
Usability Patterns in Software Architecture

Eelke Folmer and Jan Bosch

Department of Mathematics and Computing Science
University of Groningen, PO Box 800, 9700 AV the Netherlands

mail@eelke.com, Jan.Bosch@cs.rug.nl

Abstract

Over the years the software engineering community has increasingly realized the important role
software architecture plays in fulfilling the quality requirements of a system. Practice shows that
for current software systems, most usability issues are still only detected during testing and
deployment. To improve the usability of a software system, usability patterns can be applied.
However, too often software systems prove to be inflexible towards such modifications which lead
to potentially prohibitively high costs for implementing them afterwards. The reason for this
shortcoming is that the software architecture of a system restricts certain usability patterns from
being implemented after implementation. Several of these usability patterns are “architecture
sensitive”, such modifications are costly to implement due through their structural impact on the
system. Our research has identified several usability patterns that require architectural support. We
argue the importance of the relation between usability and software architecture. Software
engineers and usability engineers should be aware of the importance of this relation. The
framework which illustrates this relation can be used as a source to inform architecture design for
usability.

1 Introduction
In the last decades it has become clear that the most challenging task of software development is
not just to provide the required functionality, but rather to fulfil specific properties of software
such as performance, security or maintainability, which contribute to the quality of software
(Folmer & Bosch, 2002). Usability is an essential part of software quality; issues such as whether
a product is easy to learn to use, whether it is responsive to the user and whether the user can
efficiently complete tasks using it may greatly affect a product’s acceptance and success in the
marketplace. Modern software systems are continually increasing in size and complexity. An
explicit defined architecture can be used as a tool to manage this size and complexity. The quality
attributes of a software system however, are to a large extent determined by a system’s software
architecture. Quality attributes such as performance or maintainability require explicit attention
during development in order to achieve the required levels (Bosch & Bengtsson 2002). It is our
conjecture that this statement also holds for usability. Some changes that affect usability, for
example changes to the appearance of a system’s user interface, may easily be made late in the
development process without incurring great costs. These are changes that are localised to a small
section of the source code. Changes that relate to the interactions that take place between the
system and the user are likely to require a much greater degree of modification. Restructuring the
system at a late stage will be extremely and possibly prohibitively, expensive. To improve on this
situation, it would be beneficial for knowledge pertaining to usability to be captured in a form that
can be used to inform architectural design, so that engineering for usability is possible early in the
design process. The usability engineering community has collected and developed various design
solutions such as usability patterns that can be applied to a system to improve usability. Where
these prescribe sequences or styles of interaction between the system and the user, they are likely

to have architectural implications. For example, consider the case where the software allows a user
to perform a particularly complex task, where a lot of users make mistakes. To address this
usability issue a wizard pattern can be employed. This pattern guides the users through the
complex task by decomposing the task into a set of manageable steps. However implementing
such a pattern as the result of a design decision made late on proves to be very costly. There needs
to be provision in the architecture for a wizard component, which can be connected to other
relevant components, the one triggering the operation and the one receiving the data gathered by
the wizard. The problem with this late detection of usability issues is that sometimes it is very
difficult to apply certain usability patterns after the majority of a system has been implemented
because these patterns are ‘architecture sensitive’. The contribution of this paper is to make
software engineers aware that certain ‘design solutions’ that may improve usability are extremely
difficult to retro-fit into applications because these patterns require architectural support.
Therefore being able to design architectures with support for usability is very important. The
framework that we present in the next section can be used as an informative source during design.

