STATUS D.3.4. v.1.0 Techniques, patterns and styles

INFORMATION SOCIETIES TECHNOLOGY (IST) PROGRAMME

informa
societ
technologies

STATUS

"Software Architecture for Usability"

WORKPACKAGE: 3 Study of the usability/software architecture relationship

DELIVERABLE 3.4. Techniques, patterns and styles for architecture-level usability improvement

Version: 1.0.

Submission Date: 29/4/03

Authors: Natalia Juristo, Ana M. Moreno, Maribel Sanchez
Partners: UPM

Stage: Confidentiality:
[] Draft [] Public - for public use
[1To be reviewed by WP participants [1IST —for IST programme participants

[] Pending of approval by next consortium meeting | [X | Restricted — for STATUS consortium and PO
[X'] Final / Released to CEC

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles
DOCUMENT CONTROL
Registration of Changes
Date Version Author of Changes Comments

22/10/02 | 0.1

Ana M. Moreno, Natalia Juristo

Initial structure, first draft of section 2
and 3

27/10/02 | 0.2

Ana M. Moreno, Natalia Juristo

First draft of section 4.

5/12/02 03

Ana M. Moreno, Natalia Juristo

Second draft of section 4.

2/1/03 04

Ana M. Moreno, Natalia Juristo

Adjustments to section 4

21/1/03 05

Maribel Sanchez

Inclusion of examples of patterns in
section 4

4/2/03 0.6

Ana M. Moreno, Natalia Juristo

Adjustment of deliverable with respect
to the concept of architectural usability
pattern

10/2/03 07

Maribel
Calderén

Séanchez, Camilo

Inclusion of examples of patterns and
architectural usability patterns in
section 4

Inclusion of Annex E

28/04/03 | 0.8

Ana M. Moreno , Natalia Juristo

Last reveiw

29/4/03 1.0

Ana M. Moreno , Natalia Juristo,
Maribel Sanchez

Changes on command aggregation

List of STATUS Related Documents

Document Name

Version

Technical Annex 1.0
Deliverable D.2. 1.0
Deliverable D.3.5. 1.0

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 2 of 2

STATUS D.3.4. v.1.0 Techniques, patterns and styles

TABLE OF CONTENTS

1 INTRODUCTION

1.1 PURPOSE ...ttt ettt e ettt e et e e e e te e e e tteeeeataeeesataeeesseeeestaeeesasaeessseeeanaseeeeseeeeasteaeanns
1.2 DOCUMENT STRUCTURE
2 USABILITY PATTERNS: THE STATUS APPROACH TO IMPROVE USABILITY FROM
ARCHITECTURE 6
2.1 THE STATUS CONCEPT OF USABILITY PATTERNoiiiiiiiiiiiiieiiiieeeiieeenieeeeiteeeeieeeesiteeesereeesssaeeenseaeennns 6
2.2 RELATED WORK ON USABILITY PATTERNSccutiiiiiiiiieiiteeeiieeeeireeeetteeeireeeesseeesaseeesssaeesssesesssaeesnsseaesnns 6
2.3 USABILITY PATTERNS VERSUS USABILITY SCENARIOSuvtieitiieeitrieeeitteeesreeeesiseeesssseeassseeeesssesessssesssseeenns 7
2.4 ADJUSTMENTS TO WP 2 USABILITY PATTERNS0oiiiiitiiiiitieeeiieeeeetteeeeiteeeessteeeaesseeessseesssseseaessesessseesssseeeans 9
3 DESIGN SOLUTIONS FOR USABILITY PATTERNS 15
3.1 PHASE 1: GENERATING DESIGN SOLUTIONS FOR USABILITY PATTERSccvviiiiiiieeiiieeciieee et 16
3.1.1 First Iteration: Finding Design Solutions for Architectural Usability Patterns 16
3.1.2 Second iteration: Checking Design SOIULIONSccccoovcucioiineciiieninecceeee e .. 20
32 PHASE 2. VALIDATING DESIGN SOLUTIONS FOR PATTERNS WITH PRACTITIONERScccevvuvrereeeeinrrreeeeeeennns 23
4 ARCHITECTURAL USABILITY PATTERNS CATALOGUE 28
5 CAN USABILITY PATTERNS HELP FOR EDUCING USABILITY REQUIREMENTS.....cccceeeeeee. 30
6 CONCLUSION 31
7 REFERENCES 32
ANEXO A: DETAILED DESCRIPTION OF USABILITY PATTERNS 34
A.l
A2
A3
A4
A5
A.6
A7
A8
A9
A.10 STANDARD HELP...... 237
A1l TOUR ..ccvvvevveireennn38
A.12 ‘WORKFLOW MODEL.....38
A.13 HISTORY LOGGING38
A.14 PROVISION OF VIEWS......39
A.15 USER PROFILE................ ...39
A.16 CANCELccvveenne.39
A.17 MULTI-TASKING40
A.18 COMMAND AGGREGATION............... ... 40
A.19 ACTIONS FOR MULTIPLE OBIECTS....uuvvtieeeieeittreeeeeeeiiteeeeeeeeeeissseseseseesisseseeeeeesssssesesesesissssseeesesssssssseseennnnes 40
A.20 REUSING INFORMATIONoiiiiiiiieiiiieeeiieeeetteeesiteeeeateeeesseeaessseeeessseesasseeeassseeeassseessseeesssseeeanseesessseesnnsseens 41
ANNEX B: REQUIREMENTS SPECIFICATIONS FOR THE CASE STUDIES 42
B.1 CASE 1 SPECIFICATIONS: RESTAURANT NETWORK MANAGEMENTcociiiuiiieiiiieeeteeeeeeeeeeeaveeeeeaeeeeenneeeens 42
B.2 CASE 2 SPECIFICATIONS: AMUSEMENT PARK CONTROLuuvvviieeieeiiireeeeeeeeiirreeeeeeeeeisnneeeeeeeeennesesesenessnnees 44
ANNEX C: PHASE 1 FIRST ITERATION: THE RESTAURANT MANAGEMENT CASEcccccceeee.. 48
C.1 REUSING INFORMATION FIRST ITERATIONcccuviiiiiiieiiiieeetieeecttee e et e eeae e e et e e eeateeeeavaeeeeaneas48
C2 STANDARD HELP FIRST ITERATION................. .. 51
C3 TOUR FIRST ITERATIONocvveieeeennrreeeeeeennns .53
C4 DIFFERENT LANGUAGES FIRST ITERATION............57
C5 DIFFERENT ACCESS METHODS FIRST ITERATION.. ... 60
C.6 ALERTS FIRST ITERATIONcoitiiiiitiieeeitteeeeieeeeeite e e ettt e eeateeeeetaeeeeataeeeeaaaeeaaseeeeasseeesseeeansseeeenseeeesseeeansseeas 64
C.7 STATUS INDICATION FIRST ITERATIONuviiiiutiiieiiieeetieeeiteeeeiteeeetteeeeteeeeeateeeeaaeeesasaeeeeaseeeennseeenssseeannes 67
C.8 HISTORY LOGGING FIRST ITERATION
Cc.9 UNDO FIRST ITERATIONceiiiuiieiittieeeetteeeeeteee e ettt e e eeteeeeeaeeeeeaseeeeaaeeeeaeeeeeaseeeeseeeeesaeeeessseeeseeeensseeeasseeas
C.10 FORM OR FIELD VALIDATION FIRST ITERATION........ccuuuviiieeeeeiirieeeeeeeeeiuteeeeeeeeeirereeeeeeeesnseeeeeeeeennnereeeeenennns 78
C.11 PROVISION OF VIEWS FIRST ITERATION
C.12 WORKFLOW MODEL FIRST ITERATIONcuutirieeeeieiiieeeeeeeeeeitteeeeeeeeiareeeeeeeeeaseseeeseeeessseeeeeeeninsneseeseenenns
C.13 USER PROFILER FIRST ITERATIONccciiuiiiiiiiiieiiiieeeiteeeetteeeeiteeeetaeeesiaeeessnseeesssseeesseeesssseeesssseeensseeennnseens
IST -2001 —32298 Page 3 of 3

