
Improving software usability through architectural patterns

 Natalia Juristo
School of Computing - Universidad Politécnica de Madrid, Spain

Marta Lopez
School of Computing - Universidad Complutense de Madrid, Spain

Ana M. Moreno
School of Computing - Universidad Politécnica de Madrid, Spain

M. Isabel Sánchez
School of Computing - Universidad Carlos III de Madrid, Spain

Abstract

This paper presents an approach for improving final
software system usability by designing for usability, in
particular by addressing usability issues in the software
architecture. This approach differs from the traditional
idea of measuring and improving usability once the
system is complete. The work presented in this paper is
part of the research conducted within the European
Union - IST STATUS related to the development of
techniques and procedures for supporting a forward-
engineering approach to improve usability in software
systems at the architectural level. In particular, we
present the ongoing research about usability
improvement by including architectural patterns that
provide solutions for specific usability mechanisms.

1. Introduction

One reason why software architecture research is
attracting growing interest is the direct relationship
between architectural decisions and the fulfilment of
certain quality requirements [1]. The goal is to assess
software architecture for specific quality attributes and
make decisions that improve these attributes. In short, a
software architecture needs to be explicitly designed to
satisfy specific quality attributes.

Moreover, usability is considered as just another
quality attribute [2] and, therefore, we should also be able
to design software architectures for usability as we do for
other quality attributes.

The work presented in this paper is part of the insights
and techniques developed in the STATUS project
(SofTware Architectures That support USability)1. The
goal of this project is to develop techniques and

1 STATUS project: EU funded project IST–2001–32298.

procedures to support a forward-engineering perspective
to usability in software architectures, as opposed to the
conventional backward-engineering alternative of
measuring usability on a finished system and improving it
once the system is practically complete.

In this paper, we will focus on presenting and
discussing the ongoing STATUS research about
architectural-level usability improvements.

For this purpose, section 2 shows the approach taken
to decompose usability into levels of abstraction that are
progressively closer to software architecture. These
progressive levels are represented by the concepts of
usability attributes, usability properties and usability
patterns.

Then, section 3 shows how to incorporate the usability
characteristics represented by the usability patterns into a
generic software architecture. For this purpose, we will
use the concept of architectural pattern, which specifies, in
terms of components and their interrelationships, definite
solutions for incorporating aspects that will improve final
system usability into an architectural design.

Finally, section 4 presents future work to be done to
complete and validate the approach taken in this paper.

2. Usability Decomposition: Attributes,

Properties and Patterns

Software systems usability is usually evaluated on the
finished system trying to assign values to the classical
usability attributes [3] [4] [5]
• Learnability – how quickly and easily users can begin

to do productive work with a system that is new to
them, combined with the ease of remembering the way
a system must be operated.

• Efficiency of use – the number of tasks per unit time
that the user can perform using the system.

12

• Reliability – sometimes called “reliability in use”, this
refers to the error rate in using the system and the time
it takes to recover from errors.

• Satisfaction – the subjective opinions that users form
in using the system.
However, the level of these usability attributes is too

high for us to be able to examine what mechanisms should
be applied to a software architecture to improve these
attributes. Therefore, the philosophy followed in STATUS
was to decompose these attributes into two intermediate
levels of concepts closer to the software solution: usability
properties and usability patterns.

The first level involves relating the above-mentioned
usability attributes to specific usability properties that
determine the usability characteristics to be improved in a
system. Usability properties can also be seen as the
requirements of a software system for it to be usable (for
example, provide feedback to the user, provide explicit
user control, provide guidance to the user, etc). The
second level was envisaged to identify specific
mechanisms that might be incorporated into a software
architecture to improve the usability of the final system.
These mechanisms have been called usability patterns and
they address some need specified by a usability property.
Note that usability patterns do not provide any specific
software solution to be incorporated into a software
architecture, they just suggest some abstract mechanism
that might be used to improve usability (for example,
undos, alerts, command aggregations, wizards, etc.).

The procedure followed to identify the relationship
between usability attributes, properties and patterns is
detailed in Usability Attributes Affected by Software
Architecture [6]. We took a top-down approach from
usability attributes (identified in the literature), through
usability properties (derived from heuristics and
guidelines given in the literature to developers for
improving usability), to finally identify usability patterns.
Accordingly, usability patterns are the final links in the
chain, and they provide examples of how to achieve some
usability requirements. Nevertheless, they are not the
central axis of our approach, which provides the users of
the research results with a procedure for developing new
usability patterns according to the context of the
applications to which the results are applied.

