
Model-based Verification of Web Service Compositions

Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer
Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2BZ, UK

{hf1, su2, jnm, jk}@doc.ic.ac.uk

Abstract

In this paper we discuss a model-based approach to
verifying web service compositions for web service
implementations. The approach supports verification
against specification models and assigns semantics to the
behavior of implementation models so as to confirm
expected results for both the designer and implementer.
Specifications of the design are modeled in UML, in the
form of Message Sequence Charts (MSCs), and
mechanically compiled into the Finite State Process
notation (FSP) to concisely describe and reason about
the concurrent programs. Implementations are
mechanically translated to FSP to allow a trace
equivalence verification process to be performed. By
providing early design verification, the implementation,
testing and deployment of web service compositions can
be eased through the understanding of the differences,
limitations and undesirable traces allowed by the
composition. The approach is supported by a suite of
cooperating tools for specification, formal modeling and
trace animation of the composition workflow.

1. Introduction

The Business Process Language for Web Services
(BPEL4WS)[1] is an emerging standard for specifying
and executing workflow specifications for web service
composition invocation. The ability to perform such flow
invocation for web services is the next step in the
evolution of internet distributed computing. The move
away from a point-to-point web services framework,
which is currently used in an individual and isolated
style, will be to a distributed yet coordinated service-
oriented framework that can be directly or dynamically
composed of web services through workflows [2, 3].
This move however, will also raise the awareness of how
these compositions are verified for service use, potential
deadlocks that could occur and requiring usability
assessment of partnered services and other web service
workflows. Whilst the technology alone provides a
specification to compose and constrain flows of web
service invocation, there is little to support the design

process of such distributed service-oriented architectures.
Therefore, of clear interest is the need to support such
engineering tasks as process verification, partner service
usability, and trace checking to verify the roles of web
service users and their actions [4]. There is also high
value in providing a simulated workflow mechanism to
visually compare expected with simulated results of a
workflow invocation which can increase expectations of a
successful outcome prior to deployment [5].

In this paper, we describe a formal approach to
modeling and verifying the compositions of web services
workflows using the Finite State Processes (FSP)
notation. To illustrate how these compositions are
verified, we have constructed workflow scenarios using
message sequence charts, together with a model checking
tool to interactively verify the workflow behavior. These
models can then be used to check BPEL4WS
implementations. The paper is written as follows;
Section 2 provides a background to the issues and a
consideration of what that is required in web service
workflow verification, and introduces a framework for
our verification process. Section 3 specifies how web
service workflows can be represented formally using
model based design and the Finite State Processes
specification. Sections 4 and 5 describe an example
implementation of the workflow in BPEL4WS and how
this translates to a FSP specification. Section 6 describes
the verification process, using the previous sets of FSP, to
illustrate how verification results can be used to correct
invalid forms of behavior in composition implementation
against the initial design.

2. Background

Web Service workflow languages aim to fulfill the
requirement of a coordinated and collaborative service
invocation specification to support long running and
multi-service transactions. This is seen as an important
element of making web services viable for wide spread
use, and to provide a closer representation of business
transactions in cross-domain enterprises. The effect of
using similar earlier architecture styles has been prone to
issues of semantic failure and difficulties in providing the

necessary compensation handling sequences [6]. This
has been attributed greatly to the strict binding of
services with specific technologies. Where previously
designers of the workflow had to work very closely with
the developers of the technical solution, we now have a
mechanism to support technology independent workflow
service invocation and this provides opportunity for the
designers to concentrate on exactly what is required from
the workflow without hindrance from limitations of
technical possibilities or effort required to implement.
As web technology has evolved, the emphasis has been
placed on providing ease of design and deployment, with
WYSIWYG now the normal rather than the exception
for rapidly building web served applications. This is
equally applicable to the domain of web services. Even
though we are concentrating from a view of systems to
systems rather than actual human actors, the concepts are
highly related. If we offer a web service, or a web service
workflow we are interested in who will use the service,
how they will use the service and what they will expect to
be invocated when requesting the service. The
verification of the workflow therefore needs to be
concrete. Of interest to the BPEL4WS engineer is
specifically which order the requests are made and
replies sent to the services of the workflow, but on a
wider scale how the behavior of the implementation
differs from that of the specification. Later in the paper
we describe an example of a marketplace workflow
service. The interaction in this is either by buyer or
seller, yet in a web application there is an implied
limitation to what these roles can perform in the
functionality offered in the web page presented to them.
With the web service version of this scenario, the buyer
and seller are system requests. The order in which
requests are made by these roles is implied in system
design, yet not enforced explicitly with the service
offered.

