

Cost Effective Development of Usable Systems;

Gaps between HCI and SE

Eelke Folmer, Jan Bosch
Department of Mathematics and Computing Science

University of Groningen, PO Box 800, 9700 AV, The Netherlands
mail@eelke.com, Jan.Bosch@cs.rug.nl

Abstract

Usability is considered an important quality attribute
for software systems. To ensure a particular level of
usability, a certain amount of time and money have to be
invested; however this has proven to be expensive. Most
of the costs spent on usability are spent after an initial
development e.g. during maintenance. These high costs
often prevent developers from meeting all the usability
requirements. The challenge is therefore to cost
effectively develop usable software e.g. minimize the
costs & time spent on usability. We believe architecture
analysis of usability is an important tool to achieve this.
Our experiences with software architecture analysis of
usability allowed us to identify a series of problems that
explain why usability is not achieved cost effectively in
current software development practice.

1. Introduction

Cost, quality and time-to-market are three main

concerns that make software engineering projects true
challenges. Costs should be minimized to increase profit
and market share, quality should be maximized to attract
and satisfy customers and time-to-market should be
minimal to reach the market before competitors do[3].

Decisions which affect these concerns have a tradeoff
cost, if more features are added to the product, quality
must drop or time to market must slip. If time to market
is cut, features must drop or quality must drop [6]. Cost,
quality and time to market are related; improvements in
one may affect at least one of the others negatively.

Usability is considered as an essential part of software
quality [8]. To develop a usable system one must be
willing to invest a certain amount of time and money. In
relative new markets, such as web based software,
minimizing time to market and costs have often been
preferred at the expense of usability. This poses to
become a problem in the future because, as users become

more critical, poor usability becomes a major barrier to
the success of new commercial software applications.

Figure 1: tradeoffs during design

Most of the costs spent on usability are spent after
initial development e.g. during maintenance. Studies of
software engineering projects reveal that organizations
spend a relatively large amount of time and money on
fixing usability problems. Several studies have shown
that 80% of total maintenance costs are related to
problems of the user with the system [10]. Among these
costs, 64% are related to usability problems [11].

The challenge is therefore to cost effectively develop
usable software. Minimizing the costs & time that are
spent on usability improves usability of system because
these high costs often prevent developers from meeting
all the usability requirements. Cost effective development
makes it cheaper to assure a particular level of usability
or get a more usable system for the same investment (see
Figure 1).

Based upon successful experiences with architectural
assessment of maintainability as a tool for cost effective
developing maintainable software, we developed and
promoted the use of architectural assessment of usability
[12,13] as an important tool to cost effectively
development usable software. Our experiences with
software architecture analysis of usability in several case
studies have led us to identify a series of problems that in
explain why usability is not achieved cost effectively in
current software development practice. Some of these
problems can be considered as gaps between HCI & SE

though not all problems we present here are necessarily
gaps between both communities, but rather a failure and
shortcoming of the current practice of one community.
The next sections [2-9] discuss the problems we
identified. This paper is concluded in section 10.

2. Usability requirements specification

In our experience usability requirements are often

poorly specified. In all cases we performed, apart from
some general usability guidelines [6] that had been stated
in the functional requirements, no clearly defined and
verifiable usability requirements had been collected nor
specified. Most software developing companies still
underestimate the importance of usability and usability
engineering and postpone the activity of usability
requirements collection till there is a running system.
Usability is often not defined as an explicit project goal.

Even if usability requirements are specified, they are
specified on a rather abstract level. A usability
requirement such as: �the system should be easy to learn�
does not state anything about users, contexts of use or
tasks for which this requirement should hold. Existing
usability techniques such as such as interviews, group
discussions or observations [1,4,14,15] typically already
provide information such as representative tasks, users
and contexts of use

The reason for this abstract specification is that
traditionally usability requirements have been specified
such that these can be verified for an implemented
system. However, such requirements are largely useless
in a forward engineering process. For example, we could
say that a goal for a system is that it should be easy to
learn, or that new users should require no more than 30
minutes instruction, however, a requirement at this level
does not help guide the design process. Such
requirements can only be measured when the system has
been completed. Usability requirements need to take a
more concrete form expressed in terms of the solution
domain to influence design.