A subset of the above-mentioned relationship is
outlined in Table 1. It shows how usability properties
relate patterns to usability attributes in a qualitative sense
(an arrow indicates that a property positively affects an
attribute, that is, improves that attribute). For example, the
“wizard” pattern improves learnability: the wizard pattern
uses the concept of “guidance” to take the user through a
complex task one step at a time; “guidance” improves the
learnability usability attribute. Usability patterns may
address one or more of the usability properties and

usability properties may improve one or more usability
attributes.

Table 1. Attribute, Property & Pattern

Relationships

satisfaction

learnability

efficiency

reliability

guidance

explicit user control

feedback

error prevention
….

wizard

undo

alert

progress indication
….

Usability attributes Usability properties Usability patterns

Problem dom ain Application dom ain

satisfaction

learnability

efficiency

reliability

guidance

explicit user control

feedback

error prevention
….

wizard

undo

alert

progress indication
….

Usability attributes Usability properties Usability patterns

Problem dom ain

 The concept of usability pattern has already been used
in the literature. This concept can be generally defined as
“a description of solutions that improve usability
attributes” [7]. The usability aspects dealt with by these
patterns refer basically to user interfaces, which is why
these patterns are also called user interface patterns. [8] or
interaction design patterns [9]. As indicated by authors
like Welie and Troetteberg [10], although several pattern
collections exist, an accepted set of such patterns has not
emerged. There appears to be a lack of consensus about
the format and focus of user interface patterns.

Possible examples of some user interface patterns are:
!"Feedback
!"Wizard
!"Provide the user with all information needed in the

same window
!"Mark required fields when filling a form
!"You are here
!"Grid Layout.

The differences between the usability patterns
proposed in our work and the classic usability or interface
patterns existing in the literature lie basically in that the
classic patterns of usability are based on the improvement
of the application interface, which means that these
patterns are implemented mainly during the interface
design phase and generally affect low-level components
like pseudo-code. On the other hand, the usability patterns
in our work relate the mechanisms to be considered in a
software architecture, addressing usability aspects in the
early stages of the development process. For example, the
solution proposed by Welie [10] for the feedback pattern
is based on “provide a valid indication of progress.
Progress is typically the time remaining until completion,
the number of units processed or the percentage of work
done. Progress can be shown using a widget such as a
progress bar. The progress bar must have a label stating
the relative progress or the unit in which is measured”.
Whereas, as we will see later, we consider a progress
indication pattern and provide a solution based on the
components to be added to a software architecture and the

13

relationships among these components in order to provide
this mechanism.

The second column in Table 2 shows the list of
usability patterns that we propose. The first column of the
table shows the usability properties related to each pattern.

Table 2. List of usability patterns
Usability Property Usability Patterns
NATURAL MAPPING
CONSISTENCY (functional, interface,
evolutionary)

ACCESSIBILITY (internationalisation) Different languages
CONSISTENCY, ACCSESIBILITY
(multichannel, disabilities)

Different access methods

FEEDBACK Alert
ERROR MANAGEMENT, FEEDBACK Status indication
EXPLICIT USER CONTROL,
ADAPTABILITY (user expertise)

Shortcuts (key and tasks)

ERROR MANAGEMENT (error
prevention)

Form/field validation

ERROR MANAGEMENT (error
correction),

Undo

GUIDANCE, ERROR MANAGEMENT Context-sensitive help
GUIDANCE, ERROR MANAGEMENT Wizard

GUIDANCE, ERROR MANAGEMENT Standard help
GUIDANCE,
ERROR MANAGEMENT

Tour

MINIMISE COGNITIVE LOAD,
ADAPTABILITY, ERROR
MANAGEMENT (error prevention)

Workflow model

ERROR MANAGEMENT (error
correction)

History l ogging

GUIDANCE,
 ERROR MANAGEMENT (error
prevention)

Provision of views

ADAPTABILITY (user preferences) User profile
ERROR MANAGEMENT,
EXPLICIT USER CONTROL