Whilst web service architectures aim to provide a
technology independent means of integration, the ability
to verify workflows is inherently not a technology issue
but of state, behavior and identity [7]. With this in mind,
we can utilize a UML design of these workflows away
from a technical implementation, and evaluate their
transitional state and behavior locally before deploying
any parts of the workflow, and realizing the true effect of
the request flow. If the model does not reflect an
intended use, then the model can quickly be corrected,
and a repeat test performed. Furthermore, model
verification can also be used to identify parts of the
process flow that have been implemented incorrectly, or
perhaps have unforeseen property results. Whilst there
have been other attempts to use model-checking
techniques for reliable web service verification [8, 9],
they have concentrated on property specifications in

domain specific language notations (e.g. Promela, the
implementation language of SPIN), whilst we provide
verification from an abstract functional specification
using MSCs.

2.1. Requirements for verification process

To enable modeling to be abstract yet concise to our

requirements, we need a specification that can closely
resemble workflow specification languages, and a tool to
simulate from the specification created in this language.
To facilitate the above requirements, we have selected
two separate representations (for workflow and web
service compositions) in our layers of abstraction, and
provided additional layers for a tool for designers to
model these representations in, and an engine to invoke
the implementation. Figure 1 illustrates our layers of
modeling abstraction.

Model Verification
Tool

Workflow
Independent Notation

Web Service
Composition Notation

Web Service
Workflow Engine

Figure 1. Layers of
modeling abstraction

LTSA + Message
Sequence Charts

Finite State Process
Notation

BPEL4WS Service
Specifics

BPEL4WS
Engine

Figure 2. Layer
implementations

Figure 2 lists our focus on the implementations of the

layers described previously. LTSA, in layer 1, is a tool
which provides a means to construct and analyse
complex models of finite state process specifications.
This tool, which is fully explained in [10], provides us
with an opportunity to model workflows prior to
implementation and deployment testing, and with the
message sequence chart extensions [11] to easily model
workflow scenarios, which can increase the expectation
that web service workflow invocation will provide the
necessary path of invocation in all states specified (e.g.
reliably by eliminating deadlock situations). With
message sequence chart and animator extensions, the tool
can also provide a facilitator in simulating workflow
specifications. Finite State Processes (FSP), in layer 2, is
a textual notation (technically a process calculus) for
concisely describing concurrent programs. FSP is
designed to be easily machine readable, and thus
provides a preferred language to specify abstract
workflows. The constructed FSP can be used to model
the exact transition of workflow processes through a
modelling tool such as the Labelled Transition System

Analyzer (LTSA), which provides compilation of an FSP
into a Labelled Transition System. BPEL4WS in the
third and fourth layers, is the result of a series of work
carried out by both industry and academia to support an
internet based, XML specification for the workflow of
web services represented on the internet using universal
resource identifiers and service descriptors. The notation
is based on XML and the engine designed for Web
Service Architecture frameworks, and is defined as being
a layer above the Web Services Description Language
(WSDL)[12]. The earlier work, IBM’s Web Service
Flow Language (WSFL)[13] and Microsoft’s
XLANG[14], have contributed to the specification of
BPEL4WS.

The verification process applied against these layers
requires the following steps; 1) use LTSA-MSC to
capture desired workflow behavior in the form of
message sequence charts, 2) write a BPEL4WS
implementation and translate BPEL4WS representation
in to FSP, 3) perform abstraction mapping to provide
activity label matching, 4) use model trace equivalence
checks to detect possible additional (implied) scenarios
that the model supports but that were left unspecified or
undefined by the user, and 5) examine the trace results of
the FSP model checking and iterate tracing resolution
until no violations or deadlocks are discovered.

