

INFORMATION SOCIETIES TECHNOLOGY (IST) PROGRAMME

STATUS

"Software Architecture for Usability"

WORKPACKAGE 5. Integrated Development Process with Usability Techniques

DELIVERABLE D.5.2 SPECIFICATION OF THE SOFTWARE PROCESS WITH INTEGRATED
USABILITY TECHNIQUES

Version: 1.0

Submission Date: 25/11/2002

Authors: Xavier Ferré, Natalia Juristo, Ana Moreno

Partners: UPM

Stage:

[] Draft

[] To be reviewed by WP participants

[] Pending of approval by next consortium meeting

[x] Final / Released to CEC

Confidentiality:

[x] Public - for public use

[] IST – for IST programme participants

[] Restricted – for STATUS consortium and PO

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 2 of 2

DOCUMENT CONTROL

Registration of Changes

List of STATUS Related Documents

Document Name Version

D.5.1 Selection of the Software Process and the Usability Techniques for Consideration 1.0
Technical Annex 1.0

Date Version Author of Changes Comments

23/8/02 0.2 Xavier Ferré Document structure is established
16/9/02 0.3 Natalia Juristo, Xavier Ferré Changes after internal UPM review
25/9/02 0.4 Natalia Juristo, Xavier Ferré The document is divided into two

parts, and delta structure is modified.
31/10/02 0.5 Natalia Juristo, Xavier Ferré Part III. Training Strategy added
20/11/02 0.6 Natalia Juristo, Xavier Ferré English language revision
22/11/02 1.0 Xavier Ferré Final version to send to CEC

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 3 of 3

ACRONYMS AND ABBREVIATIONS

Acronyms and Abbreviations Meaning

GOMS Goals, Operations, Methods and Selection Rules
JEM Joint Essential Modelling
SWEBOK SoftWare Engineering Body of Knowledge
WP Work Package

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 4 of 4

TABLE OF CONTENTS

DOCUMENT CONTROL ... 2
ACRONYMS AND ABBREVIATIONS ... 3
TABLE OF CONTENTS ... 4
0 INTRODUCTION .. 6

0.1 Purpose... 6
0.2 Document Structure .. 7

PART I. IMPROVING THE SOFTWARE PROCESS WITH USABILITY ASPECTS............................ 9
I.1 MAPPING USABILITY ACTIVITIES TO SOFTWARE ENGINEERING ACTIVITIES ... 11
I.2 TECHNIQUES FOR ANALYSIS .. 14

I.2.1 Requirements Elicitation.. 14
I.2.2 Requirement Analysis.. 14

I.2.2.1 Develop Product Concept ..14
I.2.2.2 Problem Understanding..15
I.2.2.3 Modelling the Context of Use ...16

I.2.3 Requirement Specification ... 17
I.2.4 Requirements Validation.. 18

I.2.4.1 Requirements Reviews ...18
I.2.4.2 Prototyping ..18
I.2.4.3 Model Validation ...18
I.2.4.4 Acceptance Tests ...18

I.3 TECHNIQUES FOR DESIGN .. 19
I.3.1 Techniques for Interaction Design.. 19

I.3.1.1 Detailed Interaction Design...19
I.3.1.2 User Interface Design ...20

I.3.2 Help Design... 20
I.4 TECHNIQUES FOR EVALUATION.. 21

I.4.1 Expert Evaluation... 21
I.4.2 Usability Testing... 21

I.4.2.1 Thinking Aloud ..22
I.4.2.2 Post-Test Feedback..22
I.4.2.3 Usability Specifications Measurement...22
I.4.2.4 Field Usability Testing ...22
I.4.2.5 Laboratory Usability Testing ..23

I.4.3 Follow-up Studies of Installed Systems.. 23
I.5 WHEN TO INCORPORATE USABILITY INTO THE DEVELOPMENT PROCESS .. 25

I.5.1 Time Constraints for Usability Technique Application .. 25
I.5.1.1 Techniques for the Elaboration Stage...25
I.5.1.2 Techniques for Iterative Cycles (i)..26
I.5.1.3 Techniques for the Evolution Stage ..27

I.5.2 Time Constraints for Usability Activities ... 27
I.5.2.1 Requirements Activities...29
I.5.2.2 Design Activities..30
I.5.2.3 Evaluation Activities...30

I.6 DEFINITION OF PROCESS INCREMENTS ... 31
I.7 REFERENCES FOR PART I.. 34

PART II. DOCUMENTATION FOR DEVELOPERS .. 35
II.1 CONDITIONS FOR IMPROVING YOUR DEVELOPMENT PROCESS WITH USABILITY ASPECTS................................. 37
II.2 INCREMENTS FOR YOUR DEVELOPMENT PROCESS .. 39

II.2.1 Do You Have a Light Software Development Process?.. 40
II.2.1.1 What Does Light Development Process Mean? ..40
II.2.1.2 Delta L1. Analysis ...41
II.2.1.3 Delta L2. Design ..42
II.2.1.4 Delta L3. Evaluation ...43

II.2.2 Do You Have an Elaborate Software Development Process?... 44
II.2.2.1 What Does Elaborate Development Process Mean?...44
II.2.2.2 Delta E1: Early Analysis..47
II.2.2.3 Delta E2: Usability Specifications...48
II.2.2.4 Delta E3: Early Usability Evaluation..49
II.2.2.5 Delta E4: Regular Analysis ...50
II.2.2.6 Delta E5: Interaction Design...51
II.2.2.7 Delta E6: Architectural Design ..52
II.2.2.8 Delta E7: Regular Usability Evaluation...53
II.2.2.9 Delta E8: Usability Evaluation of Installed Systems..54

II.3 CATALOGUE OF USABILITY TECHNIQUES ... 55
II.3.1 Ethnographic Observation... 56
II.3.2 Contextual Inquiry.. 57
II.3.3 Structured User Role Model... 59
II.3.4 JEM (Joint Essential Modelling) .. 61
II.3.5 Operational Modelling.. 62
II.3.6 Post-It Notes .. 63

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 5 of 5

II.3.7 Visual Brainstorming .. 64
II.3.8 Competitive Analysis... 65
II.3.9 Scenarios... 66
II.3.10 Use Cases.. 68
II.3.11 Paper and Chauffeured Prototypes... 70
II.3.12 Usability Specifications... 72
II.3.13 Cognitive Walkthrough.. 74
II.3.14 Pluralistic Walkthrough... 76
II.3.15 GOMS (Goals, Operators, Methods and Selection Rules).. 77
II.3.16 Requirements Animation and Wizard of Oz Prototypes.. 79
II.3.17 Impact Analysis .. 80
II.3.18 Screen Pictures... 81
II.3.19 Menu-Selection and Dialog Box Trees .. 83
II.3.20 Context Navigation Maps .. 85
II.3.21 Help Design... 87
II.3.22 Heuristic Evaluation ... 89
II.3.23 Usability Inspections... 90
II.3.24 Thinking Aloud... 91
II.3.25 Performance Measurement / Laboratory Usability Testing.. 93
II.3.26 Questionnaires and Surveys... 95
II.3.27 Interviews .. 97
II.3.28 Direct Observation and Video/Audio Recording... 98
II.3.29 Focus Groups... 99
II.3.30 Logging Actual Use... 100
II.3.31 Online User Feedback Facilities .. 101

PART III. TRAINING COURSE IN USABILITY .. 103
III.1 COURSE CONTENTS.. 105

III.1.1Usability Awareness.. 105
III.1.2Basic Usability Concepts... 105
III.1.3Analysing the User and User Context.. 106
III.1.4Interaction Design .. 106
III.1.5Architecting Software for Usability... 107
III.1.6Usability Evaluation ... 107

III.2 COURSE DURATION ... 108
III.3 COURSE RESOURCES.. 109
III.4 REFERENCES FOR PART III ... 110

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 6 of 6

0 INTRODUCTION

0.1 Purpose

This document presents the final results of Work Package 5: Integrated Development Process with
Usability Techniques. It complements the findings of the project on architectural-related issues with
other aspects that need to be incorporated into the development process for achieving a sufficient
usability level in the software final product.

As specified in the Technical Annex, the architectural focus supports, but cannot guarantee, usability,
since not all usability attributes and factors can be promoted by the software architecture. To
complement the software architecture-related findings, a software development process with
integrated usability techniques is to be produced within the scope of the project.

When the project was conceived, the planned approach was to define a complete development process
that the development organization should follow to achieve a good usability level for the software
product. After some discussion with project partners, especially industrial partners, a new approach
was devised, which is more flexible and can lead to a more extensive use of the results of WP5. The
new approach involves structuring the usability techniques to be integrated in packages that can be
incorporated into an existing development process. Nevertheless, there are still some requirements that
must be met by the development process for this integration to be feasible. The requirements for a
user-centred development process were described in section 2 of D.5.1, and they are: user
involvement, adequate understanding of user and task requirements and iterative process. It should be
noted that the first two conditions are eased by the packages proposed in WP 5. The third, iterative
process, however, is a condition that the development style followed by the organisation that intends
to use our results must meet. Having established the minimum requirements for a development process
to be a candidate for the inclusion of usability aspects in D.5.1, the usability techniques and activities
were studied. Usability activities were then surveyed to establish a preliminary set of usability
activities to be considered for inclusion in the packages. Likewise, usability techniques were surveyed,
and a preliminary set of usability techniques was established. These results were presented in D.5.1.

This document follows upon the work in D.5.1, going from the selection in D.5.1 to the definition of
the packages to be incorporated into the development process. First of all, we need to map usability
activities to software engineering development activities so that developers can see where these new
activities fit into their picture of the development process. For the purpose of this mapping, some of
the activities described in D.5.1 had to be reconsidered. These modifications led to some activities
being rearranged (for instance, they have moved from being considered as design activities to be
considered as analysis activities), and some techniques have been upgraded to activities. Having fitted
usability activities into software engineering activities, we have mapped usability techniques to
activities.

If the development process in place at the organisation is iterative, albeit elementary, that is, it has four
basic milestones: analysis, design, implementation and evaluation, the match between techniques and
activities can provide help enough to developers about when to incorporate usability aspects into their
development, as the techniques are classified according to precisely these four development times.
However, more and more organisations using iterative development have sophisticated processes in
the style of the Unified Process [Jacobson, 99], where the iteration does not take place on the basic
four major milestones (analysis, design, implementation and evaluation) but on development stages
where one type of activities carry more weight than others (for example, there is a bigger workflow for
analysis than for the other activities in the elaboration stage). Therefore, we thought it necessary to
further refine the packages we propose so that they also fit into these process types. For this purpose,
we had to establish the development stages that make up an elaborate iterative process and relate these
to the proposed packages.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 7 of 7

Having defined the packages that set out the usability aspects to be incorporated into the iterative
development process, the objective of WP5 could be considered as achieved and the document
concluded. However, we realised that it took a lot of discussion to arrive at the package definition, all
of which is somewhat tiresome for average developers, who just want us to provide the solution they
need. So, we have composed a second part of the document, consisting of documentation for
developers, which contains the information developers need to apply our results. Therefore, part II
presents the guidelines for a developer to fit usability techniques into an existing software
development process. It compiles the results of WP 5, packaged for use by software developers.

And we have gone one step further. Technology transfer is not a simple matter, and we are aware that
it is not enough to provide developers with a document for them to change the way they do things.
‘Care about usability’ is a change to the philosophy and viewpoint to which developers are
accustomed. So, to help with the technology transfer not only of WP5 but also of all the project
results, we have designed a draft training strategy that establishes what type of course developers
should attend to be trained in the results of the STATUS project, and incorporate the usability aspects
considered in the packages (which cover both traditional usability techniques and activities and the
results of WP3) into their modus operandi. Additionally, the training plan provides a project output
that can be sold together with the deltas (WP5) and the architectural design that supports usability
(WP3).

In short, the purpose of this document is to relate and organize the findings presented in D.5.1, so that
they are linked to software process variables, such as type of activity and development time and then
package them into delta increments that are easily manageable for software developers. An additional
objective of this document is to provide a training strategy to ensure that developers are able to use the
packages.

0.2 Document Structure

The document has been divided into three parts. Part I contains the theoretical discussion on the
decisions taken for the assignment of usability techniques to delta increments. Part II has a practical
focus, compiling the results of Part I into a guideline for developers, which includes the necessary
information for the application of the results. Part III proposes a training strategy to be followed by a
software development organization interested in using WP5 results.

Part I is divided into the following sections:

• Section 1 details the mapping between the usability activities described in deliverable D.5.1 and
the general development activities into which we want to integrate usability techniques, so as to
link the work in D.5.1 to the modified structure followed in this document.

• Sections 2 to 4 classify the usability techniques analysed in deliverable D.5.1 by development
activities (analysis, design and evaluation) and their subactivities.

• Section 5 describes the time constraints that both usability techniques and activities have to meet
for them to be useful in the development process.

• Section 6 presents the structure for the delta increments to be incorporated into a software
development process.

• Section 7 details the references used in this part.

Part II contains the following sections:

• Section 1 details the conditions to be met by the existing development process in order to allow for
the inclusion of usability techniques (as described in D.5.1).

• Section 2 presents the delta increments that package the usability techniques in sets of related
usability techniques to be applied close together in terms of development time. There are two

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 8 of 8

possibilities within this section: delta increments for a light software development process in
section 2.1, and delta increments for an elaborate software development process in section 2.2.

• Finally, section 3 is a catalogue of techniques, designed as a guide to their application and a
pointer to further information.

The following sections form part III:

• Section 1 outlines the training course, detailing the course contents.

• Section 2 establishes the duration for the course subjects.

• Section 3 describes the resources needed for the course.

• Section 4 lists the references consulted for this part.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 9 of 9

Part I. IMPROVING THE SOFTWARE PROCESS WITH
USABILITY ASPECTS

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 10 of 10

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 11 of 11

I.1 MAPPING USABILITY ACTIVITIES TO SOFTWARE ENGINEERING ACTIVITIES

In D.5.1, we studied the established usability activities in a usability-centred software development
process and selected certain activities from the usability literature. We then took the same approach to
review and study usability techniques. Now we need to incorporate these activities and techniques into
the traditional software engineering development process. We propose to incorporate the activities and
techniques by defining some increments that developers can plug into their development process.

The set of activities defined in D.5.1. is based on the terminology used in the usability field, with
which most software developers are not familiar. Therefore, we do need to translate the terms to a
generally accepted software engineering terminology, so we can tell the developers where to plug in
the increments. For this purpose, we have mapped the usability activities from D.5.1 to the
development activities we will consider in this document, as shown in Figure I.1.1. The development
activities we have considered come from different sources:

• Since usability activities are intertwined with other development activities in analysis, they can be
directly mapped to the different kinds of software engineering analysis efforts. We have followed
the SWEBOK (Software Engineering Body of Knowledge) [IEEE, 01] for analysis activities. We
have taken the SWEBOK requirements activities and have selected those that are relevant for
our purpose, because there are usability techniques that need to be introduced: Requirements
Elicitation, Requirement Analysis, Requirement Specification and Requirements Validation.

• The activities of Develop Product Concept and Prototyping have now been allocated as
analysis techniques, while they were previously considered as design activities. Prototyping is
considered in software engineering as a technique that can be used in Requirements Elicitation
[IEEE, 01]. As for Develop the Product Concept, it is a design activity, but the kind of design that
is known as innovation design, where the design team is trying to give form to an abstract concept
that defines the system that is going to be built. This concept is usually elicited from users or other
stakeholders, and it is fundamental for the success of the requirements engineering efforts.
Because of its close connection with requirements activities, we have now considered it to be an
analysis activity.

• For design and evaluation we have created some new activities in order to make room for
usability activities. We have followed this approach for design since usability-related design
activities are quite independent from general design activities. More specifically, we have created
an activity called Interaction Design to pack the usability activities related to this kind of design.
Interaction Design has been further decomposed into Detailed Interaction Design and User
Interface Design, for the sake of clarity. Regarding evaluation, we have created another new
activity, which is Usability Evaluation, since it groups usability techniques that are independent
from other general evaluation activities.

• Some groups of usability techniques have been upgraded to usability activities, since they
represent a kind of usability activity to be performed. We have taken this approach for the three
kinds of activities into which Usability Evaluation is decomposed: Expert Evaluation, Usability
Testing and Follow-Up Studies of Installed Systems. Therefore, the Usability Evaluation activity
has been decomposed into these three big families of usability evaluation activities. However,
walkthroughs can be used during requirements validation, so they have been highlighted in
Usability Evaluation activities (on the left in Figure I.1.1) to show this link with analysis.
Additionally, we identified in D.5.1 that help needs to be designed, but it seemed to be more a
technique than an activity at that time. However, we now recommend approaching Help Design as
a task to be accomplished during design. The activities that did not exist in the usability activities
decomposition in deliverable D.5.1 and which we have identified as proper usability activities at
this stage are highlighted in italics in Figure I.1.1.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 12 of 12

Analysis Activities

Specification of the
Context of Use

User Analysis

Task Analysis

Usability Specifications

Design Activities

Develop Product Concept

Prototyping

Interaction Design

Evaluation Activities

Usability Evaluation

Analysis

Requirements Elicitation

Requirement Specification

Requirements Validation

Requirement Analysis

Develop Product Concept

Problem Understanding

Modelling the Context of Use

Design
Interaction Design

Detailed Interaction Design

User Interface Design

Help Design

Evaluation
Usability Evaluation

Expert Evaluation

Usability Testing

Follow-Up Studies
of Installed Systems

Walkthroughs

USABILITY ACTIVITIESUSABILITY ACTIVITIES

(D.5.1)(D.5.1)

DEVELOPMENT ACTIVITIES DEVELOPMENT ACTIVITIES
AFFECTED AFFECTED BY BY USABILITYUSABILITY

(D.5.2)(D.5.2)

Figure I.1.1 Mapping between Usability Activities and Software Engineering Activities

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 13 of 13

The other main issue tackled in D.5.1 was usability techniques. The following three sections study
their location in relation to the development process: techniques for analysis, design and evaluation.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 14 of 14

I.2 TECHNIQUES FOR ANALYSIS

To allocate analysis-related techniques, they will be grouped by the requirements activities established
in the SWEBOK [IEEE, 2001]: Requirements Elicitation, Requirement Analysis, Requirement
Specification, and Requirement Validation.

I.2.1 Requirements Elicitation

Requirements elicitation is a hard task to perform, and it is crucial for the success of the whole project.
The techniques recommended in the usability field for eliciting information about the user may help in
the performance of requirements elicitation as a source of inspiration for the requirements engineering
team, providing additional sources of information. These techniques are as follows:

• Ethnographic Observation: This technique is the most genuine elicitation technique of all
the ones considered in this section. It is a method used in anthropology, which is widely
employed for usability purposes. Since interface users form a unique culture, ethnographic
methods for observing them at the workplace are likely to become increasingly important. As
ethnographers, developers need to gain insight into individual behaviour and the
organisational context. The information gathered about the users’ culture is a source for
requirements.

• Contextual Inquiry: In contextual inquiry, users and developers participate to identify and
understand usability problems within the normal working environment of the user. It is a form
of elicitation that is usually performed for evaluation purposes. Nevertheless, it can be also
used to find problems with previous versions of the software or with competitor products, so
that new requirements that address these issues can be identified.

I.2.2 Requirement Analysis

The requirements obtained as a result of requirements elicitation are classified, and the software
boundaries are delimited. We distinguish three kinds of activities in Requirements Analysis: Develop
Product Concept, Problem Understanding and Modelling.

I.2.2.1 Develop Product Concept

Before describing the functionalities that the system must provide in detail, there needs to be
agreement between all the stakeholders about the kind of system to be developed. The set of
techniques described below help the requirements analyst to envision the product and to communicate
the concept of the product to the relevant stakeholders to validate the correctness of the chosen
approach.

• Visual Brainstorming: This is a sketching technique employed for exploring alternative
product concepts. After producing initial sketches, the best ideas can be further developed by
constructing more detailed screen mock-ups representing the concept, which can be evaluated
with the project stakeholders. This can then be followed by developing scenarios, software or
video prototypes.