2 Usability Framework
Through participation in the STATUS1 project we have investigated the relationship between
usability and software architecture. Before the relationship between usability and software
architecture was investigated an accurate definition of usability was tried to obtain by surveying
existing literature and practice. Initially a survey was undertaken to try and find a commonly
accepted definition for usability in terms of a decomposition into usability attributes. It was soon
discovered that the term usability attribute is quite ambiguous. People from industry and academia
have quite different perceptions of what they consider to be a useful usability attribute. The
number of “usability attributes” obtained in this way grew quite large therefore we needed a way
to organise and group the different attributes. Next to the need for organising these different
interpretations of usability attributes, a relation between usability and software architecture was
tried to discover. The only ‘obvious’ relation between usability and architecture is that there are
some usability patterns that have a positive effect on usability and that are architecture sensitive.
However, it was soon discovered that it was extremely difficult to draw a direct relationship
between usability attributes and software architecture. An attempt was made to decompose the set
of usability attributes into more detailed elements such as: “the number of errors made during a
specific task”, which is an indication of reliability, or “time to learn a specific task” which is an
indication of learnability, but this decomposition still did not lead to a convincing connecting
relationship with architecture. The reason is that traditionally usability requirements have been
specified such that these can be verified for an implemented system. However, such requirements
are largely useless in a forward engineering process. For example, it could be stated that a goal for
the system could be that it should be easy to learn, or that new users should require no more than
30 minutes instruction, however, a requirement at this level does not help guide the design
process. Usability requirements need to take a more concrete form expressed in terms of the
solution domain to influence architectural design. To address to these problems discussed a
framework has been developed. Figure 1 shows the framework developed so far. It shows a
collection of attributes, properties and patterns and shows how these are linked to give the
relationship between usability and software architecture. This relation is illustrated by means of an
example. Figure 1 shows the wizard pattern linked to the “guidance” usability property which in

1 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in its Information
Society Technologies Program. The partners are Information Highway Group (IHG), Universidad Politecnica
de Madrid (UPM), University of Groningen (RUG), Imperial College of Science, Technology and Medicine
(ICSTM), LOGICDIS S.A.

turn is linked to the “learnability”
usability attribute. The wizard pattern
guides the user through a complex
task by decomposing the task into a
set of manageable subtasks. To
implement a wizard a provision is
needed in the architecture for a
wizard component, which can be
connected to other relevant
components: the one triggering the
operation and the one receiving the
data gathered by the wizard. The
wizard is related to usability because
it uses the primitive of guidance to
“guide” the user through the task.
Guidance on its turn has two
“obvious” relations with usability.
Guidance has a positive effect on
learnability and a negative effect on
efficiency. The concept of “guidance”
is defined as a usability property; a
usability property is a more concrete
form of a usability requirement
specified in terms of the solution
domain. Patterns relate to one or
more of these usability properties.
Properties on their turn relate to one
or more usability attributes. This
relation is not necessarily a one to
one mapping. The relationship can be
positive as well as negative. To avoid
the table becoming too cluttered, and
the risk of possibly producing a fully
connected graph, only the links
thought to be strongest and positive
are indicated in the table. The framework relates the problem to the solution domain; a usability
attribute can be measured on a completed solution, whereas a usability property exists in the
problem domain, and can be used as a requirement for system design. A usability pattern bridges
the gap between problem and solution domains, providing us with a mechanism to fulfil a
requirement, providing us with a solution for which the corresponding usability attribute can be
measured. The next sections enumerate the concepts of usability attributes, properties and patterns
which comprise our framework.

3 Usability Attributes
A comprehensive survey of the literature (Folmer & Bosch, 2002) revealed that different
researchers have different definitions for the term usability attribute, but the generally accepted
meaning is that a usability attribute is a precise and measurable component of the abstract concept
that is usability. After an extensive search of the work of various authors, the following set of
usability attributes is identified for which software systems in our work are assessed. No

Figure 1: Usability Framework

innovation was applied in this area, since abundant research has already focussed on finding and
defining the optimal set of attributes that compose usability. Therefore, merely the set of attributes
most commonly cited amongst authors in the usability field has been taken. The four attributes
that are chosen are: Learnability - how quickly and easily users can begin to do productive work
with a system that is new to them, combined with the ease of remembering the way a system must
be operated. Efficiency of use - the number of tasks per unit time that the user can perform using
the system. Reliability in use - this attribute refers to the error rate in using the system and the time
it takes to recover from errors. Satisfaction - the subjective opinions that users form in using the
system. These attributes can be measured directly by observing and interviewing users of the final
system using techniques that are well established in the field of usability engineering.

