Scenario-based Assessment of Softwar e Ar chitectur e Usability

Eelke Folmer, Jilles van Gurp, Jan Bosch
Department of Mathematics and Computing Science
University of Groningen, PO Box 800, 9700 AV théhRiands
mail@eelke.comlilles@cs.rug.nlJan.Bosch@cs.rug.nl

Abstract

Over the years the software engineering community
has increasingly realized the important role softwa
architecture plays in fulfilling the quality req@ments of
a system. The quality attributes of a softwareesysare,
to a large extent determined by the system’s softwa
architecture .Usability is an essential part of tsaire
quality. The usability of software has traditionalbbeen
evaluated on completed systems. Evaluating usalaitit
completion introduces a great risk of wasting dffon
software products that are not usable. A scenagasell

assessment approach has proven to be successful fo

assessing quality attributes such as modifiabikyd
maintainability [12]. It is our conjecture that secario

based assessment can also be applied for usability

assessment. This paper presents and describesnarsz

User/ Customer
Technological development
Marketing department

Functionality-based
architecture design
Software
architecture

Estimate
Quality
attributes

Requirement

specification

decisions

QA-optimizing
solutions

Figure 1: Software architecture design
method

based assessment method to evaluate whether a giveél're collected from the stakeholders: the userdpmess

software architecture (provided usability) meetse th
usability requirements (required usability). TheeBario-
based Architecture Level UsabiliTy Assessment
(SALUTA) method consists of five main steps, goal
selection, usage profile creation, software arattibee
description, scenario evaluation and interpretation

1. Introduction

The quality attributes of a software system areato
considerable extent defined by its software archite.
In addition, design decisions in the beginning bé t
design process are the hardest to revoke. Theréfise
important to have an explicit and objective design
process. Various researchers in the software eegimge
research community have proposed software architect
design methods: SAAM [1], ATAM [2] and QASAR [3].
The latter, the Quality Attribute-oriented Software
ARchitecture design method (QASAR), is a method for
software architecture design that employs explicit
assessment of, and design for the quality requinésnaf
a software system.

The architecture design process depicted in Fidure
can be viewed as a function that transforms a remeént
specification to an architectural design. The nemments

technological developments and the marketing
departments. These groups often provide conflicting
requirements and have to agree on a specific set of
requirements before the design process can stag. T
design process starts with a design of the software
architecture based on the functional requirements.
Although software engineers will not design a systan
purpose that is unreliable or performs poorly, mumh-
functional requirements are typically not expligitl
defined at this stage.

The design process results in a preliminary version
the software architecture design. This design &uated
with respect to the quality requirements by using a
gualitative or quantitative assessment techniqu&ngd)
the assessment results, the estimated qualithatits are
compared to the values in the specification. Ifsthare
satisfactory, then the design process is finished.
Otherwise, the architecture transformation or
improvement stage is entered. This stage improkies t
software architecture by selecting appropriate igual
attribute optimizing or improving design solutions.

When applying architecture design solutions, gdhera
one or more quality attributes are improved wherghsr
attributes may be affected negatively. By applyomg or

61

more architectural design solutions, a new architat
design is created. The design is evaluated againttea
process is repeated, if necessary, until all nomtfonal

Being able to assess the quality attributes such as
usability during early development therefore is yer
important. Three types of architecture assessmame h

requirements have been satisfied as much as pessibl been identified [3]

Other design methods such as SAAM or ATAM take a «

similar approach with respect to iterative refinamef

the design. Generally some compromises are negessar

with respect to conflicting non-functional requirents.

The design process described here depends on two

requirements:

» Itis required to determine when the software desig
process is finished. Therefore, assessment tecbmiqu

are needed to provide quantitative or qualitatisead
to determine
functional requirements.

« Development or identification of architectural dgsi
solutions that improve quality attributes.

As of yet, no architectural assessment techniqaes f

usability exist. The goal of this paper is to cugliand
present an assessment technique for usabilityftifdts

one of the requirements to be able to design fability
on the architectural level.