• Competitive Analysis: It is a non-usability-specific technique for analysing existing products
to get inspiration about the requirements for the system to be built. But analysing competing
products from a heuristic usability point of view, or even performing some sort of empirical
user tests, can help the requirements engineering team to identify what is most needed and
what is not needed at all. Even if an analysed product does not belong to the target domain, it
can serve as a good starting-point for establishing similarities with the system that is going to
be developed. Widely known commercial products serve as good references for establishing

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 15 of 15

the product concept, and a competitive analysis of their benefits from a usability point of view
can help to focus the discussion and the decision-making process.

• Scenarios: For systems that will suffer substantial changes or when a new application is
planned, there are usually no reliable data on the range and distribution of task frequencies and
sequences. An early and easy way to describe a new system is to write scenarios of usage and
then, if possible, to act them out as a form of theatre. This can lead to the identification of
requirements that would otherwise remain uncovered and to the definition of the kind of
problems the system will help to solve. Scenarios can be used to get information from users
and/or domain experts or to approach system usage for the first time. Scenarios should be used
with the special flavour with which usability authors describe it, even though it is a technique
already used as part of requirements engineering.

• Post-It Notes: Because of their versatility and flexibility, post-it notes can serve as a basis for
defining the system concept in a collaborative procedure in which the customer and/or user
representatives take part. The information gathered can be displayed in a post-it placeholder.
All the participants in the meeting can look at the post-it placeholder to find out what has been
discovered so far and explore more knowledgeably what additional information is needed.
Possible changes can be shown by moving issues around from one category to another in the
post-it structure to enhance the discussion. This technique can help in the development of the
product concept by providing a tool for group discussion whose use requires no technical
knowledge.

I.2.2.2 Problem Understanding

The problem needs to be thoroughly analysed to come up with a definition of what system will be
developed to solve the problem. An important part of problem understanding is establishing the
system boundaries, and the modelling of the interaction between the system and the environment.
Usability is directly affected by the definition of this interaction, in particular, system-user interaction.
Therefore, we consider that the usage of usability techniques is especially important for this kind of
activity.

For the definition of the system boundaries, and the interaction with the environment, we propose the
use of the following techniques:

• Essential Use Cases: As conceived, use cases are a user-centred technique, since they
describe the system-user interaction from the user point of view. They are used as a
complement in Requirements Engineering, usually for object-oriented development, and they
are transformed into system-oriented artefacts as development moves forward. However, we
recommend adopting the kind of task modelling that is employed in usability as a
requirements analysis activity, which is truly user-centred. We want to use the technique
keeping the user-centeredness. For this purpose, we propose using the specific distinction,
made by Constantine and Lockwood [Constantine, 99], between essential use cases and
detailed use cases. Essential use cases are defined at a higher level of abstraction in terms of
user intentions and system responsibilities, keeping a technology-free and implementation-
independent focus. They can be used to work with use cases at the beginning of the
development process, without having to make too many decisions on the details of the user
interface. Note that essential refers to the abstract focus used for the use case description and it
is applicable to all use cases, it does not refer to a particular set of especially important use
cases.

• Cognitive Task Analysis (GOMS): In the design of the interaction between the system and
the user, apart from the physical steps that the user will take, such as clicking on a button or
entering data, there are some cognitive or mental activities that take place in the user’s mind.
Cognitive Task Analysis deals with modelling the user’s internal representation and
processing that occurs for the purpose of designing tasks that can be undertaken more

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 16 of 16

effectively by humans. With GOMS (Goals, Operations, Methods and Selection Rules), we
can take into consideration cognitive issues that are raised by the specific design of the task at
hand, combined with the physical actions. Only the two more abstract levels would need to be
explored for Problem Understanding, that is, goals and operations. Methods and selection
rules can be explored to complement design activities (see section I.3.1.1 below). According
to Preece et al. [Preece, 94]: “GOMS has a number of problems, both with the ease of using
the method itself and on the results it produces (see Reisner, 1987) [...] the method requires a
lot of time, skill and effort to use”. Despite these negative remarks, Preece et al. also note that
a number of authors find it useful. We propose the usage of a GOMS model because it is the
best option for cognitive task analysis. Although it can be difficult to apply, there are no easier
alternatives that provide the possibility of applying predictive metrics.

• Prototypes for Problem Understanding: One big problem during analysis is the possibility
of pursuing the wrong system. System models are alien to a non-technical audience and can
lead to communication problems when shown to stakeholders, but prototypes are
understandable by customers or users as a draft of the future system. They can help in face of
a situation such as “I cannot explain what I want, but I will recognize when I see it”.
Prototyping is the form of modelling that can be more easily transmitted to the project
stakeholders when they include people not familiar with technical models. Even though
prototyping is not a usability-specific technique, it is used extensively in Usability
Engineering. We will focus on non-functioning prototypes, as they are the techniques with
which software developers are less familiar. In the same direction, requirements animation is
fairly common in traditional software development, but we recommend using it with a
usability focus. The different kinds of non-functioning prototypes plus requirements animation
are described below:

− Paper Prototypes: They include paper prototypes, computer drawings prepared with
graphics software, and non-functioning mock-ups created using programming tools.
This kind of prototypes overcome the problem with customers who think that when
they see a functioning prototype most of the system has already been built. With paper
prototypes, customers or users are able to envision what is being proposed, but they
get the idea that a lot of work still has to be done.

− Chauffeured Prototypes: The user watches while another person, usually a member
of the development team, “drives” the system. The system can be just paper
prototypes that are given a dynamic dimension with the explanations and changes
performed by the “chauffeur” of the session.

− Wizard of Oz: The user interacts with a screen, but instead of a piece of software
responding to the user actions, a developer is sitting at another screen answering the
user requests. The user is unaware of the fact that the answers are being given by a
person instead of a software system. This kind of prototyping session is halfway
between paper prototypes and requirements animation, as the user gets the feeling of a
working system, even if there is almost no implementation behind it.

− Requirements Animation: Possible requirements are demonstrated in a prototype,
which can then be assessed by users. These prototypes are also known as mock-ups,
and they involve some limited implementation of system functionality.

I.2.2.3 Modelling the Context of Use

The context of use is an important issue for understanding the problem before making any design-
related decision that could be based on wrong premises. The assumption is that usability issues are an
important part of the problem, and the techniques described in this section help the developers to
model the details of the environment that are important from a usability point of view and the tasks the
user needs to perform.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 17 of 17

The techniques for modelling the context of use are:

• Structured User Role Model: A role model is a list of the user roles to be supported by a
system, which describes each role in terms of the needs, interests, expectations, behaviours
and responsibilities that characterise and distinguish that user role. User roles and their
relationships are represented in a user role map. These models can be difficult to define,
especially for the inexperienced analyst and for complex systems. The structured user role
model offers a systematic way of capturing as much relevant information as possible about the
relationships of users to the planned system. Unlike other approaches to user modelling, which
are somewhat vague, we prefer this technique to model the user because it provides the kind
of information needed, albeit with a more defined structure that can help non-usability experts
to work with user information. This technique is mostly concerned with requirement analysis,
but it is also relevant for requirements elicitation, as it can help to identify the right sources for
the elicitation activities.

• Operational Modelling: The operational model is a collection of various operational and
contextual influences that can play a role in usability. These collections are called operational
profiles. Operational factors that can affect the system to be developed include: aspects of the
physical work environment, features and limitations of operating equipment and interface
devices, and general and specific operational risk factors. Operational modelling gathers the
kind of information that describes the user environment in a broad sense, so it can be a
complement to a traditional conceptual model. This model extends the structured user role
model.

• Use Case Diagram - Detailed Use Cases: Task modelling is a core usability activity. While
essential use cases describe user intentions and what the system may offer in response to user
goals, detailed use cases address this interaction in more detail, specifying the data exchange
that will take place. Use cases (both essential and detailed) are described in a structured
manner, where the narrative is divided into two parts: the user action model and the system
response model. Additionally, a Use Case diagram is created to represent the overall usage
scheme. Detailed Use Cases can be the basis for prototypes to be built and shown to the user
for feedback.

• Joint Essential Modelling (JEM): JEM is a structured, facilitated, collaborative process for
involving users along with developers in modelling activities. The main models for which this
process can be applied are the structured user role model and the use cases (including the use
case diagram and a use case prioritisation). JEM is based on JAD (Joint Application Design),
a traditional software engineering technique, modified to adopt a usability focus. Therefore,
JEM (Joint Essential Modelling) is not related to a particular model, but to a process for
incorporating the user into the activity of modelling the context of use.

I.2.3 Requirement Specification

Requirements specification is concerned with the structure, quality and verifiability of requirements.
Usability requirements, in a verifiable form, can be added to the software requirements in the form of
usability specifications. Usability specifications are quantitative usability goals, which are used as a
guide for ascertaining when the usability of a software system is good enough. They can be based on
objective or subjective measures. Objective measures are commonly associated with a specific
benchmark task, while subjective measures are commonly associated with a user questionnaire.

The inclusion of usability specifications in the requirements specification introduces usability as yet
another aspect of the system that can be established quantitatively and in advance, and detailed in the
requirements specification. By means of these usability specifications, developers can focus on the
level of usability required, and then iteratively design the system to meet the usability goals.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 18 of 18

I.2.4 Requirements Validation

Four sub-areas form the knowledge area of requirements validation: requirements reviews,
prototyping, model validation and acceptance tests.

I.2.4.1 Requirements Reviews

The specification of the interaction between the system and the users described in the essential use
cases can be reviewed by means of heuristic usability evaluation, which will be described in section
I.4.1.

I.2.4.2 Prototyping

The prototyping techniques that can be adopted for usability have already been described above in
section I.2.2.2. These techniques can be used not only for understanding but also for validation
purposes.

I.2.4.3 Model Validation

As usability practice involves a combination of user participation and iterative development, it
includes techniques for validating preliminary models. In particular, there is a technique that can be
used to validate the model of interaction between the system and the user: walkthroughs.
Walkthroughs involve constructing carefully defined tasks from a system specification or screen
mock-up, so all they require is some sort of prototype or definition of the system-user interaction
(essential use cases, for example). There are the following two variants of walkthroughs:

• Cognitive Walkthrough: This is a manual simulation of the cognitive activities of the user to
identify potential usability problems.

• Pluralistic Walkthrough: Heuristic evaluation of the usability of the product is performed by
representative users, product developers, and usability specialists.

I.2.4.4 Acceptance Tests

The set of usability specifications defined as usability goals for the system to be developed are defined
quantitatively, so that they can be checked for compliance by means of usability testing with
representative users. Usability testing is described in section I.4.2.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 19 of 19

I.3 TECHNIQUES FOR DESIGN

Following the same procedure as in section I.2 for analysis activities, we have looked up the
classification of design activities in the SWEBOK [IEEE, 2001]. But the approach taken by the
SWEBOK does not fit in with our approach, since it explicitly says that user interface design is a part
of software development that will not be dealt with. SWEBOK is centred on the internal part of the
system exclusively, and it is hard to introduce usability techniques at this level of design.

However, we do not need a decomposition of design development activities in order to incorporate
usability techniques(as we do for analysis), since the usability activity at design time is very well
delimited, and we can define a new activity called Interaction Design, which encapsulates the usability
techniques. Therefore, we will consider Interaction Design as part of design activities in the
development process. Interaction Design needs to be coordinated with the other design activities,
concerned with the internal structure of the software system. In particular, interaction design should be
made to accommodate the definition of the interaction between the system and the environment that
has been obtained in requirements analysis. And the internal structure of the system should be
designed to provide a good implementation of this interaction with the environment.

The online help subsystem must be carefully designed, and this design activity is also well delimited,
so we will consider a separate activity that deals with this issue: Help Design.

I.3.1 Techniques for Interaction Design

We can make a distinction between the design of the detailed interaction of the system with the
environment, and the design of the user interface elements and their behaviour. The former is called
Detailed Interaction Design, and the latter User Interface Design. Impact Analysis can be applied to
both and, generally, to any design decision that could affect the usability of the final product.

• Impact Analysis: A great many decisions must be taken in design, and this can help to
roughly evaluate the suitability of different design alternatives that solve identified usability
issues. This technique can be augmented with the use of other quality attributes apart from
usability, so it can help the design team to make decisions. As it is helpful to make some
implicit knowledge explicit for design, it is a good technique for interdisciplinary design
teams, especially when there is user participation.

I.3.1.1 Detailed Interaction Design

The top-level decisions on interaction must have been taken in requirements activities. Detailed
Interaction Design specifies the concrete interaction that will take place: the exchange of information
between the system and the user(s). The result of this activity is complemented with the result of User
Interface Design, where the details of the elements of the user interface are established.

• Detailed Use Cases: As part of requirements activities a set of Detailed Use Cases are
produced. These use cases are refined during this step to include the kind of controls to be
used for the interaction. The controls are defined abstractly, because the exact control
appearance is defined in User Interface Design.

• GOMS (Goals, Operations, Methods and Selection Rules): Once we have the detailed
interaction that is going to take place between the user and the system, we can calculate the
cognitive demands placed on the user and apply predictive metrics on the final usability of the
product. GOMS is a cognitive task analysis method that has associated predictive metrics, so it
can serve this purpose. Goals and operations should have been defined as part of analysis
activities, so the model would be refined by adding methods and selection rules. Then
predictive metrics can be applied to get an idea of the usability improvements that a specific
design decision may provide as compared with other alternatives.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 20 of 20

I.3.1.2 User Interface Design

User Interface Design activities define the user interface, the elements that the user will see, and the
way they behave when the user interacts with them.

• Screen Pictures: This technique involves sketching some initial pictures of the screen,
including the application/interaction objects, menus, buttons, and icons. The functions are
labelled, and notes can be added about the behaviour of objects where appropriate.

• Menu-selection and dialog box trees: This technique is used for the design of menu-based
user interfaces. Dialog box trees represent the tree structure of menus offering a
comprehensive view of the whole system. It allows for consistency and completeness
checking.

• Context Navigation Maps: Context navigation maps allow for a more precise specification of
the transitions that take place between interaction spaces in the course of a use case. Several of
these interaction spaces or interaction contexts can be activated when enacting a use case.
Their relationships and how to navigate from one to another are represented in a context
navigation map.

I.3.2 Help Design

Help facilities are a subsystem that needs to be designed for the software product. The technique of
Help Design by Use Cases provides a structure for the help facilities that is based on the usability
premises behind use cases.

• Help Design by Use Cases: Each use case becomes an entry in the help file. The use cases
reflect user goals and they are expressed in the user’s language. It is reasonable to think that a
help subsystem built around the user’s goals and language will be more effective than a
system-oriented one.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 21 of 21

I.4 TECHNIQUES FOR EVALUATION

Usability evaluation is the most widely explored subfield in usability. The biggest trend in usability
has focused on usability evaluation, so there are several usability techniques for each kind of
evaluation, each one suited for projects or products with specific characteristics.

The three kinds of usability evaluation activities are:

• Expert Evaluation

• Usability Testing

• Follow-up Studies of Installed Systems

I.4.1 Expert Evaluation

Usability Engineering proposes Expert Evaluation as an alternative for Usability Testing in some
iterative cycles, but never as the only source for usability evaluation. Depending on the formality of
the evaluation, there are two main groups of expert evaluation techniques: Heuristic Evaluation, less
formal; and Inspections, with a greater degree of formality.

• Heuristic Evaluation: Heuristic evaluation is done by looking at a system and trying to come
up with an opinion about what is good and bad about its usability. It is better to have several
evaluators evaluate the same design independently, as they discover far more errors than a
single evaluator. The ideal thing is to have usability specialists perform the heuristic
evaluation. The evaluator makes a critique founded both on his or her interaction design
experience and on generally accepted usability guidelines.

• Inspections: Inspections refer to any of several forms of more formal, systematic processes
for locating usability problems than heuristic evaluations. It is an examination of a finished
product, a design, or a prototype from the standpoint of its ultimate usability by intended
users. Usability inspections employ developers and/or usability specialists, sometimes in
conjunction with users, to identify usability defects. When performed by different
stakeholders in a collaborative effort, it is called Collaborative Usability Inspection. In this
case, the review process is a team effort that includes software developers, end users,
application or domain experts and usability specialists, collaborating to perform a thorough
and efficient inspection. There are two variants of inspection, which have a specific focus:

o Consistency Inspections: In consistency inspections, the goal is to identify
inconsistencies across interaction contexts and their contents. The evaluators check for
consistency of terminology, colour, layout, input and output formats, and so on. When
the product belongs to a family of products, teams of designers, at least one from each
project, meet to inspect the usability of the different products of the family.

o Conformance Inspections: In conformance inspections, the goal is to identify
departures from the governing user interface standards or style guidelines.

I.4.2 Usability Testing

Usability testing implies having some sort of functioning system (it can be either the finished product
or a prototype), which is presented to a set of representative users who are asked to perform some
usual tasks. The main usability testing techniques can be divided in four groups: the variants of
thinking aloud, post-test feedback, usability specifications measurement and field usability testing.
Finally, there are some techniques associated with usability laboratories that will be described as
optional techniques to be employed only when the software development organization has the
resources to set up such facilities.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 22 of 22

I.4.2.1 Thinking Aloud

Thinking aloud is a technique that can be employed in any usability test. It involves having a test
subject use the system while continuously thinking out loud. Its focus is on qualitative data and not on
performance measures. The idea is to get the user’s impression while using the system to avoid later
rationalisations. The aim of this kind of testing is to detect usability problems, along with the real
causes. The following techniques are variants of the basic think-aloud protocol:

• Constructive Interaction: It involves having two test users use a system together. It is also
called Codiscovery Learning. It aims to overcome the problem of shy test participants who do
not verbalise easily. It is based on the fact that people are used to verbalising when they are
trying to solve a problem in a collaborative effort.

• Retrospective Testing: The usability testing session is recorded on videotape and the user is
requested to review the recording. User comments while reviewing the tape are sometimes
more extensive than comments while performing the task in the test. The reviewer can stop the
tape and ask the user questions at any time, without fear of interfering with the test, which has
essentially been completed already. This variant can be useful when the usability testing
involves some kind of performance measurement that could be distorted by dialogue with the
reviewer.

• Critical Incident Taking: This variant implies recording both negative incidents (signs of
frustration, either with remarks or actions) and positive incidents (satisfaction or closure
expressions). Negative incidents help to identify the more important usability problems, while
positive incidents help to identify metaphors or details to be used more thoroughly in the user
interface because of their success

• Coaching Method: The reviewer (or “coach”) steers the user in the right direction while using
the system. The user can ask the experimenter questions, and the questions may show up
usability problems that would remain uncovered otherwise. The experimenter will answer to
the best of his or her ability.

I.4.2.2 Post-Test Feedback

As a complementary source of information, we can give out some questionnaires for the test
participant to fill in to get additional information on the problems on which the test is focused. This
technique is called Post-Test Feedback, and it can also take the form of a debriefing or interview with
each test participant, where they are typically thanked for their participation and reassured about their
performance.

I.4.2.3 Usability Specifications Measurement

The usability specifications document specifies quantitative usability goals, as defined above in
section I.2.3. Usability tests can be performed in a prototype to measure how far the usability of the
product is from the levels established in the specifications document. Performance measurement is as
follows: the test participant is asked to perform the typical tasks defined in the requirements
specification, and both the number of errors and the performance time are measured for each task. An
alternative name for this kind of testing is Benchmark Tasks.

The product is considered to be finished from a usability point of view when the performance
measures attain the levels specified in the specifications document.

I.4.2.4 Field Usability Testing

Field testing takes the usability tests into the workplace. It is performed at the user organisation,
although not necessarily at the user workstation and office. There is a variant called Direct

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 23 of 23

Observation, where the reviewer observes the user working with the product or a prototype, but
without interfering with the user’s work. The observer must work unobtrusively.

There are three other variants of Field Usability Testing that we consider to be optional:

• Video Recording: Video logging is an alternative to direct observation, which is much
preferred because it provides a permanent record to which you can return as often as necessary
later. Analysing video data can be very time consuming. A ratio of 5:1 is often cited: one hour
of videotape could take five hours or even a day or more to analyse. For this reason we
include this technique as optional.

