
Model-based Verification of Web Service Compositions  
 

Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer 
Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2BZ, UK 

{hf1, su2, jnm, jk}@doc.ic.ac.uk 
 
 

Abstract 
 

In this paper we discuss a model-based approach to 
verifying web service compositions for web service 
implementations. The approach supports verification 
against specification models and assigns semantics to the 
behavior of implementation models so as to confirm 
expected results for both the designer and implementer. 
Specifications of the design are modeled in UML, in the 
form of Message Sequence Charts (MSCs), and 
mechanically compiled into the Finite State Process 
notation (FSP) to concisely describe and reason about 
the concurrent programs.  Implementations are 
mechanically translated to FSP to allow a trace 
equivalence verification process to be performed.  By 
providing early design verification, the implementation, 
testing and deployment of web service compositions can 
be eased through the understanding of the differences, 
limitations and undesirable traces allowed by the 
composition.  The approach is supported by a suite of 
cooperating tools for specification, formal modeling and 
trace animation of the composition workflow. 
 
1. Introduction 
 

The Business Process Language for Web Services 
(BPEL4WS)[1] is an emerging standard for specifying 
and executing workflow specifications for web service 
composition invocation.  The ability to perform such flow 
invocation for web services is the next step in the 
evolution of internet distributed computing.  The move 
away from a point-to-point web services framework, 
which is currently used in an individual and isolated 
style, will be to a distributed yet coordinated service-
oriented framework that can be directly or dynamically 
composed of web services through workflows [2, 3].   
This move however, will also raise the awareness of how 
these compositions are verified for service use, potential 
deadlocks that could occur and requiring usability 
assessment of partnered services and other web service 
workflows.  Whilst the technology alone provides a 
specification to compose and constrain flows of web 
service invocation, there is little to support the design 

process of such distributed service-oriented architectures.  
Therefore, of clear interest is the need to support such 
engineering tasks as process verification, partner service 
usability, and trace checking to verify the roles of web 
service users and their actions [4].  There is also high 
value in providing a simulated workflow mechanism to 
visually compare expected with simulated results of a 
workflow invocation which can increase expectations of a 
successful outcome prior to deployment [5].   

In this paper, we describe a formal approach to 
modeling and verifying the compositions of web services 
workflows using the Finite State Processes (FSP) 
notation. To illustrate how these compositions are 
verified, we have constructed workflow scenarios using 
message sequence charts, together with a model checking 
tool to interactively verify the workflow behavior.  These 
models can then be used to check BPEL4WS 
implementations.  The paper is written as follows; 
Section 2 provides a background to the issues and a 
consideration of what that is required in web service 
workflow verification, and introduces a framework for 
our verification process. Section 3 specifies how web 
service workflows can be represented formally using 
model based design and the Finite State Processes 
specification. Sections 4 and 5 describe an example 
implementation of the workflow in BPEL4WS and how 
this translates to a FSP specification. Section 6 describes 
the verification process, using the previous sets of FSP, to 
illustrate how verification results can be used to correct 
invalid forms of behavior in composition implementation 
against the initial design. 
 
2. Background 
 

Web Service workflow languages aim to fulfill the 
requirement of a coordinated and collaborative service 
invocation specification to support long running and 
multi-service transactions.  This is seen as an important 
element of making web services viable for wide spread 
use, and to provide a closer representation of business 
transactions in cross-domain enterprises.  The effect of 
using similar earlier architecture styles has been prone to 
issues of semantic failure and difficulties in providing the 