3. Limitation of requirements engineering
techniques

Software engineers in general have few techniques

available for predicting the quality attributes of a
software system before the system itself is available. This
is especially hard for usability since in order to do a
usability evaluation, most existing techniques require at
least an interactive prototype and a representative set of
users present to assess the usability of a system [12]. Next
to that usability-engineering techniques have only a
limited ability to capture or predict all usability

requirements. Users themselves lack understanding of
their own requirements. No sooner do they work with a
first version of the software do they realize how the
system is going to be used. Usability experts miss about
half of the problems that real users experience using
traditional techniques [16].

Some techniques such as rapid prototyping [1] allow
for early testing, for example by using a prototype or
simulation of an interface. Early prototyping, even on
paper, of what the customer�s experience will be like,
always is valuable. However, prototypes have a limited
ability to model the application architecture, since they
only model the interface. Interaction issues such as the
time it takes to perform a specific task or system
properties such as reliability have a great influence on the
level of usability. Such issues may be hard to simulate
with a prototype. Some usability requirements will
therefore not be discovered until the software has been
deployed.

4. Usability requirements change during
development

During or after the development usability

requirements change. The context in which the user and
the software operate is continually changing and
evolving, sometimes users may find new uses for a
product, for which the product was not originally
intended. New features get added to an existing software
product during product evolutions which have different
usability requirements. In one of our case studies (a
content management system), after the product had been
developed, new features (support & manipulation for
streaming video) were considered to be developed that
would be built in the existing application framework. The
software architecture did not sufficiently support these
new usability requirements. It was decided because of
that (and other reasons) not to add these new features to
the existing application but rather develop these features
as a standalone application. This example shows that it is
hard or even impossible to capture all possible (future)
usability requirements during initial design [8].

5. Lack of assessment/ design techniques

In general software developers must develop their
software in such a way that the software is usable by all
the relevant stakeholders.

1. In order to do so they need to be able to extract
requirements with respect to usability from users.

2. They need to have techniques to realize these
requirements.

3. They need to be able to assess whether the
resulting product actually meets the usability
requirements.

In the ideal situation these steps should be followed at
every step of the development process (as far as
applicable). Extract requirements: During initial design,
but also during the later stages to verify whether the
usability requirements acquired during requirements
analysis are still valid. Realize requirements: during all
stages of design. Assessment: Not only when we have a
running system, but during all stages of development
even during requirements analysis. For example,
verifying the collected set of usability requirements
versus usability heuristics or interface guidelines.

Unfortunately the ideal situation is often far from
current practice. Figure 2 shows which (requirements
collection/ assessment/ design) techniques are applied at
which stages. If a particular process cannot be applied at
a particular stage (such as realization at requirements
analysis) the arrows are left out. The color of the arrows
indicates the usage of these techniques in current practice

Architecture
Design

Detailed
design

Requirements
analysis

Implementation

Deployment

as
se

ss

realization

as
se

ss

extract

realization

as
se

ss

extract

realization

as
se

ss

extract

realization

as
se

ss

extract

Well Poor

Usage of techniques

weak

Figure 2: Techniques applied at each stage of the

development process
This figure shows that:
• Extraction is often only done during requirements

analysis or during implementation/deployment

(when there is a working system and a representative
set of users available).

• Realization of usability requirements is often only
done during detailed design (interaction design) and
implementation. After deployment it is sometimes
too expensive to fix fundamental usability issues.

• Assessment is often only done during requirements
analysis (verification of usability requirements versus
interface / usability guidelines) or when we have
running system prototype (e.g. during detailed
design & implementation & deployment)

Figure 2 shows three problems with current design.
• No assessment is done during the early stages of

design.
• No realization is done during the early stages of

design
• Realization of usability is often too expensive to be

done during the later stages of development.
The first problem is caused because software

engineers in general have few techniques available for
predicting or realizing the quality attributes of a software
system before the system itself is available. Most
engineering disciplines provide techniques and methods
that allow one to assess and test quality attributes of the
system under design. For example for maintainability
assessment code metrics [17] have been developed. In
[12] an overview is provided of usability evaluation
techniques that can be used during software development
Some of the more popular techniques such as user testing
[7], heuristic evaluation [1] and cognitive walkthroughs
[9] can be used during several stages of development,
however there are no assessment techniques that focus on
assessment of usability during the early stages of design
(e.g. software architecture design).