• Verbal Protocol: This technique is like the above but involving audio recording, and it has
similar advantages and disadvantages.

I.4.2.5 Laboratory Usability Testing

Laboratory Usability Testing involves tests conducted in a fixed setting specifically configured for
usability testing. The main advantage of this kind of usability testing is that it provides a controlled
and consistent environment in which to evaluate software usability. Comparing the results of different
tests, different users or different systems is easier and more defensible under these conditions.

The deployment of a full-scale usability laboratory is very expensive, and some organizations may
find it to have a low investment return. Therefore, we consider the technique of performing usability
tests in a laboratory especially prepared for the purpose (with a one-way mirror, several video
cameras, etc.) as optional. These kinds of premises are appropriate when the organization is of
substantial size or when the budget for usability investment is high enough.

I.4.3 Follow-up Studies of Installed Systems

Installed systems can provide the most faithful information of all the evaluation-related usability
techniques. Follow-up studies apply to given software projects, in which the usability of an existing
system needs to be improved and to maintenance efforts in the development cycle. Questionnaires and
interviews are a typical form of performing follow-up studies of installed systems.

• Questionnaires: They provide the development team with user opinions, but no direct
information on usability. They are especially suited for getting the user’s subjective
satisfaction. Questionnaires can be administered by mail, e-mail or with the software itself.
Closed questions usually have some form of rating scale. A questionnaire is sometimes used
before and after studies of user performance. These are known as pre- and post-questionnaires.

• Interviews: Interviews may be conducted personally or over the phone. There are two variants
of this technique:

o Structured Interviews: The interview has a fixed structure, and there is no
exploration of individual attitudes.

o Flexible Interviews: They generally have some set topics, but no set sequence, and
the interviewer is free to follow the respondents’ replies and to find out about personal
attitudes.

Questionnaires and interviews are the most essential form of usability evaluation of installed systems,
but there are other techniques grouped as follows: focus groups, logging actual use, user feedback and
surveys. Each technique applies to projects with specific characteristics.

• Focus Groups: In a focus group, some users are brought together to discuss their needs and
views after the system has been in use for some time. Each group is run by a moderator who is
responsible for maintaining the focus of the group on whatever issues are of interest.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 24 of 24

• Logging Actual Use: Logging involves having the computer automatically collect statistics
about the detailed use of the system. It has two main advantages: it does not require the
researcher to be present, and it is unobtrusive. It is usually a way of getting information about
the field use of a system after release, but it can be used as a supplementary method in
usability tests. If software logging is to be applied, the software architecture should make it
easy for system managers to collect data about the patterns of system usage, speed of user
performance, rate of errors or frequency of requests for online assistance. There are two
variants of this technique:

o Time-Stamped Keypresses: A record of each key pressed is kept, along with the
exact time of the event.

o Interaction Logging: The whole interaction is recorded, so it can be reproduced
completely in real-time.

• User Feedback: Feedback can be collected by giving users access to special electronic mail
addresses, network newsgroups, or bulletin boards. Users can send their complaints and
requests for change or improvement. There are some specific ways of communication that can
be employed for collecting user feedback, as follows:

o Online or Telephone Consultants: Consultants are an excellent source of
information about the problems users are having and can suggest improvements and
potential extensions.

o Online Suggestion Box or Trouble Reporting: Electronic mail can be employed to
allow users to send messages to the maintainers or designers. Such an "online
suggestion box" encourages some users to make productive comments, since writing a
letter may be seen as requiring too much effort.

o Online Bulletin Board or Newsgroup: Users may have questions on the usage or
applicability of a software package, and they cannot address anyone in particular.
Bulletin boards and newsgroups can be helpful in this case.

o User Newsletters and Conferences: In systems with a substantial number of users
who are geographically dispersed, managers have to work harder to create a sense of
community. Printed newsletters have an appealing air of respectability. Conferences
allow workers to exchange experiences with colleagues and face-to-face meetings
increase the sense of community among users. We will consider this communication
channel to be optional, since it is only appropriate for systems with a very big user
community.

• Surveys: Written user surveys are a familiar, inexpensive and generally acceptable companion
for usability tests and expert reviews. They can be useful for identifying unsatisfied needs in
existing market products.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 25 of 25

I.5 WHEN TO INCORPORATE USABILITY INTO THE DEVELOPMENT PROCESS

The approach for integrating usability techniques into the software process has been to define a set of
increments to be embedded into an existing development process, which needs to be iterative for the
resulting process to offer a noticeable improvement in the usability of the developed software product.
Different times or stages can be defined in an iterative process, where one and the same activity may
be more or less important or have a different meaning. For instance, during the early stages of the
analysis activity, the discovery role is more predominant than in subsequent stages, where specific
requirements are being analysed and an understanding role takes over. Besides assigning techniques to
activities, as we have done in the previous section, we feel that there is the need to establish
constraints concerning the stages where the techniques can be applied. This relationship between
usability techniques and activities and development stages is discussed in this section.

The early efforts in the software development process, where the problem is clearly delimited and the
basic information is gathered for the later development in the iterative cycles, have been termed
elaboration. For usability techniques to be applied in iterative cycles (i), they will be classed as
techniques that are useful for application at any time in the cycle, which we will call central
moments, and techniques that are suited for application at the end or final moments of an iterative
cycle. Finally, we will detail the usability aspects that are mainly useful for evolution cycles, when the
software product is already in operation but needs to be adapted at the end of the development process.
These cycles are transition cycles in the Unified Process [Jacobson, 99].

Figure I.5.1 shows the relationship between these stages in development time.

ElaborationElaboration
Iterative Cycles (i)Iterative Cycles (i)

EvolutionEvolution

Central
moments

Central
moments

Final
moments

Final
moments

Time

.

Figure I.5.1 Stages in the Development Process

I.5.1 Time Constraints for Usability Technique Application

I.5.1.1 Techniques for the Elaboration Stage

Before the actual iterative cycles begin, there must be an initial effort where the needs are identified
and the general scheme that the system will follow is established. The products of this stage should be
quite stable, even though they are open to changes in the iterative development cycles.

The following techniques are clearly to be applied at elaboration time, because they are good for
approaching the problem for the first time or handling a solution that is not well defined:

• Ethnographic Observation

• Contextual Inquiry

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 26 of 26

• Visual Brainstorming

• Scenarios

• Paper Prototypes

• Chauffeured Prototypes

Other techniques can be applied at a later time, but they can help at elaboration time because they are
good for coming up with design ideas on the product concept:

• Competitive Analysis

• Post-It Notes

Modelling the user and his or her environment, and the basic dialogue between the system and the user
is a prerequisite for any development that aims to care about the user and about the usability of the
resulting product. For this reason, the following techniques should be applied at elaboration time, even
though they can be applied later as well in order to refine the products:

• Essential Use Cases: It is not necessary to describe all the identified use cases when there are a
lot. It suffices to detail the main ones to assure that elaboration is not too time consuming.

• Structured User Role Model

• Operational Modelling

• Cognitive and Pluralistic Walkthrough: Walkthroughs evaluate an interaction dialogue, so as
soon as these dialogues are defined in the essential use cases, walkthroughs can be applied as
an evaluation technique.

The specifications document should include Usability Specifications, so this technique will be applied
at elaboration time if the document is created at this stage (it usually is).

There are other techniques that, even though they could fit in well at elaboration time, require a greater
effort than the ones detailed above. So they should be applied at elaboration time only in projects with
characteristics that will have a less iterative component and can, therefore, afford a bulkier elaboration
phase. These techniques are Cognitive Task Analysis, which requires a detailed description of means
for performing an operation, and prototyping techniques that demand some implementation, such as
Wizard of Oz Prototypes and Requirements Animation.

I.5.1.2 Techniques for Iterative Cycles (i)

There are some techniques that can be applied any time during the iterative cycles, and these are:

• Impact Analysis

• Detailed Use Cases

• GOMS

• Screen Pictures

• Menu-selection and Dialog Box Trees

• Context Navigation Maps

• Help Design by Use Cases

Some techniques are adequate for application at the end of a development cycle, that is, in the final
moments:

• Heuristic Evaluation

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 27 of 27

• Inspections: Consistency, conformance and collaborative usability inspections.

• Thinking Aloud: Constructive interaction, retrospective testing, critical incident taking, and
coaching method.

• Performance Measurement

• Questionnaires

• Laboratory Usability Testing

I.5.1.3 Techniques for the Evolution Stage

This moment in the development time groups the activities performed after the system has reached
initial operational capability in the customer organization. The usability techniques to be applied at
this time are techniques to evaluate the usability of an installed system. They are as follows:

• Direct Observation

• Video Recording

• Audio Protocol

• Questionnaires

• Structured and Flexible Interviews

• Focus Groups

• Logging Actual Use: Time-stamped keypresses and interaction logging.

• User Feedback: Online or telephone consultants, online suggestion box or trouble reporting,
online bulletin board or newsgroup, user newsletters and conferences.

• Surveys

I.5.2 Time Constraints for Usability Activities

As detailed in the previous section on techniques, we will assign development time constraints to
usability activities to define the stage in which each activity is applied.

Table I.5.1 shows the significance of each usability activity at the different stages during development
time. We have made a distinction between stages where a usability activity is essential, that is, is part
of the core activities that define the kind of thing to be done at that time; and non-essential, that is, the
activity makes some contribution at that stage in development time, but it is not a basic activity to
perform. Significance is a qualitative value, expressing that the activity is part of what are considered
core activities at the development stage in question (essential), or is an activity with some importance
at that stage, but plays a secondary role (non-essential). Please note that non-essential does not
necessarily mean optional or not important, it is just that it is not an activity that is usually identified
with the stage in question, like, for example, Expert Evaluation at Elaboration, which is very important
but is not part of the core activities at that stage. Both significance values, essential and non-essential,
set out the presence of each usability activity in the total development process, but there may be cases
where some activities are performed in other development stages apart from the ones detailed in the
table.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 28 of 28

ITERATIVE CYCLES (i)
USABILITY ACTIVITY \ STAGE

IN DEVELOPMENT
ELABORATION CENTRAL

MOMENTS
FINAL

MOMENTS

EVOLUTION
CYCLES

Elicitation essential non-
essential

Develop
Product
Concept

essential non-
essential

Problem
Understanding essential non-

essential
Analysis

Modelling the
Context of Use

non-essential essential

Specification essential non-
essential

R
E

Q
U

IR
E

M
E

N
T

S

Validation essential non-
essential

Detailed
Interaction

Design
 essential

Interaction
Design

User Interface
Design

non-essential essential

D
E

SI
G

N

Help Design essential

Expert
Evaluation

non-essential essential

Usability
Testing

 essential

E
V

A
L

U
A

T
IO

N

Usability
Evaluation

Follow-up
Studies of
Installed
Systems

 essential

Table I.5.1 Significance of each Usability Activity at Development Time Stages

Figure I.5.2 shows another way of looking at the relationship between cycles and activities, it is a
distribution of work across the different kind of activities, related to the time in the development
process when each effort is performed. Each horizontal line represents a kind of activity, and the
height of the red line indicates the amount of work of that kind to be done at that particular
development stage. For example, elicitation is mostly performed in Elaboration cycles (with more
emphasis on the early stages), while some elicitation activities are performed at the beginning of the
central moments within the Iterative Cycles, and a small amount of work may be done in Evolution
cycles. The X-axis represents time. Therefore, slopes in different lines denote a certain precedence
between the different kinds of activities, like, for example, between the different Requirements
activities within Iterative cycles: first, there is some elicitation, followed by some development of the
product concept (overlapping with the previous task), and then some problem understanding activities,
and so on. Note that the amount of work on each activity represented in Figure I.5.2 is approximate, it
should not be taken literally. It represents a specific software development process that we have taken
to illustrate general issues regarding development time.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 29 of 29

Figure I.5.2 Amount of Work on each Type of Activity at the Different Development Stages

I.5.2.1 Requirements Activities

Requirements activities are evidently performed at the beginning of the development process, because
the problem and its subtleties need to be understood before any kind of design or implementation is
conceived, to ensure that the solution is built upon the right premises. Therefore, requirements
activities are the core activities at elaboration time, but they are also necessary in iterative cycles.

Requirements Elicitation and Develop Product Concept are essential at elaboration time, which is the
stage in the development process that is mostly given over to clarifying the problem and to defining
the lines along which the project will run. Elicitation will provide the information needed at
elaboration time, and the product concept will have to be developed at elaboration time as a guide for
subsequent activities in the development process.

Problem Understanding, Requirement Specification and Validation are essential activities to be
performed at elaboration time, because this is when the specifications document is to be produced,
since it is a core document for later software development tasks. Problem Understanding is a
prerequisite for Requirement Specification, since a good understanding of the problem is a prerequisite
for writing the right requirement specifications. Validation is performed on specifications, so ideally it
should also be done at elaboration time, with the aim of having a validated specifications document by
the end of elaboration. Then, other development activities performed after elaboration time can be
based on the agreed specifications.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 30 of 30

The activity of Modelling the Context of Use is part of the tasks to be performed at elaboration time,
but it is not part of the core activities performed there. It is non-essential in the sense that it
complements other essential activities that define with more emphasis what is supposed to be done at
elaboration time. Modelling is an essential activity in the central moments within the iterative cycles,
because the tasks and other details of the context of use must be dealt with in detail within each
iterative cycle. As this modelling is performed, other questions may be raised concerning requirements
issues, so some Requirements Elicitation, and some activities related to Developing the Product
Concept and to Problem Understanding are also performed at central moments within iterative cycles.
They complement the modelling mainly performed at this time, so they are non-essential activities at
this stage in development.

I.5.2.2 Design Activities

Design is performed as a core activity within the iterative cycles, and it is performed not at the end of
each cycle, where most design activities should have already been completed, but at the central
moments. For this reason, the three kinds of design activities considered in this work (Detailed
Interaction Design, User Interface Design and Help Design) are essential at central moments within
iterative cycles.

The user interface is the part of the implementation that the user can understand better, so its design
may be undertaken at the early stages of the development in order to get feedback from the user. For
this reason, even if it is not part of the activities that define the elaboration stage in development time,
User Interface Design is present at elaboration time as a non-essential activity.

I.5.2.3 Evaluation Activities

In order to evaluate a product, this product must have an evaluable form. As the development
progresses, more and more tangible products are produced. So it is natural that evaluation activities are
essential at stages that are either the final moments within an iterative cycle or final moments in the
development time, that is, in the evolution cycles. Some early products can be also evaluated at
elaboration time, but evaluation activities are not essential at this time. Some Expert Evaluation may
be performed at elaboration time, where it is included as a non-essential activity. Usability Testing is a
central activity at the final moments within each iterative cycle, because it provides a way to measure
how far the product is from the specified usability levels. It gives the usability level that guides the
next iterative cycle activities. Finally, Follow-up Studies of Installed Systems cannot be performed
until the system is operational at the customer organization, so they are part of the activities performed
in evolution cycles, and they are essential activities there, because they guide any usability
improvements that may be developed at this stage in development time.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 31 of 31

I.6 DEFINITION OF PROCESS INCREMENTS

We will class the usability activities and techniques to be applied in the development process as
increments, called deltas, grouping techniques that are meant to be applied together according to the
nature of the activities to which they belong (analysis, design or evaluation) and to the moment in
development time when they can prove more effective for improving the usability of the software
product.

We have defined eight deltas in order to get a better match with the general stages of an iterative
software development process (as described above in section I.5.2):

• E1: Early Analysis

• E2: Usability Specifications

• E3: Early Usability Evaluation

• E4: Regular Analysis

• E5: Interaction Design

• E6: Architectural Design

• E7: Regular Usability Evaluation

• E8: Usability Evaluation of Installed Systems

Analysis activities, as seen in section I.2, are the activities that allow for a greater subdivision and call
for careful integration with software engineering activities. Therefore, we have three deltas for
analysis activities (E1, E2 and E4), plus delta E3, which, although formed by evaluation techniques, is
applied in analysis activities. Traditional usability design activities are quite uniform and can be
integrated in just one delta, E5, while the new usability activities and techniques defined as a result of
WP3 will be grouped in delta E6. Usability evaluation activities, apart from the above-mentioned delta
E3, have been divided into the activities to be performed during the main iterative cycles (delta E7),
and the activities to be performed once we have an operational system working in the customer
organization (delta E8). Figure I.6.1 shows how the deltas group similar kinds of activities to be
performed close together in development time. Each triangle represents one of the deltas, and they are
placed over the distribution of work represented in Figure I.5.2 above. The location along the X-axis
represents the moment in development time where the delta should be applied, and the location on the
Y-axis represents the kind of activities the delta groups. Note that the size of the deltas is not
meaningful, as its only purpose is to cover the activities each increment contains. Delta E6 is currently
empty and not located in the process, because we are waiting for WP3 to finish in order to incorporate
its results. As the results of WP3 may also provide techniques to be applied in deltas other than E6, the
other deltas include a reference to the possible techniques contributed by WP3.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 32 of 32

E1

E3
E2

E4

E5

E7

E6

E8

E1

E3
E2

E4

E5

E7

E6

E8

Figure I.6.1 Example of Location of Delta Increments in an Elaborate Software Development Process

So as not to repeat contents, the increments defined are explained in Part II of the document and not
here, because they are an integral part of the documentation to be delivered to the developers.
However, it should be mentioned here that each delta will be described according to the following
structure:

• Purpose: The reasons why the delta should be added to an existing development process in
order to improve the usability level of the resulting software product.

• Phase: Main type of activity: analysis / design / evaluation

• Stage: Development process stage where it is applicable.

• Participants: Members of the development team and other stakeholders who are meant to
participate in the application of the techniques.

• Activities/Techniques/Products : List of the usability techniques that the delta groups, along
with the documents or models produced by each technique. The techniques are grouped by the
activity required to produce each product.

At the request of the industrial partners, we have defined an alternative delta grouping for software
development organizations that apply a light iterative software development process. A light software
development process means a process that is confined to dividing the development process into
iterative cycles that are quite similar to each other. In such processes, the activities are divided into the
four major stages of Analysis, Design, Implementation and Testing. There is no further subdivision of
the different activities of which each stage is composed (for example, no distinction is made between
the different subphases of Analysis). To make the deltas more manageable in this type of
organisations, we decided to group the deltas defined above by the three major stages of Analysis,

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 33 of 33

Design and Testing (there are no specific usability techniques for Implementation). As a result, we
have the following deltas to add to a light software development process: Analysis (L1), Design (L2),
and Evaluation (L3). The correspondence between the deltas defined for an elaborate software
development process (E1-E8) and the deltas defined for a light development process (L1-L3) is shown
in Figure I.6.2.

The deltas described for the light development process have the same structure as defined above,
except for the Stage field, which is not necessary, as it is considered that no distinction is made
between the different development cycles in a development process of this type.

E3: Early
Usability Evaluation

E2: Usability
Specifications

E1:
Early Analysis

E4:
Regular Analysis

E5:
Interaction Design

E6:
Architectural Design

E7: Regular
Usability Evaluation

E8:
Usability Evaluation
of Installed Systems

L1:
Analysis

L2:
Design

L3:
Evaluation

Deltas to Add to an ELABORATE

Sw. Development Process

Deltas to Add to a LIGHT Sw.

Development Process

Figure I.6.2 Correspondence between deltas for an elaborate and for a light development process

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 34 of 34

I.7 REFERENCES FOR PART I

[IEEE, 01] IEEE Software Engineering Coordinating Committee. Guide to the Software
Engineering Body of Knowledge - Trial Version 1.00. IEEE, May 2001.

[Constantine, 99] L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to
the Models and Methods of Usage-Centred Design. Addison-Wesley, New York,
NY, 1999.

[Jacobson, 99] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development
Process. Addison Wesley, 1999.