Cancel

EXPLICIT USER CONTROL Multi-tasking
MINIMISE COGNITIVE LOAD
ERROR MANAGEMENT (error
prevention)

Commands aggregation

EXPLICIT USER CONTROL Action f or multiple
objects

MINIMISE COGNITIVE LOAD,
ERROR MANAGEMENT (error
prevention)

Reuse information

It should be noted that the properties of Natural

Mapping and Consistency cannot be arranged around
specific usability patterns. The reason is that these
properties require the performance of different tasks and
activities throughout the entire development process rather
than the application of particular solutions at the
architectural level. For example, the provision of natural
mapping between the user tasks and the tasks to be
implemented in the system calls for software requirements
to be elicited during the analysis process bearing in mind
this objective and they must be designed according to
these requirements. The same goes for consistency, which
involves different activities throughout the lengthy

development process of the original system or new
versions.

At this point, we should refer to the work of Bass,
John and Kates [11], who use the concept of usability
scenario, where “a scenario describes an interaction that
some stakeholder (e.g. user, developer, system
administrator) has with the system under consideration
from a usability viewpoint”. These scenarios are related to
some properties and usability patterns considered in our
approach. Table 3 shows a comparison of their and our
approaches, through the relationships between our
patterns and their scenarios. These relationships are:
- Content: achieving a particular usability pattern

implies achieving a particular scenario. For example,
properly provide the Provision of views mechanism
implies “Make views accessible”.

- Instantiation: a usability pattern is a special case of a
scenario. For example, Standard Help is a case of
“Help”.

- Similarity: a pattern and a scenario are considered
similarly in both approaches, for example, Cancel.

- Generality: a scenario is a special case of a pattern.
For example, “Novice interfaces for users in
unfamiliar contexts” is a special case of “provide a
Workflow model”.
Some of the scenarios have not been considered in our

approach:
!"“Account human needs and capabilities when

interacting, keep coherence through multiple views,
define upgrades similar to previous ones, provide
easily modifiable test points for evaluation and design
interfaces” are the results of specific actions to be
taken during the development process and are not in
keeping with the definition of usability pattern
considered in our work. So, the issues referred to by
these scenarios need to be dealt with within the whole
development process, not specifically in terms of
architecture. The STATUS project has a workpackage
that deals with modifications in the development
process to improve final system usability.

!"“Minimize user recovery work due to system errors”
refers to errors made by the software system and not
by the users. Traditionally [3][4], usability efficiency
deals with the prevention of and recovery from user,
not system, errors.

!"“Allow searching by different criteria” and “Provide
alternative secure mechanisms” are specific
requirements and not really usability patterns as they
are considered in our work.

14

Table 3. Usability patterns / scenario relationship
Usability
Patterns

Relationship Scenarios

Different
languages

similarity Support international use

Different access
methods

generality Maintain device independence

Alert

generality Verify resources before
beginning an operation

 Status indication similarity
generality

Present system state
Predicting task duration

Shortcuts (key
and tasks)

Form/field
validation

similarity Checking for errors

Undo similarity Undo
Context-sensitive
help

instantiation Provide good help

Wizard instantiation Provide good help
Standard help instantiation Provide good help
Tour instantiation Provide good help
Workflow model generality Novice interfaces for user in

unfamiliar contexts
History logging
Provision of views

content
similarity
content

Make views accessible
Provide reasonable set of views
Quick navigation into a view

User profile
Cancel similarity Cancel
Multi-tasking

content
content

Use applications concurrently
Allow to quick switch back and
forth between different tasks

Commands
aggregation

similarity Aggregate commands

Action for
multiple objects

similarity Aggregate data

Reuse information similarity Reusing information

It might be interesting to note the similarities and

differences between the two approaches, for example, the
generality or specificity levels of the usability mechanisms
employed by the two approaches. In this respect, it would
be worthwhile discussing at the workshop the strengths
and weaknesses of using usability mechanisms with
differing detail levels from the viewpoint of practitioners.
Note, however, that both approaches will agree with the
idea of relating the different aspects of usability to the
architecture through architectural patterns. These patterns
will show how the scenario (Bass et al.’s approach) or the

usability pattern (STATUS approach) can be represented
at an architectural level.