2.2. Verification Architecture

The verification architecture is formed from two
viewpoints. A specification is created as part of the
requirements for the composition. The specification
consists of the upper two layers from our layered model
specified in section 2.1., being that of MSCs, state
modeling tool, and the FSP representation of the
composition. Adjoined to these layers is a set
representing the abstraction mapping between
implementation and specification, which we discuss
further later in this paper. The second viewpoint is from
that of the implementation of a workflow. The
implementation focuses on the lower two layers of the
verification model and a translation of BPEL4WS to a
FSP representation. With specification and
implementation the bridge between these is by unison
and comparison of the FSP representations. Figure 3
illustrates the verification architecture and process flow.
When the engineer is satisfied that the BPEL4WS
implementation meets the criteria for composition
design, then a translation from the technically oriented
implementation to the abstract notation can take place.
Furthermore, by performing model checking on the
design and implementation models trace equivalence can
be performed using a defined abstraction mapping.

2.3. Composition Example

The example we have used in this paper is based upon a
marketplace of buyers and sellers. The marketplace
consists of a series of requests and replies, formed by the
offering and requesting of products, request and offer of
price for the products and confirmation of an iterative
negotiation phase, which determines if an agreement of
price for product is made.

 ImplementationSpecification

MSC-LTSA

FSP
Compilation

BPEL4WS
Composition

FSP
Translation

Trace Sets
and

Violations

Abstract
Mapping

Abstract
Verification

Figure 3. Model-based Verification Architecture

The marketplace provides three stages to a

negotiation. Firstly, a product may be either offered or
requested. The message is passed from the seller or
buyer role respectively, and is received by the
marketplace service. Once a request is received, the
marketplace instantiates a new transaction and awaits for
either a seller or buyer to offer or request a similar
product. This process matches a seller to a buyer. A
seller cannot be matched to another seller, and equally a
buyer cannot be matched to another buyer. When a
match is recognized, the second stage is undertaken. The
second stage of the negotiation is to receive initial prices
from the partners, for when satisfied, allows the
workflow to proceed to the third stage. The third stage
provides an iterative negotiation of prices, with each
partner able to specify a price and then place agreement
as to whether a deal is made or terminated. In our
composition we may be interested in verifying various
scenarios, for example; to enter a negotiation phase, a
seller and a buyer must specify an initial price required; a

seller may only agree or disagree once between
subsequent buyer agreements or disagreements, and a
seller may not change the price requested until the buyer
price has been received for each iteration of the
negotiation steps. A context diagram of the marketplace
composition is illustrated in figure 4.

Web
Service

BPEL4WS
Web Service

offer
product

seller
role

MarketPlace
request
product

Web
Service

buyer
role

request
price

agree
price

offer
price

agree
price

Figure 4. Marketplace Context Diagram

3. Modeling the Composition in MSCs

Modeling the composition in the MSCs is provided by
the LTSA tool message sequence chart extensions
(LTSA-MSC). The tool implements a framework for
synthesizing implementation models for scenario-based
specifications. By using this tool, we can guarantee that
the resulting model is a model that implements the least
unwanted behaviors. Additional features of this
framework also allow us to check for implied behaviors.
This feature is extremely advantageous for checking web
service compositions, and for modeling send and receives
message behavior. The goal of using this method of
design is to find the differences between decomposition
(our view of the system) and the actual system behavior
specified in the implementation. To begin this
composition modeling, we define a high level
specification diagram. The specification diagram for the
marketplace service example is illustrated in Figure 5.

The initial scenario (init) is the starting point of the
workflow, and indicates that either a seller can offer a
product, or a buyer can request a product. If either of
these requests are made then the initial requestor must
wait for the other to enter the negotiation phase. To
specify the design actions for each possible sequence of
our service we compose individual scenarios, such as for
the actions of requesting or selling a product (figure 6),
and seller and buyer agreements (figure 7). When there
is a completed set of scenarios, the LTSA tool provides a
FSP translation mechanism to convert each of the
scenarios generated into a complete FSP specification.

The FSP specification can then be compiled into a
state machine and an architecture model built to visually
represent the complete possible state sequences allowed.