[Preece, 94] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-
Computer Interaction. Addison Wesley, 1994.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 35 of 35

Part II. DOCUMENTATION FOR DEVELOPERS

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 36 of 36

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 37 of 37

II.1 CONDITIONS FOR IMPROVING YOUR DEVELOPMENT PROCESS WITH
USABILITY ASPECTS

Usability is a difficult attribute to tackle. It is sometimes identified with common sense, and, therefore,
every developer thinks that he or she knows enough to be able to produce usable products. However,
usability is directly related to the humans who are to operate the software product and it is no easy
endeavour to cater for humans. The usability techniques grouped in process increments that are
detailed in this document may be of help for achieving the objective of a product with a sufficient
usability level, but there are also some important requirements concerning the way software
development is approached in the software development organization. An approach where user
requirements are frozen at the beginning of development is not suitable for dealing with the
complexity of human-computer interaction. The intricacy of the human side in such interaction makes
it almost impossible to create a correct design at the first go. Cognitive, sociological, educational,
physical and emotional issues may play an important role in any user-system interaction. Interaction
design must, therefore, be tested and refined all through the development process in order to obtain a
satisfactory result from the point of view of usability.

Therefore, iterative development is a must. Since the usability level of the system cannot be predicted
in advance, some kind of usability evaluation is needed at the end of every iterative cycle. The
requirement of an iterative process is closely linked to the need to perform quality measures at the end
of each cycle. Therefore, if you want to incorporate increments into your development process, you
must be developing software with an iterative process, whatever the particular process may be. All
software development organizations have their own development processes, and each one probably
uses a different terminology. We have established the requirement that the development process must
be based on iterative refinement, and this is the issue that establishes the minimum common ground
upon which we define a general schema of an iterative process. However, an iterative development
process can range from very elementary to very sophisticated. A basic or light iterative process means
a process in which all the cycles are symmetric and composed of the substages of Analysis, Design,
Implementation and Evaluation, with no further subdivision of these stages. On the other hand, you
may be using an elaborate development process, with different cycle types, as are used, for example,
in the Unified Process [Jacobson, 99]. Figure II.1.1 shows one view of an elaborate iterative process.
Prior to the iterative cycles there is an initial exploration stage, which we have called Elaboration.
Afterwards, within the iterative cycles, we make a distinction between the main part of each cycle
(Central moments) and the last part of each cycle (Final moments), where certain activities are
performed, typically evaluation activities. Finally, when we have a system that could be installed and
operated at the customer’s site, the cycles are called Evolution.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 38 of 38

ElaborationElaboration
Iterative Cycles (i)Iterative Cycles (i)

EvolutionEvolution

Central
moments

Central
moments

Final
moments

Final
moments

Time

.

Figure II.1.1 Stages in the Development Process

An explanation of each moment represented in Figure II.1.1 follows:

• Elaboration: Before the actual iterative cycles begin, there must be an initial effort where the
needs are identified and the general scheme that the system will follow is established. The
products of this stage should be quite stable, even if they are open to changes in the iterative
development cycles. Elaboration may consist of several cycles if necessary.

• Iterative cycles - Central moments: From the beginning of each iterative cycle until the
moment where some testable result is produced.

• Iterative cycles - Final moments: The last stage within each iterative cycle, where the
activities to be applied are mainly given over to the evaluation of the results produced in the
cycle and the subsequent rework.

• Evolution: The stages in the development process that occur once the product has reached
initial operational capability in the customer organization.

In order to incorporate the proposed increments into your elaborate iterative process, you should
follow the indications on the development time constraints that are included in each delta. There we
use the terminology of Figure II.1.1, therefore, you need to adapt these generic stages to the specific
phases defined in your organization’s development process.

Depending on the type of development process in place at your organisation, the usability techniques
have been packaged in two different versions, one with deltas to be included in light processes (section
II.2.1) and another with deltas to be included in elaborate processes (section II.2.2).

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 39 of 39

II.2 INCREMENTS FOR YOUR DEVELOPMENT PROCESS

A delta groups usability techniques that are meant to be applied together depending on the nature of
the activities to which they belong (analysis, design or evaluation) and to the moment in development
time as described in the previous section.

The following fields describe each delta:

• Purpose: The reasons why the delta should be added to an existing development process in
order to improve the usability level of the resulting software product.

• Phase: Main type of activity: analysis / design / evaluation

• Stage: Development process stage where it is applicable (only for deltas for integration in an
elaborate development process): elaboration, iterative cycles (central moments, final
moments), and evolution.

• Participants: Members of the development team and other stakeholders who are meant to
participate in the application of the techniques: customers, users, usability specialists, and
developers.

• Activities/Techniques/Products : List of the usability techniques that the delta groups, along
with the documents or models produced by each technique. The techniques are grouped the
activity required to produce each product.

Usability techniques are explained in section II.3. Nevertheless, we advise you to attend a training
course, like the one described in Part III of this document, in order to develop the necessary usability
skills, adopt the right focus, and train in the usage of the deltas and usability techniques.

We will deal first with the deltas to be added to a light software development process, and then with
the set of deltas to be applied to an elaborate software development process.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 40 of 40

II.2.1 Do You Have a Light Software Development Process?

The basic condition to be able to apply the deltas with usability techniques is that the development
process is iterative. However, an iterative process can take many forms, and we have opted to select
two representative process models. The one we deal with in this section is what we have termed light
software development process. First, we are going to define what light development process means
and then we will describe the three deltas that would have to be added to a development process of this
type.

II.2.1.1 What Does Light Development Process Mean?

When a software development organisation uses a basic iterative development process, this is
normally confined to dividing the development into iterative cycles that are fairly similar to each
other. We call this type of software development processes light development processes, where the
activities are divided into the four major stages of Analysis, Design, Implementation and Testing.
There is no further subdivision of the different activities of which these stages are composed (for
example, no distinction is made between the different stages of Analysis). To fit the usability
techniques to this type of cycle, they have been grouped by three major deltas: Analysis (L1), Design
(L2) and Evaluation (L3). No usability technique is proposed for implementation and, therefore, there
is no delta for the Implementation stage.

Even if the development process of your organisation is more elaborate than the light development
process described, you should apply these deltas if your development process is closer to this schema
than to an elaborate process, such as the one described in section II.2.2. Within the three deltas
described for a light process, the techniques have been grouped according to the type of activity in
which they fit, and this information can be used to adapt the use of these techniques to your particular
development process.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 41 of 41

II.2.1.2 Delta L1. Analysis

PURPOSE Usability techniques can give the existing tasks of requirements elicitation,
analysis, specification and validation the user-centred flavour that ensures that
usability is sufficiently catered for in later development activities. Some
techniques may help to model the problem from a user perspective, trying to
understand the user goals and how he or she will operate the system in order to
accomplish these goals.

PHASE Analysis

PARTICIPANTS Customer, users (specifically for JEM, but they can participate in the rest of
techniques), usability specialists (for Usability Specifications)

ACTIVITIES TECHNIQUES PRODUCTS

Ethnographic Observation
ELICITATION

Contextual Inquiry

-Structured User Role Model
-Operational Model
-Use Case Diagram

Structured User Role Model -Structured User Role Model

JEM
-Structured User Role Model
-Essential Use Cases
-Use Case Diagram

REQ. ANALYSIS –
MODELLING THE
CONTEXT OF USE

Operational Modelling -Operational Model
Post-It Notes
Visual Brainstorming

-Product Concept

Competitive Analysis
-Product Concept
-List of needs and
key/differentiating features

REQ. ANALYSIS –
DEVELOP PRODUCT CONCEPT

Scenarios -Scenarios

Essential Use Cases -Essential Use Cases
REQ. ANALYSIS –

PROBLEM UNDERSTANDING Prototypes
(paper and chauffeured)

-Paper prototype

REQUIREMENT SPECIFICATION Usability Specifications -Usability Specifications

Cognitive Walkthrough REQS. VALIDATION –
MODEL VALIDATION Pluralistic Walkthrough

-Prioritised usability problems

REQ. ANALYSIS –
 MODELLING THE CONTEXT OF

USE
Detailed Use Cases -Use Case Description

-Use Case Diagram

GOMS -GOMS model

Wizard of Oz Prototypes
REQ. ANALYSIS –

PROBLEM UNDERSTANDING
Requirements Animation

-Prototype

 Techniques from WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 42 of 42

II.2.1.3 Delta L2. Design

PURPOSE To design the interaction between the system and the user(s), employing user-
centred techniques, and to build an architectural design that considers usability.

PHASE Design

PARTICIPANTS Users as part of the design team, developers

ACTIVITIES TECHNIQUES PRODUCTS

DESIGN Impact Analysis -Prioritised redesign decisions

Screen pictures -Specification of the graphical user
interface elements

Menu-selection and Dialog
Box Trees

-Menu tree
-Dialog-box tree

USER INTERFACE DESIGN

Context Navigation Maps -Context navigation map

HELP DESIGN Help Design -Structure of the help facility

 Techniques obtained from
WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 43 of 43

II.2.1.4 Delta L3. Evaluation

PURPOSE To evaluate the usability of the subsystem being developed at each iterative cycle, applying the
typical usability evaluation techniques found in the literature.

PHASE Evaluation

PARTICIPANTS Users, developers

ACTIVITIES TECHNIQUES PRODUCTS

Heuristic Evaluation

EXPERT EVALUATION
Usability Inspections

- Prioritised usability problems found in interaction
design
(For consistency and conformance inspections, the
problems are related to the issue being evaluated
only)

Thinking aloud
-Usability problems identified in the system, along
with the possible causes based on the user’s way of
reasoning and on user goals

Performance Measurement -Values for the usability attributes detailed as
benchmark tasks in usability specifications

Laboratory Usability
Testing (optional1)

-Values for the usability attributes detailed as
benchmark tasks in usability specifications, plus
multimedia material and interaction logging data
for further analysis

USABILITY TESTING

Post-Test Feedback / User
Questionnaires

-Values for subjective usability attributes detailed
in usability specifications as user questionnaires

Questionnaires

Structured and Flexible
Interviews

FOLLOW-UP STUDIES -
QUESTIONNAIRES, INTERVIEWS AND

SURVEYS

Surveys

-The user’s subjective opinion captured in the
responses

Direct Observation -List of usability problems with an indication of the
real conditions when the incident happened

FOLLOW-UP STUDIES –
FIELD USABILITY TESTING

Video/audio recording

-Multimedia material to show to developers so they
can better understand user needs and frustrations,
plus a more detailed list of usability problems
along with user comments and the surrounding
conditions that occurred when the incident
happened

FOLLOW-UP STUDIES –
FOCUS GROUPS

Focus Groups -User feedback on the problems of the software
product

FOLLOW-UP STUDIES - AUTOMATIC
LOGGING Logging Actual Use

-Pointers to possible usability problems when the
actual interaction varies from the expected one
according to task and interaction models

FOLLOW-UP STUDIES –
 USER FEEDBACK

Online User Feedback
Facilities

-Suggestions for change or improvement

 Techniques obtained from
WP3

1 Laboratory Usability Testing only to be applied if the resources needed to set up a usability laboratory are
available.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 44 of 44

II.2.2 Do You Have an Elaborate Software Development Process?

As in the above section, we will first describe what an elaborate software process means and then
detail the deltas that group the usability techniques that a development process of this type should
incorporate.

II.2.2.1 What Does Elaborate Development Process Mean?

An elaborate software development process is one that takes into account the possibility of having
different kinds of cycles, depending on the problem being solved and on whether development is at the
early or advanced stage. These elaborate development processes have a series of common guidelines
that we will use to describe where the deltas specifying the usability techniques should be fitted in.

The basic schema of a process of this type was described, in terms of cycles in development time, in
section II.1, and, as shown in Figure II.1.1, we have considered the stages of Elaboration, Iterative
Cycles (central moments and final moments), and Evolution. As regards the different types of activity
carried out in each cycle, Figure II.2.1 shows an example of an application of this type of development
process. Each horizontal line represents a kind of activity, and the height of the red line indicates the
amount of work of that kind to be done at that particular development stage. For example, elicitation is
mostly performed in Elaboration cycles (with more emphasis on the early stages), where some
elicitation activities are performed at the beginning of the central moments within the Iterative Cycles,
and a small amount of work may be done in Evolution cycles. The X-axis represents time. Therefore,
slopes in different lines denote a certain precedence between the different kinds of activities, like, for
example, between the different Requirements activities within Iterative cycles: first, there is some
elicitation, followed by some development of the product concept (overlapping with the previous
task), and then some problem understanding activities, and so on. Note that the amount of work on
each activity represented in process Figure II.2.1 is approximate, it should not be taken literally.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 45 of 45

Figure II.2.1 Example of the Different Kinds of Activities Performed at each Development Stage

In this kind of software development process, not all cycles are the same, but they usually resemble
the particular process shown in Figure II.2.1, and the general structure of cycles according to the
development time is as described in section II.1 above. If you have a process of this kind you should
map it to the general terminology we have described, so that the indications given in each delta about
the phase and stage help you to position the delta in your development process framework.

The eight deltas of usability techniques to be included in an elaborate software development process
are better tuned to an elaborate process than the ones described in the previous section, since they have
additional information regarding the stage where they are to be applied. Therefore, they have an
additional field, stage, that states the development stage in which they are applicable.

Figure II.2.2 shows how the deltas fit in a software development process like the one described in
Figure II.2.1. Each triangle represents one of the deltas. The location along the X-axis represents the
development stage where it should be applied, and the location on the Y-axis represents the kind of
activities addressed by its usability techniques. Note that the size of deltas is not meaningful. Delta E6
is not located in the process, because it has not yet been defined (it will incorporate the findings of
WP3).

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 46 of 46

E1

E3
E2

E4

E5

E7

E6

E8

E1

E3
E2

E4

E5

E7

E6

E8

Figure II.2.2 Example of Location of Delta Increments in an Elaborate Software Development Process

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 47 of 47

II.2.2.2 Delta E1: Early Analysis

PURPOSE Usability offers several techniques for analysis at the early stages of the project.
These activities can give the tasks of requirements elicitation and analysis the
user-centred flavour that ensures that usability is sufficiently catered for in later
development activities.

PHASE Analysis

STAGE Elaboration

PARTICIPANTS Customer, users, developers

ACTIVITIES TECHNIQUES PRODUCTS

Ethnographic Observation
ELICITATION

Contextual Inquiry

-Structured User Role Model
-Operational Model
-Use Case Diagram

Structured User Role Model -Structured User Role Model

JEM
-Structured User Role Model
-Essential Use Cases
-Use Case Diagram

REQ. ANALYSIS - MODELLING
THE CONTEXT OF USE

Operational Modelling -Operational Model

Post-It Notes
Visual Brainstorming

-Product Concept

Competitive Analysis
-Product Concept
-List of needs and
key/differentiating features

REQ. ANALYSIS –
DEVELOP PRODUCT CONCEPT

Scenarios -Scenarios

REQ. ANALYSIS –
PROBLEM UNDERSTANDING

Essential Use Cases -Essential Use Cases

REQ. ANALYSIS –
PROBLEM UNDERSTANDING

Prototypes
(paper and chauffeured)

-Paper prototype

 Techniques from WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 48 of 48

II.2.2.3 Delta E2: Usability Specifications

PURPOSE To define the usability goals that the future system will have to meet.

PHASE Analysis

STAGE Elaboration

PARTICIPANTS Customers, developers, usability specialists

ACTIVITIES TECHNIQUES PRODUCTS

REQUIREMENT SPECIFICATION Usability Specifications -Usability Specifications

 Techniques from WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 49 of 49

II.2.2.4 Delta E3: Early Usability Evaluation

PURPOSE Techniques to evaluate the products created at elaboration time from a usability
point of view.

PHASE Evaluation

STAGE Elaboration

PARTICIPANTS Representative users (for Pluralistic Walkthroughs), developers

ACTIVITIES TECHNIQUES PRODUCTS

Cognitive Walkthrough
REQS. VALIDATION –
MODEL VALIDATION Pluralistic Walkthrough

- Prioritised usability problems

 Techniques from WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 50 of 50

II.2.2.5 Delta E4: Regular Analysis

PURPOSE To model the problem from a user perspective, trying to understand the user’s
goals and how he or she will operate the system in order to accomplish those
goals.

PHASE Analysis

STAGE Iterative cycles – central moments

PARTICIPANTS Users as part of the development team, developers

ACTIVITIES TECHNIQUES PRODUCTS

REQ. ANALYSIS –
 MODELLING THE CONTEXT OF

USE
Detailed Use Cases -Use case description

-Use case diagram

GOMS -GOMS model

Wizard of Oz Prototypes REQ. ANALYSIS –
PROBLEM UNDERSTANDING

Requirements Animation
-Prototype

 Techniques from WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 51 of 51

II.2.2.6 Delta E5: Interaction Design

PURPOSE To design the interaction between the system and the user(s), employing user-
centred techniques.

PHASE Design

STAGE Iterative cycles - central moments

PARTICIPANTS Users as part of the design team, developers

ACTIVITIES TECHNIQUES PRODUCTS

DESIGN Impact Analysis -Prioritised redesign decisions

Screen pictures -Specification of the graphical user
interface elements

Menu-selection and Dialog
Box Trees

-Menu tree
-Dialog-box tree

USER INTERFACE DESIGN

Context Navigation Maps -Context navigation map

HELP DESIGN Help Design -Structure of the help facility

 Techniques from WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 52 of 52

II.2.2.7 Delta E6: Architectural Design

This delta will be defined to group the results of WP 3 regarding the architectural design process.

PURPOSE

PHASE

STAGE

PARTICIPANTS

TECHNIQUES

ACTIVITIES TECHNIQUES PRODUCTS

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 53 of 53

II.2.2.8 Delta E7: Regular Usability Evaluation

PURPOSE To evaluate the usability of the subsystem being developed at each iterative cycle,
applying the typical usability evaluation techniques found in the literature.

PHASE Evaluation

STAGE Iterative cycles - final moments

PARTICIPANTS Users, developers

ACTIVITIES TECHNIQUES PRODUCTS

Heuristic Evaluation

EXPERT EVALUATION

Usability Inspections

- Prioritised usability problems
found in interaction design
(For consistency and conformance
inspections, the problems are
related to the issue being evaluated
only)

Thinking aloud

-Usability problems identified in
the system, along with the possible
causes based on the user’s way of
reasoning and on user goals

Performance Measurement
-Values for the usability attributes
detailed as benchmark tasks in
usability specifications

Laboratory Usability
Testing (optional2)

-Values for the usability attributes
detailed as benchmark tasks in
usability specifications, plus
multimedia material and
interaction logging data for further
analysis

USABILITY TESTING

Post-Test Feedback / User
Questionnaires

-Values for subjective usability
attributes detailed in usability
specifications as user
questionnaires

 Techniques from WP3

2 Laboratory Usability Testing only to be applied if the resources needed to establish a usability laboratory are
available

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 54 of 54

II.2.2.9 Delta E8: Usability Evaluation of Installed Systems

PURPOSE To obtain information about the usage of a system which can be already operated
at the user organization, which is relevant from a usability point of view.

PHASE Evaluation

STAGE Evolution

PARTICIPANTS Users that are already using some version of the product, developers

ACTIVITIES TECHNIQUES PRODUCTS

Questionnaires

Structured and Flexible
Interviews

QUESTIONNAIRES, INTERVIEWS
AND SURVEYS

Surveys

-The user’s subjective opinion
captured in the responses

Direct Observation
-List of usability problems with an
indication of the real conditions
when the incident happened

FIELD USABILITY TESTING

Video/audio recording

-Multimedia material to show to
developers so they can better
understand user needs and
frustrations, plus a more detailed
list of usability problems along
with user comments and the
environmental conditions that
occurred when the incident
happened

FOCUS GROUPS Focus Groups -User feedback on the problems of
the software product

AUTOMATIC LOGGING Logging Actual Use

-Pointers to possible usability
problems when the actual
interaction varies from the
expected one according to task and
interaction models

FOLLOW-UP STUDIES –
USER FEEDBACK

Online User Feedback
Facilities

-Suggestions for change or
improvement

 Techniques from WP3

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 55 of 55

II.3 CATALOGUE OF USABILITY TECHNIQUES

This catalogue includes a description of each usability technique appearing in the deltas. The aim of
this annex is to act as a reference manual for developers, so they can directly apply the usability
techniques or follow the pointers to further information.

