboration based on scenario

generation and validation. However, implied scenarios
address a very specific aspect of partial scenario-based
descriptions while PLTSs provide a more general
framework for model elaboration. This approach to model
iterative construction of scenario-based specifications is
shared with work of Mäkinen and Systä [15]. However,
in their work scenarios that are fed back to users are the
result of over-generalisations of the synthesis procedures
used. The scenarios we aim to generate are a result under-
specification.

We are currently only starting to experiment with
PLTSs as the target for scenario synthesis. We are
working on the formal definitions of PLTS and PLTS
parallel composition, implementing synthesis procedures
and detection methods that allow detecting undefined
scenarios. They are being developed on LTSA [6]
exploiting its new fluent linear temporal logic (FLTL)
model checking features. We are also looking into using
undefined scenarios in the context of our simulation tool
to guide model exploration and elaboration. Undefined
scenarios could also provide a framework for guided
play-in scenarios [2]

7. Acknowledgements

We gratefully acknowledge the support of the

European Union under grant STATUS (IST-2001-
32298), and EPSRC grant READS GR/S03270/01.

References

[1] M. Chechik, S. Easterbrook, and B. Devereux, Model

Checking with Multi-Valued Temporal Logics in 31st
IEEE International Symposium on Multiple Valued
Logics (ISMVL'01), Warsaw, 2001.

[2] D. Harel, From Play-In Scenarios to Code: An
achievable Dream, IEEE Software, vol. 34, pp. 53-60,
2001.

[3] D. Harel and W. Damm, LSCs: Breathing Life into
Message Sequence Charts in 3rd IFIP International
Conference on Formal Methods for Open Object-Based
Distributed Systems, New York, 1999.

[4] ITU, Message Sequence Charts, International
Telecommunications Union. Telecommunication
Standardisation Sector, Recommendation Z.120, 2000.

[5] I. Krüger, R. Grosu, P. Scholz, and M. Broy, From
MSCs to Statecharts in Distributed and Parallel
Embedded Systems, F. J. Rammig, Ed.: Kluwer
Academic Publishers, 1999, pp. 61-71.

[6] J. Magee and J. Kramer, Concurrency: State Models and
Java Programs. New York: John Wiley & Sons Ltd.,
1999.

[7] E. Mäkinen and T. Systä, MAS – An Interactive
Synthesizer to Support Behavioral Modeling in UML, in
23rd IEEE International Conference on Software
Engineering (ICSE '01), Toronto, 2001.

[8] S. Uchitel, J. Kramer, and J. Magee, Negative Scenarios
for Implied Scenario Elicitation in 10th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE'02), Charleston, 2002.

[9] S. Uchitel, J. Kramer, and J. Magee, Synthesis of
Behavioural Models from Scenarios, IEEE Transactions
on Software Engineering, vol. To appear., 2002.

[10] J. Whittle and J. Schumann, Generating Statechart
Designs from Scenarios in 22nd International
Conference on Software Engineering (ICSE'00),
Limerick, Ireland, 2000.