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.14 SHORTCUTS FIRST ITERATIONooiiiiuiiiiitieeeitieeeeiteeeeteeeeetteeeeateeeeetaeeeeatseeeeaseeeeaseeesssseeesseeesnsseeeasseeeasnes
C.15 CONTEXT SENSITIVE HELP FIRST ITERATIONocciiuiiiiiiiieeiiieeeitieeeeteeeeiaeeeeteeeeeaveeeeaaeeeeaeneseeaseeeannnaeenns
C.16 WIZARD FIRST ITERATIONcoutiiiiiiiieeetiie e ettt e et e ettt e et e e et e e e eaveeeeateeeeaaeeeeeaaeeeeaaaeeeesseeeetaeeeasseeeaaanes
C.17 CANCEL FIRST ITERATION

C.18 MULTI-TASKING FIRST ITERATION ...

C.19 COMMAND AGGREGATION FIRST ITERATION.................

C.20 ACTIONS FOR MULTIPLE OBJECTS FIRST ITERATION

ANNEX D: PHASE 1 SECOND ITERATION: THE AMUSEMENT PARK SYSTEM CONTROL CASE118

D.1 REUSING INFORMATION SECOND ITERATION
D.2 STANDARD HELP SECOND ITERATION .
D.3 TOUR SECOND ITERATIONcooevvveeeereeennnennn

D.4 DIFFERENT LANGUAGES SECOND ITERATIONooiiiiiiiiiiiieeeiieeeeireeeeieeeesereeeenseseessaeeansseeeensessssnesessseens

D.5 DIFFERENT ACCESS METHODS SECOND ITERATION

D.6 ALERTS SECOND ITERATIONoocovviieeiiieeeiieeeenenenn

D.7 STATUS INDICATION SECOND ITERATION ...

D.8 HISTORY LOGGING SECOND ITERATION ..

D.9 UNDO SECOND ITERATIONcceiiiiiiiitireeeeeeeeiiieeeeeeeeeeitareeeeeeeeeisseseeeeeeeessseseseeeeasssseeeeeeeasssreeeeeeenssrsreeseens
D.10 FORM OR FIELD VALIDATION SECOND ITERATION.......uuuviiieeeiiirieeeeeeeeeiineeeeeeeeeirereeeeeeeessseeeeeeeesnrereeeeens

D.11 PROVISION OF VIEWS SECOND ITERATION
D.12 ‘WORKFLOW MODEL SECOND ITERATION

D.13 USER PROFILE SECOND ITERATION
D.14 SHORTCUTS SECOND ITERATIONccuuiiiiitieeeiitieeeitreeeeteeeeetseeessseseesseseasseeessseeeassseseassseessseseenssesensseeans
D.15 CONTEXT SENSITIVE HELP SECOND ITERATION.uutiiiiuiieeeieeeeeiteeeeiteeeeeteeeeeareeeeteeeeesaeeeeeaseeeeseeeanaseens

D.16 ‘WIZARD SECOND ITERATION
D.17 CANCEL SECOND ITERATION

D.18 MULTI TASKING SECOND ITERATION......cceiiiiiuirieeeeeeeeitineeeeeeeeeireeeeeeeeeeissseseeeeeessssseseseeeenssseseeeeenssrsseeseens

D.19 COMMAND AGGREGATION SECOND ITERATION........uutiiiiuiieeiieieeireeeeieeeenereeeenseeesssaeessseseensesessseeesnseens

D.20 ACTIONS FOR MULTIPLE OBJECTS SECOND ITERATION.......0iiiiiiiieiiiiieeirieeereeeeeireeesaseeesnneeeessseeessneeennnns 155
ANNEX E: PHASE 2 VALIDATION WITH PRACTITIONERS IN A REAL PROJECTcceuueeeeeenenee 156
ANNEX F: CATALOGUE OF USABILITY PATTERNS 157

F.1 REUSING INFORMATION ARCHITECTURAL USABILITY PATTERNccoiiiiiiiiieiiiieeeiee et 157

F.2 . STANDARD HELP ARCHITECTURAL USABILITY PATTERNcooiiiiiiiieieeeiiieeeee e eeeeeree e eeeeereeeeeeeeenenens 160

F.3 TOUR ARCHITECTURAL USABILITY PATTERNcccutitiiiieieiiieieee e eeeciiteeeeeeeeeireeeeeeeeeevnreseeeeeeennnseeaeeenenns 162

F.4 DIFFERENT LANGUAGES ARCHITECTURAL USABILITY PATTERNouvviiiiiiiiiiiieeeeceeecineeeeeeeeeiiveeeeeeeeennes

F.5 DIFFERENT ACCESS METHODS ARCHITECTURAL USABILITY PATTERNccoiiiiiiieieieiieieeeeeeeeveeeee e

F.6 ALERTS ARCHITECTURAL USABILITY PATTERNccoeeevviiieiieecnnen.