The second problem is caused by that usability
requirements are often specified in a format that does not
guide architectural design. During architectural design
decisions are made that are the hardest to revoke. The
third problem is related to the second problem and is a
serious problem that is responsible for the high costs of
usability development. The cause for this problem will be
discussed in the next sections.

6. The impact of software architecture on
usability

 Discovering requirements late is a problem inherent
to all software development and is not something that can
easily be avoided. The real problem is that it often proves
to be hard and expensive to make the necessary changes
to a running system to improve its usability.

The software engineering community often considers
usability to be primarily a property of the presentation of
information; the user interface [4]. In web applications

- Proactive field study [1]
- Prototyping [1]
- Interface guidelines [2]
- Design heuristics [4]
- Usability patterns [5]

- Heuristic evaluation [7]
- Cognitive
walkthroughs [9]
- Feature inspection [7]
- Questionnaires [1]

- Field observation [1]
- Logging actual use [1]
- Interviews [1]

- User testing [1,7]
- Interface guidelines [2]
- Design heuristics [4]
- Usability patterns [5]

the user interface is almost always described as the top
layer. This implies (intentional or not) that this layer is
simpler than the underlying layers and also the least
consequential to the overall architecture. If usability
needs to be improved, changes to the interface can easily
be applied after user testing, which does not affect the
rest of the application. It�s easy for engineers to believe,
because it facilitates the notion that somehow, as long as
everything is done well at the lower layers, the interface
layer will be easy to manage [6].

Engineers assume that a separation of the interface
from the rest of the application can still ensure usability.
We believe this is a false assumption. Usability is
determined by many factors not only the interface but
also issues such as:
• Information architecture: how is the information

presented to the user?
• Interaction architecture: how is functionality

presented to the user?
• System quality attributes: usability is considered as a

part of software quality but also results from other
quality attributes such as performance and reliability.

Architecture design does affect all these issues. For
example the quality attributes such as performance or
reliability are to a considerable extent defined by the
software architecture. The software architecture also has
major impact on the interaction & information
architecture. Designing a usable system is more than
ensuring a usable interface; a slow and buggy system
architecture with a usable interface is not considered
usable on the other hand the most reliable and
performing system architecture is not usable if the user
can�t figure out how to use the system. Software
engineers do not realize usability should also be realized
at the architectural level.

7. The impact of usability on software
architecture.

As mentioned before the software engineering

community often considers usability to be primarily a
property of the presentation of information; the user
interface [4]. A result of this assumption is that interface
design is often postponed to the later stages of
development. There are two risks with this approach:
• Assumptions may be built into the design of the

architecture that may unknowingly affect the
interface design. In one of our case studies (a large
content management system) we identified that the
layout of a page (users had to fill in a form) was
determined by the XML definition of a specific
object. When users had to insert data, the order in
which particular fields had to be filled in turned out

to be very confusing. This is just one of many
examples where we identified that the architecture
placed constraints on interface design. The interface
should not be designed as last but should be
developed as early as possible preferably even during
requirements analysis (interface prototypes) to
identify such issues.

• Assumptions may be built in the interface that are
not supported by the architecture:

o Interaction issues (such as the support for a
wizard or undo).

o Information architecture issues (such as a
separation of data from presentation).

o Interface issues (such as visual consistency).
These are examples of usability solutions that increase
the usability of systems but are extremely hard to retrofit
in the architecture. Or to put it in other words had we
taken these issues into account during architectural
design these usability solutions could much easier be
supported than trying to build them in when the systems
has been finished. Our research [18] argues that to
effectively implement such solutions they require the
architecture to be restructured. The cost of restructuring
the system during the later stages of development has
proven to be several orders of magnitude higher than the
costs of an initial development, this making the total
costs spent on usability very high.

8. Technological view drives design.

As pointed out by [6] most (architectural) design is

very �technology� driven. E.g. a software product is often
seen as a set of features rather then a set of user
experiences. In the case studies we performed we
identified that software architects had already selected
technologies (e.g. features) and had already developed a
first version of the system before they decided to include
the user in the loop. After that it was already too late to
make fundamental changes required by usability.