necessary compensation handling sequences [6].  This 
has been attributed greatly to the strict binding of 
services with specific technologies.  Where previously 
designers of the workflow had to work very closely with 
the developers of the technical solution, we now have a 
mechanism to support technology independent workflow 
service invocation and this provides opportunity for the 
designers to concentrate on exactly what is required from 
the workflow without hindrance from limitations of 
technical possibilities or effort required to implement.  
As web technology has evolved, the emphasis has been 
placed on providing ease of design and deployment, with 
WYSIWYG now the normal rather than the exception 
for rapidly building web served applications.  This is 
equally applicable to the domain of web services.  Even 
though we are concentrating from a view of systems to 
systems rather than actual human actors, the concepts are 
highly related.  If we offer a web service, or a web service 
workflow we are interested in who will use the service, 
how they will use the service and what they will expect to 
be invocated when requesting the service.  The 
verification of the workflow therefore needs to be 
concrete.  Of interest to the BPEL4WS engineer is 
specifically which order the requests are made and 
replies sent to the services of the workflow, but on a 
wider scale how the behavior of the implementation 
differs from that of the specification.  Later in the paper 
we describe an example of a marketplace workflow 
service.  The interaction in this is either by buyer or 
seller, yet in a web application there is an implied 
limitation to what these roles can perform in the 
functionality offered in the web page presented to them.  
With the web service version of this scenario, the buyer 
and seller are system requests.  The order in which 
requests are made by these roles is implied in system 
design, yet not enforced explicitly with the service 
offered.   

Whilst web service architectures aim to provide a 
technology independent means of integration, the ability 
to verify workflows is inherently not a technology issue 
but of state, behavior and identity [7].  With this in mind, 
we can utilize a UML design of these workflows away 
from a technical implementation, and evaluate their 
transitional state and behavior locally before deploying 
any parts of the workflow, and realizing the true effect of 
the request flow.  If the model does not reflect an 
intended use, then the model can quickly be corrected, 
and a repeat test performed.  Furthermore, model 
verification can also be used to identify parts of the 
process flow that have been implemented incorrectly, or 
perhaps have unforeseen property results.   Whilst there 
have been other attempts to use model-checking 
techniques for reliable web service verification [8, 9], 
they have concentrated on property specifications in 

domain specific language notations (e.g. Promela, the 
implementation language of SPIN), whilst we provide 
verification from an abstract functional specification 
using MSCs. 

 
2.1. Requirements for verification process 

 
To enable modeling to be abstract yet concise to our 

requirements, we need a specification that can closely 
resemble workflow specification languages, and a tool to 
simulate from the specification created in this language.  
To facilitate the above requirements, we have selected 
two separate representations (for workflow and web 
service compositions) in our layers of abstraction, and 
provided additional layers for a tool for designers to 
model these representations in, and an engine to invoke 
the implementation.  Figure 1 illustrates our layers of 
modeling abstraction. 
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Figure 2 lists our focus on the implementations of the 

layers described previously.  LTSA, in layer 1, is a tool 
which provides a means to construct and analyse 
complex models of finite state process specifications.  
This tool, which is fully explained in [10], provides us 
with an opportunity to model workflows prior to 
implementation and deployment testing, and with the 
message sequence chart extensions [11] to easily model 
workflow scenarios, which can increase the expectation 
that web service workflow invocation will provide the 
necessary path of invocation in all states specified (e.g. 
reliably by eliminating deadlock situations).  With 
message sequence chart and animator extensions, the tool 
can also provide a facilitator in simulating workflow 
specifications.  Finite State Processes (FSP), in layer 2, is 
a textual notation (technically a process calculus) for 
concisely describing concurrent programs.  FSP is 
designed to be easily machine readable, and thus 
provides a preferred language to specify abstract 
workflows.  The constructed FSP can be used to model 
the exact transition of workflow processes through a 
modelling tool such as the Labelled Transition System 



Analyzer (LTSA), which provides compilation of an FSP 
into a Labelled Transition System.  BPEL4WS in the 
third and fourth layers, is the result of a series of work 
carried out by both industry and academia to support an 
internet based, XML specification for the workflow of 
web services represented on the internet using universal 
resource identifiers and service descriptors.  The notation 
is based on XML and the engine designed for Web 
Service Architecture frameworks, and is defined as being 
a layer above the Web Services Description Language 
(WSDL)[12].  The earlier work, IBM’s Web Service 
Flow Language (WSFL)[13] and Microsoft’s 
XLANG[14], have contributed to the specification of 
BPEL4WS.   