F.7 STATUS INDICATION ARCHITECTURAL USABILITY PATTERNcouviiiiiiieeiiiieeeiiee ettt e

F.8 HISTORY LOGGING ARCHITECTURAL USABILITY PATTERNcoiiuiiiiiiiiieeiiee et

F.9 UNDO ARCHITECTURAL USABILITY PATTERNcccovvviiiiiiieeiieecennee.

F.10 FORM OR FIELD VALIDATION ARCHITECTURAL USABILITY PATTERN. ...

F.11 PROVISION OF VIEWS ARCHITECTURAL USABILITY PATTERN................

F.12 WORKFLOW MODEL ARCHITECTURAL USABILITY PATTERNcoviiiiiiiiiiiieeeeeeeieeeeeeeeeeeireeeeeeeeearereeeeeas

F.13 USER PROFILER ARCHITECTURAL USABILITY PATTERNccoiitiiiieiiieeiiieeeeeeeeeieeee e e eeeeaveeeeeeeeeanereeeeens

F.14 SHORTCUTS ARCHITECTURAL USABILITY PATTERNcccevvennnes

F.15 CONTEXT SENSITIVE HELP ARCHITECTURAL USABILITY PATTERN.....

F.16 WIZARD ARCHITECTURAL USABILITY PATTERN.........cccovuvieenrnennn,

F.17 CANCEL ARCHITECTURAL USABILITY PATTERNcuuiiiiitiieiiiiieeeiee ettt ettt e et e e e eeaveeeeaeeeeeanee s

F.18 MULTI-TASKING ARCHITECTURAL USABILITY PATTERNcccuviiiiiiiiiiiiieeciiee ettt

F.19 COMMAND AGGREGATION ARCHITECTURAL USABILITY PATTERN

F.20 ACTIONS FOR MULTIPLE OBJECTS ARCHITECTURAL USABILITY PATTERNcooovvviiiiieeeciiieeeeee e 216
IST -2001 — 32298 Page 4 of 4

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

1 INTRODUCTION

1.1 Purpose

This document forms deliverable D.3.4. Techniques, patterns and styles for architecture-level
usability improvement corresponding to Task 3.4..

As specified in the Technical Annex, the work to be done in WP 2 Usability Attributes Affected by
Software Architecture and WP 3 Relationship between software usability and software architecture is
oriented to providing a solution to the relationship between software architecture and software
usability. The main contribution of Task 3.4. is to provide developers with a set of proposals to
improve the usability of the applications they build. The solutions we propose in Task 3.4. should be
as general as possible and be able to be instantiated for different kinds of specific applications. One
such instantiation will be carried out in WP 4 for applications in the e-commerce domain.

For this reason, the results described in this deliverable focus on providing a set of general design
solutions, which, if accounted for during system architecture definition, can improve the usability of
the software constructed. These design solutions have been generated for every usability pattern
defined in D2, thereby extending the description of usability pattern employed in WP 2 with new
attributes related with software architecture aspects.

1.2 Document Structure

This document is structured as follows. Section 1 presents an introduction that sets out the objectives
and purposes of this deliverable. Section 2 focus on the concept of usability pattern, defined in WP 2,
and how such concept needs to be extended in order to incorporate design solutions to the usability
mechanisms represented by such patterns. This section also studies the differences between the
usability pattern concept used in STATUS and the usability pattern concept that can be found in
literature. As part of the related work studied, this section also details the relationship between the
STATUS work and the SEI work about usability and software architecture. It finishes presenting the
detailed list of usability patterns that will be used from now in STATUS. This definitive list has
suffered some adjustments from the one presented in WP2, those adjustments are exhaustively
detailed.

Section 3 presents the inductive process that has been followed to provide design solutions for each of
the usability patterns outputted from section 2. Section 4 lists a catalogue of the whole description of
usability patterns which includes a full set of aspects that cover the information needed by developers
in order to use such patterns. Section 5 sets out what implications the usability patterns have for
application analysis. Finally, Section 6 includes the conclusions drawn from Task 3.4.

Much information used in D.3.4. has been included in annexes to make easier the reading of this
deliverable. Annex A contains a detailed description of each of the usability patterns. Annex B
contains the original requirements specifications for the cases used to generate the design solutions for
the usability patterns. Annex C covers the first iteration in the process of induction to abstract the
design solutions, which corresponds to the Restaurant Management system case. Similarly, Annex D
contains the second iteration of the process of induction, which corresponds to the Amusement Park
Control system case. Annex E contains the comprehensive development of an Intranet for Advertising
Company Maintenance, which has served to validate the design solutions proposed for the usability
patterns in a real project. Finally, Annex F sets out the catalogue of the usability patterns.

IST — 2001 — 32298 Page 5 of 5
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

2 UsABILITY PATTERNS: THE STATUS APPROACH TO IMPROVE USABILITY
FROM ARCHITECTURE

2.1 The STATUS Concept of Usability Pattern

The formal concept of pattern comes from the definition given by Alexander in the context of
construction of buildings and cities [Alexander, 77]. “A pattern describes a problem which occurs over
and over again in our environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the same way twice”.

In software development, the concept of pattern is described as a set of principles and idiomatic
solutions that guide developers in the creation of software [Larman, 98]. Accordingly, a software
pattern focuses on the pragmatic value of using the pattern as a vehicle for presenting and
remembering solutions to a problem by providing useful software engineering principles to the
developer. Thus, the main advantage of patterns is the experience in reusing instead of rediscovering
potential solutions to a problem.

The most commonly used pattern in software development is the design pattern, and it is particularly
used in the object-oriented field. In this context, a design pattern provides a solution to a concrete
problem by describing classes and objects that work together to solve such problem [Gamma, 89].
Note that these patterns show a solution to a problem obtained by its use in different applications, but
it could not in any case be seen as a unique solution.

At this point in STATUS, the usability patterns proposed in D.2. are described as mechanisms to be
applied to the design of the architecture of a system in order to address a particular usability property.
We need to complete this definition with information about how such mechanisms will be reflected in
the system architecture, that is, what effect the use of some of these usability mechanisms will have on
a system’s architectural components. In other words, we need to provide the design solution to the
problem specified by the usability pattern. Design solutions will be a description of the design
components and their intercommunication to provide a solution to a specific mechanism to be applied
to the design of a system in order to address a particular usability property.