The following section shows how we have developed
design solutions that can be used to incorporate the
usability mechanisms specified by the usability patterns
into a software system. These design solutions are the
architectural patterns mentioned above.

3. Architectural Patterns for Usability

Support

The most widely used concept of pattern in software
development is the design pattern, and it is used
particularly in the object-oriented paradigm. In this
context, a design pattern is a description of classes and
objects that work together to solve a particular problem
[11]. These patterns show a solution to a problem, which
has been obtained from its use in different applications.
Note, nevertheless, that a design pattern can be seen as a
unique or original solution.

Besides the idea of usability pattern, we also used
the concept of architectural pattern. Given that we have
defined a usability pattern as a mechanism to be applied to
the design of a system architecture in order to address a
particular usability property, an architectural pattern will
determine how this usability pattern is converted into
software architecture. In other words, what effect the
consideration of a usability pattern will have on the
components of the software architecture. Abstracting the
definition of design pattern, an architectural pattern can be
defined as a description of the components of a design and
the communication between these components to provide
a solution for a usability pattern. Like design patterns,
architectural patterns will reflect a possible solution to a
problem, the implementation of a usability pattern,
although this will be a unique solution in each case.

Therefore, the architectural pattern is the last chain
in the usability attribute, property and pattern chain that
connects software system usability with software system
architecture. Accordingly, another column can be added to
Table 1, as shown in Table 4.

Table 4. Usability attributes/properties/pattern
and architectural pattern relationships

D e s i g n d o m a i n

s a t i s f a c t i o n

l e a r n a b i l i t y

e f f i c i e n c y

r e l i a b i l i t y

g u i d a n c e

e x p l i c i t u s e r c o n t r o l

f e e d b a c k

e r r o r p r e v e n t i o n
… .

w i z a r d

u n d o

a l e r t

p r o g r e s s i n d i c a t i o n
… .

U s a b i l i t y a t t r i b u t e s U s a b i l i t y p r o p e r t i e s U s a b i l i t y p a t t e r n s

P r o b l e m d o m a i n A p p l i c a t i o n d o m a i n

s a t i s f a c t i o n

l e a r n a b i l i t y

e f f i c i e n c y

r e l i a b i l i t y

g u i d a n c e

e x p l i c i t u s e r c o n t r o l

f e e d b a c k

e r r o r p r e v e n t i o n
… .

w i z a r d

… .

U s a b i l i t y a t t r i b u t e s U s a b i l i t y p r o p e r t i e s U s a b i l i t y p a t t e r n s

P r o b l e m d o m a i n

A r c h i t e c t u r a l p a t t e r n

a l e r t e r

f e e d b a c k e r

u n d o e r

15

3.1. Procedure for outputting architectural
patterns for usability

In the following, we describe the procedure followed
to identify the architectural patterns that design the
proposed usability patterns. This procedure is composed
of two parts:
1. Application of a process of induction to abstract the

architectural patterns from particular designs for
several projects developed by both researchers and
practitioners. For this purpose, we took the following
steps:
1.1. We asked designers to build the design models
for several systems without including usability
patterns.
1.2. For each usability pattern, we asked designers to
modify their earlier designs to include the
functionality corresponding to the pattern under
consideration.
1.3. For each usability pattern, we abstracted the
respective architectural pattern from the
modifications made by the developers to the design.
This process was carried out on two applications:
restaurant orders and tables management and ride
control and maintenance at an amusement park.

2. Application of the architectural patterns resulting from
the previous step to several developments to validate
their feasibility.
To illustrate this process of induction, below we show

part of the induction of one of the architectural patterns on
the restaurant orders and table management application,
specifically the pattern related to the usability pattern
Progress Indication.

The sequence diagram shown in Figure 1 and the class
diagram shown in Figure 2 show part of the design of this
application, specifically the part related to the entry of the
menu requested by the restaurant customer. This part was
designed without taking into account the usability
property on feedback. As we can see from the diagrams,
the system user is not receiving any information on what
the software system is doing. Figure 3 and Figure 4 show
the sequence and class diagrams, respectively, now
considering the inclusion of the usability pattern for Status
Indication on this same functionality. We can see how the
inclusion of an object of the Feedbacker class provides the
user with information on system operation.