The best software comes from teams, or from team
leaders, that are able to see the work from multiple
perspectives, balancing them in accordance with the
project goals, and the state of the project at any given
time. When development is dominated by a technological
perspective, it�s natural for software engineers to make
decisions that optimize technological considerations over
all others. The technological view of a product is only
one of many views, It takes the right combination of
perspectives to achieve great products [6]

Since software engineers are not usability experts and
usability experts are not software engineers, the
responsibilities of defining and collecting usability
requirements should be separated from the architectural

design responsibilities. This very much depends on the
size of the software developing organization but in the
case studies we performed (varying from small to
medium sized organizations) only at one case study these
responsibilities were divided. A better balancing of the
different views of the system (and hence better usability)
is achieved when software is designed in multi
disciplinary teams.

9. Software architecture analysis is an ad hoc
activity

Because quality attributes are to a considerable extent

defined by the software architecture, the design and use
of an explicitly defined software architecture has received
increasing amounts of attention during the last decade.
Generally, three arguments for defining an architecture
are used [19]. First, it provides an artifact that allows
discussion by the stakeholders very early in the design
process. Second, it allows for early assessment of quality
attributes [20,21]. Finally, the design decisions captured
in the software architecture can be transferred to other
systems.

Software architecture analysis is an important tool to
get feedback during the early stages of design. A software
architecture description such as a decomposition of the
system into components and relations with its
environment may provide information on the support for
particular quality attributes. Specific relationships
between software architecture (such as -styles, -patterns
etc) and quality attributes (maintainability, efficiency)
have been described by several authors. [22,23,21]. For
example [22] describes the architectural pattern layers
and the positive effect this pattern may have on
exchangeability and the negative effect it may have on
efficiency. For usability these relationships with software
architecture need to be investigated and described so they
can be used to inform architectural design.

As identified by [24] architectural assessment is least
applied in practice. Architecture analysis is mostly
performed on an ad-hoc basis. The assessment is not
solidly embedded in the development process and there is
no or little integration & cooperation with existing
usability requirements collection techniques.

Software engineers have few techniques available for
predicting the quality attributes of a software system
before the system itself is available. An increased
awareness of the importance of the architectural impact
of usability could lead to the development of tools &
assessment technique that assist the software architect in
designing an architecture that supports usability. If such
a technique is an integral part of the development
process, earlier phases or activities would result in the

necessary information required for the analysis. For
example, specified usability requirements and
architectural descriptions.

10. Conclusions

Ensuring a particular level of software quality (e.g.
usability) proves to be very expensive. The high costs
often prevent developers from meeting all the usability
requirements leading to systems that are not usable. Cost
effective usability development is an important tool to
improve the usability of systems.

Architecture analysis of usability is an important tool
to cost effectively develop usable software. In the context
of experiences with software architecture analysis of
usability we have identified several problems that explain
why usability is not achieved cost effectively:
Some usability requirements will not be discovered until
the software has been implemented/deployed. This is
caused by the following:
• Usability requirements are often weakly specified.
• Usability requirements engineering techniques have

only limited ability to capture all requirements.
• Usability requirements change during development.
• Usability testing is only done at the end because

there are no early assessment tools.
Discovering requirements late is a problem inherent to
all software development and is not something that can
be easily avoided. The real problem is that it often proves
to be hard and expensive to make the necessary changes
to developed system to improve its usability. Reasons for
why this is so hard:
• Usability does also depend on issues such as the

information architecture, the interaction architecture
and other quality attributes that are all determined by
the software architecture. Usability should therefore
also be realized at the architectural level.

• Many of the necessary usability changes to the
system cannot be easily be accommodated by the
software architecture.