Like in design patterns, the design solutions provide for usability patterns will not necessarily be the
only solution. Design solutions for usability patterns are not solutions to specific problems, but should
be able to be applied to solve a number of different problems in a number of different systems in
accordance with the principle of software reuse.

Thus, the final objective of this deliverable is to provide a set of architectural recommendations to
improve the usability of software systems. These recommendations will be summarised in an usability
pattern catalogue.

2.2 Related Work on Usability Patterns

The concept of usability pattern has already been used in the literature. Generally, this concept can be
defined as “a description of solutions that improve usability attributes” [Perzel, 99]. The usability
aspects dealt with by these patterns refer basically to user interfaces, and they are also known as user
interface patterns [Casaday, 97] or interaction design patterns [Tidwell, 98]. As indicated by authors
such as Welie and Troetteberg [Welie, 00], although there are several pattern collections, an accepted
set of such patterns has not yet emerged. There appears to be a lack of consensus about the format and
focus of user interface patterns.

Examples of some of these interface patterns are:

e Feedback
e Wizard
IST — 2001 — 32298 Page 6 of 6

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Provide the user with all information needed in the same window
Mark required fields when filling a form
You are here

Grid layout.

The differences between the usability patterns proposed by the STATUS project and the classic
usability or interface patterns existing in the literature are basically related to two aspects:

Differences in the list of patterns. Among the usability patterns identified in the literature,
we find some that are oriented to improving the interface, like for example “you are here”, and
others oriented to improving interaction, like “wizard”. The patterns proposed by STATUS are
mainly focused on improving the interaction between the user and the system without
considering interface issues. Therefore, some of the patterns traditionally included as usability
patterns in the literature are not considered in the STATUS catalogue of usability patterns. In
STATUS we consider patterns directly related to the interaction between the user and the
system, and not taken into account in the classic literature on user interface patterns, such as
shortcuts, aggregation of commands or the user interface patterns of provision of actions for
multiple objects.

Differences in the solutions provided for patterns. Although there are patterns that are
common to the two approaches (traditional and STATUS), for these patterns the difference
lies in the solution provided in each one. The classic usability patterns are mainly
implemented during the interface design phase and generally affect low-level components like
pseudo-code (where to place the different icons, how to put together the screen information,
etc). On the other hand, the solutions proposed by STATUS for the identified patterns will
affect the system architecture, trying to evaluate and consider usability aspects in the early
stages of the development process. For example, the solution proposed by [Welie, 00] for the
feedback pattern is “provide a valid indication of progress. Progress is typically the remaining
time for completing, the number of units processed or the percentage of work done. The
progress can be shown using a widget such a progress bar. The progress bar must have a label
stating the relative progress or the unit in which is measured”. This solution will not be taken
into account until the detailed design phase through the pseudo-code As will be seen later, the
solution proposed by STATUS (through the respective architectural solutions) will be based
on the establishment of how to provide feedback to the user at the architectural level
(modules, interaction among modules, etc).

2.3 Usability Patterns versus Usability Scenarios

As far as the consortium has been able to ascertain from the literature, the only work with similar goal
than STATUS project is the research by Bass, John and Kates at SEI [Bass, 01]. Their aim was to
identify the relationship between usability and software architecture through the definition of a set of
26 scenarios: “A scenario describes an interaction that some stakeholder (e.g. user, developer, system
administrator) has with the system under consideration from a usability viewpoint”. The above-
mentioned scenarios were identified by the SEI: through literature surveys, from the personal
experience of the investigators and by consulting colleagues. The complete list of the scenarios is
shown in the Table 2.1. As we will see later, although there are some differences, some of these
scenarios can be considered equivalent to some of the properties and usability patterns taken into
account in STATUS.

IST — 2001 — 32298 Page 7 of 7
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Account for human needs and capability when | Maintain device independence
interacting Allow searching by different criteria
Keep coherence through multiple views Make views accessible
Define upgrades similar to previous ones Provide reasonable set of views
Support international use Cancel
Predict task duration Use applications concurrently
Verify resources before beginning an operation Allow quick switch back and forth between different tasks
Present system state Aggregate commands
Check for errors Aggregate data
Undo Provide test points for evaluation
Minimize user recovery work due to systems errors Reuse information
Provide alternative secure mechanisms Design easily modifiable interfaces
Provide good Help Quick navigation into a view
Novice interfaces for user in unfamiliar contexts

Table 2.1. Usability scenarios proposed by Bass et al [Bass, 01]

The SEI researchers use a bottom-up specification to specify the benefits that a software system can
have in terms of usability as a result of the identified scenarios. These benefits have been classified in
Table 2.2.

SEI Benefits STATUS Attributes

Increases individual user effectiveness

Expedites routine performance
Accelerates error-free portion of routine performance Efficiency, Reliability
Reduces the impact of routine user errors (slips)

Improves non-routine performance Learnability
Supports problem-solving
Facilitates learning

Reduces the impact of user errors caused by lack of knowledge Efficiency
Prevents mistakes
Accommodates mistakes

Reduces the impact of system errors Reliability
Prevents system errors
Tolerates system errors

Increases user confidence and comfort Satisfaction

Table 2.2. Relationship between SEI usability benefits and STATUS usability attributes

Table 2.2 shows how SEI usability benefits generally refer to the usability attributes considered in
STATUS and detailed in D2. Note that there is a main difference with regard to system errors. The
SEI researchers consider the prevention of errors as one of the usability benefits. However, as
discussed in D2, this aspect is not considered as a feature of usability attributes in the usability field.
Following the usability works, the usability attribute related to error management, reliability, refers to
user error and not system error prevention and recovery. This is the approach taken by STATUS.

Both pieces of research agree on the idea of relating the different aspects of usability to architecture
through architectural diagrams. These diagrams show how scenario (SEI approach) or usability pattern
(STATUS approach) can be represented at an architectural level. As in the STATUS approach, the
objective of the SEI is to establish a relationship between the final software system and software
architecture. The main differences between the two works come from the approach taken for the
research.