Figure 5. Specification of Marketplace
Composition

Figure 6. Scenario 1: Buyer or Seller requests

Figure 7. Scenario 2: Buyer or Seller
agreements

Figure 8 illustrates the complete model for the

marketplace example. The model provides a clear and
concise representation of the workflow we intended to
put in place for the service. The second step in the
verification process is to build the composition service
directly in the BPEL4WS notation.

4. Implementation in BPEL4WS

The BPEL4WS representation of the example is

constructed from the viewpoint of a process. The process
has partners, contains data elements and a series of
activities. Here we describe how the design is
implemented in BPEL4WS given the same elements used
to construct the MSC representation. The BPEL4WS
constructs and the corresponding elements of our
message sequence charts are listed in table 1. Following
this table we discuss each of the constructs and its
relationship to concurrent system design and workflow
specifications.

Figure 8. Specification architecture model

Table 1. Basic BPEL4WS Process constructs

Process Top level message sequence chart
Containers specify variables for message data
Correlationsets dependencies between messages
Flow concurrent message transitions
Assign messages that require data storage
Switch test and branch conditions
Sequence sequential execution of activities
While scenario iterations
Receive messages input from services
Reply messages conveyed back to services

4.1. Process and Partners

The process is given the same name as our
specification model. In the marketplace example, the
name is marketplace. The additional targetnamespace
and xmlns entries also default to this name. The
instances in our message sequence charts correspond to
the partners defined in the BPEL4WS specification.
Our example models the seller and buyer roles, so these
are specified as our process partners.

4.2. Containers and Correlationsets

The containers provide data storage variables for the
information passed between partner service and the
marketplace service. These containers are required for
each of the messages in the message sequence charts.
For example, the seller product offered is assigned to
the sellerInfo container, whilst the buyer product
required is assigned to the buyerInfo container. The
negotiation phase is modeled on both price and
agreements. The correlationsets define the linking of

messages between service partners. The correlationsets
defined for the marketplace example are for the
negotiatedItem (product) and negotiatedPrice (initial
price offered and later required).

4.3. Sequences and Loops

Sequences and Loops in BPEL4WS are specified
using the <sequence> and <while> constructs. In our
marketplace example we have defined several
sequences. The sequence construct is used wherever a
series of activities need to occur sequentially, although
they may be contained one or more times within
looping or concurrent construct activities. For example,
in our marketplace example, we have defined a loop for
the negotiation phase, specified using the <while>
construct. Within this activity, we have defined two
sequences, each with a set of activities to be performed
on price and agreement negotiations.

4.4. Concurrency

Concurrency in BPEL4WS permits us to model the
concurrent transitions in the message sequence charts.
In BPEL4WS, this is specified using the <flow>
construct.

4.5. Receives and Replies

The sending of messages uses two primitive
activities in the BPEL4WS specification. <receive>
provides a mechanism to wait for a message from a
given partner, whilst <reply> allows the workflow to
respond to the given request. In this way, this can be
seen as the “request-reply” messaging model.

4.6. Assignments and Conditional Branching

The final construct in our BPEL4WS example
specifies how we defined the assignment and branching
of the workflow based upon values in data containers.
The <assign> construct is used to assign a value to a
container. The <switch> statement provides us with
the conditional branching based upon the comparison
of either static or container based data. The
marketplace switch used in our example compares the
offer price with that of the selling price and performs
one of two sequences depending on the comparison
result. The assign statement is also used throughout the
BPEL4WS implementation to initialize the container
values where used in conditional branching and
looping.

4.7. Example BPEL4WS for a Market Place

A section of the BPEL4WS constructed for our
marketplace is given below, illustrating the concurrent
agreement receive requests.

<process name="marketplace"
targetNamespace = "urn:MPService"

 xmlns:tns="urn:MPService"..>
<flow name="MarketplaceAgree">
<receive partner="seller"

portType="tns:sellerPT"
operation="submit"
container="sellerAgree"
createInstance="yes"
name="SellerAgree">

</receive>
<receive partner="buyer"

portType="tns:buyerPT"
operation="submit"
container="buyerAgree"
createInstance="yes"
name="BuyerAgree">

</receive>
</flow>

</process>

5. BPEL4WS Translation to FSP

To enable the verification of the BPEL4WS against
the MSC representation, we need to translate the
technical dependant BPEL4WS XML notation to the
independent but easily machine readable FSP notation.
To ease this translation we define the constructs of
BPEL4WS as one of four groups. Structured represents
the traditional structured design principles of sequence,
selection and iteration, Concurrent specifies the parallel
activities, whilst Primitive Actions specifies those
actions that are atomic. Error or Compensation actions
provide mechanisms for fault tolerance in workflow

state transition. We have listed in table 2, how the
BPEL4WS process tokens expressed in [1], can be
grouped together by the construct groups discussed.