Each technique is described using the following fields:

• Description: A description of the objectives of the techniques, and the main concepts upon
which the technique is based.

• How-to: Explanation of how to apply the technique.

• Participants: Stakeholders that can participate in the technique.

• Main reference (to find out more): The main reference the reader can consult if he or she
wants to learn more about the issue.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 56 of 56

II.3.1 Ethnographic Observation

Description

Ethnography is a traditional method in anthropology for studying a particular tribe or culture. In this
context, the ethnographer acts as an uninformed outsider whose job is to understand as much as
possible about the “natives” from their own point of view. The ethnographer participates, overtly or
covertly, in people’s daily lives for an extended period of time. It gives the developer information
about the context where the user performs his or her tasks, which would be very difficult to apprehend
otherwise (for example, by means of interviews).

As ethnographers, developers gain insight into individual behaviour and the organizational context in
early phases of system development. The difference between developers acting as ethnographers and
anthropologists is that, apart from trying to understand the user, developers observe the usage of
existing software products for the purpose of changing and improving those products. Additionally,
the available time for ethnographic observation in software development is a lot less than the time
anthropologists spend immersed in a culture.

How-to

An ethnographic observation comprises four phases: preparation, field study, analysis and reporting.

For study preparation, it is advisable to understand the user organization policies and work culture and
to gain access and permission to observe or interview. A set of initial goals and questions should be
prepared beforehand as well.

It is very important for the success of the observation to develop rapport with managers and users in
the user organization and to make all the observation and/or interviews at the user’s workplace. The
developer should be prepared to follow unplanned paths in the observation, since it is the user’s
normal actions that should guide the field study. An understanding of the different views that different
classes of users may have about the tasks at hand or the goal priority should be identified in the study.
Considerable emphasis should be put on interpreting data in relation to the context.

After the information has been collected, it is analysed and interpreted. Information may include
video, annotations in notebooks, snapshots and artefacts from the activities being observed. Analysing
and interpreting the data can be very time consuming, especially if video is involved. Some tools may
be used for this process.

Finally, the conclusions should be reported to the development team and optionally to the users that
have been observed. It may be necessary to consider multiple audiences and goals.

Ethnographic observation can increase trustworthiness and credibility, since developers learn about the
complexities of an organization firsthand by visits to the workplace. Personal presence allows them to
develop working relationships with several end users to discuss ideas, and it can be a starting point for
including users as active participants in later activities in the development process.

Participants

Developers and the user organization as a whole.

Main Reference

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-Computer Interaction.
Addison Wesley, 1994. pp. 664-668.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 57 of 57

II.3.2 Contextual Inquiry

Description

Contextual inquiry is based on performing elicitation at the customer organization, at the users’
workplace, observing how they work and discussing how the work gets done with them. The work
may be performed either manually, using a competitor product or using a previous version of the
software product under development. Contextual inquiry may be used for usability evaluation
purposes as well.

In a contextual inquiry interview, the developer sits beside the user and observes how he or she
performs the work, interrupting him or her every now and then to ask why a particular action has been
taken or what its purpose is. The interview should be performed in an environment that is as close as
possible to the usual working environment of the user, because the developer is looking for first-hand
knowledge, the kind of understanding about the work structure that the user cannot formulate, unless
he or she is performing the work at that very time.

How-to

A contextual inquiry interview is not like a traditional interview, where the interviewer is in full
control, deciding what and what not to ask. It is better to follow the master / apprentice model, where
the user is the master, and the developer is the apprentice that wants to learn how the work is done.
This model of action for the developer aims to make the user focus on his or her work. Nevertheless,
the master / apprentice model should not be taken literally, since the developer must play an active
role in probing the user every time he or she needs an explanation. The interview should be a
combination of watching and probing. A sense of partnership should be formed between developer
and user, in the sense that they are both looking to explain the internal logic behind the user’s actions,
as there can be a lot of tasks that the user does routinely and he or she cannot completely explain.
Therefore, the developer must try to make out the work structure and find patterns and distinctions in
the way people organize work. Not only the developer gains a better understanding of the user’s work,
the user himself or herself also acquires increased insight into his or her work by being forced to look
at it from an external perspective. Users themselves are sometimes surprised about some of the actions
they perform routinely when they look at them from an analytical point of view.

The contextual inquiry interview has the following steps:

1. Conventional interview: The developer asks the user about his or her work, and the kind of
tasks he or she is going to perform that day.

2. The transition: The developer states the rules for the rest of the session. The developer
watches the user, and interrupts him or her whenever the developer needs an explanation for
some action. The user may ask the developer to hold off it is a bad time for being interrupted.

3. The proper contextual interview: The user starts doing his or her usual work tasks, and the
developer observes and interprets.

4. The wrap-up: The developer summarizes what he or she has learned about the user’s work,
trying to focus on the broader context of the organization. This is the last chance for the user
to correct and elaborate on the developer’s understanding.

The information that is being gathered by the developer must be interpreted together with the user.
The user is not a passive subject who answers when asked, the user actively participates in the process
of finding the work structure and the motivations behind any of the his or her actions. The knowledge
gathered about how the user performs his or her work should be the basis for establishing the
requirements for the software product to be developed.

Participants

A developer and a user, working as a team for unveiling the user’s work structure.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 58 of 58

Main Reference

H. Beyer, K. Holtzblatt. Contextual Design. Defining Customer-Centered Systems. Morgan
Kaufmann, 1998. Chapters 3 and 4.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 59 of 59

II.3.3 Structured User Role Model

Description

A structured role model collects and organizes information about users in roles, guiding the derivation
of essential use cases and highlighting operational context facets of user roles that are likely to be of
significance for designing an effective interaction.

The information about users is organised as a series of collections called profiles, because they do not
consist of a single factor but combine numerous factors and define a range or distribution of
characteristics among users within a given role.

How-to

The structured user role model is formed by profiles. The main profiles are as follows:

• Incumbents: Common characteristics that users who play a given role share. There are three
categories into which the elements in this profile may fall: domain knowledge, system
knowledge and other background knowledge.

• Proficiency: How usage proficiency is distributed over time and among users in a given role.

• Interaction: Patterns of usage associated with a given role. The kind of information in this
profile falls in one or more of the following categories: frequency, regularity, continuity,
concentration, intensity, complexity, predictability or locus of control.

• Information: Nature of the information manipulated by users in a role or exchanged between
users and the system. The information in this profile may offer details on the input origins, the
flow direction, the information volume and/or the information complexity.

• Usability criteria: Relative importance of specific usability attributes with respect to a given
role.

• Functional support: Specific functions, features, or facilities needed to support users in a
given role.

Some roles are highlighted as focal roles, which are the ones that are judged to be the most common or
typical or that are deemed particularly important from a business perspective or from the standpoint of
risk.

 resembles

includes

SystemMaintainer SystemMaintainer

CasualDataMiner CasualDataMiner

SalesStaff

RegularSalesStaff TempSalesStaff
WarehouseManager WarehouseManager

OrderExpediter OrderExpediter

InformalResearcher InformalResearcher

specializes

Figure II.3.1 Example or User Role Map

Any elicitation technique can be used to acquire the information about users to complete the profiles in
the structured user role model. The more complex the user population for a system under development

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 60 of 60

is, the more complete the profiles for a user role must be. For simple systems just some data on a few
of the profiles may be enough to describe each user role, and then the user role model is not said to be
structured.

Apart from the profiles that describe the details on each user role in an organised manner, a user role
map like the one in Figure II.3.1 also represents the relationships between roles. Figure II.3.1 shows
the user roles identified for a statistical analysis package. We say that there is affinity between two
roles, which is represented by a dashed line, if we identify some similarity or resemblance between
them (InformalResearcher and CasualDataMiner have an affinity relationship). When a user role is a
subtype of another, we say that the former specializes the latter, and this is represented by a double-
lined arrow that goes from the more specific role to the more abstract one (RegularSalesStaff and
TempSalesStaff are both subtypes of the general SalesStaff). Finally, there is a composition
relationship when one role combines the characteristics or features of two or more other roles and is
composed of these other roles, which we represent by a single-lined arrow (WarehouseManager
includes both the OrderExpediter and the SystemMaintainer).

Participants

Developers act as modellers, and other stakeholders act as sources of information for the model.

Main Reference

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. Chapter 4. pp. 69-96.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 61 of 61

II.3.4 JEM (Joint Essential Modelling)

Description

Joint Essential Modelling, or JEM, is a structured, facilitated, collaborative process for concurrent
usage-centred modelling. It is based on JAD (Joint Application Design).

In JEM, users and developers join in a collaborative effort to define the essential models and reach
agreement on core requirements. The objective is to reach consensus on the tasks to be supported by
the system under development. Although other models play some part, the principal medium of
exchange are use cases, whether essential or detailed. The primary deliverables from a JEM process
are the structured role model, use cases with detailed narratives and focal use cases. Deliverables that
are desirable but optional include essential use case narratives, the use case map, use case
prioritisation and a glossary.

JEM is based on carefully delineated roles for participants and highly focused activities for the
collaborative sessions.

How-to

The main roles in JEM are the users, which are the most important participants; the lead analyst, who
is designated to assure appropriate technique leadership and expertise in modelling; the facilitator,
who functions as a neutral process leader; and the scribe, who must track the full process of modelling
and decision making on top of noting down the results. Other potential participants include a sponsor,
who begins and ends, but does not actually conduct, modelling sessions; and other members of the
development team who may contribute with technical knowledge to the modelling decisions.

The JEM process consists of five basic activities that are carried out in a series of one or more
meetings: premodelling and consolidation, role modelling, task modelling, model auditing and feature
allocation.

The preparation and consolidation process prepares materials and an agenda for the subsequent
sessions and also generates a candidate list of user roles used as a guide for participation in later joint
modelling. Following the development of role and task models, these models are audited for
completeness, correctness, and consistency. To complete the process, use cases are prioritised and
allocated to project iterations. These activities are carried out in a series of sessions as follows:

1. Framing session: The purpose of this session is to establish the framework within which the
joint modelling sessions will operate. The deliverables of this session are a draft statement of
essential purpose for system, a preliminary list of candidate user roles, and a list of
participants for subsequent modelling sessions.

2. Modelling sessions: User role and use case models are developed collaboratively during these
sessions. The deliverables from this phase include a final statement of essential purpose, a user
role model, a user role map, a list of use cases with an identified essential purpose, use case
narratives, a use case map (optional), and identification of focal use cases.

3. Review session: First the group reviews the models to ensure that they are complete, correct,
and consistent. Second, use cases are sorted to identify which capabilities are to be supported
and when.

Participants

Developers, users and other stakeholders.

Main Reference

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. pp. 499-509.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 62 of 62

II.3.5 Operational Modelling

Description

Operational modelling aims to model the environment in which the system to be developed will be
used. Of all the aspects concerning the environment, the operational model represents only the ones
that are most likely to affect the usage of the system. It is a collection of various operational and
contextual influences that can play a role in usability. The information in the operational profiles
complements and extends the user profiles in the structured user role model, and it can provide insight
into the planned usage of the system that can prove very relevant for interaction design.

The operational profiles are the following ones:

• Operational risk: Type and level of risk associated with a given role or for a specific use case
or set of use cases.

• Device constraints: Limitations or constraining characteristics of the physical equipment.
• Environment: Relevant factors of the physical environment.

How-to

Operational modelling involves filling in the operational profiles with the information elicited from
the different sources of information. A description of the kind of information that each profile
specifies follows.

Operational Risk Profile: Operational risk refers to what is at stake if the user and the system fail to
correctly complete tasks. For example, what are the consequences of an input error, a failure to
complete a transaction, a system lockup, or a delay in processing. Where operational risk is higher in
connection with particular roles or use cases, special attention needs to be paid to mechanisms that
assure input accuracy and accurate interpretation of output.

Device Constraints Profile: The device constraints profile identifies equipment characteristics
associated with specific roles, use cases, or the system as a whole. There may be limitations on the
input side, the output side, or both. These constraints include screen size, resolution, and colour depth;
keyboard or keypad size and layout; and special controls such as sliders, toggle switches, rotary knobs,
or similar items. It is especially interesting to describe the device constraints in projects where the
devices are fixed by economics or the user community. We may also include as device constraints
physical barriers or impediments between users and a system, like, for example, the heavy gloves that
a factory worker may be wearing, which means that the worker cannot make use of any complicated
keyboard shortcuts.

Environment Profile: The environment profile is formed of physical factors, such as the type of user
location (office, home, factory, etc.), the level of ambient noise, the lighting conditions, temperature,
humidity, or the presence of vibration. The information gathered may reflect any kind of physical
condition of the environment that may affect system usage. A key issue here is the level of distraction
due to the physical environment. Distractions may be physical (like a noisy fan or repeated phone
calls) or mental (like trying to remember to do something that must be temporarily postponed).

Participants

Different stakeholders can provide the information we need to fill in the operational profiles. The users
of the system under development and the customer are the main sources of information, but other
sources such as trade unions, professional associations or security enforcing organizations may be
valuable as well.

Main Reference

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. pp. 308-313.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 63 of 63

II.3.6 Post-It Notes

Description

Post-it notes may be used in a workshop-like meeting where several participants work together to
identify, group and discuss different issues. They are particularly suited for identifying and analysing
information. The main advantages of this technique are the flexibility allowed by the post-it, which
can be placed in a given location and then moved to another category as the discussion goes on, and
the visual effect of seeing all the issues at a glance in the post-it placeholder. It is particularly suited
for mixed teams of developers and users, since no technical knowledge is required for its use, and it
helps to build team consensus.

There are several variations of this technique. When used to classify all the information gathered from
contextual inquiry sessions as notes, it is called an affinity diagram. Another variant consists of using
post-it notes for deciding which tools and materials are needed in the different interaction contexts of a
user interface.

How-to

For elicitation purposes, post-it notes can be used to represent information elicited from users and
structure this information. The common structure is raised bottom-up from the pieces of information
represented in each note. Categories are not predefined, but created and checked with the other
participants as they appear. The notes are placed on a vertical surface that is accessible to all
participants, so they can approach it and move whatever note they wish to. As each note is placed,
other participants may add similar notes close to it. All participants should be able to contribute, it is
no good if someone takes control of positioning and moving the notes, it should be a participative
effort. When there is general agreement on the resulting structure, the issues discussed are broadly
organized according to the user’s logic and needs. Then the results are recorded for further use in the
development process.

When this technique is used to model the abstract elements of the user interface, sheets of paper or
areas of a whiteboard are set aside for each interaction space. The names for the interaction spaces
should be informative of the operations they are for, general names like “main screen” or “work
space” may be indicative of a lack of coherence or not enough deliberation. As the model is
elaborated, new interaction spaces may have to be created or existing ones may be combined.
Different coloured post-it notes can be used to colour-code the elements in the interface: for active
controls vs. passive controls, for example. Each post-it note represents a necessary element in an
interaction space. Using post-it notes, major reorganizations can be made easily and then be discussed
by the development team. This ease encourages experimentation and exploration.

Participants

Developers and users. Other stakeholders that possess relevant information to be elicited may
participate as well.

Main Reference

For affinity diagrams: H. Beyer, K. Holtzblatt. Contextual Design. Defining Customer-Centered
Systems. Morgan Kaufmann, 1998. pp. 153-163.

For Post-It notes for user interface modelling: L. L. Constantine, L. A. D. Lockwood. Software for
Use: A Practical Guide to the Models and Methods of Usage-Centred Design. Addison-Wesley, New
York, NY, 1999. pp. 127-133.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 64 of 64

II.3.7 Visual Brainstorming

Description

With visual brainstorming we try to generate visual ideas of abstract concepts. Visual ideas are a basis
for discussion in a brainstorming session.

How-to

Paper prototypes may be used for exploring all kinds of design ideas, and they can help the
development team to think about the organizing metaphor for a system. Visual brainstorming involves
using exploratory paper prototypes as a means for facilitating communication in brainstorming
sessions.

One of the first things you learn in design is to put forward a number of alternatives so that you can
then compare them. Having a lot of display space is important for doing this because you can then
make design ideas visual. One of the things you can do with visual things is superimpose them, or put
them side by side and quite often when you start doing that you like one better than another. Until you
have made a comparison, you have no idea why you prefer one to another. The criteria emerge from
the comparison. It is not just picking the right idea, but recognizing the right idea in all the mess of
different alternatives produced.

Evaluation also comes into brainstorming: when you stop generating ideas you have to start evaluating
them. The best exploratory designs produced in the visual brainstorming can then be further developed
by constructing cardboard prototypes, which can be evaluated with users.

When trying to develop the product concept, a metaphor may need to be devised for the system to
work upon. A metaphor is a way of describing a concept in a more accessible and familiar form. We
can shape the system following a metaphor, like, for example, the desktop analogy used for Mac and
Windows operating systems. Metaphors can be used to present a coherent image of the whole system
(therefore, defining the product concept) or to deal with specific functions or parts of the system.
Visual brainstorming can be used to explore any user interface-related design idea, but it is specially
well-suited for developing metaphors.

Participants

Developers, users and relevant stakeholders for the definition of the product concept.

Main Reference

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-Computer Interaction.
Addison Wesley, 1994. pp. 456-461.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 65 of 65

II.3.8 Competitive Analysis

Description

If we view a competing product as a prototype, then we can evaluate it to see if it matches the
objectives we have set for our system. In particular, we can analyse existing products heuristically, and
we can perform usability tests with users. A competing product is already fully implemented and can,
therefore, be tested very easily.

If several competing products are available for analysis, we can perform a comparative analysis of
their differing approaches to support the user goals. This will provide ideas for the system we are
developing, especially for developing the product concept. It can also provide a list of ad hoc
guidelines for approaches to specific issues that seem to work, and things that should be avoided.

Competitive analysis basically involves studying existing products to find out their strengths and
weaknesses. These analysed products may be competing products, but they may also be products from
different fields that address issues that are similar to the ones the system will have to deal with.
Commercial products that are widely known serve as good references for establishing the product
concept, and a competitive analysis of their benefits from a usability point of view can help to focus
the discussion and the decision-making process.

How-to

When competitive analysis is used for establishing planned levels in usability specifications, then
usability tests are performed with the competing products in order to measure the values for the
benchmark tasks.

When used for developing the product concept, competitive analysis involves performing a heuristic
evaluation of existing software products to identify their main strengths and weaknesses, and to
identify approaches that might be valuable for the user. These approaches or design ideas may be
discussed to decide whether they are appropriate for the system we are going to develop.

Participants

Developers. Users may point out other products they identify as very usable and/or useful, as
candidates for competitive analysis. Showing the approaches of existing products to users may help as
well to focus the discussion, as it will be based on tangible products instead of abstractions.

Main Reference

J. Nielsen. Usability Engineering. AP Professional, 1993. pp. 78-79.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 66 of 66

II.3.9 Scenarios

Description

A scenario is a personalized, fictional story with characters, events, products and environments. They
help the development team to explore ideas and the ramifications of design decisions in particular
situations. Scenarios are populated with fictional, but possible, characters who want to undertake real
work. During design activities later in the development process, developers may refer to the scenario
characters with comments such as “John would not understand that arrangement”. Scenarios also
provide a useful source of hypothetical cases for evaluation.

Scenarios are useful where there is no available data about the range and distribution of user task
frequencies and sequences, especially for highly innovative systems. In these less well-defined
projects, developers find day-in-the-life scenarios helpful to characterize what happens when users
perform typical tasks. Scenarios can represent common or emergency situations, with both novice and
expert users, and they are especially suited when multiple users must cooperate or multiple physical
devices are used.

How-to

A scenario details an interaction example illustrating the flow of specific user actions needed to get
some result, concentrating on what the user will see, what the user must know, and what the user can
do. It is an encapsulated description of:

• an individual user
• using a specific set of computer facilities
• to achieve a specific outcome
• under specified circumstances
• over a certain time interval.