The SEI has taken a bottom-up approach from the informal identified scenarios, while STATUS has
taken a top-down approach from usability attributes (identified in the literature), through usability
parameters, to finally identify the usability patterns. Accordingly, the usability patterns are the final
links in the chain and give examples of how to achieve some usability requirements. Besides, the users

IST — 2001 — 32298 Page 8 of 8
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

of STATUS results have a procedure for developing new usability patterns for applications to which
the results are applied. This process will be applied in practice in WP 4 Proposal of Architecture for
Usability in E-commerce, where the results of WP 3 will be adapted to the e-commerce environment.
Finally, the architectural solutions are not justified in the SEI research, whereas the architectural
patterns provided by STATUS have been derived through an inductive process applied in several case
studies.

In sum, a general difference between the approach taken by the SEI and ours is that STATUS project
provides a whole approach for designing for usability, including usability assessment techniques and
usability improvement techniques on design models (D.3.5. Usability-centric software architecture
design method will detail such design process).

2.4 Adjustments to WP 2 usability patterns

Table 2.3 below shows the usability patterns that we identified in D.2. As we mentioned in that
document, the list shown in Table 2.3 is preliminary since it is the result of a first approximation. We
were sure at that time that when working on WP 3 looking for design solutions for usability patterns
we would refine this preliminary list arriving to a consolidated one.

Progress indication Macros

Alerts User profile

Status indication User modes

History logging Shortcuts

Undo Context-sensitive help
Form or field validation Wizard
Model/View/Controller separation Selection indication
Emulation Cancel

Workflow model Multi-tasking

Actions for multiple objects

Table 2.3. Preliminary List of Usability Patterns from D.2.

Analysing the preliminary set of patterns has led to modify the D.2 patterns in several ways:

1. Some usability patterns have been added as a result of further research conducted during Task
3.4.

2. Some patterns have been removed because they do not match the consolidated concept of
usability pattern in WP 3.

3. Some usability patterns have been redefined with the aim of providing a more precise
description and/or a more meaningful name.

4. A new usability pattern has been added derived from the identified scenarios [Bass, 00], once
our list has been compared with the SEI proposal.

Below, we describe the above modifications.
The new usability patterns incorporated from further research are:
Different Languages

This pattern emerges to address the property of internationalisation identified in WP2,
Different Languages. In D.2. this property had been identified but it did not had a pattern that
deals with it. Internationalisation means the capability of the software to interact with users in
different languages, so this is the concept we have used for the pattern.

IST — 2001 — 32298 Page 9 of 9
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Different Access Methods

In the same way than internationalisation, the property of accessibility (multichannel,
disabilities) identified in D.2. did not had a pattern to address it. Access method means the
capability of the software of being accessed from different types of physical devices. So, this
attribute will make the system easier to access not only from the desktop or laptop, but also
using devices like WAP, Web, and interactive TV, for example, as well as other devices used
by visually impaired or disabled people.

Standard help

This and the tour pattern emerge to add to the different help types that contribute to addressing
the property of guidance identified in D.2. This pattern deals with the standard help. The
system must provide users with enough information and task help for all the activities they
need to do with the system.

Tour

This pattern addresses a different kind of help than the standard help. In it, the system must
provide users with specific information that shows exactly how to do a particular task.

The patterns we have removed due to the better concretion and definition of the usability pattern
concept are:

Progress Indication

A progress indicator is described in D.2. as “a mechanism that can be used to indicate how
much of the current task has been completed and how long it will take to finish”. This
description is a particular case of another usability pattern defined in D.2., status indication,
We defined in D.2. status indication as “The user should be provided with information
pertaining to the current state of the system”.

Model/View/Controller Separation

As described in D.2, this pattern represents a specific design solution that can be used to
implement different usability patterns, like, for example, patterns related to the provision of
different information views, the pattern we called provision of views.

Emulation

This pattern is defined in D.2 as “A system can be made to emulate the appearance and/or
behaviour of a different system”. This is a very specific pattern for some applications and it is
not common to general-purpose software systems. Additionally, it has not been proposed as a
pattern or heuristic in usability literature.

User modes

This pattern, as specified in D.2., enables the system to provide different modes for different
feature sets required by different types of users, for example, simple or advanced modes. Thus,
this pattern is a particular case of the Workflow Model, which enables different users to be
provided with only the tools or actions that they need in order to perform their specific tasks.

IST - 2001 — 32298 Page 10 of 10
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Selection indication

The user and the system will often have one object or a set of objects that have a special status.
They are the objects that will be acted upon the next time that a command is issued. These
objects should be indicated using some sort of highlighting. This usability aspect is not
directly reflected in the system architecture, but in the system low-level design.

The usability patterns we have redefined are:
Preview

This pattern is defined in D.2 as “A user may wish to see what the results of an action
(possibly a resource consuming one) will be before executing the command.” It can be
considered as a particular case of a more general pattern called Provision of Views, which we
have now defined as “Allow users to have different alternatives to see the data they are
working with at any time”.

Macros

This pattern has been renamed Command Aggregation according to the respective scenario
considered by the SEI. The new pattern can be defined as “The system should provide the
capability to allow the users to do different actions through just one command”. The
generation of a macro is an example of this pattern for some particular applications, whereas
this pattern could be implemented by scripts, batch programs, etc., for other applications.

Finally, the pattern adopted from SEI work is the only aspect not covered by our usability
patterns but addressed by SEI:

Reuse information

This pattern was not originally considered in the D.2 usability patterns. This pattern enables
the user to move data from one part of a system to another. So, users should be provided with
automatic (e.g., data propagation) or manual (e.g., cut and paste) data transports between
different parts of a system.

Table 2.4 shows the final list of usability patterns used in STATUS. The first column shows the
usability patterns already defined in D.2. The second column shows the final architectural usability
pattern used in D.3.4., showing the new patterns in boldface and the redefined patterns in italics. The
last two columns, which will be detailed below, show the relationship between the architectural
usability patterns used in STATUS and the SEI scenarios. The relationships we have found are:

e Content. Achieving a particular STATUS usability pattern implies achieving a particular SEI
scenario. For example, properly implementing the Provision of Views patterns implies the SEI
Make views accessible.

e Instantiation. A STATUS usability pattern is a special case of a SEI scenario. For example, the
STATUS Standard Help is a case of the SEI Help.

e Similarity. A STATUS pattern and a SEI scenario are considered similarly in both approaches,
for example, Cancel.

e Generality. A SEI scenario is a special case of a STATUS usability pattern. For example, the
SEI Novice Interfaces for Users in Unfamiliar Contexts is a special case of provide the
STATUS pattern Workflow model.