The verification process applied against these layers 
requires the following steps; 1) use LTSA-MSC to 
capture desired workflow behavior in the form of 
message sequence charts, 2) write a BPEL4WS 
implementation and translate BPEL4WS representation 
in to FSP, 3) perform abstraction mapping to provide 
activity label matching, 4) use model trace equivalence 
checks to detect possible additional (implied) scenarios 
that the model supports but that were left unspecified or 
undefined by the user, and 5) examine the trace results of 
the FSP model checking and iterate tracing resolution 
until no violations or deadlocks are discovered.  
 
2.2. Verification Architecture 
 

The verification architecture is formed from two 
viewpoints.  A specification is created as part of the 
requirements for the composition.  The specification 
consists of the upper two layers from our layered model 
specified in section 2.1., being that of MSCs, state 
modeling tool, and the FSP representation of the 
composition.  Adjoined to these layers is a set 
representing the abstraction mapping between 
implementation and specification, which we discuss 
further later in this paper.  The second viewpoint is from 
that of the implementation of a workflow.  The 
implementation focuses on the lower two layers of the 
verification model and a translation of BPEL4WS to a 
FSP representation.  With specification and 
implementation the bridge between these is by unison 
and comparison of the FSP representations. Figure 3 
illustrates the verification architecture and process flow.  
When the engineer is satisfied that the BPEL4WS 
implementation meets the criteria for composition 
design, then a translation from the technically oriented 
implementation to the abstract notation can take place.  
Furthermore, by performing model checking on the 
design and implementation models trace equivalence can 
be performed using a defined abstraction mapping. 

2.3. Composition Example 
 
The example we have used in this paper is based upon a 
marketplace of buyers and sellers.  The marketplace 
consists of a series of requests and replies, formed by the 
offering and requesting of products, request and offer of 
price for the products and confirmation of an iterative 
negotiation phase, which determines if an agreement of 
price for product is made. 
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Figure 3.  Model-based Verification Architecture 

 
The marketplace provides three stages to a 

negotiation.  Firstly, a product may be either offered or 
requested.  The message is passed from the seller or 
buyer role respectively, and is received by the 
marketplace service.  Once a request is received, the 
marketplace instantiates a new transaction and awaits for 
either a seller or buyer to offer or request a similar 
product.  This process matches a seller to a buyer.  A 
seller cannot be matched to another seller, and equally a 
buyer cannot be matched to another buyer.  When a 
match is recognized, the second stage is undertaken.  The 
second stage of the negotiation is to receive initial prices 
from the partners, for when satisfied, allows the 
workflow to proceed to the third stage.  The third stage 
provides an iterative negotiation of prices, with each 
partner able to specify a price and then place agreement 
as to whether a deal is made or terminated.  In our 
composition we may be interested in verifying various 
scenarios, for example; to enter a negotiation phase, a 
seller and a buyer must specify an initial price required; a 



seller may only agree or disagree once between 
subsequent buyer agreements or disagreements, and a 
seller may not change the price requested until the buyer 
price has been received for each iteration of the 
negotiation steps.  A context diagram of the marketplace 
composition is illustrated in figure 4. 
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Figure 4.  Marketplace Context Diagram 

 
3. Modeling the Composition in MSCs 
 

Modeling the composition in the MSCs is provided by 
the LTSA tool message sequence chart extensions 
(LTSA-MSC).  The tool implements a framework for 
synthesizing implementation models for scenario-based 
specifications.  By using this tool, we can guarantee that 
the resulting model is a model that implements the least 
unwanted behaviors.  Additional features of this 
framework also allow us to check for implied behaviors.  
This feature is extremely advantageous for checking web 
service compositions, and for modeling send and receives 
message behavior.  The goal of using this method of 
design is to find the differences between decomposition 
(our view of the system) and the actual system behavior 
specified in the implementation. To begin this 
composition modeling, we define a high level 
specification diagram.  The specification diagram for the 
marketplace service example is illustrated in Figure 5.   