 : Request

 : W aiter

 : Table : Consumption : Request-line : Alert-Manager : Ing red ie nt

Init-request()

Inp ut- CodCo nsumpt io n(cod e)

ChangeState()

C heck-Stock(code)

OK()

C reateLine(code)

Check-Ingredient ()

OK()

C heck()

OK()

Figure 1. Interaction diagram without usability
pattern

Rest aura nt

Nam e : S tring
A ddress : S t ring

(from C LA S S E S) Book
(from C LA S S E S)

Table

S tatus : St ring
Num ber-person : I nteger
S moker/Non S m oker : B oolean
P lace : XY
Code : I nteger

ChangeS tate()
ChangeS tate()
ChangeS tate()()
ChangeS tate()()

(fr om C LASSES)

Req uest

Hour
Date
S tatus

Init -request ()
I nput -CodConsum pt ion()
O K()
init -request ()
I nit -request ()()
I nit -request ()()
I nit -request ()()
I nitCodConsum pt ion(c ode)()

(fr om C LASSES)

B ooks m anager

(from C LA S S E S)

Req uest-line

Crea te Li ne (code)()
Read(cons um ption)()

(from C LA S S E S)

Consum pt ion

Cod-consum ption
Descript ion
P rice

Check-S toc k()
O K()

(from C LA S S E S)

R ec ipe

A mount
Nam e

(from C LA S S E S)

Alert -M anag er

Check-Ingredient ()
O K()

(from C LA S S E S)

I ng red ien t

Nam e
M inim un-Stoc k
Real-S tock

Check()()

(fro m CL AS S ES)

Figure 2. Class diagram without usability pattern

 : Req uest

 : Waiter

 : Table : Consumption : Req uest- line : A lert -Manager : Feedbacker : Ing redient

Init -r eq ues t ()

Input-C odC onsumption(code)

C hang eState()

C hec k -S toc k (c ode)

OK()

C reateLine(c ode)

C heck-Ing redient()

OK()
F eedback(checking-resource)

Answer("Wait Please Cheking Resources")

Feedback(req uest-acepted)

Answer("Introduce N ext Input")

C hec k ()

OK()

Figure 3. Interaction diagram with usability pattern

16

R estaurant

Name : Str ing
Address : String

(fro m C LA S S E S) Book
(fro m C LA S S E S)

Table

Sta tu s : Str ing
Number-pe rson : I ntege r
Smoke r/ Non Smo ker : Boo le an
Pla ce : XY
Code : I nt eg er

Chan geS ta te()
Chan geS ta te()
Chan geS tate()()
Chan geS tate()()

(fr om C L ASSES)

Books manager
(fro m C LA S S E S)

R eq uest- line

CreateLine(code)()
Read(consumption)()

(fro m C LA S S E S)

Con sump t ion

Cod-consumption
Description
Price

Check-Stock()
O K()

(fro m C LA S S E S)

R ecipe

Amount
Name

(fro m C LA S S E S)

R eq uest

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()

(fr om C L ASSES)

Feedbacker

F eed bac k(che ckin g-res ou rc e)()
F eed bac k(re que st-a cep te d)()

(fr om C L ASSES)

Alert-M anager

Check-Ingredient()
O K()

(fro m C LA S S E S)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()

(fro m C LA S S E S)

Figure 4. Class diagram with usability pattern

From this design and others for the same system and
the other application created by other developers, we have
abstracted a general design solution as shown in Figure 5.

Active Process

Feedbacker

Interface System

Active Process 1

Feedbacker

Interface System

Active Process Active Process n

Figure 5. Generic solution for the Feedbacker
pattern

Likewise, we have applied this inductive process to
the other usability patterns to develop the respective
architectural patterns. For details of this process, see
Techniques and Patterns for Architecture-Level Usability
Improvements [13]. Table 5 summarises the architectural
patterns defined together with their underlying usability
patterns.