2. Architecture assessment of usability

Most usability issues are only discovered lateha t
development process, during testing and deploynéms.
late detection of usability issues is largely doette fact
that in order to do a usability evaluation, it ecessary to

have both a working system and a representativeofset

users present. This evaluation can only be dotigea¢nd
of the design process. It is therefore expensivgotback
and make changes at this stage. Next to that peaatid
experience [12] shows that improvement of, or desig
quality attributes often requires the use of carsign
patterns or styles. For instance, to improve pditaland

modifiability it may be beneficial to use a layered

architecture style. From this example we can cafelu

that a large number of issues associated to usabiky

also require architectural support in order to adgithem.
One of the goals of the STATU$roject is to develop

if the architecture meets the non- e

Scenario based assessment: In order to assess a
particular architecture, a set of scenarios is lbgpes
that concretizes the actual meaning of a requiremen
For instance, the maintainability requirements fay
specified by defining change profiles that captures
typical changes in the requirements, underlying
hardware and so on. For each scenario the
architecture is assessed for its support of this
scenatrio.
Simulation: Simulation of the architecture uses an
executable model of the application architecturgs T
comprises models of the main components of the
system composed to form an overall architecture
model. It is possible to check various propertiés o
such a model in a formal way and to animate it to
allow the user or designer to interact with the slod
as they might with the finished system.
 Mathematical modeling: By using mathematical
models developed by various research communities
such as high performance computing, operational
quality attributes can be assessed. Mathematical
modeling is closely related to, or an alternative t
simulation.

In our industrial and academic experience with
scenario based analysis we have come to underttand
scenario based analysis is a good technique toyzmnal
software architectures because the use of scersdhives
us to make a very concrete and detailed analysis an
statements about their impact or support they reqgiren
for quality attributes that are hard to predictésssfrom a
forward engineering perspective. A scenario based
assessment approach has proven to be successful for
assessing quality attributes such as modifiabiktyd
maintainability [12]. It is our conjecture that segio
based assessment can also be applied for usability
assessment. The usage of scenarios is motivatdatieby
consensus it brings to the understanding of what a

techniqgues and methods that can assess softwararticular software quality really means. Scenasos a

architectures for their support of usability. Tleason for

good way of synthesizing individual interpretationfsa

developing such techniques is because the qualitySoftware quality into a common view. This view isttp

attributes of a software system are, to a largengxt
determined by a system’s software architecture.liQQua
attributes such as performance or maintainabikiyuire
explicit attention during development in order thigve
the required levels. We believe this statement ardy
holds for quality attributes such as maintainapildr
modifiability but also for usability.

1 STATUS is an ESPRIT project (IST-2001-32298) finesh®y the European Commission in its Information
Society Technologies Program. The partners arerfrtion Highway Group (IHG), Universidad Politecaige
Madrid (UPM), University of Groningen (RUG), ImpatiCollege of Science, Technology and Medicine T®1,
LOGICDIS S.A.

more concrete than the general software quality
definitions [4] and also incorporates the uniquenasthe
system to be developed, i.e. it is more contexsitiga.

Usability is often defined in a very abstract fashi
Scenarios can make abstract usability requiremeaiote
specific. For example a usability requirement litke
system should be learnable” is much harder to et@lu
for a system than a usage scenario defined as: &For
novice user operating on a helpdesk context, imgee
new customer in the sales database should be Batna
which is a more concrete statement.

62

Before presenting our scenario based assessme
technique we discuss in the next section the esflt
researching the relationship between usability anc
software architecture.

3. Usability Framework

One of the first goals of the STATUS project was to
investigate the relationship between usability anc
software architecture. A framework has been dewlop
[6] which illustrates this relationship. This framerk
provides the basis for developing assessment tmols
usability. The framework is used for extracting
information regarding the architectural information
related to usability required for the assessmertite T
framework consists of the following concepts:

¢ Usability attributes.

« Usability properties.

¢ Usability patterns.

Figure 2 gives some examples of attributes, progsert
and patterns, and shows how these are relateldistraite
the relationship between usability and software
architecture. The concepts used are defined below.