The initial scenario (init) is the starting point of the 
workflow, and indicates that either a seller can offer a 
product, or a buyer can request a product.  If either of 
these requests are made then the initial requestor must 
wait for the other to enter the negotiation phase.  To 
specify the design actions for each possible sequence of 
our service we compose individual scenarios, such as for 
the actions of requesting or selling a product (figure 6), 
and seller and buyer agreements (figure 7).  When there 
is a completed set of scenarios, the LTSA tool provides a 
FSP translation mechanism to convert each of the 
scenarios generated into a complete FSP specification.   

The FSP specification can then be compiled into a 
state machine and an architecture model built to visually 
represent the complete possible state sequences allowed.   

 

 

Figure 5.  Specification of Marketplace 
Composition 

  

Figure 6.  Scenario 1: Buyer or Seller requests 

 

 

 

 

Figure 7.  Scenario 2: Buyer or Seller 
agreements 

 
Figure 8 illustrates the complete model for the 

marketplace example.  The model provides a clear and 
concise representation of the workflow we intended to 
put in place for the service.  The second step in the 
verification process is to build the composition service 
directly in the BPEL4WS notation. 
 
4. Implementation in BPEL4WS 

 
The BPEL4WS representation of the example is 

constructed from the viewpoint of a process.  The process 
has partners, contains data elements and a series of 
activities.   Here we describe how the design is 
implemented in BPEL4WS given the same elements used 
to construct the MSC representation.  The BPEL4WS 
constructs and the corresponding elements of our 
message sequence charts are listed in table 1.  Following 
this table we discuss each of the constructs and its 
relationship to concurrent system design and workflow 
specifications. 



 

Figure 8.  Specification architecture model 

 

Table 1.  Basic BPEL4WS Process constructs 

Process Top level message sequence chart 
Containers specify variables for message data 
Correlationsets dependencies between messages 
Flow                     concurrent message transitions 
Assign                  messages that require data storage 
Switch test and branch conditions 
Sequence sequential execution of activities 
While  scenario iterations 
Receive messages input from services 
Reply messages conveyed back to services 

 
4.1. Process and Partners 
 

The process is given the same name as our 
specification model.  In the marketplace example, the 
name is marketplace.  The additional targetnamespace 
and xmlns entries also default to this name.  The 
instances in our message sequence charts correspond to 
the partners defined in the BPEL4WS specification.  
Our example models the seller and buyer roles, so these 
are specified as our process partners. 
 
4.2. Containers and Correlationsets 
 

The containers provide data storage variables for the 
information passed between partner service and the 
marketplace service.  These containers are required for 
each of the messages in the message sequence charts.  
For example, the seller product offered is assigned to 
the sellerInfo container, whilst the buyer product 
required is assigned to the buyerInfo container.  The 
negotiation phase is modeled on both price and 
agreements.  The correlationsets define the linking of 

messages between service partners.  The correlationsets 
defined for the marketplace example are for the 
negotiatedItem (product) and negotiatedPrice (initial 
price offered and later required).  
 
4.3. Sequences and Loops 
 

Sequences and Loops in BPEL4WS are specified 
using the <sequence> and <while> constructs.  In our 
marketplace example we have defined several 
sequences.  The sequence construct is used wherever a 
series of activities need to occur sequentially, although 
they may be contained one or more times within 
looping or concurrent construct activities.  For example, 
in our marketplace example, we have defined a loop for 
the negotiation phase, specified using the <while> 
construct.  Within this activity, we have defined two 
sequences, each with a set of activities to be performed 
on price and agreement negotiations.   
 
4.4. Concurrency 
 

Concurrency in BPEL4WS permits us to model the 
concurrent transitions in the message sequence charts.  
In BPEL4WS, this is specified using the <flow> 
construct. 
 
4.5. Receives and Replies 
 

The sending of messages uses two primitive 
activities in the BPEL4WS specification.  <receive> 
provides a mechanism to wait for a message from a 
given partner, whilst <reply> allows the workflow to 
respond to the given request.  In this way, this can be 
seen as the “request-reply” messaging model. 