IST - 2001 — 32298 Page 11 of 11
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

As we can see from Table 2.4., some SEI scenarios have not been considered in WP3. The specific
reason for every scenario is explained below:

Account for Human Needs and Capabilities when Interacting, Keep Coherence through
Multiple Views, Define Upgrades Similar to Previous Ones, Provide Test Points for
Evaluation and Design Easily Modifiable Interfaces are the results of specific actions to be
taken during the development process and do not fit in with the definition of usability pattern
considered in STATUS. Considerations of this nature have been taken into account in
STATUS WP5, which deals with the general development process and not only with the
architectural design phase like WP3.

Minimize User Recovery Work due to System Errors refer to errors made by the software
system and not by the users. As explained earlier, system errors are not considered by classical
usability attributes, which is why this feature has not been considered in STATUS.

Allow Searching by Different Criteria is a functional requirement that is specific to particular
applications, and is not, therefore, really a usability architectural pattern as it is considered in
this project.

Provide Alternative Secure Mechanisms is a security requirement and not a usability
architectural pattern as defined in STATUS.

IST - 2001 — 32298 Page 12 of 12
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

D.2. USABILITY D.3.4. USABILITY | RELATION SEI SCENARIOS
PATTERNS PATTERNS
Different Languages similarity Support international use
Different Access Methods | generality Maintain device independence
Alert Alert generality Verify resources before beginning an
operation
Status Indication Status Indication similarity Present system state
Progress Indication generality Predicting task duration
Shortcuts (key and | Shortcuts (key and tasks)
tasks)
Form/Field Validation | Form/Field Validation similarity Checking for errors
Undo Undo similarity Undo
Context-Sensitive Help | Context-Sensitive Help instantiation Provide good Help
Wizard Wizard instantiation Provide good Help
Standard help instantiation Provide good Help
Tour instantiation Provide good Help
Workflow Model Workflow Model generality Novice interfaces for user on unfamiliar
contexts
History Logging History Logging
Preview Provision of Views content Make views accessible
similarity Provide reasonable set of views
content Quick navigation into a view
User Profile User Profile
Cancel Cancel similarity Cancel
Multi-Tasking Multi-Tasking content Use applications concurrently
content Allow to quick switch back and forth
between different tasks
Macros Commands Aggregation similarity Aggregate commands
Action for Multiple | Action for ~ Multiple | similarity Aggregate data
Objects Objects
Reuse Information similarity Reusing information

Provide test points for evaluation

Design easily modifiable interfaces

Allow searching by different criteria

Minimize user recovery work due to
system errors

Provide alternative secure mechanism

Account human needs and capability when
interacting

Keep coherence through multiple views

Define upgrades similar to previous ones

Table 2.4. Relationship between STATUS architectural usability patterns and SEI scenarios

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 13 of 13

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Table 2.5 shows the final relationship between the usability properties defined in D.2. and the
consolidated list of architectural usability patterns that we will use henceforth in STATUS.

Usability Property Usability Patterns
Natural Mapping

Consistency (Functional, Interface, Evolutionary)

Accessibility (Internationalisation) Different languages
Consistency Different access methods
Accessibility (Multichannel, Disabilities)

Feedback Alert

Error Management Status indication
Feedback

Explicit User Control Shortcuts (key and tasks)
Adaptability (User Expertise)

Error Management (Error Prevention) Form/field validation
Error Management (Error Correction) Undo

Guidance Context-sensitive help
Error Management

Guidance Wizard

Error Management

Guidance Standard help

Error Management

Guidance Tour

Error Management

Minimise Cognitive Load Workflow model
Adaptability

Error Management (Error Prevention)

Error Management (Error Correction) History logging
Guidance Provision of views
Error Management (Error Prevention)

Adaptability (User Preferences) User profile

Error Management Cancel

Explicit User Control

Explicit User Control Multi-tasking

Minimise Cognitive Load Commands aggregation
Error Management (Error Prevention)

Explicit User Control Action for multiple objects
Minimise Cognitive Load Reuse information
Error Management (Error Prevention)

Table 2.5. Relationship between usability properties and architectural usability patterns

It should be noted that the properties of Natural Mapping and Consistency cannot be arranged around
specific usability patterns. The reason is that these properties require the performance of different
tasks and activities throughout the entire development process rather than the application of particular
solutions at the architectural level. For example, the provision of natural mapping between the user
tasks and the tasks to be implemented in the system calls for software requirements to be elicited
during the analysis process bearing in mind this objective and they must be designed according to
these requirements. The same goes for consistency, which involves different activities throughout the
lengthy development process of the original system or new versions.

Annex A contains a detailed description of the usability patterns upon which this WP is based. That is,
Annex A is a second version of section 4 in D2, but refined as explained in this section. Design
solutions for these patterns are presented in the next section.

IST - 2001 — 32298 Page 14 of 14
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

3 DESIGN SOLUTIONS FOR USABILITY PATTERNS

Now we are going to describe the procedure followed to identify the design solution for each
architectural usability pattern. The procedure can be divided into two phases:

PHASE 1. Generating Architectural Design Solutions

Application of induction to abstract the architectural solutions from particular designs for
some applications developed by both researchers and practitioners. For this purpose, we took
the following steps:

STEP 1. We asked designers to build the design models (represented by class
diagrams and interaction diagrams) for two systems not including the usability
mechanisms specified by the usability patterns.

STEP 2. Once the designs without usability mechanisms were complete, we asked
designers to modify their earlier designs for each usability pattern to include the
functionality corresponding to the usability mechanisms under consideration.

STEP 3. For each usability mechanism, we abstracted the respective architectural
design solution by generalising the modifications made by the different developers to
their designs.

This process was carried out on two different applications developed by different researchers
and practitioners: Restaurant orders and tables management; Ride control and maintenance at
an amusement park. For ease of reading, we are going to illustrate in this section the process
only for one usability pattern, showing just one design example with and without usability
mechanisms for the two applications. The process followed for the rest of usability patterns
has been placed in Annexes C and D.