3.1. Usability attributes

A comprehensive survey of the literature [7] reeeal
that different researchers have different defingidor the
term usability attribute, but the generally accdpte
meaning is that a usability attribute is a precsd

Usability properties Usability patterns
satisfaction —
learnability <

efficiency ™ §
reliability re
Problem domain

Figure 2: Usability framework

3.2. Usability properties

Essentially, usability properties embody the heigss
and design principles that researchers in the lityafield
have found to have a direct influence on systenbilitya
Usability properties cannot be observed when etialga
usability for an implemented system. These propgrtan
be used as requirements at the design stage, dtamice
by specifying "the system must provide feedback",
however they are not strict requirements in a waat t
they are requirements that should be fulfilled |latests.
Usability properties should be considered as hidgnesl
design primitives, which have a known effect onhiigs.

It is up to the software engineer to decide how and
which levels these properties are implemented bggus
usability patterns of which it is known they haveedfect
on this usability property. The following propegi@ave

measurable component of the abstract concept that ipeen defined:

usability. After an extensive search of the work/afious

authors, the following set of usability attributess been
identified for which software systems in our worke a
assessed. No innovation was applied in this aieaes

abundant research has already focused on findimy an,

defining the optimal set of attributes that compose

usability. Therefore, merely the set of attributesst

commonly cited amongst authors in the usabilitidfieas

been taken. The four attributes that are chosen are

e Learnability - how quickly and easily users canibeg
to do productive work with a system that is new to
them, combined with the ease of remembering the
way a system must be operated.

e Efficiency of use - the number of tasks per umiteti
that the user can perform using the system.

¢ Reliability in use - this attribute refers to threcs
rate in using the system and the time it takes to
recover from errors.

e Satisfaction - the subjective opinions that usermf
in using the system.

These attributes can be measured directly by olvggerv
and interviewing users of the final system using
techniques that are well established in the fiefld o
usability engineering.

« Providing feedback - the system provides continuous
feedback as to system operation to the user.

e Error management - includes error prevention and

recovery.

Consistency - consistency of both the user interfac

and functional operation of the system.

e Guidance - on-line guidance as to the operatidhef
system.

* Minimize cognitive load - system design should
recognize human cognitive limitations, short-term
memory etc.

Natural mapping - includes predictability of
operation, semiotic significance of symbols andeeas
of navigation.

e Accessibility - includes multi-mode access,
internationalization and support for disabled users

3.3. Usability patterns

The term usability pattern refers to a technique or
mechanism that can be applied to the design of the
architecture of a software system in order to asklre
need identified by a usability property at the iegments

63

stage (or iteration thereof). Various pattern adltns
have been defined [8], [9], the difference with esth
collections is that our collection considers onBbttprns
which should be applied during the design of aesy&
software architecture, rather than during the tetai
design stage. There is not a one-to-one mappingeest
usability patterns and the usability propertiest ttheey

* Risk assessment: detect usability issues for wihieh
software architecture is inflexible.

e Software architecture selection: compare two
candidate software architectures and select the
optimal candidate which has the best support for
usability

affect. A pattern may be related to any number of 42 Create usage profile

properties, and each property may be improved (or

impaired) by a number of different patterns. Theicé of
which pattern to apply may be made on the basisosf
and the trade off between different usability proipe or
between usability and other quality attributes swash
security or performance. 20 patterns have beertifieh
and a detailed analysis of each usability pattew the
relationship between this patterns, usability props and
usability attributes can be found on
http://www.designforguality.com/

The next section presents our
assessment method for architectural
usability. The assessment technique uses the frarkew
described in this section as a source of inpuekbracting
the information required for assessment.

4. Usability assessment technique: SALUTA

Our
applying assessment techniques for maintainabiiag
led us to develop a technique for usability whistbased
on the same principles. Assessing a software athite
for its support of a particular quality attributadically
comes down to a comparison between the requiracsal
of that particular quality attribute versus the vided
value of that quality attribute. For usability assment the
required usability ‘levels’ are compared to the vided
usability ‘levels’. In case of scenario based assest the
required levels are specified by scenarios. Then&oe
based Architecture Level UsabiliTy Analysis method
(SALUTA) comprises the following steps:

1. Determine the goal of the assessment.

2. Describe required usability: create usage mofil

3. Describe provided usability: describe the SA.

4. Evaluate scenarios.

5. Interpret the results.

scenario based
assessment of

experience with developing and successful

Before an architecture can be assessed for itsosupp

of usability, first a way to describe the requireshbility
is required. Preece [10] and Hix [11] suggest wio
techniques for the specification of usability. Theay
traditional techniques specify usability such asppsed
by Preece and Hix are not suited for architectural
assessment because of the following reasons:
« Very little is mentioned about usability requirerteen
in scientific literature. In addition, real-life amples
are rarely provided. Preece for example, presents
much advice on usability requirements, but in heat
abstract setting without real-life examples. Most
usability specifications are rather defined in an
abstract fashion and therefore not suited for
architectural assessment.