4.6. Assignments and Conditional Branching 
 

The final construct in our BPEL4WS example 
specifies how we defined the assignment and branching 
of the workflow based upon values in data containers.  
The <assign> construct is used to assign a value to a 
container.  The <switch> statement provides us with 
the conditional branching based upon the comparison 
of either static or container based data.  The 
marketplace switch used in our example compares the 
offer price with that of the selling price and performs 
one of two sequences depending on the comparison 
result.  The assign statement is also used throughout the 
BPEL4WS implementation to initialize the container 
values where used in conditional branching and 
looping.   
 
4.7. Example BPEL4WS for a Market Place 
 

A section of the BPEL4WS constructed for our 
marketplace is given below, illustrating the concurrent 
agreement receive requests. 
 

<process name="marketplace"  
targetNamespace = "urn:MPService" 

         xmlns:tns="urn:MPService"..> 
<flow name="MarketplaceAgree"> 
<receive partner="seller" 

portType="tns:sellerPT"  
operation="submit"  
container="sellerAgree" 
createInstance="yes"  
name="SellerAgree"> 

</receive> 
<receive partner="buyer"  

portType="tns:buyerPT"  
operation="submit" 
container="buyerAgree" 
createInstance="yes" 
name="BuyerAgree"> 

</receive> 
</flow> 

</process> 
 

5. BPEL4WS Translation to FSP 
 

To enable the verification of the BPEL4WS against 
the MSC representation, we need to translate the 
technical dependant BPEL4WS XML notation to the 
independent but easily machine readable FSP notation.  
To ease this translation we define the constructs of 
BPEL4WS as one of four groups. Structured represents 
the traditional structured design principles of sequence, 
selection and iteration, Concurrent specifies the parallel 
activities, whilst Primitive Actions specifies those 
actions that are atomic.  Error or Compensation actions 
provide mechanisms for fault tolerance in workflow 

state transition.  We have listed in table 2, how the 
BPEL4WS process tokens expressed in [1], can be 
grouped together by the construct groups discussed. 

 

Table 2.  BPEL4WS Process Token Groups 

Structured Concurrent Primitive Recovery 
Sequence Flow Receive Scope 
Switch  Reply Compensate 
While  Invoke faultHandler 
Pick  Throw  
  Empty  
  Terminate  
  Wait  
  Assign  
 

We represent the first two of these construct groups 
in the FSP specification.  A list of transitions is 
presented in table 3 for use as a basis for the BPEL4WS 
to FSP conversion. 

 

Table 3.  BPEL4WS to FSP Translation 

BPEL Token, Example  and FSP Representation 
<sequence> 
<receive 
name=”act1”> 
</receive> 
<receive 
name=”act2”> 
</receive> 
</sequence> 

ACT1 =  
(action1 -> END). 
ACT2 =  
(action2 -> END). 
 
SEQUENCE = 
ACT1;ACT2;END. 

<switch name= 
"MPS"> 
 <case condition= 
"cond1" = 
“true”>…… [act1] 
<otherwise>…[act2] 
</switch> 

SWITCH =  
if cond1-true  
     then ACT1;END 
else if cond2-true  
     then ACT2;END 
else END. 

<while condition = 
“cond1” = “true”> 
<sequence>……… 
</sequence> 
</while> 

WHILE =  
If condition-true 
then ACT1;WHILE  
else END. 

<pick  name 
=”pick1”> 
<onMessage> 
<invoke ACT1>… 
<onAlarm> 
<invoke ACT2>… 
</pick> 

PICK1 = ( 
event1 -> ACT1; 
END | event2 -> 
ACT2; END). 

<flow 
name=”flow1”> 
<receive 
name=”act1”>… 
<receive 
name=”act2”>… 
</flow> 
 

||FLOW1 =  
(ACT1 || ACT2). 



5.1. Containers and Value Comparisons 
 

Each container can be translated from BPEL4WS to 
the FSP process declarations with parameters.  Here the 
value change of the container can be represented using 
a range parameter, and subsequent references to the 
container can assign differing values in that range.  
Write and Read functions are represented in a Pick of 
possible transitions, as illustrated in the following FSP.  
 