Table 5. List of usability and architectural
patterns

Usability Patterns Architectural Pattern
Different languages Language-recogniser
Different access methods Device- recogniser
Alert Alerter
Status Indication Feedbacker
Shortcuts (key and tasks) Shortcutter
Form/field validation Checker
Undo Undoer
Context-sensitive help Sensitive-helper
Standard help Standard helper
Tour Guided helper
Workflow model Filter
History logging Logger
Provision of views Viewer
User profile Profiler

Usability Patterns Architectural Pattern
Cancel Canceler
Multi-tasking Dispatcher
Commands aggregation Aggregator
Action for multiple objects Multi-executer
Reuse information Reuser

3.2.Description of the Architectural Patterns

Since the ultimate aim of this work is to provide a set
of architectural recommendations to improve the usability
of the software systems, these recommendations will be
described in an architectural pattern catalogue. Each
pattern in this catalogue has to be described according to
following elements:
!"Pattern Name - Patterns must have suggestive names

that give an idea of the problem they address and the
solution in a word or two.

!"Problem – This describes when to apply the pattern
and in which context. In the case of architectural
patterns, the problem will refer to a specific usability
pattern to be materialised.

!"Solution – This describes the elements that make up
the architecture, their relationships, responsibilities,
etc. The solution does not describe a definite design,
as a pattern can be seen as a template that can be
applied in many different situations. Particularly, the
solution for a specific pattern will be specified from :
o Graphical representation - A figure that

represents the components of the architecture and
their iterations. Numbered arrows between the
different components will represent the iterations.
The arrows with solid lines specify the data flow,
while the dotted lines represent the control flow
between the components.

o Participants – A description of the components
that take part in the proposed solution and the
iterations (represented by arrows) to determine
how they are to assume their responsibilities.

!"Usability benefits - Description of which usability
aspects (usability properties) can be improved by
including the right pattern.

!"Usability rationale - A reasonable argumentation for
the impact of pattern application on usability, that is,
what usability attributes have been improved, and
which ones may get worse. Initially, this feature will
be completed with information coming from others
authors or from the experience of the consortium
members. However, once the patterns have been
applied to real applications, this field will be filled in
with empirical experience.

!"Consequences - Impact of the pattern on other quality
attributes, like flexibility, portability, maintainability,
etc. As for the above feature, this one will be filled in
with the results of empirical experience.

17

!"Related patterns - Which architectural patterns are
closely related to this one, and what differences there
are.

!"Implementation of the pattern in OO - The
architectural patterns provided are patterns that can be
applied in any development paradigm. However, as
these patterns have been obtained and refined for OO
applications, we will provide guides tending to address
pattern application in this field. Basically, we will
describe the classes deriving from the pattern’s main
components. These guides are illustrated in the
example shown in the following section.

!"Example of the application of the pattern in question.

In the following, we show how the architectural

pattern “Feedbacker” is described:
!"Pattern Name: Feedbacker
!"Problem: The user should be provided with

information pertaining to the current state of the
system.

!"Solution:
o Graphical representation:

Active Process

Feedbacker

Interface System

Active Process 1

Feedbacker

Interface System

Active Process Active Process n

1

3 4

2

o Participants:
!"Active-process i: this module has been

represented more than once, because there
may be several processes running
simultaneously that request feedback (1), and
it will be each active process that sends the
information that it wants to be fed back (1) to
the Feedbacker.

!"Feedbacker: this module is responsible for
receiving the request and data (1) (2) that
indicate the type of feedback requested and
the data to be fed back from each active
process. Additionally, it must know the
recipient of this feedback and will send this
feedback either to another part of the system
(4) and/or to the interface (3) to inform the
user. [10] specifies some guidelines on how
to display this feedback on the user interface,
for example, how often it should be refreshed
or where the particular information should be
placed. These details should be taken into
account during low-level design.

!"Interface: the interface is responsible for
receiving the feedback and displaying it to the
user (3).

!"System: this component is optional and
represents other parts of the system that
should be informed of the feedback (4).

!"Usability benefits: giving an indication of the system’s
status provides feedback to the user about what the
system is currently doing, and what the result of any
action they take will be.

!"Usability rationale: providing feedback gives the user
information about what the system is working on and
whether the application is still processing or has died.
So, this pattern raises satisfaction.

!"Consequences:
o This pattern prevents additional system load by

avoiding retries from users [10].
o This pattern improves system maintainability

because it channels the feedback information
better as compared with when the feedback exists
but is indiscriminately emitted by any other
system module.