PHASE 2. Validating Architectural Design Solutions in a Real Development

Although the inductive process applied to a couple of applications developed by several
developers might well have been sufficient to be sure of the design solutions, we wanted to
validate these architectural solutions from the more comprehensive viewpoint of a full
development. That is, in Phase 1, the researchers and practitioners knew they were
participating in a research project and what the aim of this project was, they were familiar with
the applications (either because they had developed them or had used them for training, etc.).
Therefore, when asked to build design models with and without usability mechanisms, the
developers exclusively addressed the parts of the system affected by the inclusion of the
mechanisms in question. In other words, all the work carried out in Phase 1 was done as an
exercise, not in the environment of a full and real development. By contrast, this validation
phase was run within a development project for an MSc thesis. The development team was
building and about to implement a system, having completed the design phase without
considering usability patterns. The requirements were then changed, stating that the system
should incorporate all the usability mechanisms set out by the usability patterns. The team
then had to modify the design to consider these mechanisms. Again, we were able to observe
what changes were made to the design because of this addition, and we were able to check
whether the changes were equivalent to the instances of the solutions found in Phase 1. Again,
for ease of reading, section 3.2 gives only one example of a use case with its respective
associated interaction diagram. In Annex E the full development can be seen.

IST - 2001 — 32298 Page 15 of 15
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

3.1 Phase 1: Generating Design Solutions for Usability Patters

3.1.1 First Iteration: Finding Design Solutions for Architectural Usability Patterns

Below, we show how Phase 1 was conducted for the Restaurant orders and tables management
application (the requirements for this application are listed in Annex B). This application was taken as
the first step in the process of induction for identifying the architectural usability patterns and,
therefore, has been referred to as the first iteration. Each of the steps identified above has been taken
for each usability pattern:

e STEP 1. Design models (class diagrams and interaction diagrams) without the usability
mechanisms specified by the usability pattern.

e STEP 2. Design models (class diagrams and interaction diagrams) with the usability
mechanism specified by the usability pattern.

e STEP 3. Abstraction of the design solution for the usability pattern.

As explained above, for clarity’s sake, this section will only show the first iteration for the pattern
Different Languages, whereas Annex C includes the first iteration for each one of the usability patterns
from Table 2.4. This will illustrate the first iteration concerning how the design solution for the
usability pattern is abstracted.

STEP 1. Design solution without the Different Languages usability pattern

Figure 3.1 shows the class diagram of the application where the pattern Different Languages has not
been considered. In this case, no interaction diagram is shown as this functionality was not considered
originally.

IST - 2001 — 32298 Page 16 of 16
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Restaurant Request
(from CLASSES) (fom CLASSES) Interface
Name :String Book Hour (from CLASSES)
ddress :String {from CLASSES) Date

Status
etName(Name)()

vailableTables (date, hour,kind)()

nitreque s{)

Init-request()()

Undo ()()

Init-request()()

InputC odConsumpton(code))
Display (listofcon sumptions))
D uplicateConsumption()()
Help()()

C lientName (client)()
Check(date,hour)()
Get(times-in-week)()

Init-request()
input-CodConsumpton()
OK()

init-request(

)

)
init-reques {()()
init-reques t()()
IniiCodConsumption(code)()
RequestConsumtons ()()
Bil() ()
iNew-price(price)()
GetPrice(price)()

Table
(from CLASSES)
Status :String
Number-person :Integer
Smoker/Non Smoker :Boolean
Place : XY
Code :Integer

howLis {(list)()
ef(restaurant data, hour kind)()
how Lis(lis)()
onnectingSystem())

00
Restaurants-manager Changesate() pecificHelp(tppic)()
|
(om CLASSES) ChangesState() howSpecificHelp(help)()

Changestate()() anc el(request)()
Changestate()()

CeRes aurants (list)() LookForAvailable(kind, data,hour)()

AvailableTables (restaurant date, hour,kind)()

Request-ine
(from CLASSES)

CreateLine(code)()
Read(consumption)()
ConsumtionPrice (price)()
LineName(name)()
iGetPrice(price)()

Consumption
(from CLASSES)

od-consumption

Books manager
(from CLASSES)

! onsumtonName(name)()

LastCodeConsumption()()
GetRestaurants (list)()
Get(restaurant date, hour,kind)()

Figure 3.1 Class Diagram for the first application without the Different Languages mechanism

STEP 2. Design solution with Different Languages usability pattern

With the aim of incorporating the usability aspect of Different Languages, a new requirements has
been given to the developers: “When the user is booking a table from the terminal, the system should
be able to understand the date, time and table time irrespective of the language used by the user. The
interaction diagram does not show the full booking for reasons of visibility on the model”.

The inclusion of this requirement provokes some changes in the design models as shown in Figure 3.2
and Figure 3.3.

IST - 2001 — 32298

Page 17 of 17
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Interface ‘ : Books ‘ ‘ Translator ‘ s ‘ ‘ - ‘ ‘ . Restaurant ‘ _ Table ‘ ‘ _: Book ‘
: User ‘manager L -modeler Res tau ran ts-manager

NewBook() | ‘

G etRestaurantslist) ‘

GetRestaurants(list) GotName(Name)
etName(Name

-

S$howList(list)

o

Gel(res(auran’(, data, hour,kind) ‘

Get(festaurant, date, hour‘ kind)

ChooseLangModeler(restaurant, dlee, hour, kind) ‘

TranslateData(restaurant, date, hoyr, kind)

Av gidb b Tables(e staumnt, date, hlu, kind)

|
|
|
|
|
|
|
|

AygilableT ables(date, hour, kind)

Lookf i da«a1 hour)

Lcr‘e ck(dat e, tour)

howList(list)

.

Figure 3.2 Sequence diagram for the first application with the Different Languages mechanism

IST - 2001 — 32298 Page 18 of 18
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)
Name :String
ddress :String
GetName(Name)() Book
vailableTables (date, hour,kind)() (rom CLASSES)

ClientName(client)()

Check(date,hour)()
able Get(times-in-week)()

(from CLASSES)

Status : String

Number-person :Integer

Smoker/Non Smoker :Boolean

Place : XY

Code :Integer

ChangesState ()

IChangeState() Request
ChangeState()() (rom CLASSES)
ChangeState()() Hoor
Look ForAvailable(kind, data, hour)() bate

Status

Init-request()

Restaurants-manager Input-CodConsumpton()
(from CLASSES) init-request()
hit+ equest(()
GetRestaurants (list)() hit+r equest()()
vailableTables (restaurant,date, hour, kind)() hit+ equest(()
IntCodConsumpton(code))

Reque sConsumtons ()
Bill()()

New-pice(price)()
GetPrice(price)()

Consumption

(from CLASSES) Request-line
Cod-consumption (from CLASSES)
Description
Price

Books manager
(from CLASSES)