CONTA [i:IntRange] = (write[j : IntR]  
-> CONTA[j] | read[i]->CONTA[i]), 

 

5.2. Sequence 
 

The Sequence token used in BPEL4WS is defined in 
FSP as:  If x is an action and P a process then the action 
prefix (x->P) describes a process that initially engages 
in the action x and then behaves exactly as P.  An 
example sequence representation in FSP is: 

 
MarketPlace = (transaction -> END | 
transaction->OFFERREQUEST;NEGOTIATION). 

 
5.3. Switch 
 

The Switch token in BPEL4WS is represented in 
FSP by the choice definition.  This definition is 
formally given as:  If x and y are actions then (x->P | y-
>Q) escribes a process which initially engages in either 
of the actions x or y.  After the first action has occurred, 
subsequent behavior is described by P if the first action 
was x and Q if the first action was y.  An example of 
the switch representation in FSP is: 
 

CHECKPRODUCT = if sellerproduct = 
buyerproduct then OFFERREQUESTPRICE ; 
END else END. 

 
5.4. While 
 

The While token in BPEL4WS, is represented in 
FSP by a combination of both the conditional elements 
of the Switch token and the sequence operator.  For 
example: 
 

MarketPlace = if newtransaction then 
MarketPlaceItemFlow; 
MarketPlacePriceFlow;MarketPlaceSwitch;
NEGOTIATE_FLOW;WHILE else DEALMADE. 

 
5.5. Pick 
 

As with the Switch token in section 5.2, the Pick 
token is represented in FSP by the choice definition.  

The BPEL4WS implementation however does not 
explicitly use the Pick statement, as this is reserved in 
BPEL4WS for detection of events being triggered. 

 
5.6. Flow 
 

The Flow token in BPEL4WS is represented in FSP 
by the parallel composition definition.  This definition 
is formally given as:  IF P and Q are process then (P || 
Q) represents the concurrent execution of P and Q.  The 
operator || is the parallel composition operator.  In the 
BPEL4WS implementation of our design, we have used 
the Flow statement to represent concurrent execution of 
receiving and replying to requests from seller and 
buyer.  The translation to FSP for the initial price 
request is: 
 
BR =(receive.submit.buyerrequest -> END). 
SR = (receive.submit.selleroffer -> END). 
||MarketPlaceItemFlow = (BR || SR). 
 
5.7. Summary of BPEL4WS FSP 
 

By examining the differences between BPEL4WS 
and FSP we can see how the technical and abstract 
notations are positioned from a programmatic 
deployment approach for BPEL4WS and from a simple 
yet concise state and process perspective for FSP.  With 
FSP as our middle layer, the abstract notation can be 
used to specify the composition and workflow without 
hindrance from technical limitations, and the design 
model can be constructed and verified independently.  
Whilst the BPEL4WS specification requires detail of 
specific implementations (such as referencing the 
location of the services involved, and who will use 
them), we can remove these specifics and detail the 
workflow from an abstract view.  Using transition table 
3, the BPEL4WS specification of the marketplace 
example can be translated as follows, although it should 
be noted that this is just one possible representation of 
several.  For example, in this FSP representation we 
have replaced the use of conditional variables and 
converted the BPEL4WS Switch to a series of Pick 
representations.  When compiled in the LTSA tool, a 
graphical architecture model can again be produced 
(see Figure 9). At this stage, we have prepared an 
initial design using the message sequence charts and 
compiled this into an FSP representation.  We have also 
migrated from design to BPEL4WS and translated the 
BPEL4WS to an FSP representation.  Given these two 
sets of FSP representations, we can move on to describe 
how the verification process compares the FSP for the 
MSCs and the FSP for the BPEL4WS relationships.   