An example of scenario for the Eurochange system (a system for currency exchange) follows:

Path Smith has just arrived at Geneva International Airport en route to a large conference on
Human-Computer Interaction. Pat is carrying a laptop and a large, heavy suitcase and needs
to get to the conference centre quickly. Looking around for a bank in order to get some local
currency, Pat sees the Eurochange machine with its blue flag style logo showing a circle of
twelve stars.
Pat goes up the machine. It seems similar to the automatic teller machine that Pat uses
regularly. Pat puts down the suitcase, takes out a credit card and inserts it into the slot. A
message is displayed on the screen:

Enter your PIN

Pat thinks for a few moments and then types a four-digit number on the numerical pad,
listening to the reassuring beep that follows each number pressed. The machine pauses for a
few seconds and then displays:
Select currency required
Pat pauses again. What is the currency in Switzerland? Pat browses the currencies available,
sees “Swiss Franc (CHF)” and presses the key. The machine displays the message:

Exchange rate is 1.47 CHF to 1 EUR
Enter amount required in Swiss Francs in units of [10]
Press <Proceed>

Pat types 253 and presses <Proceed>. A message is displayed:

Machine deals in bank notes only
Smallest bank note is [10] CHF
Enter new amount to obtain CHF or press <Cancel>

Pat enters 260 and presses <Proceed>. There is a whirring noise and a few other
indeterminate clunks and clicks. The credit card is returned from the card entry slot and the
money deposited in the delivery slot, with a printout of the transaction.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 67 of 67

Storyboards (pictorial representations of scenarios, like the ones used by film directors) may provide
additional support to the situations described in scenarios.

Scenarios may serve to convey a shared understanding of the product concept and the kind of users
and tasks for which it is intended. It may be used as well to show to the customer what could be
offered or provided if the system is actually developed.

Participants

Developers create scenarios, but they are validated with the customer and evaluated with users.

Main Reference

J. M. Carroll. “Scenario-Based Design”, in Handbook of Human-Computer Interaction. Second
Edition, edited by M. Helander, T. Landauer and P. Prabhu. North-Holland, 1997. Chapter 17. pp.
383-406.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 68 of 68

II.3.10 Use Cases

Description

A use case is a case of use, or one kind of use to which a system can be put. It is:

• Supplied functionality

• An external, “black box” view

• A narrative description

• Interaction between a user (in some user role) and a system

• A use of a system that is complete and meaningful to the user

Each use case describes, in narrative form, an interaction that is complete, well defined, and
meaningful to some users. The narrative of the use case is divided into two parts: the user action
model, which shows the actions the user takes; and the system response model, which shows what the
system does in response.

Depending on the level of abstraction at which the use case is described, there are two forms for use
cases: essential and detailed or concrete. Essential use cases describe a generalised, abstract,
technology-free and implementation-independent interaction, in the language of the application
domain and of users. On the other hand, detailed use cases reflect the actual interaction as it happens
between the user and the system, so they include restrictions imposed by internal design decisions and
according to a particular user interface design. Detailed use cases can also be called concrete, since
they reflect the concrete instantiation of the abstract description in its essential form.

The use case diagram or use case map represents the use cases supported by the whole system, and the
interrelationships among them and with the users. The use case map along with the narratives of use
cases form the use case model.

How-to

Detailed use cases are the ones employed in object-oriented software development. The usage of these
conventional use cases has presented some major problems and limitations from a usability point of
view. Conventional use cases are usually employed early in the development process as a starting
point for development. Nevertheless, they contain too many built-in assumptions, often hidden or
implicit, about the form of the user interface that is yet to be designed. As models, they lean too
closely toward implementation and do not stick closely to the problems faced by users. But they are
useful for linking an external view of the system with the design of its internal part. Therefore,
detailed use cases are useful as a technique for improving the usability of the software product, but not
as the first approach to describing the interaction between the users and the system. Below we will
describe essential use cases as an appropriate initial approach to interaction modelling, which will
serve as basis for designing the best scheme to support interaction (using some of the other usability
techniques described in this catalogue).

An essential use case is a structured narrative, expressed in the language of the application domain and
of users, comprising a simplified, generalised, abstract, technology-free and implementation-
independent description of one task or interaction that is complete, meaningful and well defined from
the point of view of users in some role or roles in relation to a system and that embodies the purpose
or intentions underlying the interaction.

An essential use case is based on the purpose or intentions of a user rather than on the concrete steps
or mechanisms by which that purpose or intention might be carried out.

The first step for the creation of the use case model is to identify the use cases that the system must
support. The structured user role model is a starting point for use case identification. For each user role
we can ask ourselves what these kinds of users are trying to accomplish, what they need to do in order

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 69 of 69

to fulfil the role, or what capabilities are required to support whatever these users need to accomplish.
Once the use cases have been identified, narratives are written for each use case, and the relationships
between them are defined.

To write a use case narrative, we must identify the essential purpose or user intent embodied in the
interaction. The name of the essential use case should be simple, it should imply purposeful, goal-
directed action. Transitive gerunds, verbs of continuing action with a direct object, make good names
for essential use cases. Examples of essential use case names are: findingCustomer, verifyingOrder or
insertingMathSymbol. If the user purpose is not well expressed or fully implied by the name of the use
case, then an explicit purpose clause should be added to the head of the narrative, describing and
detailing the purpose or goal from the user perspective.

Figure II.3.2 shows the narrative for the use case gettingCash from an ATM (Automatic Teller
Machine). The narrative for the essential use case is on the left-hand side of the figure, while the
narrative for the detailed case is on the right-hand side.

ESSENTIAL USE CASE DETAILED USE CASE

gettingCash gettingCash

USER INTENTION SYSTEM RESPONSIBILITY USER INTENTION SYSTEM RESPONSIBILITY

identify self

choose

take cash

verify identity
offer choices

dispense cash

 insert card

enter PIN

press key

press key

enter amount

press key

take card

take cash

read magnetic strip
request PIN

verify PIN
display transaction option menu

display account menu

prompt for amount

display amount

return card

dispense cash

Figure II.3.2 Example of Essential Use Case vs. Detailed Use Case Narrative

Participants

Developers to build the use case model. Users may participate in defining the use cases the system will
support and the narrative for essential use cases.

Main Reference

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. Chapter 5. pp. 97-123.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 70 of 70

II.3.11 Paper and Chauffeured Prototypes

Description

Paper prototypes are simple drawings of a user interface. They are passive prototypes in the sense that
they are not interactive like a real user interface. A variant of paper prototypes is the sketching
technique, where initial sketches of the user interface are drawn in order to explore design alternatives
for the product concept.

How-to

You do not need to be an extremely good drawer to produce a good paper prototype. Simple, quick
pencil sketches often serve quite well, even if they only marginally resemble any actual software user
interface. Accuracy and graphical detail are usually less important than the overall structure and visual
organization of each interaction context.

Paper prototypes can be presented to users and members of the development team for comment and
improvement. At the early stages of development, it may be undesirable to express design ideas by
means of working software, since this may take a significant effort to build. Once there is a glossy
version of an idea, it is too easy to get carried away thinking that this must be the only or the best
solution to the problem.

A paper prototype does not represent animation or interaction, so it must be supplemented with
explanations from the development team. Pull-down menus may be simulated by means of Post-It
notes or tape, as in the prototype situated on the left-hand side of Figure II.3.3.

The main advantage of paper prototypes is their flexibility, since changes are very easy to make to a
drawing, or a new one can be quickly sketched. The main disadvantage is that sketches are sometimes
not very close to a real software system, while prototyping is supposed to produce a product that is as
similar to the intended system as possible.

Figure II.3.3 Two examples of Paper Prototypes

Chauffeured prototyping involves the user watching while a member of the development team
“drives” the system. It is a way to test whether the interface meets the user needs without the user
actually having to carry out low-level actions with the system.

Participants

Developers, users and other stakeholders may participate in evaluation sessions that are based on
paper prototypes.

Main Reference

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 71 of 71

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. pp. 213-214.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 72 of 72

II.3.12 Usability Specifications

Description

Usability specifications are quantitative usability goals, which are used as a guide for finding out when
a software system is good enough in usability terms. They must be defined before design begins, and
they must be testable to be able to decide whether the software product attains the specified usability
level. Usability specifications are based on the basic five usability attributes or their subattributes, and
they are related to a particular task (use case). Table II.3.1 shows part of a sample usability
specification table.

By establishing usability specifications early in the development process, and monitoring them at each
iteration, you can determine whether your system is, indeed, moving towards an improved, more
usable, result.

Usability
Attribute

Measuring
Instrument

Value to be
measured

Current
Level

Worst
Acceptable

Level

Planned
Target
Level

Best
Possible

Level

Observed
Results

Performance
in normal use

“Answer
Request” task

Length of time
taken to
successfully
perform the task
(minutes and
seconds)

2’ 53’’ 2’ 53’’ 1’ 30’’ 50’’

Performance
in normal use

“Answer
Request” task

Number of errors
during task
performance

0 0 0 0

First
Impression

Questionnaire Average score
(range –2 to 2)

- 0 1 2

Table II.3.1 Excerpt from a Sample Usability Specification table

How-to

The first step is to identify the usability attributes or subattributes that we want to cater for. Depending
on the kind of product developed, some attributes might be irrelevant, for example, efficiency could be
a secondary goal for a walk-and-use kiosk, while learnability would have top priority.

Attributes like satisfaction or first impression may be evaluated by means of subjective measures,
normally in the form of questionnaires.

For performance-related attributes, a set of benchmark tasks must be selected and associated with each
attribute. A benchmark task is a typical, representative use case a user will perform. Measuring a
user’s performance on a benchmark task provides an objective usability metric for the related usability
attribute. Benchmark tasks should be as specific as possible, so that there is little variability in their
enactment by different users. The benchmark task in the first row in Table II.3.1 could be described as
follows: “Suppose you are at the Help Desk counter, and you receive a request. You decide to answer
the request, and you look for the answer in your knowledge base ...”.

The value to be measured must be then decided. For a benchmark the main values we can collect are
the time to complete a task, or the number of errors during task performance. It is usually sensible to
measure both of them, and we would have two rows in the Usability Specification table that are based
on the same task.

The last step in defining usability specifications involves establishing the range of levels:

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 73 of 73

• The current level may refer to the value for the usability attribute in question with the current
version of the system or with a competitor we want to challenge with our more usable product.
When we are automating a manual procedure, it may refer to the time required to manually
perform the task. If the system is very innovative, this field could be left blank.

• The worst acceptable level is the lowest acceptable level of user performance. It means that if
the system does not reach this minimum level for any of the attributes in the specifications, the
system is unacceptable from a usability point of view. The value for the current version of the
product is usually taken as a reference to establish this level, and the level will be higher if the
current version is unsatisfactory.

• The best possible level is a realistic upper limit. It should be an attainable level, not a wild
dream. A hypothetical expert user should be able to attain this level. You can use developers
as users to establish the best possible level, since they are the ones who are better acquainted
with the subtleties of the interaction design. Another possibility is to use GOMS to provide
theoretical estimates of expert error-free task performance.

• The planned target level is the attainment of unquestioned usability success. It is the most
important value, because it is the actual requirement equivalent to traditional requirements.
The other values must be filled in beforehand to help to set the planned target level in a
sensible range of values. If there is a competitive system with a high usability level, it may
serve as a reference for setting the planned target level.

When a system prototype exists, usability testing may be used to establish these levels at reasonable
values.

Much expertise in the issue is required to establish good levels for the usability specification table, and
this is why a usability specialist might be needed to apply this technique the first times it is used.

The observed results column will be filled in when the specifications are tested by means of usability
testing and questionnaires.

Participants

Developers, usability specialists (to establish the range from worst acceptable level to best possible
level).

Main Reference

D. Hix, H.R. Hartson. Developing User Interfaces: Ensuring Usability Through Product and Process.
John Wiley and Sons, 1993. Chapter 8. pp. 221-248.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 74 of 74

II.3.13 Cognitive Walkthrough

Description

Cognitive walkthrough is a technique for evaluating user interfaces by analysing the mental processes
required of users. Like heuristic evaluation, the results are based on the judgement of the cognitive
walkthrough analyst, instead of on results with real users. The difference is that it is focused on
specific tasks, instead of on assessing the usability of the system as a whole.

In a cognitive walkthrough, correct sequences of actions are analysed, asking if they will actually be
followed by users. The cognitive walkthrough analyst identifies problems by tracing the likely mental
processes of a hypothetical user. The analysis considers matters like user background knowledge that
influence mental processes but are not part of the user interface. The technique aims to identify likely
usability problems in the user interface and to suggest reasons for these problems.

Cognitive walkthroughs were developed for systems that can be learned by exploratory browsing, but
they are useful even for systems that require substantial learning.

How-to

The cognitive walkthrough analyst must begin by defining the assumed user background. The user
structure role model should provide this information. Then the analyst must choose a representative
task and devise a realistic usage of this task. If usage scenarios have been created, they can be a good
source for realistic usage of tasks.

The analyst determines one or more correct sequences of actions for the chosen task. A correct
sequence of actions is one that developers would be happy to see users use. Often there will be more
than one acceptable way of performing a task. It these variations are important a cognitive
walkthrough can be done on more than one, but often it will be sensible to choose the most common,
or perhaps the most problematic.

The final step in the preparation of the cognitive walkthrough is to work out as fully as possible what
the user will see at each step of the sequence or sequences to be examined. This may sometimes force
the developers to create a partial design that is detailed enough to indicate the key interface features
along the path. Screen sketches and /or dialogue flow (use cases) are usually enough to perform a
cognitive walkthrough.

In the walkthrough itself, the analyst works through the sequence of correct actions, considering the
state of the interface before and after each action, trying to determine how likely it is that users will
follow that path. The kind of questions the analyst must try to answer are detailed in Table II.3.2.

Questions to ask about each correct action

• Will the user be trying to achieve the right effect?
• Will the user notice that the correct action is available?
• Will the user associate the correct action with the desired effect?
• If the correct action is performed, will the user see that progress is being made?

Table II.3.2 Questions the Cognitive Walkthrough Analyst Tries to Answer

For each correct action, the analyst must construct a success or failure story. If all the answers to all
the questions in Table II.3.2 are “yes”, including an explanation, then it is a success story. If the
answer to one or more of the questions is “no” or “not always”, the analyst has a failure story. The
explanation of this answer will tell the development team why the analyst expects that some users will
have trouble at this point.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 75 of 75

Participants

Developers acting as cognitive walkthrough analysts. If the analysts are not part of the development
team that has designed the user interface, members of this team may participate to indicate the
expected behaviour of the users with the user interface.

Main Reference

J. M. Carroll. “Cognitive Walkthroughs”, in Handbook of Human-Computer Interaction. Second
Edition, edited by M. Helander, T. Landauer and P. Prabhu. North-Holland, 1997. Chapter 30. pp.
717-732.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 76 of 76

II.3.14 Pluralistic Walkthrough

Description

A pluralistic usability walkthrough is a collaborative process involving users, developers and other
stakeholders, where all participants are expected to play the role of users. The participants evaluate the
interaction design by trying to perform a given task, and they stop at each step to have a group
discussion about its usability. The goal of the technique is coordinated empathies to help developers to
put themselves in the shoes of users.

How-to

A pluralistic walkthrough is driven by a task scenario chosen in advance and for which a storyboard, a
series of screen sketches or paper prototypes representing the various contexts or a working prototype
have been prepared. For each step in the task, all participants independently decide on what action or
actions they would take next and note these on their own copies of the storyboard. No discussion takes
place until all participants have completed a given step. When the discussion of the step begins end
users speak first to prevent the developers dominating the discussion.

This technique is relatively slow, since all participants have to be at the same step at the same time.
But this technique has some appealing advantages, cited by participants in this kind of evaluation,
such as:

• They feel that their viewpoints have been heard,

• their expertise was valued, and

• their design concerns were remedied to satisfaction.

Participants

Developers, users and any other kind of stakeholders. All of them participate trying to think in terms
of the end user.

Main Reference

R. G. Bias. “The Pluralistic Walk-Through: Coordinated Empathies”, in Usability Inspection Methods,
edited by J. Nielsen and R. L. Mack. Wiley, 1994.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 77 of 77

II.3.15 GOMS (Goals, Operators, Methods and Selection Rules)

Description

The GOMS model emerged from Cognitive Psychology theory to model how the human acts when
trying to accomplish a goal by performing a task, which is formed by actions. These actions may be
either physical (like pressing a button) or mental (cognitive operations such as recalling a name or
deciding which option to choose). It aims to be an engineering model for usability, designed to
produce quantitative predictions of how well humans will be able to perform tasks with a proposed
design.

The GOMS model is based on goals (edit document) and subgoals (change a word) that the user
formulates; the operators available to users, like motor, perceptual or cognitive primitives (click the
mouse, look at the menubar); the methods users compose out of sequences of these operators to
achieve the goals or subgoals (selection is done by moving the cursor to point to the word and double-
clicking the mouse); and the selection rules needed to decide what to do next if the user has several
goals pending or if there are several methods that will accomplish a given goal (the word can be
removed by selecting it an issuing a “cut” command or by backspacing over it).

Each operation and selection rule is modelled as taking a certain amount of time, and therefore the
developer can calculate the time need to perform several tasks by adding up the time for all the
individual steps. The GOMS model is limited to error-free performance by expert users, and it can be
used to produce performance estimates for this kind of users.

GOMS is actually a family of models, since there are variants for the notation used to describe the
different elements that take part in a GOMS model. Of these, NGOMSL is a “natural” method of
expressing the GOMS model.

How-to

NGOMSL is a complicated technique for cognitive task analysis, and it takes time and effort to master
it. We will just give a brief indication of how it works, and the reader may consult the main reference
below if he or she is interested in applying the technique.

In NGOMSL, learning time and execution time are predicted based on a program-like representation
of the procedures that the user must learn and execute to perform tasks with the system. NGOMSL
stands for Natural GOMS Language, because the notation used is a natural language structure to
represent the user methods and selection rules.

NGOMSL starts after an initial task analysis has been performed, that is, after the user goals have been
identified. The methods must be defined for each goal, by asking the question “how do you do it on
this system?”. Each method is described as a series of steps. If all the operators in a method are
primitive, this is the final level of analysis. However, if some operators are high-level, they must be
examined to decide whether a method of analysis is needed. Then we can calculate a time estimate for
each goal.

The NGOMSL model below describes how to move an object in the Macintosh Finder tool:

Method for goal: move an object.
Step 1. Accomplish goal: drag object to destination.
Step 2. Return with goal accomplished.

There is a submethod for describing the dragging operation:

Method for goal: drag item to destination.
Step 1. Locate icon for item on screen.
Step 2. Move cursor to item icon location.
Step 3. Hold mouse button down.
Step 4. Locate destination icon on screen.
Step 5. Move cursor to destination icon.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 78 of 78

Step 6. Verify that destination icon is reverse-video.
Step7. Release mouse button.
Step8. Return with goal accomplished.

Participants

Developer.

Main Reference

D. Kieras. “A guide to GOMS Model Usability Evaluation using NGOMSL”, in Handbook of Human-
Computer Interaction. Second Edition, edited by M. Helander, T. Landauer and P. Prabhu. North-
Holland, 1997. Chapter 31. pp. 733-766.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 79 of 79

II.3.16 Requirements Animation and Wizard of Oz Prototypes

Description

As opposed to paper prototyping, requirements animation involves building a working system whose
appearance resembles the finished product. These prototypes are called active prototypes. Software
prototypes are well known in software development. Therefore, we will not go into a lengthy
description of and explanation of how-to do software prototyping and will focus on a less costly group
of working prototypes: Wizard of Oz prototyping.

Wizard of Oz prototyping involves having some kind of behind-the-scenes manipulation to produce
the responses of a working system, usually by means of a person providing the responses.

How-to

In a typical Wizard of Oz prototyping setting, the user interacts with a screen, but instead of a piece of
software responding to the user requests, a developer is sitting at another screen answering the queries
and responding to the real user. The user is unaware of the trick, so the perception of using a real
working system is not spoiled. This kind of prototyping is widely used to prototype and test out user
interface designs of many kinds, but especially for exotic or unusual configurations. For example, the
development team may want to try out a telephone-based interface that mixes limited voice
recognition with telephone keypad responses. The behaviour of the system is simulated by a person at
the other end of the telephone line.