Table 2. BPEL4WS Process Token Groups

Structured Concurrent Primitive Recovery
Sequence Flow Receive Scope
Switch Reply Compensate
While Invoke faultHandler
Pick Throw
 Empty
 Terminate
 Wait
 Assign

We represent the first two of these construct groups
in the FSP specification. A list of transitions is
presented in table 3 for use as a basis for the BPEL4WS
to FSP conversion.

Table 3. BPEL4WS to FSP Translation

BPEL Token, Example and FSP Representation
<sequence>
<receive
name=”act1”>
</receive>
<receive
name=”act2”>
</receive>
</sequence>

ACT1 =
(action1 -> END).
ACT2 =
(action2 -> END).

SEQUENCE =
ACT1;ACT2;END.

<switch name=
"MPS">
 <case condition=
"cond1" =
“true”>…… [act1]
<otherwise>…[act2]
</switch>

SWITCH =
if cond1-true
 then ACT1;END
else if cond2-true
 then ACT2;END
else END.

<while condition =
“cond1” = “true”>
<sequence>………
</sequence>
</while>

WHILE =
If condition-true
then ACT1;WHILE
else END.

<pick name
=”pick1”>
<onMessage>
<invoke ACT1>…
<onAlarm>
<invoke ACT2>…
</pick>

PICK1 = (
event1 -> ACT1;
END | event2 ->
ACT2; END).

<flow
name=”flow1”>
<receive
name=”act1”>…
<receive
name=”act2”>…
</flow>

||FLOW1 =
(ACT1 || ACT2).

5.1. Containers and Value Comparisons

Each container can be translated from BPEL4WS to
the FSP process declarations with parameters. Here the
value change of the container can be represented using
a range parameter, and subsequent references to the
container can assign differing values in that range.
Write and Read functions are represented in a Pick of
possible transitions, as illustrated in the following FSP.

CONTA [i:IntRange] = (write[j : IntR]
-> CONTA[j] | read[i]->CONTA[i]),

5.2. Sequence

The Sequence token used in BPEL4WS is defined in
FSP as: If x is an action and P a process then the action
prefix (x->P) describes a process that initially engages
in the action x and then behaves exactly as P. An
example sequence representation in FSP is:

MarketPlace = (transaction -> END |
transaction->OFFERREQUEST;NEGOTIATION).

5.3. Switch

The Switch token in BPEL4WS is represented in
FSP by the choice definition. This definition is
formally given as: If x and y are actions then (x->P | y-
>Q) escribes a process which initially engages in either
of the actions x or y. After the first action has occurred,
subsequent behavior is described by P if the first action
was x and Q if the first action was y. An example of
the switch representation in FSP is:

CHECKPRODUCT = if sellerproduct =
buyerproduct then OFFERREQUESTPRICE ;
END else END.

5.4. While

The While token in BPEL4WS, is represented in
FSP by a combination of both the conditional elements
of the Switch token and the sequence operator. For
example:

MarketPlace = if newtransaction then
MarketPlaceItemFlow;
MarketPlacePriceFlow;MarketPlaceSwitch;
NEGOTIATE_FLOW;WHILE else DEALMADE.

5.5. Pick

As with the Switch token in section 5.2, the Pick
token is represented in FSP by the choice definition.

The BPEL4WS implementation however does not
explicitly use the Pick statement, as this is reserved in
BPEL4WS for detection of events being triggered.