¢ Focus on interface evaluation rather than on djalog
whereas dialog is likely to have a much greatezatff
on usability.

e Traditionally usability requirements have been
specified such that these can be verified for an
implemented system. However, such requirements
are largely useless in a forward engineering psaces
For example, we could say that a goal for a syssem
that it should be easy to learn, or that new users
should require no more than 30 minutes instruction,
however, requirements at such a level are hard to
assess on an architectural level, because those can
only be measured when the system is in use.

A more suitable format, as argued in section 2 for
specifying required usability for architectural essment

is by using scenarios. A scenario profile descrities

semantics of software quality attributes such as

maintainability or safety for a particular systesnrheans

of a set of scenarios. In other words scenarioilppare

an interpretation of the quality attributes in ttentext of

The steps are discussed and defined in detailen th the requirements. Scenario profiles are increaginfien

following subsections:
4.1 Determinethe goal of the assessment

The first step in the analysis method is to deteenthe
type of results that will be delivered by its arsidy The
following goals are distinguished:

e Predict the level of usability: give an accurate
indication of the support of usability for an
architecture.

used for the assessment of quality attributes dutire
architectural design of software systems [12]. Aages
profile describes usability requirements in termsaset
of usage scenarios which are defined in the nesticse

4.2.1 Scenario definition for usability
One of the main assumptions of usability is thathilgy

depends on the context of use: the tasks, go@geahple
and the environment. For usage scenarios the folpw

64

variables have been identified that define a usageand selection of distinct tasks. Most systems feala of

scenatrio:

e The users the users play an essential part in the
definition of a usage scenario. Users are parhef t
stakeholder population that interacts with the exyst

different tasks; therefore a representative selectf
these tasks that are distinct has to be made.Xeonge a
task could be: insert new customer in database.

4.2.4. ldentify the contexts of operation: The third step

Examples of users: novice users, advanced usersis determination of the unique contexts in whichheaser

system administrators and so on. A precise dedimiti
of users is not stated here because the type of use
depends on type of system the user is working with.

e Thetasksthat a user can perform. The functionality
that a system presents to its users is also a Isoena
variable of a usage scenario. The tasks direciitee
to the interaction part of the definition of a saga.

« The contextin which the user operates. The context

operates. Examples:
environment.

4.2.5. Create attribute preference table: The attribute
preference table (APT) is defined telate a scenario to
usability. However a scenario specified in such ayw
does not state anything about required usabilityvas
our goal of creating usage scenarios. Thereforay to
relate it to usability has been defined. Statingtth

helpdesk context or training

of operation is included because for some usersSCenariO should be usable is not specific enough fo

performing a particular task the required usability
may be different which can only be explained by the
different contexts in which they operate.

A usage scenario is therefore defined as “an iotem
between the users and the system in a specifiatper
context”. The variables context, user and task Wwhie
have included in our usage profile definition arerenor
less recognized in the various definitions of ulsgbiFor
example the 1SO 9126-1 [14] definition of usabilithe
capability of the software product to enable spedgif
users to achieve specified goals with effectiveness
productivity, safety and satisfaction in a spedif@ntext
of use. Shackel [15] defines the usability of ateysas
the capability in human functional terms to be usaslly
and effectively by the specified range of usersiegi
specified training and user support, to fulfill theecified
range of tasks, within the specified range of sdesa

Scenario profiles for describing required usabiliy
created using the following steps:

1) Identify the users.

2) Identify the tasks.

3) ldentify the context of operation.

4) Create attribute preference table

5) Scenario Selection

6) Scenario Prioritization

4.2.2 | dentify the users: A representative list of distinct
users has to collected and defined. Examples: Movic
users, expert users or system administrators.