An advantage of this kind of prototyping for the development team is that extra understanding can be
achieved through being involved so closely with the users.

Participants

The user using the prototype and the developer acting a facilitator of the evaluation, plus the hidden
developer in the case of Wizard of Oz prototyping.

Main Reference

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-Computer Interaction.
Addison Wesley, 1994. pp. 538-542.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 80 of 80

II.3.17 Impact Analysis

Description

Impact or cost/importance analysis is a technique for deciding between design options, by relating the
options to the usability problems that are affected and choosing the ones that address the most
important usability problems. It is performed once we have a set of usability problems identified in
any kind of usability evaluation activity. For each usability problem, we can propose a design
decision, and use impact analysis to prioritise these decisions in order to undertake the redesign effort.

It is a tool for making the trade-offs necessary in any design process, which are based, in this case, on
the usability issues that are addressed.

How-to

In an impact analysis, the development team considers the relative importance of the usability
problems found, and the cost of the solutions as listed in a table like the one in Table II.3.3.

Usability
Problem

Effect on User
Performance Importance Solution(s) Cost Resolution

Too much
window
manipulation

10 of 35
minutes

High Fix window placement
automatically, but allow
user to reposition it

6 hours

Black arrow on
black
background

N/A Low Reverse arrow to white
on black

1 hour

Table II.3.3 Example of Table for Impact Analysis

Actually, impact analysis begins once all columns except the Resolution column have been completed
for all observed problems. Depending on the number of design decisions to be considered, tools may
be used for decision making, such as a graphical representation of problem distribution on the
importance vs. cost scale. In principle, highly important problems should be tackled first, but the
development team must also consider the resources allocated for the design activity and act
accordingly. The process of deciding between design improvements that need to be made is not easy,
and all this technique does is provide information in a structured manner so that the development team
can make an informed decision.

Participants

Developers, and users if they participate in the design effort.

Main Reference

D. Hix, H.R. Hartson. Developing User Interfaces: Ensuring Usability Through Product and Process.
John Wiley and Sons, 1993. pp. 316-330.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 81 of 81

II.3.18 Screen Pictures

Description

Screen pictures are produced in order to define the appearance of the elements that form each screen of
the system being developed, like buttons, text fields and scrollable lists. Screen pictures depict the
information provided by the menu-selection and dialog-box trees, and by the context navigation map.
If a GOMS model has been built, the information about the behaviour of the screen elements must be
related to the information present in the GOMS model.

The information conveyed in screen pictures should allow user interface implementers to create the
actual user interface. As screen design can be very time consuming, the use of screen design tools (or
prototyping tools) can be very helpful, and the screens produced automatically become the model and
it is not necessary to create a previous model that is implemented afterwards.

How-to

In order to create screen pictures, you should sketch some preliminary screen pictures, including the
interaction /application objects, menus, buttons, and icons. You can label the functions and add notes
about the behaviour of objects, where appropriate. Figure II.3.4 shows an example of a screen picture.

View Control

Hour

Day

Week

Month

ViewView AddAdd DeleteDelete ModifyModify

Pull-down
menu?

Appointment
object

in some
view container

Figure II.3.4 Example of Screen Picture for a Personal Assistant

In the early screen pictures, the elements do not need to be represented with their final appearance,
they may be concepts that identify the kind of manipulation needed or the kind of information
represented, like an “area selector” or a “word list”. We do not need to commit ourselves to specific
widgets in the user interface. If the concept of what role they play in the screen is clear, but the exact
widget that is best for this purpose is not, then we can represent the element as a mere role. These
concepts can be converted into interface widgets as the design is refined to become the actual screen in
the user interface.

Software support for building screen pictures is available in the form of interface-building tools. The
use of this kind of tools makes the process of screen design faster, and it may allow a collaborative
approach that engages users and other stakeholders in the revision-redesign effort.

The creation of screen pictures is closely related to requirements animation and Wizard of Oz
prototyping. Screen pictures may be used for prototyping, and some details on the behaviour of the
different elements in the interface may need to be added so they can be implemented. Some interface-
building tools support system development in addition to user interface prototyping. In this case, the
specification of the user interface is the prototype itself, since it also encompasses the behaviour.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 82 of 82

Participants

Developers. The screen pictures may be evaluated with users to allow a refinement of the solution.

Main Reference

D. Hix, H.R. Hartson. Developing User Interfaces: Ensuring Usability Through Product and Process.
John Wiley and Sons, 1993. pp. 134-144.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 83 of 83

II.3.19 Menu-Selection and Dialog Box Trees

Description

In a menu-based system, menu trees represent the structure of menu navigation. Menu trees are
powerful as a specification tool since they show users and other stakeholders the complete and
detailed coverage of the system. Like any map, a menu tree shows high-level relationships and low-
level details.

Similar comments apply to dialog-boxes. Printing out the dialog boxes and showing their relationships
by mounting them on a wall is very helpful for gaining an overview of the entire system to check for
consistency and completeness.

How-to

When we cannot create an interaction scheme based on direct manipulation (as in the desktop
metaphor in the Mac and Windows operating systems), we can use menu selection. If the menu items
are written using familiar terminology and are organized in a convenient structure and sequence, users
can select an item easily.

When a collection of items grows and becomes difficult to maintain under intellectual control,
designers can form categories of similar items, creating a tree structure. Menu trees represent this
structure. With large systems, the menu tree may have to be laid out on a large wall or floor, but it is
important to be able to see the whole structure in one go to check for consistency, completeness, and
lack of ambiguity or redundancy.

It is difficult to group menu items in a tree so that they are comprehensible to users and match the task
structure. Problems include overlapping categories, extraneous items, conflicting classifications in the
same menu, unfamiliar jargon, and generic terms. The members of the development team may discuss
all these issues while they all share a view of the complete tree structure represented in a menu-
selection tree.

Websites that are organised in a highly hierarchical structure can be easily represented by means of
tree menus. Figure II.3.5 shows the menu tree of a website.

Home Page

Overview Partners
Working

Issues
Results

Work
Plan

Documents
in Curse

Meetings
Documentation

Groningen Athens

Restricted Results
Commission

Project Officer

Restricted
Results

IST Programme

Figure II.3.5Example of a Website Menu Tree

Participants

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 84 of 84

Developer. Users may participate in the discussion of menu tree alternatives.

Main Reference

B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction.
Addison-Wesley, 1998. pp. 247-252.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 85 of 85

II.3.20 Context Navigation Maps

Description

A context navigation map models the interconnections among the various interaction spaces of the
user interface. It gives more dynamic expressiveness than tree menus, by specifying the transition
between the different interaction contexts that occurs when a use case is enacted. A context navigation
map (or navigation map for short) represents the structure of the user interface by modelling the
relationships among interaction contexts.

How-to

The navigation map is formed by boxes and arrows connecting these boxes. A box represents each
interaction space. Arrows connecting interaction spaces represent possible transitions between them,
such as calling up a dialogue from a command button or switching views through a menu. Arrow
labels may indicate menu selection by means of a vertical bar (like, for example, View | Toolbars), the
activation of a command button by means of square brackets ([Apply]) or an icon or tool selection by
means of angle brackets (<Page Width>). Figure II.3.6 details the notation for navigation maps.

any interaction contextany interaction context

panel or page within tabbed or
other compound dialogue
panel or page within tabbed or
other compound dialogue

windowwindow

dialogue boxdialogue boxdialogue box

“action” context transition
triggered by “action”

context transition
with implied return

dialogue or messagedialogue or message

Figure II.3.6 Notation for Navigation Maps

The navigation map models the way users can navigate through the various interaction contexts within
the user interface in the course of enacting use cases. When a single use case is represented, the
navigation map models the behavioural view, and this is the most usual application of navigation
maps. An example of a behavioural view is shown in Figure II.3.7. When the map combines all the
behavioural views for the various use cases of the system in a single diagram, the result is called an
architectural view. For big systems with a lot of interaction spaces the architectural view may get
unwieldy, and too many transitions can lead to spaghetti-like diagrams.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 86 of 86

Program
Manager

Network
Startup Settings

Network
Startup Settings

MS Windows
Network

MS Windows
Network

Control
Panel

Control
Panel

WindowsWindows

Change System
Settings

Change System
Settings

Network
Setup

Network
Setup

[Startup]

<Network>

<Control Panel>
<Network

Setup>

<Windows Setup>

Options | Change system settings

Options | Change network settings

Figure II.3.7 Example of Navigation Map representing the Behavioural View

Participants

Developers.

Main Reference

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. pp. 135-145.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 87 of 87

II.3.21 Help Design

Description

The design of the help subsystem is important for the overall usability of the software product. Good
help will not turn an unusable product into a highly usable one, but well-written, well-organised and
accessible help can compensate to some extent for limitations in software.

Essential use cases express what the users may want to accomplish with the system, so they are an
excellent basis for organising help contents. This kind of structure is useful for providing procedural
help, that is, help with how to perform a task.

Additionally, the design of the help subsystem may be undertaken for a set of general help use cases
(or help cases), which give a response to common help requests made by users of all kind of systems:
seekingIdentification, seekingInstruction, seekingClarification, seekingElaboration, seekingReminder,
seekingLocation, and exploringFeatures.

How-to

Procedural help is most helpful when it is organised by use cases that are titled and written in the
ordinary language of the users and the application domain and are well indexed. Use cases are a
natural way of organising and providing access to help because they represent the basic intents of
users. Each essential use case is a complete and well-defined task based on something a user might try
to accomplish. If the essential use case model has been well constructed, it will reflect how users think
about and conduct their work. Each use case then becomes an entry in the help file.

To design support for other kinds of help, we can focus on the common help requests described as
help cases (use cases for help seeking). Note that procedural help is expressed by means of the help
case seekingInstruction. Table II.3.4 details common user questions and the corresponding help case.

User Question Help case

What is this? seekingIdentification
 indicate object brief description

How do I...? seekingInstruction
 identify task operational sequence

What should I do? seekingSuggestion
 request hint

What do you mean? seekingClarification
 request different explanation

Tell me more seekingElaboration
 request details or advanced

Remind me about... seekingReminder
 identify feature/task brief synopsis

Where is...? seekingLocation
 identify feature give place, routing

What can I do? exploringFeatures
 request overview, topic map

Table II.3.4 Help Cases for Common User Help Requests

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 88 of 88

Participants

Developers.

Main Reference

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. Chapter 11. pp. 231- 264.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 89 of 89

II.3.22 Heuristic Evaluation

Description

Heuristic evaluation is performed to identify the usability problems of a system, so that they can be
attended to as part of an iterative design process. It involves having a small set of evaluators examine
the interaction design and judge its compliance with recognised usability principles (the heuristics).

It can be used as a complement to usability testing with users, since it usually reveals different kinds
of usability problems than usability testing.

How-to

Each evaluator inspects the interaction design alone. After the evaluations have been completed, the
evaluators may gather to report their findings. This procedure is important in order to ensure
independent and unbiased evaluations from each evaluator.

During the evaluation session, the evaluator goes through the interaction scheme (screen sketches
and/or use case description) several times and inspects the various dialogue elements and compares
them with the list of recognised usability principles. These heuristics are general rules that seem to
describe common properties of usable interfaces, like the ones described in Table II.3.5. In addition to
the checklist of general heuristics to be considered for all dialogue elements, the evaluator is also
allowed to consider any additional usability principles or results that come to mind that may be
relevant for any specific dialogue element.

Usability Heuristics

• Use simple and natural dialogue
• Speak the users' language
• Minimize user memory load
• Be consistent
• Provide feedback
• Provide clearly marked exits
• Provide shortcuts
• Provide good error messages
• Prevent errors

Table II.3.5 Example of List of Usability Heuristics

The number of evaluators to be employed depends on the criticality of system usability, but it is
clearly better to combine evaluations by several evaluators than have a single evaluator. Experts
recommend using about five evaluators and certainly at least three.

Unlike other evaluation methods, such as walkthroughs, the evaluators decide on their own how they
want to proceed with evaluating the interface, instead of following the predefined paths given by use
cases.

The output from heuristic evaluation is a list of usability problems in the interaction design, annotated
with references to the usability principles that were, in the opinion of the evaluator, violated by the
design in each case.

Participants

Developers acting as evaluators.

Main Reference

J. Nielsen. Usability Engineering. AP Professional, 1993. pp. 155-162.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 90 of 90

II.3.23 Usability Inspections

Description

Inspections have a long history in software development. The goal of all inspections is to find defects.
Usability inspections are aimed at identifying usability defects. The object of inspection may be a
finished product, a design or a prototype. Usability inspections refer to systematic processes for
inspection, as opposed to heuristic evaluation, which is a less formal usability assessment technique.

When different stakeholders perform the inspection in a collaborative effort, it is called collaborative
usability inspection. In this case, the review process is a team effort that includes software developers,
end users, application or domain experts and usability specialists, collaborating to perform a thorough
and efficient inspection.

There are two variants of inspection, which have a specific focus: consistency inspections and
conformance inspections.

How-to

In consistency inspections, the goal is to identify inconsistencies across interaction contexts and their
contents. The evaluators check for consistency of terminology, colour, layout, input and output
formats, and so on. When the product belongs to a family of products, teams of designers, at least one
from each project, meet to inspect the usability of the different products of the family.

In conformance inspections, the participants inspect the system interaction for compliance with
specified standards or with style guidelines. All participants must be familiar with the applicable
standards and/or style guidelines.

Collaborative usability inspections, if well conducted, can be more productive than expert inspections.
The focus needs to be kept on the user perspective, in order to identify the usability problems that
might arise. Developers need to adopt the mindset of an impatient and intolerant user. The presence of
actual users in inspections helps to catalyse taking the user perspective. Two special roles in the
inspection team are the lead reviewer, who organizes the inspection meetings and moderates the
process; and the inspection recorder, who maintains a complete log of identified defects. Another
special role in the team may be the continuity reviewer, who has special responsibility for identifying
inconsistencies. Apart from members of the development team, it may be useful to have some
developers who have not participated in the development effort, because they bring a fresh perspective
into the inspection. Members of the development team are not allowed to defend, explain, excuse or
rationalize any aspect of their design or the decisions leading to it. Developers should also avoid
making implied promises to the users. The comments and inputs from users should be given special
weight in the inspection process, without allowing these to dictate interaction design decisions. The
lead reviewer should encourage user participation and protect users from criticism or antagonistic
questioning. Users and domain experts should be regarded as authorities, but not as arbiters. Finally,
usability experts may also contribute to collaborative usability inspections.

Participants

Developers as evaluators. Users and other stakeholders in collaborative usability inspections.

Main Reference

L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and
Methods of Usage-Centred Design. Addison-Wesley, New York, NY, 1999. pp. 397-415.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 91 of 91

II.3.24 Thinking Aloud

Description

Thinking aloud is a technique for performing usability tests with users. The evaluator asks participants
(users) to talk out loud while working during a usability testing session, indicating what they are trying
to do, or why they are having a problem, what they expected to happen that did not, what they wished
had happened, and so on. By verbalising their thoughts, test participants enable the developer to
understand how they view the system, and this helps to identify the major user misconceptions.

The strength of thinking out loud is on qualitative data and not on performance measures. The idea is
to get the user’s impression while using the system to avoid later rationalisations. The aim of this kind
of testing is to detect the parts of the dialogue that are more problematic from a usability point of view,
along with the real causes of the problems.

There are some variants of this technique: constructive interaction, retrospective testing, critical
incident taking and coaching method.

How-to

Thinking aloud is can be employed in any usability test. There is no difference in the test preparation
with performance measurement usability testing. But, before starting with the test, the evaluator must
encourage the test participant to think out loud, maintaining a running monologue about what he or
she is doing as it is being done.

The evaluator may find that some participants are not good at thinking aloud while they work. They
will not talk much, and the evaluator will have to prod them constantly to find out what they are
thinking or trying to do. This has an impact on performance measures, so we do not advise combining
thinking aloud with performance measurement.

User comments are sometimes indicators of personal user likes or dislikes, so developers should take
care not to change part of the system just because of a comment by a single user. It is the
responsibility of the evaluator to interpret the user comments and not just accept them
indiscriminately. For example, users using a mouse for the first time will often direct a large
proportion of their comments toward aspects of moving the mouse and pointing and clicking. In this
case, the evaluator should try to abstract from the mouse problems in the dialogue and focus on other
system issues.

The following techniques are variants of the basic think-aloud protocol:

• Constructive interaction: It involves having two test users use a system together. It is also
called codiscovery learning. It aims to overcome the problem of shy test participants, who do
not verbalise easily. This is based on the fact that people are used to verbalising when they are
trying to solve a problem in a collaborative effort.

• Retrospective testing: The usability testing session is recorded on a videotape and the
participant is requested to review the recording. Participant comments while reviewing the
tape are sometimes more extensive than comments while performing the task in the test. The
evaluator can stop the tape and ask the participant questions at any time, without fear of
interfering with the test, which has essentially been completed already. This variant may be
useful when the usability testing involves some kind of performance measurement that could
be distorted by the dialogue with the reviewer.

• Critical incident taking: This variant implies recording both negative incidents (signs of
frustration, either with remarks or actions), and positive incidents (satisfaction or closure
expressions). Negative incidents help to identify the more important usability problems, while
positive incidents help to identify metaphors or details to be used more thoroughly in the user
interface because of their success

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 92 of 92

• Coaching method: The evaluator (or “coach”) steers the participant in the right direction
while using the system. The participant can ask the evaluator questions, and the questions may
show up usability problems that would remain uncovered otherwise. The evaluator will
answer to the best of his or her ability.

Participants

Developers as evaluators, and users as test participants.

Main Reference

J. Nielsen. Usability Engineering. AP Professional, 1993. pp. 195-200.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 93 of 93

II.3.25 Performance Measurement / Laboratory Usability Testing

Description

Performance measurement through usability testing is used for assessing whether usability goals set in
usability specifications have been met. It can be used as well for comparisons with competing
products.

Performance is measured by having a group of users perform a predefined set of test tasks while
collecting time and error data. When the test is performed in a special room prepared for usability
testing, it is called laboratory usability testing. A laboratory is usually composed of two rooms
separated by a one-way mirror: the evaluation room where participants carry out the tests and the main
evaluator gives instructions; and the control room, where additional evaluators and other members of
the development team can observe the test, without disturbing the test participant. Usual equipment for
a usability laboratory includes a video camera to record the screen, another one for recording the
participant, tools for software logging and monitors to show in the control room what is happening in
the evaluation room.

The opposite to laboratory testing is field testing, where the system is taken to the user environment
instead of taking the participant to the system, and the usability test is performed in the user
organization.

How-to

Before performing any test, the first step is to develop the experiment. The participants must be
selected, trying to get a representative sample of the total user population. Information in the
structured user role model should serve to select an adequate distribution of test participants. The tasks
to be employed in the tests must be defined as well, the benchmark tasks that appear in the usability
specifications must be tested, but additional representative tasks may be tested as well, not to get
performance measurements but to identify usability problems. The evaluator should write down the
tasks in the order that the participant will be asked to perform them. This list of tasks may be either
given to the participant or read out loud by the evaluator one task at a time. Finally, the evaluator must
define the protocol and procedures for the test. This includes the preparation of introductory
instructional remarks for participants, which should briefly explain the purpose of the experiment, the
system to be tested and what the participant will be expected to do. It is important to make clear to all
participants that the purpose of the test session is to evaluate the system, not the participant. An
informed consent form should also be prepared for participants to sign, stating that the participant is
volunteering for the experiment, that the data may be used if the participant’s name or identity is not
associated with the data, that the participant understands that the experiment is in no way harmful and
that the participant may discontinue the experiment at any time.

It is advisable to perform a few pilot tests with three or four participants to ensure that all parts of the
experiment are ready. Pilot testing may show up inadequate wording of the tasks that the participants
are being asked to perform, or that some part of the procedure needs to be changed. After pilot testing
the test plan is refined in order to proceed with the greater part of the testing effort using an improved
test plan.