5.6. Flow

The Flow token in BPEL4WS is represented in FSP
by the parallel composition definition. This definition
is formally given as: IF P and Q are process then (P ||
Q) represents the concurrent execution of P and Q. The
operator || is the parallel composition operator. In the
BPEL4WS implementation of our design, we have used
the Flow statement to represent concurrent execution of
receiving and replying to requests from seller and
buyer. The translation to FSP for the initial price
request is:

BR =(receive.submit.buyerrequest -> END).
SR = (receive.submit.selleroffer -> END).
||MarketPlaceItemFlow = (BR || SR).

5.7. Summary of BPEL4WS FSP

By examining the differences between BPEL4WS
and FSP we can see how the technical and abstract
notations are positioned from a programmatic
deployment approach for BPEL4WS and from a simple
yet concise state and process perspective for FSP. With
FSP as our middle layer, the abstract notation can be
used to specify the composition and workflow without
hindrance from technical limitations, and the design
model can be constructed and verified independently.
Whilst the BPEL4WS specification requires detail of
specific implementations (such as referencing the
location of the services involved, and who will use
them), we can remove these specifics and detail the
workflow from an abstract view. Using transition table
3, the BPEL4WS specification of the marketplace
example can be translated as follows, although it should
be noted that this is just one possible representation of
several. For example, in this FSP representation we
have replaced the use of conditional variables and
converted the BPEL4WS Switch to a series of Pick
representations. When compiled in the LTSA tool, a
graphical architecture model can again be produced
(see Figure 9). At this stage, we have prepared an
initial design using the message sequence charts and
compiled this into an FSP representation. We have also
migrated from design to BPEL4WS and translated the
BPEL4WS to an FSP representation. Given these two
sets of FSP representations, we can move on to describe
how the verification process compares the FSP for the
MSCs and the FSP for the BPEL4WS relationships.

Figure 9. Implementation Architecture Model

6. Verification Process and Results

The verification process for our model-based design
is focused on composing joint sets of labeled transition
systems using the FSP specifications constructed earlier
in the modeling process. The essence of the
verification mechanism is to check trace equivalence.
Any violations exhibit traces of actions that could occur
from the state machine generated from one FSP
specification, over that of the other. The verification
process is broken down into several sections. Firstly,
we need to identify and match labels that have the same
semantics and relabeled where necessary to join these
as a single label represented in both specifications. If
any actions have been included in the BPEL4WS
specification that are dependent on actions undertaken
for BPEL4WS implementation specifics, then these
must be hidden as a secondary step, so as not to be
included in the safety checks and traces. The
verification process used to undertake this is illustrated
in figure 10.

Trace and ChecksMapping

Relabel
Map

Hide
Map

Deterministic
MSC

Deterministic
BPEL4WS

Abstract
Property
Trace

Abstract
Property
Trace

CheckBPEL
Composition

CheckMSC
Composition

vio
latio

ns / dea
d-locks

BPEL
FSP

MSC
FSP

Figure 10. Verification Process Map

6.1. Abstraction Mapping

As part of the verification process, the BPEL
engineer must map the activities specified in the
BPEL4WS implementation to those represented in the
MSC specification. To achieve this we need to address
re-labeling differing action naming conventions. This
however, limits us in future work to provide an
automated verification mechanism, as it is anticipated
that designer and implementer may use different
conventions. As an example of the relabeled transition
process specification, the marketplace example gives
the following operation for the BPEL4WS specification:

/{requireproduct/receive.submit
.buyerrequest, offerproduct/
receive.submit.selleroffer}.

In addition to re-labeling, we must also consider

actions in the BPEL4WS that are solely for
implementation and do not represent an action in the
specification. This will typically be actions in the
BPEL4WS that are concerned with assignments, switch
conditions, end actions and initiators. To specify this
in FSP, the \ operator is used. The hiding for the
marketplace example was given as follows:

\ {receive.submit.buyerdisagree,
receive.submit.sellerdisagree,
assign.negotiation.false,
assign.seller.price,
assign.buyer.price,
reply.seller.buyerprice,
reply.buyer.sellerprice,transaction}.