 

Figure 9.  Implementation Architecture Model 

6. Verification Process and Results 
 

The verification process for our model-based design 
is focused on composing joint sets of labeled transition 
systems using the FSP specifications constructed earlier 
in the modeling process.  The essence of the 
verification mechanism is to check trace equivalence.  
Any violations exhibit traces of actions that could occur 
from the state machine generated from one FSP 
specification, over that of the other.  The verification 
process is broken down into several sections.  Firstly, 
we need to identify and match labels that have the same 
semantics and relabeled where necessary to join these 
as a single label represented in both specifications.  If 
any actions have been included in the BPEL4WS 
specification that are dependent on actions undertaken 
for BPEL4WS implementation specifics, then these 
must be hidden as a secondary step, so as not to be 
included in the safety checks and traces.  The 
verification process used to undertake this is illustrated 
in figure 10. 
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Figure 10.  Verification Process Map 

 

6.1. Abstraction Mapping 
 

As part of the verification process, the BPEL 
engineer must map the activities specified in the 
BPEL4WS implementation to those represented in the 
MSC specification.  To achieve this we need to address 
re-labeling differing action naming conventions.  This 
however, limits us in future work to provide an 
automated verification mechanism, as it is anticipated 
that designer and implementer may use different 
conventions. As an example of the relabeled transition 
process specification, the marketplace example gives 
the following operation for the BPEL4WS specification: 
 

/{requireproduct/receive.submit 
.buyerrequest, offerproduct/ 
receive.submit.selleroffer}. 

 
In addition to re-labeling, we must also consider 

actions in the BPEL4WS that are solely for 
implementation and do not represent an action in the 
specification.  This will typically be actions in the 
BPEL4WS that are concerned with assignments, switch 
conditions, end actions and initiators.  To specify this 
in FSP, the \ operator is used.  The hiding for the 
marketplace example was given as follows: 

 
\ {receive.submit.buyerdisagree, 
receive.submit.sellerdisagree, 
assign.negotiation.false, 
assign.seller.price, 
assign.buyer.price, 
reply.seller.buyerprice, 
reply.buyer.sellerprice,transaction}. 

 
 



6.2. Deterministic and Trace Compositions 
 
To perform trace equivalence of the prepared FSP 
specifications, two checks are performed.  The first 
checks if the BPEL4WS FSP provides possible traces 
that the MSC FSP cannot.  The second checks if the 
MSC FSP provides possible traces that the BPEL4WS 
FSP cannot.  Both trace inclusion checks are performed 
as follows. If a model A is to be checked against a 
model B for trace inclusion, then B is made 
deterministic while preserving trace equivalence using 
the "deterministic" keyword of LTSA. Then a property 
is declared using the deterministic version of B using 
the keyword. This keyword adds to the model an error 
state and transitions that make actions that are not 
enabled in states to transition to the error state. Thus, 
the resulting model, if composed with A does not 
constrain its behavior and will have a reachable error 
state if A can perform traces that B cannot. The FSP 
code that follows shows how the BPEL4WS FSP is 
checked for trace inclusion against the 
ArchitectureModel.  Process DetA is the deterministic 
version of the MSC FSP model, A is the property 
resulting from DetA and CheckBPEL is the process on 
which reachability of the error state is performed. 
 
 deterministic ||DetA =  

ArchitectureModel \{endAction}.   
 property ||A = DetA. 
 ||CheckBPEL=A||Abs_Process_MarketPlace). 
 
6.3. Assessing and Resolving Violations 
 

The LTSA tool provides a “safety check” feature 
that, provided with a composition identifier, will 
perform a reachability analysis for a given specification.  
Here, if a violation is discovered, we can follow through 
the transitions and determine how the violation 
occurred given our FSP specification.  This counter 
example represents a possibility that cannot occur in 
our MSC but could occur in the BPEL4WS FSP 
specification.  Two such traces are listed in Table 4, as 
checks on our marketplace composition.   