Software architects are not aware of the relationship
between usability and software architecture because:
• Design is technology driven.
The costs of restructuring the system during the later
stages of development has proven to be several orders of
magnitude higher than the costs of an initial
development [21]. This explains why organizations are
spending so much time and money on usability during
maintenance. In essence usability is a maintainability
problem. Designing a well performing, reliable and
flexible architecture that can support unforeseen usability
requirements is quite a challenge. Since the architecture
plays such a major role in the usability of a system, early

assessment could solve some of the problems we
discovered however:
• We lack early assessment tools.
• Usability requirements are often weakly specified.
• Software architecture analysis in general is an ad-

hoc activity.
The other problems or gaps may be addressed by

raising the awareness of the importance of the
relationship between usability and software architecture
but also by raising the importance of usability as the most
import quality attribute and software architecture as an
important instrument to fulfill this attribute. By raising
the awareness of this relationship eventually software
engineers and usability engineers must recognize the
need for a closer integration of practices and techniques
leading to cost effective development of usable systems.

11. References

[1] J. Nielsen, Usability Engineering, Academic Press, Inc,

Boston, MA., 1993.
[2] ISO, ISO 9241-11 Ergonomic requirements for office work

with visual display terminals (VDTs) -- Part 11: Guidance
on usability., 1994.

[3] P. O. Bengtsson, Architecture-Level Modifiability Analysis,
Department of Software Engineering and Computer
Science, Blekinge Institute of Technology, Sweden, 2002.

[4] D. Hix and H. R. Hartson, Developing User Interfaces:
Ensuring Usability Through Product and Process., John
Wiley and Sons, 1993.

[5] M. Welie, GUI Design patterns, http://www.welie.com/
[6] S. Berkun, The list of fourteen reasons ease of use doesn't

happen on engineering projects,
http://www.uiweb.com/issues/issue22.htm

[7] J. Nielsen, Heuristic Evaluation., in Usability Inspection
Methods., Nielsen, J. and Mack, R. L., John Wiley and
Sons, New York, NY., 1994.

[8] ISO, ISO 9126-1 Software engineering - Product quality -
Part 1: Quality Model, 2000.

[9] C. Wharton, J. Rieman, C. H. Lewis, and P. G. Polson, The
Cognitive Walkthrough: A practitioner's guide., in
Usability Inspection Methods, Nielsen, Jacob and Mack, R.
L., John Wiley and Sons, New York, NY., 1994.

[10] R. S. Pressman, Software Engineering: A Practitioner's
Approach, McGraw-Hill, NY, 1992.

[11] T. K. Landauer, The Trouble with Computers: Usefulness,
Usability and Productivity., MIT Press., Cambridge, 1995.

[12] E. Folmer and J. Bosch, Architecting for usability; a
survey, Elsevier, 2002, pp. 61-78.

[13] E. Folmer, J. v. Gurp, and J. Bosch, Scenario-based
Assessment of Software Architecture Usability, icse 2003
workshop Bridging the Gaps Between Software Engineering
and Human-Computer Interaction, 2003.

[14] B. Shneiderman, Designing the User Interface: Strategies
for Effective Human-Computer Interaction, Addison-
Wesley, Reading, MA, 1998.

[15] J. T. Hackos and J. C. Redish, User and Task Analysis for
Interface Design, John Wiley and Sons, Inc. New York,
1998.

[16] D. L. Cuomo and C. D. Bowen, Understanding usability
issues addressed by three user-system interface evaluation
techniques, Elsevier, 1994, pp. 86-108.

[17] W. Li and S. Henry, OO Metrics that Predict
Maintainability, Elsevier, 1993, pp. 111-122.

[18] E. Folmer, J. v. Gurp, and J. Bosch, Investigating the
Relationship between Usability and Software Architecture ,
Wiley, 2003, pp. 0-0.

[19] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, Addison Wesley Longman,
Reading MA, 1998.

[20] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, and J. Carriere, The Architecture Tradeoff Analysis
Method, Proceedings of ICECCS'98, 8-1-1998.

[21] J. Bosch, Design and use of Software Architectures:
Adopting and evolving a product line approach, Pearson
Education (Addison-Wesley and ACM Press), Harlow, 2-1-
2000.

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, Pattern-Oriented Software Architecture: A
System of Patterns, John Wiley and Son Ltd, 6-1-1996.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns elements of reusable object-orientated software.,
Addison -Wesley, 1995.

[24] N. Lassing, P. O. Bengtsson, H. van Vliet, and J. Bosch,
Experiences with ALMA: Architecture-Level Modifiability
Analysis, Elsevier, 2002, pp. 47-57.