For the test session, the evaluator will usually be sitting beside the participant, especially when
qualitative data needs to be collected. The test participant is asked to perform the tasks defined for the
test, and both the number of errors and the performance time are measured for each task. It may be
necessary to prompt the participant during the session, primarily during qualitative data collection, to
get the desired information. The think-aloud technique and its variants may be applied for this purpose
in any usability test.

The data collected during the test sessions must then be analysed. Quantitative data will be formed by
performance times, error rates, and also by the user preference expressed in questionnaires. Qualitative
data will come from the user comments that the evaluator has taken down or extracted from an audio

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 94 of 94

or video recording of the session. The information gathered in usability tests can tell the development
team whether or not the development is going in the right direction (that is, whether we are coming
closer to the goals in the usability specifications or not), and it can point out the issues in the
interaction dialogue that are a source of usability problems. After an impact analysis, decisions are
taken about which usability problems will be tackled first in the next cycle redesign effort.

Participants

Developers as evaluators, users as test participants. It is important to use the wording “participant”
instead of “test subject”, since it is the software product or prototype, not the user, that is being tested.

Main Reference

J. Rubin. Handbook of Usability Testing. John Wiley and Sons, 1994.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 95 of 95

II.3.26 Questionnaires and Surveys

Description

Questionnaires are used to determine a user’s subjective satisfaction with the system. Measuring user
satisfaction provides a subjective (but, nevertheless, quantitative) usability metric for the related
usability attribute. Some usability specifications will be related to user satisfaction, and questionnaires
are the way to check whether the level specified for this attribute has been reached. Questionnaires are
usually administered to usability test participants after the test has taken place, so they can give their
opinion about specific parts of the user interface and about the overall system.

When questionnaires are distributed to a lot of users, they are called surveys. While questionnaires
issued to usability test participants may contain questions about specific parts that have been used in
the test, surveys usually gather opinions on more generic issues. Additional information that is usually
collected has to do with individual user characteristics, such as background (age, gender, education),
experience with computers, familiarity with specific features (virtual reality, macros, shortcuts), and so
on.

How-to

It is advisable to do a pilot study before sending questionnaires to a large number of users in order to
ensure that it is well designed. Care must be taken to make the questions unambiguous, and the
questionnaire in general should be as simple as possible to increase the chance of respondents
completing and returning the questionnaire.

Questions may be open, where the respondent is free to provide his or her own answer, or closed,
where the respondent is asked to select an answer from a choice or alternative replies. Closed
questions usually have some form of associated rating scale. The most commonly used scale for HCI
studies is the semantic differential scale. This scale is based on bipolar adjectives (such as easy-
difficult, clear-confusing) at the end points of the scale and respondents rate on a scale between these
paired adjectives. This is the scale used in the questions in Table II.3.6.

Once the questionnaires have been given to the selected population, the responses obtained on the
different rating scales are converted into numerical values and statistical analysis is performed. The
main statistics used in the analysis of surveys data are means and standard deviations.

Table II.3.6 shows sample questions belonging to a questionnaire to be administered to test
participants after a usability testing session. The tool to be tested provided facilities for managing
problem resolution tasks in a Help Desk. A differential semantic scale with five choices was used for
each question, centring the scale around zero. As a mid-scale reading, zero is an appropriately neutral
value. Negative scale readings correspond to negative user opinions and positive readings to positive
opinions. The final category of questions is focused on overall user reactions.

unsatisfactory satisfactory

 General satisfaction -2 -1 0 1 2

 not suitable suitable

 Suitability for problem solving tasks -2 -1 0 1 2

 worst better

 General comparison with existing system -2 -1 0 1 2

 too little enough

 Feedback provided to user actions -2 -1 0 1 2

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 96 of 96

 Overall opinion about the system: terrible wonderful

 -2 -1 0 1 2

 frustrating satisfying

 -2 -1 0 1 2

 dull stimulating

 -2 -1 0 1 2

 difficult easy

 -2 -1 0 1 2

 rigid flexible

 -2 -1 0 1 2

Table II.3.6 Sample questions from a User Preference Questionnaire

Beta-testing is a survey-based form of evaluation. In beta-testing, a working but not completely
finished version is supplied to a big pool of customers who are willing to test the product using it to
perform their work (or to fulfil their goals). In addition to questions on possible system failures, beta-
testers may be asked to answer preference questions after their usage of the system.

Participants

Developers create questionnaires and analyse the data, while users fill in the questionnaires stating
their personal opinions.

Main Reference

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-Computer Interaction.
Addison Wesley, 1994. pp. 631-638.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 97 of 97

II.3.27 Interviews

Description

Interviews involve having an interviewer read questions to a respondent and writing down the
responses. For the creation of the questionnaire, refer to section II.3.26 Questionnaires and Surveys.

After usability testing the evaluator may interview the participant to get the user’s subjective opinion,
instead of letting the participant fill in a written questionnaire. Interviews are more flexible, since the
evaluator may ask follow-up questions that not were in the script.

How-to

Interviews need to be planned for them to yield useful results, much in the same way questionnaires
must be carefully planned before being administered to users.

There are two main kinds of interviews: structured, where the questions are predetermined and flexible
interviews, where the interviewer is free to follow the interviewee’s replies and to find out personal
attitudes. Flexible interviews are less formal, and they are adequate for requirements elicitation and for
gauging users’ opinions about a particular idea. No matter how flexible the interview is going to be, a
rough plan of the topics to be discussed is still needed.

The interviewer should make the interviewee feel comfortable, establishing interviewer-interviewee
rapport. For example, some people feel embarrassed when they criticise a system, particularly when
they have to describe their own difficulties in using it.

When the interviewer has a set of questions prepared in case the interviewee digresses or does not say
much, it is called a semi-structured interview. A variant for drawing out more information from the
interviewee is prompted interviewing, where the interviewer stimulates the interviewee by saying
things like “... and can you tell me a bit more about that” or “...and what do you mean by...”.
Alternatively, prompting may take the form of showing the interviewee an alternative item such as a
screen design, in order to promote further discussion or generate new ideas for discussion.

The trade-off to be considered in structured vs. flexible interviewing is that the less structured the
interview is, the more scope there is for picking up relevant issues but the harder it is for the
interviewer. Flexible interviews on usability issues have been predominantly used to determine the
user’s understanding of the interaction scheme. An issue to consider is that the interviewer should
avoid asking leading questions that beg a particular response.

As for questionnaires and surveys, when preparing an interview with domain experts (who are usually
a scarce resource), it is better to do a small pilot study to be able to refine the interview script.

Participants

Developers as interviewers, and users or other stakeholders as interviewees.

Main Reference

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-Computer Interaction.
Addison Wesley, 1994. pp. 628-631.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 98 of 98

II.3.28 Direct Observation and Video/Audio Recording

Description

Individual users may be directly observed doing specially devised tasks or doing their normal work,
with the observer making notes about interesting behaviour or recording their performance in some
way, such as timing sequences of actions. This is called direct observation. When the observation
takes place in the user organization, it is called field usability evaluation.

Video recording can be either an alternative to direct observation or a backup for what happens in a
usability evaluation session. For field usability evaluation, audio recording can be useful as well to
record the user comments.

How-to

The evaluator should be prepared to take copious notes as activities proceed during a usability
evaluation session. It may be useful to have a second evaluator also observing the session in order to
help take notes. Especially for usability testing sessions, the first evaluator may be in charge of
conducting the session (giving instructions, prompting the user) and timing tasks where necessary,
while the second evaluator may be in charge of just taking notes.

Even if the evaluator (or evaluators) is fast at note taking, the record of the observation will usually be
incomplete. Direct observation only allows for one go at data collection, so the evaluator rarely gets a
full record of user activity for detailed analysis. The evaluator has to make decisions about what is
important to record and has no chance to revise that decision and look at alternative data later on. For
these reasons, if a permanent record is needed, video recording equipment may be used to record
usability evaluation sessions. Usability laboratories are usually equipped with video cameras and
perhaps some video editing equipment as well. The main advantage of videotaping is to capture every
detail that occurs during the session. If multiple cameras are available, one can be aimed at the
participant’s hands and the screen, and another at a broader view including the participant’s face.
Audiotaping may be done when videotaping is not available, as, for example, in field testing. Just
having a record of all the user’s comments may prove invaluable for later data analysis.

The main disadvantage of videotaping is the time it takes to edit the taped material. A ratio of 5:1
(analysis time to recording time) is often cited, that is, it usually takes five hours to analyse one hour
of videotape. When more than one camera is used, the editing is also very time consuming, since
synchronization problems may arise.

Short video clips of users experiencing problems with a given software product can have a big
influence on a development team, especially, if the development team is reluctant to make changes to
what they consider to be their already perfect design. These same video clips can also be useful for
convincing management that there is a usability problem in the first place.

Participants

Developers as observers, and users.

Main Reference

D. Hix, H.R. Hartson. Developing User Interfaces: Ensuring Usability Through Product and Process.
John Wiley and Sons, 1993. pp. 309-313.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 99 of 99

II.3.29 Focus Groups

Description

Focus groups are a somewhat informal technique that can be used to assess user needs and feelings
after the system has been in use for some time. Focus groups often bring out spontaneous reactions
and ideas from users through the interaction between the participants and have the major advantage of
allowing some group dynamics and organizational issues. Focus groups are especially appropriate for
limited user communities.

How-to

In a focus group, a group of users are brought together to discuss new concepts and identify issues
over a period of about two hours. Each group is run by a moderator who is responsible for maintaining
the focus of the group on whatever issues are of interest. From the user perspective, a focus group
session should feel free flowing and relatively unstructured, but, in reality, the moderator has to follow
a preplanned script for what issues to bring up.

To prepare a focus group, the moderator needs to prepare a list of the issues to be discussed and set
goals for the kinds of information that are to be gathered. During the group session the moderator has
the difficult job of keeping the discussion on track without inhibiting the free flow of ideas and
comments. Also, the moderator needs to ensure that all members of the group get to contribute to the
discussion and guard against having the opinions of any single participant dominate unduly. After the
session, data analysis can be as simple as having the moderator write a short report summing up the
prevailing mood in the group, illustrated with a few colourful quotes.

Focus group discussions may be held after a set of individual user interviews have been conducted.
Then, focus-group discussions may be valuable to ascertain the universality of comments. Individual
interviews are costly and time consuming, so usually only a small fraction of the user community is
involved. On the other hand, group discussions offer more representative results. .

Participants

Developer acting as moderator, and users.

Main Reference

J. Nielsen. Usability Engineering. AP Professional, 1993. pp. 214-217.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 100 of 100

II.3.30 Logging Actual Use

Description

Logging involves having the computer automatically collect statistics about the detailed use of the
system. It is mainly used to collect information about the field use of a system after release, but it can
also be used as a supplementary method during usability testing to collect more detailed data. It is
unobtrusive, so it does not interfere with the user’s normal usage of the system.

When the actual use of the system is logged, this information is particularly useful because it shows
how users perform their actual work and because it is relatively easy to automatically collect data from
a large number of users working under different circumstances. Typically, an interface log will contain
statistics about the frequency with which each user has used each feature in the system, and the
frequency with which various events of interest (like, for example, error messages) have occurred.

When undertaking a major redesign for a system that has been in use, it is very helpful to rely on
interaction log information to guide the redesign effort.

How-to

For this technique to be applied, the software architecture should make it easy for system managers to
collect data about the patterns of system usage, speed of user performance, rate of errors or requests
for online assistance.

There are different software logging tools that can be employed for logging actual use, but there are
two main categories: time-stamped keypresses and real-time interaction logging. Logging time-
stamped keypresses simply provides a record of each key that the user presses along with the exact
time of the event. Interaction logging is similar, except that the recording includes real-time
information, which means that it can be replayed in real time so the observer can see the interaction
between the user and the computer exactly as it happened.

Logging may be well intentioned, but user rights to privacy should be respected. Links to specific user
names should not be collected, unless necessary. When logging aggregate performance crosses over to
monitoring individual activity, managers must inform users of what is being monitored and how the
information will be used.

It is usual to combine video, audio and keypresses or interaction logging. The advantage of using
combinations of data capture techniques is that evaluators can relate revealing data about body
language and comments with records of the actual human-computer interaction. The main
disadvantage of this approach is the cost of setting up this kind of synchronised equipment.

Participants

Developers must provide the mechanisms for data logging in the software product design.

Main Reference

B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction.
Addison-Wesley, 1998. pp. 146-147.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 101 of 101

II.3.31 Online User Feedback Facilities

Description

Once the system is in use, the user community is the best source for information on the usability
weaknesses of the system. Feedback from the users can be collected by giving them access to special
electronic mail addresses, network newsgroups, or bulletin boards. Users can send their complaints
and requests for change or improvement.

How-to

Offering a help line or a communication channel with users can be implemented in different forms.
These are the main ways of gathering user-initiated feedback:

• Online or Telephone Consultants: They can provide extremely effective and personal
assistance to users who are experiencing difficulties. Many users feel reassured if they know
that there is a human being whom they can address if problems arise. These consultants are an
excellent source of information about problems users are having and can suggest
improvements and potential extensions. Some organizations offer a toll-free number for users,
while others charge for consultation by the minute.

• Online Suggestion Box or Trouble Reporting: Email can be employed to allow users to
send messages to the maintainers or designers. Such an "online suggestion box" encourages
some users to make productive comments, since writing a letter may be seen as requiring too
much effort.

• Online Bulletin Board or Newsgroup: Users may have questions about the suitability of a
software package for their application, or may be seeking someone who has had experience
using an interface feature. They do not have any individual in mind, so email does not serve
their needs. Then bulletin boards and newsgroups can be helpful. Electronic bulletin boards or
newsgroups allow the posting of open messages and questions. Mailing lists may be used as
well for this purpose.

By soliciting user feedback by any of these ways, the development team can gauge user attitudes and
elicit useful suggestions. Furthermore, users may have more positive attitudes towards the system if
they see that the software development organization genuinely desires comments and suggestions on
the piece of software they are using.

Participants

Users, developers to analyse the change proposals, dedicated personnel for the communication channel
with the users.

Main Reference

B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction.
Addison-Wesley, 1998.

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 102 of 102

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 103 of 103

Part III. TRAINING COURSE IN USABILITY

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 104 of 104

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 105 of 105

III.1 COURSE CONTENTS

The course will be divided into subjects, starting with the introductory topics and basic usability
concepts and then going on to deal with the different individual techniques that are part of the deltas
that are going to be added to the software development process.

III.1.1 Usability Awareness

The goal of this subject is to provide developers with usability awareness to make them aware of the
need for usability and to specify the concept, clearing up common misconceptions of the issue. The
aim is to overcome the barrier erected by the perception that usability is a subject unrelated to their
field of work as software developers or whose importance is low upon their list of priorities.

The contents to be covered in this subject are as follows:

• Why care about usability?

• Brief introduction to ergonomics

• Usability as a quality attribute

• Real life examples of unusable systems (both software and non-software)

• Common usability misconceptions

• Usability principles / slogans (philosophy)

• The user-centred perspective for software development

• Financial impact analysis (Cost-justifying usability)

III.1.2 Basic Usability Concepts

This subject addresses the main usability concepts, which will give software developers an
understanding of the basis on which the techniques covered in the remainder of the course are
founded.

The topics covered in this subject are as follows:

• Usability attributes

• Usability and the user interface

• Human perception and cognitive issues

• User and task analysis

• Usability specifications

• Interaction styles

• Interaction design

• Prototyping / Iterative design

• User involvement (participatory design)

• Usability heuristics

• Usability evaluation

• Usability laboratories

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 106 of 106

III.1.3 Analysing the User and User Context

This subject deals with the usability techniques related to problem analysis and the development of the
first conception of what the system under development will be like. It will include practical exercises
and the study of existing systems. The techniques covered correspond with delta L1 for light software
development processes and deltas E1, E2, E3 and E4 for elaborate software development processes.

The topics that will be covered are as follows:

• Elicitation Techniques:

− Ethnographic Observation

− Contextual Inquiry

• Develop Product Concept:

− Post-It Notes

− Visual Brainstorming

− Competitive Analysis

− Scenarios

• Prototyping:

− Paper Prototypes

− Chauffeured Prototypes

− Wizard of Oz Prototypes

− Requirements Animation

• Problem Understanding:

− Essential Use Cases

• Modelling the Context of Use:

− Structured User Role Model

− Operational Modelling

− JEM

• Early Usability Evaluation:

− Cognitive Walkthrough

− Pluralistic Walkthrough

• Usability Specifications

III.1.4 Interaction Design

This subject will deal with interaction design, including the design of the user interface but also
focusing on the general interaction scheme with which the system will work. The techniques that will
be covered correspond to part of delta L2 or delta E5.

The topics covered in this subject are as follows:

• Impact Analysis

• Detailed Interaction Design:

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 107 of 107

− Detailed Use Cases

− GOMS

• User Interface Design:

− Screen Pictures

− Menu-selection and Dialog Box Trees

− Context Navigation Maps

• Help Design:

− Help Design by Use Cases

III.1.5 Architecting Software for Usability

This subject will cover the techniques developed in WP3 for developing an architectural design that
takes into account the usability of the final system. The techniques dealt with in this subject
correspond to part of delta L2 or delta E6.

(The topics to be covered in this subject will be specified here when the results of WP3 are available).

III.1.6 Usability Evaluation

In this subject, developers will learn how to evaluate usability, becoming acquainted with the available
techniques and their application conditions. The techniques dealt with in this subject correspond to
delta L3 or to deltas E7 and E8.

The topics covered by this subject are as follows:

• Expert Evaluation:
− Heuristic Evaluation
− Inspections: Consistency, conformance and collaborative usability inspections

• Usability Testing:
− Thinking Aloud: Constructive interaction, retrospective testing, critical incident

taking, and coaching method
− Performance Measurement
− Post-Test Feedback / User Questionnaires
− Laboratory Usability Testing

• Follow-up Studies of Installed Systems:
− Direct Observation
− Video Recording
− Audio Protocol
− Questionnaires
− Structured and Flexible Interviews
− Focus Groups
− Logging Actual Use: Time-stamped keypresses and interaction logging

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 108 of 108

III.2 COURSE DURATION

The total course duration is 60 hours, plus the time for the subject Architecting software for usability.
The time dedicated to each subject is detailed in Table III.2.1.

Subject Duration (hours)

Usability Awareness 4

Basic Concepts on Usability 5

Elicitation Techniques 4

Develop Product Concept 3

Prototyping 4

Essential Use Cases 3

Modelling the Context of Use 4

Walkthroughs 3

Analysis Techniques

Usability Specifications 3

Impact Analysis 2

Detailed Interaction Design 5

User Interface Design 5
Interaction Design

Help Design 3

Architecting Software for Usability -

Expert Evaluation 3

Usability Testing 4 Usability Evaluation

Follow-up Studies of Installed Systems 5

Table III.2.1 Duration of Course Subjects

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 109 of 109

III.3 COURSE RESOURCES

The following resources will be needed to teach the course:

• Classrooms with computers for each or every two students.

• Audiovisual equipment for showing recordings of usability testing sessions.

• Software for building prototypes and support software for applying some techniques (for
example, diagram modelling and software logging).

 STATUSD.5.2 Spec. of the Sw. Process with Integrated Usability Techniques

 IST – 2001 – 32298 Page 110 of 110

III.4 REFERENCES FOR PART III

[ACM, 02] ACM SIGCHI. Curricula for Human-Computer Interaction, 2002
http://www1.acm.org/sigs/sigchi/cdg/

[Ferré, 01] X. Ferré, N. Juristo, H. Windl, L. Constantine. “Usability Basics for Software
Developers”. IEEE Software, vol.18, no.1, pp. 22-29. January/February 2001.

[Myers, 99] Brad A. Myers. Overview of HCI Design and Implementation. Notes for HCI
Talk by Brad A. Myers, 1999
http://www.cs.cmu.edu/~bam/uicourse/special/

[Nielsen, 93] J. Nielsen. Usability Engineering. AP Professional, 1993.

[Preece, 94] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-
Computer Interaction. Addison Wesley, 1994.

[UMD, 02] University of Maryland. CMSC 434/828S Intro to HCI - Syllabus.
http://www.cs.umd.edu/~bederson/classes/cmsc434/syllabus.htm