6.2. Deterministic and Trace Compositions

To perform trace equivalence of the prepared FSP
specifications, two checks are performed. The first
checks if the BPEL4WS FSP provides possible traces
that the MSC FSP cannot. The second checks if the
MSC FSP provides possible traces that the BPEL4WS
FSP cannot. Both trace inclusion checks are performed
as follows. If a model A is to be checked against a
model B for trace inclusion, then B is made
deterministic while preserving trace equivalence using
the "deterministic" keyword of LTSA. Then a property
is declared using the deterministic version of B using
the keyword. This keyword adds to the model an error
state and transitions that make actions that are not
enabled in states to transition to the error state. Thus,
the resulting model, if composed with A does not
constrain its behavior and will have a reachable error
state if A can perform traces that B cannot. The FSP
code that follows shows how the BPEL4WS FSP is
checked for trace inclusion against the
ArchitectureModel. Process DetA is the deterministic
version of the MSC FSP model, A is the property
resulting from DetA and CheckBPEL is the process on
which reachability of the error state is performed.

 deterministic ||DetA =

ArchitectureModel \{endAction}.
 property ||A = DetA.
 ||CheckBPEL=A||Abs_Process_MarketPlace).

6.3. Assessing and Resolving Violations

The LTSA tool provides a “safety check” feature
that, provided with a composition identifier, will
perform a reachability analysis for a given specification.
Here, if a violation is discovered, we can follow through
the transitions and determine how the violation
occurred given our FSP specification. This counter
example represents a possibility that cannot occur in
our MSC but could occur in the BPEL4WS FSP
specification. Two such traces are listed in Table 4, as
checks on our marketplace composition.

Table 4. Traces from BPEL safety check

1st Trace 2nd Trace
offerProduct
requireProduct
buyerRequirePrice

offerProduct
requireProduct
sellerRequirePrice
buyerRequirePrice
buyAgreed
recieve.submit.sellerDisagree

From the first trace of the CheckBPEL property

check, we are able to determine that a sequence of
requests made by the clients of our web service
composition in the order of offerproduct, requireproduct
and buyerRequirePrice is allowed in our BPEL
composition but not allowed in the MSC specification.
To correct this we revisit the BPEL and locate the
buyerRequirePrice receive. In our BPEL
implementation we had used a FLOW for price
requests. Either buyer or seller may have requested
first. Therefore, we change this to a SEQUENCE so
that the seller price must be received before buyer price
can be received. From the second trace, we can observe
that through the sequence of requests, the buyer has
agreed, yet the seller submits a disagreement. This is a
breach of our property which if a buyer agrees to a price
then the seller cannot subsequently disagree. Again, we
change this in our BPEL to reflect the buyeragreed
action can only transition to a successful outcome of a
negotiation.

From these traces, we are able to determine if there
is a breach of the behavior specified in our FSPs. This
violation can be resolved by either changing our
BPEL4WS specification and FSP, or if it is a violation
which needs validation from users, it may be something
which is subsequently corrected in the MSC
specification. The nature of this “trace and fix”
iterative process is part of a wider web service
engineering lifecycle, and fits conveniently in with a
proposed lifecycle of web service composition
engineering. One such lifecycle is suggested in [15].
This lifecycle encompasses DAML-S (a service
description language) which provides a process model
for service discovery, description and selection. The
authors of this paper also discuss how the principle of
the service interaction may also allow for participating
services to enquire at a greater depth in to another
service’s process model. It is perhaps the result of our
verification process, that trace and other models could
be added to an advertised service description, and thus
allow for greater metadata inspection.

6.4. Verification Process Automation

To supplement the process described in this paper,

we have developed a plug-in module for the LTSA tool
which facilitates writing BPEL4WS specifications and
using an integrated development environment, the
BPEL4WS implementation can be translated to FSP
and compiled into a model. This eases the translation
process and also provides a useful mechanism for
implementers to visually realize how the BPEL4WS is
represented. The automation is limited however, by the
manual requirement of the abstract mapping between

BPEL4WS actions and MSC labels, whereby semantic
detail must be applied by knowledge outside that given
in the automated technical solution. For further
information and to download the plug-in with LTSA,
please refer to LTSA homepage at
http://www.doc.ic.ac.uk/ltsa.

7. Conclusions

BPEL4WS provides an initial work for forming an
XML specification language for defining and
implementing business process workflows for web
services. The use of this technology provides an
example of how distributed system computing using
web services will be specified for web service workflow
invocations, yet it is important to compose the service
workflow correctly for all service actors and more
importantly, verify this flow before actual
implementation and deployment is undertaken.
Technically it is evident that BPEL4WS lacks in
verification of service provider and client use, yet with
a verification process such as the one described in this
paper, value can be added to the development process
by early verification through a model checking process.