4.2.3. Identify the tasks: The next step is identification

analysis. In section 3.1 we have presented usabilit
attributes. To express the required usability fouser
performing a task in a specific context the scersadre
related to these usability attributes. In Tablenlegaample

of an APT is presented which is the result from an
industrial case study. In this case the followinspge
scenario was defined: “end-users performing taskkqu
search in training context”. The required usabifiy the
system is expressed by determining for each saenari
values for the usability attributes. The goal a$ #nalysis

is to determine for each scenario an ordering oKiray
between usability attributes which can then be usede
evaluation part of the assessment. The resultsedoh
scenario are then summarized in the (APT). The APT
expresses the required usability for the systensthiing

for each scenario which specific usability attrésutare
important. In the example below we have assignéuakega
between 1 and 4 to each attribute for each of ltheet
scenarios. There are various ways to determine
quantitative values for the preference to usabilitycan

be done as part of requirements collection prodgpial
users or experts assign values, for example thsigras
values between 1 to 5 to each attribute for eask a&ad
context. The assigning of values can also be dene a
post requirements process (during assessment)gvemer
expert (or a team of experts) determine valuestlier
usability preferences, the usability requiremeiat tare
collected during requirements analysis can theasee as
an informative source for assigning the values.

Table 1: Example APT

APT for Web-platform

no Users Tasks Context Satisfaction Learnability | Efficiency | Reliability
1 End-user Quick training 2 4 1 3
search
End-user Navigate - 1 4
Content Edit object Helpdesk 2 1 4 3
Administrator

65

4.2.6. Scenario selection: the attribute preference table 4.3 Describethe software architecture

that was created in combination with a descripliseof

users, tasks and contexts of operation can be tesed The third step, architecture description, concehes
summarize and describe the different scenariosttheg information about the software architecture thaiéseded
been created. From this table, which holds all ades a to perform the analysis. Generally speaking, uigbil
scenario, profile is created by selecting scenafiasare analysis requires architectural information thédvas the
representative. Scenario selection is the process oanalysis to evaluate the scenarios. The resultisftep is
selecting those scenarios that are to be used en tha description of the provided usability. Informatio
assessment step of the analysis. Scenario seleesoits related to the architecture; for example, box aima |
in a scenario profile which holds the set of retdva diagrams or documented design decisions, may peovid
scenarios which will be evaluated. Different pledimay data about various quality attributes but sinceintarest
be defined depending on criteria for selecting the lies in usability only the information that is rtdd to
scenarios into the profile. The selection criténfluence usability is required. To achieve this, the infotima
the representativeness of the scenario profilecesiim required is extracted using our framework describred

essence it is a kind of population sampling stratdgvo section 3. Different types of assessment technitpaes

types of general scenario profiles have been ifiedti been defined depending on the amount of architaictur

« Complete scenario profile: “all scenarios that can information that is available for assessment or twha
potentially occur” information one is willing to acquire to get a more

» Selected scenario profile: “a representative sdubfse ~ accurate result from the assessment. The following
the population of all possible scenarios subsection discusses the different assessment types

defined and the architectural information necesdary
4.27. Scenario prioritization: Scenarios may be perform that type of assessment.
assigned additional properties, such as an assdciat
weight, priority or probability of occurrence withia 4.4 Evaluate Scenarios
certain time. The selection of usage scenarios also

depends on the goal of the analysis, if the gotl:is Assessing an software architecture for its suppbrt

* Predict the level of a quality attribute: Select usability is done by comparing the required usgpbili
scenarios that have high probability of occurring. ‘levels’ to the provided usability ‘levels’. Theels are

« Risk assessment: select scenarios that expose thosgpecified by usage scenarios. In section 4.2 antquh is
risks. discussed for capturing and describing the required

« Software architecture selection: select scenarah th usability using a usage profile. For each usagaast@in
highlight differences the profile the architecture is analyzed for itpart of