!"Related patterns:
!"OO implementation: This architectural pattern will

give rise to a Feedbacker class specialised in
informing the user and the system of what is going on.
This means that all the classes that want to report
something to the system must report to the feedback
manager, Feedbacker, so that this manager can
properly distribute this information either inside or
outside the system.

!"Example: This section would detail one of the
examples used to get this pattern, for example, the
example shown in Figure 4 and Figure 5.

4. Future Work

Now that we have satisfactory solutions for the
architectural patterns, the next step is to apply these to
different designs. The aim is to check the feasibility of the
solution provided by each pattern and derive and refine
recommendations for its application by practitioners. This
task is part two of the procedure for outputting
architectural patterns described in section 3.2.

After generating the architectural patterns we propose
to present a set of practical guides that provide
practitioners with information on:
!"How to select an architectural pattern, for example,

from the usability attributes that are to be enhanced in
each design and the impact on the other quality
attributes.

18

!"How to use an architectural pattern for inclusion in a
given design.
The effort to improve software architecture with

regard to usability presented in this paper is related to
another important part of STATUS, which is the
assessment of this architecture with respect to usability.
This assessment is being conducted in two ways in the
project: a scenario-based architectural assessment and a
simulation-based architectural assessment (two papers
addressing this research have also been submitted to this
ICSE workshop). This evaluation will yield the set of
shortcomings that a given software architecture has with
respect to certain usability attributes or parameters. The
architectural patterns could, therefore, be used to
implement usability improvement solutions for the
detected shortcomings.

However, the idea of architectural patterns can also be
used independently of the architecture evaluation, as they
provide design solutions for certain usability requirements
(any usability properties included in the requirements
specification). The consideration of these usability
requirements at the start of development and later in
design, by means of architectural patterns, is expected to
provide improvements in final system usability.

We have to take into account that the final software
system usability has to be validated and measured when
the system in question has been built and is operational.
Therefore, we will have to wait until these results have
been applied to real projects to get empirical data to
properly verify the as yet intuitive benefits that the use of
architectural patterns can provide for software systems
usability. Half of the STATUS project time has been
allocated to validating the ideas of this paper and the
remainder of the research with the industrial partners. This
validation will kick off in March 2003 and run until June
2004.

5. References
[1]. J Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product Line Approach, Pearson
Education, Addison-Wesley, 2000.

[2] X. Ferré, N. Juristo, H. Windl, L. Constantine. Usability
Basics for Software Developers. IEEE Software, vol 18 (11), p.
22-30

[3] L. L. Constantine, L. A. D. Lockwood. Software for Use: A
Practical Guide to the Models and Methods of Usage-Centered
Design. Addison-Wesley, New York, NY, 1999

[4] J. Nielsen. Usability Engineering. AP Professional, 1993.

[5] B. Shackel. "Usability – context, framework, design and
evaluation". In Human Factors for Informatics Usability. pp 21-
38. Ed. by B. Shackel and S. Richardson. Cambridge University
Press, 1991.

[6] A. Andrés, J. Bosch, A Charalampos, R. Chatley, X.
Ferre, E. Forlmer, N. Juristo, J. Magee, S. Menegos, A.
Moreno. Usability attributes affected by software architecture.
Deliverable 2. STATUS project, June 2002.
Http://www.ls.fi.upm.es/status

[7] Perzel,, D Kane D. (1999) Usability Patterns for
Applications o the World Wide Web. PloP’99

[8] G Cascade. Notes on a Pattern Language for Interactive
Usability, Proceedings of the Computer Human Interface
Conference of the ACM, Atlanta, Georgia, 1997.

[9] J Tidwell. Interaction Design Patterns. Pattern Languages of
Programming 1998, Washington University Technical Report
TR 98-25.

[10] M. Welie, H Troetteberg. Interaction Patterns in User
Interfaces. PloP’00.

[11] E Gamma, R Helm, R Johnson, J Glissades. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison Wesley, 1998.

[12] L Bass, E Bonie, J Kates. Achieving Usability Through
Software Architecture. Technical Report. CMU/SEI-2001-TR-
005, March 2001.

[13] N. Juristo, M. López, A. Moreno, M Sánchez. Techniques
and Patterns for Architecture-Level Usability Improvements.
Deliverable 3.4. STATUS project.
Http://www.ls.fi.upm.es/status.

19