Our contribution is to address these issues by
modeling these workflows in an accessible and concise
notation, which can then be used to verify, not only web
service workflows but any workflow processes involved.
In this paper we presented an approach, which
specifically addresses adding semantic representation to
the BPEL4WS notation, and have identified a tool for
verification of implementations against abstract
functional specifications. Furthermore, by automating
the process specified in this paper, a framework can be
built to support modeling, verification and
implementation in the notation of choice. We have
chosen BPEL4WS to use as an example, yet other web
service workflow specifications may be introduced. The
approach also provides scope to enhance the
verification of BPEL4WS implementations by
analyzing and determining the impact of fault tolerance
and compensation actions, addressing the concerns of
availability and reliability. With this in mind, we
foresee the findings presented here as an initial work
that will provide a foundation for further ideas and
contributions on these wider issues.

8. Acknowledgements

The authors would like to acknowledge that this
research was supported, in part, by the STATUS
ESPIRIT project (IST-2001-32298) and by the EPSRC
READS project (GR/S03270/01).

9. References

[1] F. Curbera, Y. Goland, J. Klein, F. Leymann, D.

Roller, S. Thatte, and S. Weerawarana, "Business
Process Execution Language For Web Services,
Version 1.0," 2002.

[2] D. Chakraborty and A. Joshi, "Dynamic Service
Composition: State-of-the-Art and Research
Directions," University Of Maryland, Baltimore,
Technical Report TR-CS-01-19, December 19 2001.

[3] P. Wohed, W. M. P. v. d. Aalst, M. Dumas, and A.
H. M. t. Hofstede, "Pattern Based Analysis of
BPEL4WS," Queensland University of Technology,
Brisbane, Technical Report 2002.

[4] R. Akkiraju, D. Flaxer, H. Chang, T. Chao, L.-J.
Zhang, F. Wu, and J.-J. Jeng, "A Framework for
Facilitating Dynamic e-Business via Web Services,"
presented at OOPSLA 2001 - Workshop on Object-
Oriented Web Services, Tampa, FL, 2001.

[5] C. Karamanolis, D.Giannakopoulou, J.Magee, and
S.Wheater, "Modelling and Analysis of Workflow
Processes," Imperial College of Science,
Technology and Medicine, London 1999.

[6] O. Bukhres and C.J.Crawley, "Failure Handling in
Transactional Workflows Utilizing CORBA 2.0,"
presented at 10th ERCIM Database Research Group
Workshop on Heterogeneous Information
Management, Prague, 1996.

[7] P. Hruby, "Specification of Workflow Management
Systems with UML," presented at OOPSLA
Workshop on Implementation and Application of
Object-oriented Workflow Management Systems
1998, Vancouver, BC.

[8] S. Nakajima, "Model-Checking Verification for
Reliable Web Service," presented at OOPSLA 2002
Workshop on Object-Oriented Web Services,
Seattle, Washington, 2002.

[9] S. Narayanan and S. A. Mcllraith, "Simulation,
Verification and Automated Composition of Web
Services," presented at Eleventh International
World Wide Web Conference (WWW-11),
Honolulu, Hawaii, 2002.

[10] J. Magee and J. Kramer, Concurrency - State
Models and Java Programs: John Wiley, 1999.

[11] S.Uchitel and J. Kramer, "A Workbench for
Synthesising Behaviour Models from Scenarios,"
presented at the 23rd IEEE International
Conference on Software Engineering (ICSE'01),
Toronto, Canada, 2001.

[12] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, "Web Services Description Language
(WSDL) 1.2," W3C, 2003.

[13] F. Leymann, "Web Services Flow Language (WSFL
1.0)," IBM Academy Of Technology 2001.

[14] S. Thatte, "XLANG - Web Services For Business
Process Design," Microsoft Corporation 2001.

[15] S. A. Mcllraith and D. L. Martin, "Bringing
Semantics to Web Services," IEEE Intelligent
Systems, 2003.