The process of identifying users, tasks and costekt that scenario. The process that identifies the etippr
operation, creating and APT, selecting an pridritiz the scenarios is defined as architectural suppuatyais.
scenarios will often be performed in one step. This Eventually the results from the analysis are sunmadr
subsection has discussed how to create a usagéeprof into an overall result. For example the number of
Going back to our assessment approach we need t@upported scenarios versus the number scenario not
compare this usage profile (required usability) the supported. This number will be an indication of the
provided usability. But to be able to do this weedi¢o support of the architecture for its support of ulégbThe
know how to describe the provided usability which i architecture will be accepted or rejected basedthzn

discussed in the next subsection. number of usage scenarios in the usage profile dhat
specifcaton ji S-A. Sy i D.D. S.A
I =) =) EE
Pattern based assessment Design decision based assessment
Us_al?ility
S A specification D.D. S.A.
f I
§s
) -
Scenario profile ﬁ ucm
Use case map based assessment SALUTA

Figure 3: Scenario based assessment techniques

66

accepted. Three different types of scenario evialat
techniques have been defined (as depicted in Figjure

e Pattern based

e Design decision based

» Use case map based

analysis it needs to be determined which desigisides
have been made with regard to usability. By heige8y
evaluating the design decisions made during desiging
the list of usability properties defined in ourrfrawork
the required information for the assessment (thggde

The framework is used to extract the architectural decisions that relate to usability) is extractekisType of

information required for each assessment technique.

44.1. Pattern based. By analyzing an architectural

assessment heavily depends on the amount of infimima
documented during or after initial architecturakige. If

no design decisions have been documented, this

description of the system an expert assesses thdnformation could be retrieved by interviewing thestem

architectures support of usability. The architegtur

architect(s). For design decision based analysés|ist of

designs present within the development are usea as design decisions that have been extracted using the

source of input for this type of assessment.
architectural design can be a simple box and liagrdm

The framework is used to determine the support for each

usage scenario. For each scenario we analyzecérago

or for example a 4+1 view on the architecture. Ehes is affected by the design decisions and whether iias

designs can provide a lot of information about tyal
attributes and since the subject of our evaluati®n

resulted in sufficient support for that scenario.

usability we are only interested in those parts of 44.3. UCM based. An even more detailed way of

architecture information that are related to usigbillo

acquire this information we use the framework ttraot
the required information. For expert based anslysi
identification of patterns that influence usability the
system is required. By heuristically evaluating slystem
using the list of patterns identified in [6] a Izt patterns
or possible derivatives of those patterns impleegmian
be identified. The list usability patterns presémtthe
software system should provide the information aeagy
for the software engineer to decide if a scenariid lve

assessing is to use use case maps (UCM) for dieggrib

the architecture. Using UCM for describing the

architecture has the following benefits:

» Use case maps describe behavioral and structural
aspects of systems at a high (architectural lefel)
abstraction

« Can capture user requirements when very littlegesi
detail is available

* UCM are easy to learn & understand but precise.

Architecture designs and design decisions madegdluri

supported by the architecture. For each scenar@ th design can be provided by the software architeco wh
software engineer will determine which patterns are assists the analysis. Use case maps in case menpean

involved and whether the usage scenario is sulffilgie
supported.

4.4.2. Design decision based. Not only a description of

be constructed with the assisting software architkased
on the scenarios in the scenario profile for eaamario a
use case map is build. Some tasks may have thiasioni
the same use case maps. The use case map alldes us

the structure of a system as it is decomposed intoanalyze various static properties that relate éoubability
components and relations with its environment may b attributes layer in our framework. For example e case
used for analysis. The design decisions that leth&d map may visualize the number of steps or timekiésao
particular architecture are also very important.e Th perform atask. The number of steps may be anatidit
earliest design decisions may have a considerableo the efficiency or learnability attribute. Nexb t
influence on various quality attributes of the tdag providing static information use case maps alloasel
system. However such design decisions which areemad analysis of architectural components (such as tenpas)

during design are most often not documented. I traave
been however they may be used as a source of faput

involved in that particular scenario. The informoati
gathered during this analysis is an extra sourcemit

this type of assessment. For design decision basedor the architectural support analysis of the sdesa

Figure 4. Assessment process

4.4.4. Summary: The types of assessment techniques
presented here are complementary as shown in Fgure
In general expert based assessment can be appliedsit
cases, assuming that at least some basic form of
architectural description has been made for dewigich
allows for identification of patterns. Design déwis and

use case map based assessment may give additional
information for the architectural support analysis.
However because these types of required informatien

not always present these can be retrieved or cdate
interviewing the system architects, which has @sts.