Table 4.  Traces from BPEL safety check 

1st Trace  2nd Trace 
offerProduct 
requireProduct 
buyerRequirePrice 
 

offerProduct 
requireProduct 
sellerRequirePrice 
buyerRequirePrice 
buyAgreed 
recieve.submit.sellerDisagree 

 
From the first trace of the CheckBPEL property 

check, we are able to determine that a sequence of 
requests made by the clients of our web service 
composition in the order of offerproduct, requireproduct 
and buyerRequirePrice is allowed in our BPEL 
composition but not allowed in the MSC specification.  
To correct this we revisit the BPEL and locate the 
buyerRequirePrice receive. In our BPEL 
implementation we had used a FLOW for price 
requests.  Either buyer or seller may have requested 
first.   Therefore, we change this to a SEQUENCE so 
that the seller price must be received before buyer price 
can be received.  From the second trace, we can observe 
that through the sequence of requests, the buyer has 
agreed, yet the seller submits a disagreement.  This is a 
breach of our property which if a buyer agrees to a price 
then the seller cannot subsequently disagree.  Again, we 
change this in our BPEL to reflect the buyeragreed 
action can only transition to a successful outcome of a 
negotiation. 

From these traces, we are able to determine if there 
is a breach of the behavior specified in our FSPs.  This 
violation can be resolved by either changing our 
BPEL4WS specification and FSP, or if it is a violation 
which needs validation from users, it may be something 
which is subsequently corrected in the MSC 
specification.  The nature of this “trace and fix” 
iterative process is part of a wider web service 
engineering lifecycle, and fits conveniently in with a 
proposed lifecycle of web service composition 
engineering.  One such lifecycle is suggested in [15].  
This lifecycle encompasses DAML-S (a service 
description language) which provides a process model 
for service discovery, description and selection.  The 
authors of this paper also discuss how the principle of 
the service interaction may also allow for participating 
services to enquire at a greater depth in to another 
service’s process model.  It is perhaps the result of our 
verification process, that trace and other models could 
be added to an advertised service description, and thus 
allow for greater metadata inspection.  

 
6.4. Verification Process Automation 

  
To supplement the process described in this paper, 

we have developed a plug-in module for the LTSA tool 
which facilitates writing BPEL4WS specifications and 
using an integrated development environment, the 
BPEL4WS implementation can be translated to FSP 
and compiled into a model.  This eases the translation 
process and also provides a useful mechanism for 
implementers to visually realize how the BPEL4WS is 
represented.  The automation is limited however, by the 
manual requirement of the abstract mapping between 



BPEL4WS actions and MSC labels, whereby semantic 
detail must be applied by knowledge outside that given 
in the automated technical solution.  For further 
information and to download the plug-in with LTSA, 
please refer to LTSA homepage at 
http://www.doc.ic.ac.uk/ltsa. 
 
7. Conclusions 
 

BPEL4WS provides an initial work for forming an 
XML specification language for defining and 
implementing business process workflows for web 
services.  The use of this technology provides an 
example of how distributed system computing using 
web services will be specified for web service workflow 
invocations, yet it is important to compose the service 
workflow correctly for all service actors and more 
importantly, verify this flow before actual 
implementation and deployment is undertaken.  
Technically it is evident that BPEL4WS lacks in 
verification of service provider and client use, yet with 
a verification process such as the one described in this 
paper, value can be added to the development process 
by early verification through a model checking process.   

Our contribution is to address these issues by 
modeling these workflows in an accessible and concise 
notation, which can then be used to verify, not only web 
service workflows but any workflow processes involved.   
In this paper we presented an approach, which 
specifically addresses adding semantic representation to 
the BPEL4WS notation, and have identified a tool for 
verification of implementations against abstract 
functional specifications.  Furthermore, by automating 
the process specified in this paper, a framework can be 
built to support modeling, verification and 
implementation in the notation of choice.  We have 
chosen BPEL4WS to use as an example, yet other web 
service workflow specifications may be introduced.  The 
approach also provides scope to enhance the 
verification of BPEL4WS implementations by 
analyzing and determining the impact of fault tolerance 
and compensation actions, addressing the concerns of 
availability and reliability.  With this in mind, we 
foresee the findings presented here as an initial work 
that will provide a foundation for further ideas and 
contributions on these wider issues. 
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