4 Usability Properties
Essentially, our usability properties embody the heuristics and design principles that researchers in
the usability field have found to have a direct influence on system usability. These properties can
be used as requirements at the design stage, for instance by specifying: "the system must provide
feedback". They are not strict requirements in a way that they are requirements that should be
fulfilled at all costs. It is up to the software engineer to decide how and at which levels these
properties are implemented by using usability patterns of which it is known they have an effect on
this usability property. For instance providing feedback when printing in an application can be
very usable, however if every possible user action would result in feedback from the system it
would be quite annoying and hence not usable. Therefore these properties should be implemented
with care. The following properties have been identified: Providing feedback - the system provides
continuous feedback as to system operation to the user. Error management - includes error
prevention and recovery. Consistency - consistency of both the user interface and functional
operation of the system. Guidance - on-line guidance as to the operation of the system. Minimise
cognitive load - system design should recognise human cognitive limitations, short-term memory
etc. Natural mapping - includes predictability of operation, semiotic significance of symbols and
ease of navigation. Accessibility - includes multi-mode access, internationalisation and support for
disabled users.

5 Usability Patterns
One of the products of the research on this project into the relationship between software
architecture and usability is the concept of a usability pattern. The term “usability pattern” is
chosen to refer to a technique or mechanism that can be applied to the design of the architecture of
a software system in order to address a need identified by a usability property at the requirements
stage. Various usability pattern collections have been defined (Welie & Trætteberg 2000),
(Tidwell 1998). Our collection is different from those because we only consider patterns which
should be applied during the design of a system’s software architecture, rather than during the
detailed design stage. (Bass et al, 2001) have investigated the relationship between the usability
and software architecture through the definition of a set of 26 scenarios. These scenarios are in
some way equivalent to our properties and usability patterns. However there are some differences.
They have used a bottom up approach from the scenarios whereas we have taken a top down
approach from the definition of usability. Our approach has in our opion resulted in a more clearly
documented and illustrated relationship between those usability issues addressed by the design
principles and the software architecture design decisions required to fullfill usability requirements.
Another difference is that our patterns have been obtained from an inductive process from
different practical cases (e-commerce software developed by the industrial partners in this project)
whereas their scenarios result from personal experience and literature surveys. Their work has
been useful to support our statement that usability and software are related through usability

patterns. A full catalogue of patterns identified is presented on http://www.designforquality.com.
There is not a one-to-one mapping between usability patterns and the usability properties that they
affect. A pattern may be related to any number of properties, and each property may be improved
(or impaired) by a number of different patterns. The choice of which pattern to apply may be made
on the basis of cost and the trade off between different usability properties or between usability
and other quality attributes such as security or performance. This list of patterns presented in
Figure 1 is not intended to be exhaustive, and it is envisaged that future work on this project will
lead to the expansion and reworking of the set of patterns presented here, including work to fill out
the description of each pattern to include more of the sections which traditionally make up a
pattern description, for instance what the pros and cons of using each pattern may be.

6 Summary and conclusions
Our research has argued the importance of the relation between usability and software
architecture. A framework has been developed which illustrates this relation.The list of usability
patterns and properties identified/defined in our framework is substantial but incomplete, new
usability patterns or properties that are developed or discovered can be fitted in the existing
framework. Future research should focus on verifying the architectural sensitiveness of the
usability patterns that have been identified. For validation only e-commerce software provided by
our industrial partners in this project has been considered. To achieve more accurate results our
view should be expanded to other application domains. The usability properties can be used as
requirements for design, it is up to the software architect to select patterns related to specific
properties that need to be improved for a system. It is not claimed that a particular usability pattern
will improve usability for any system because many other factors may be involved that determine
the usability of a system.. The relationships in the framework indicate potential relationships.
Further work is required to substantiate these relationships and to provide models and assessment
procedures for the precise way that the relationships operate. This framework provides the basis
for developing techniques for assessing software architectures for their support of usability. This
technique allows for iteratively designing for usability on the architectural level.

References
Bass, Lenn; Kates, Jessie & John, Bonnie. E.(2002) Achieving Usability through software
architecture, http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a Product
Line Approach, Pearson Education (Addison-Wesley and ACM Press).

Bosch, J. & Bengtsson, P. O. (2002), Assessing optimal software architecture maintainability. In
proceedings of Fifth European Conference on Software Maintenance and Reengineering
(CSMR'01), IEEE Computer Society Press, Los Alamitos, CA pp. 168-175

Folmer, E. & Bosch, J. (2003). Architecting for usability; a survey. Submitted for the Journal of
systems and software. Accepted for the Journal of systems and software.

Tidwell, J. (1998). Interaction Design Patterns. Conference on Pattern Languages of
Programming.

Welie, M. & Trætteberg, H., (2000). Interaction Patterns in User Interfaces. 7th Conference on
Pattern Languages of Programming (PloP).