67

4.5 Interpret theresults

[2] R. Kazman, M. Klein, M. Barbacci, T. Longstalf, Lipson

When the scenario evaluation has been finished weand J. Carriere, "The Architecture Tradeoff Anadyiethod”,

need to interpret the results to draw our conchsio

concerning the software architecture. At this stagego

back to our architecture design approach where we

wondered if this architecture had sufficient supgor
usability. The interpretation of the results depeadtirely
on the goal of the analysis and the system reqeingsn If
the architecture proves to have sufficient suppartall
quality attributes the design process is endede@iise
we need to apply architecture transformations igie
decisions to improve certain quality attribute(3he

choice to use particular transformations may beethas

upon results from the analysis. For example: Cansid
system, which proves to have a low support for ilisgb
for example learnability for some usage scenaisonat

Proceedings of ICECCS'98998

[3] J. BoschDesign and Use of Software Architectures:
Adopting and Evolving a Product Line Approa€tearson
Education (Addison-Wesley and ACM Press).2000.

[4] IEEE Architecture Working Group. Recommendedqpice
for architectural description. Draft IEEE Stand&471/D4.1,
IEEE.

[5] P. O. Bengtsson; N. Lassing; J. Bosch and . \iet,
“Architecture-Level Modifiability Analysis (ALMA)",
Conditionally Accepted for the Journal of Systemd Software
2002.

supported. To improve learnability we could use the [6] E. Folmerand J. Bosch, "Usability patternsSoftware

design primitive of guidance, to address guidanee w

could implement for example a wizard pattern orvje
context sensitive help. The framework we have dgpesd

is then used as an informative source for desigth an

improvement of usability.

5. Conclusions

The work presented in this paper is motivated &y th
the software engineering [9] J. Tidwell, "Interaction Design Pattern€onference on

increasing realization in
community of the importance of software architeettor
fulfilling quality requirements. We have presented
provisional assessment technique for usability thase
scenarios, which has potential to improve curresgigh
for usability. Future case studies should deterntime
validity of our approach to refine it, possibly efithe and

elaborate the steps that should be taken to make i

generally applicable. Several issues need to bavexs

during case studies, which have been summarizeavbel

Architecture",Accepted for HCI International 2003003

[7] E. Folmer and J. Bosch ,"Architecting for usiyi a
survey",Accepted for the Journal of systems and software
2002.

[8] M. Welie and H. Treetteberg, "Interaction Pattem User
Interfaces" ;7" Conference on Pattern Languages of
Programming (PloP)2000.

Pattern Languages of Programming 199998.

[10] J. Preece, Y. Rogers, H. Sharp, D. Benyoiddandand
T. Carey,Human-Computer Interactiordddison Wesley.1994.

[11] D. Hix and H. R. Hartsoreveloping User Interfaces:
Ensuring Usability Through Product and Procesehn Wiley
bind Sons.1993.

[12] J. Bosch and P. O. Bengtsson, "Assessing @psoftware

* Relevance of framework: The relationships depicted architecture maintainabilityfifth European Conference on
in our framework indicate potential relationships. Software Maintainability and Reengineerji&02

Further work is
relationships.

required to substantiate these

[13] P. O. Bengtsson and J. Bosch ,"An ExperimenCreating

« Use case maps: may provide information about staticScenario Profiles for Software Changgpecial issue on

properties of usability. More research is requited
determine whether use case maps can provide tha

kind of information.
The main contribution of this paper is the formidat
and derivation of an architectural assessment apprtor
usability.

6. References

[1] R. Kazman, G. Abowd and M. Webb, "SAAM: A Metho
for Analyzing the Properties of Software Architaets!',
Proceedings of the 16th International Conferencé&oftware
Engineering 1994, pp. 81-90

Software maintenance in Annals of Software EnginggtSSN:
4022-7091)vol. 9 59-78, 2000.

[14] 1ISO 9126-1 Software engineering - Product fyalPart 1:
Quality Model.

[15] B. Shackel, Usability - Context, Framework,di and
Evaluation, inHuman Factors for Informatics Usabiliti3.
Shackel, and S. Richardson, Cambridge UniveFsigss, 1991.

68