GetRestaurants (list)()
Get(restaurant,date, hour,kind)()

reateLine(code)()
Read(consumption)()
onsumtionPrice (price)()
LineName(name)()
etPrice(price)()

Check-Stock ()
OK()

ConsumtionName(name)()
LastCodeConsumption()()

Interface
(from CLASSES)

initrequest()

Initrequest()()

Undo ()()

nit-request()()
input-CodConsumption(code)()
Display (listofconsumptions) ()
D uplicateConsumption()()

Translator Help()()
Gethelp(help)()
(from CLASSES) Get-h elp(bu r)()
Ne wBook ()()
.ChooseLangModeler(daw‘hour‘kmd)() Show List(lis)()

Get(restaurant data, hour kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()

OK()()
SpecificHelp(tppic)()
Language-modeler show SpecificHelp(help)()
(from CLASSES) Cancel (requesty)

-TranslateDaQa(daha,hour,klnd}(J

Figure 3.3 Class diagram for the first application with the Different Languages mechanism

STEP 3. Abstraction of the design solution for Different Languages

From the different solutions provided by the different developers (Figure 3.2 and Figure 3.3 are just
one of them) it is possible to abstract a more general solution, as shown in Figure 3.4. The different
participants in this solution are:

IST - 2001 — 32298 Page 19 of 19
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

3.1.2

Interface

Language
recognitor
BT
A
Language Language
Translator 1 | - Translator n
g s ;

[System }

Figure 3.4. Abstract design solution for the Different Languages usability mechanisms

Interface: collects the operation to be performed and any associated data, which it sends to the
Language-recogniser (1) (2). Additionally, once the respective functionality has been
processed, the interface receives the data to be displayed to the user from the Language-
translator in the language that originated the request (8).

Language-recogniser is a recogniser, not a translator, which determines the language in which
a the respective functionality is requested and sends the data and the functionality request to
the respective Language-translator (3) (4).

Language-translator (i): there may be one for each language that the system is capable of
recognising. If there is one for each language, which would be advisable for reasons of system
modularity, each Language-translator translates the functionality and any data it receives from
the Language-recogniser (3) (4) to a common language understood by the system. Once they
have been translated to the common language, it sends them to the system (5) (6). Once the
functionality has been processed in the system, it again receives the response data for the
executed functionality (7), and again translates them from the common language to the
specific language in which the user requested the functionality. After translating, it sends the
data to the user (8) through the interface.

System: it performs the functionality requested by the Language-translator (i), in the common
language (5) (6), and returns the respective response to the language-translator in the common
language (7).

Second iteration: Checking Design Solutions

Having completed the first iteration to get a design solution for usability patterns, the whole process
was repeated with a second application, Amusement park management (whose requirements are
shown in Annex B). Similarly to the process presented in section 3.1.1., we have carried out again the
three above-mentioned steps for each usability pattern.

In the case of the amusement park system, it was not possible to carry out the second iteration for the
following usability patterns:

IST - 2001 — 32298 Page 20 of 20
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

As explained above, for the sake of clarity, this section only includes the second iteration for the
pattern Different Languages, whereas Annex D includes the second iteration of each of the usability

pattern.

STEP 1. Design models without Different Languages

Undo, Cancel and Provision of Views because, as it is basically a control system, it was not
very sensible to introduce this type of requirements that are more related to management

systems.

Actions for multiple objects, because this system does not perform simultaneous tasks on

several objects.

In the original version of the system there were not an interaction diagram regarding to the Different
Languages functionality as it is a new functionality. Figure 3.5 shows the class diagram before

including the mechanism of Different Languages

RedColor()
G reenColor()
jAmberColor()

Exit-turnstile

(vom Logical View)

Start-device

(rom Logical View)

Starthoonansm()

Stop-device
(Fom Logical view)

RS topMechanism()

Data-to-be-Loaded(data)()
opy (data)()
Help()()

et-Help(help)()

et-Help(tour)()

Bgomvero Peone

0 pen()
close()
<Check-people-disappeared()

Breakdown

Fairground-mechanism

(from Lagal View)

N umberBres cb wrs NotRe g red
Addess

e
RN oteBr ea d own Repaired)

BiNotes reackdown()

(from Logical View)

Breakdown-manager

free)
B reakdownRepaired(data, nar

me)()

Loudspeaker

(Fom Logical Vie

VigianceCamera

(rom Logical View)

Visitor

(from Logical View)

§

5

Name

Operative-device

ms-repaired

indicate-O perative-busy()
indicate-Mechanism-repaired()

Searcher-validator

(from Logical Vie:

w)

Load(data)()
Store("name, Wentiication-number, har-color,

stature")()

Figure 3.5 Class diagram for the second application without the Different Languages mechanism

Help-point-interface

(from Logical View)

Rvaidate("name, dentification-number, hair-cola, stature")()

Validation-manager
(from Logical View)

Vistor)
D

iNew
jVisitorData(name, identification-number,

hair-colr, stature)()

R alcate(search

‘ame, identification-num ber,

olor, stature")()

STEP 2. Design models with Different Languages

With the aim of including in the application the usability pattern of Different Languages a new
requirement has been giving to developers: “The park visitor enters the details of the person who
wants to register in any language and the system is capable of translating this to an exchange language
so the surveillance system then operates identically when searching for a given subject irrespective of

the language in which the subject’s details were entered”.

IST - 200

1-32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 21 of 21

—&status

STATUS D.3.4. v.1.0 Techniques, patterns and styles

In order to consider such requirement, a version of the design models has been produced. In particular
Figure 3.6 and Figure 3.7 shows the interaction diagram and class diagram respectively produced with
this new functionality.

X

= langua 3 tcher - = Visitor
Help-point-interface Val alidator
User
| NewVisitor() |
; . identif ber, hair color, stature) ‘ ‘ ‘ ‘ ‘ ‘
i;mmm%m o o | | | | |
Cho: 1 eLangModeler(name, identificatio Tn hai stature) ‘ ‘ ‘ ‘
I . identif na*cmo stature) ‘ ‘ ‘ ‘
VisitorData(fame, identificatiot hai-oplor, stature) ‘ ‘ ‘
Validate(searcher, Ingme, identification-number, hair-color, stature")
‘ ‘ ‘
Validate("name, [identific ation -number, hair-color, stature")
‘ J
Store("nam de\:! tion-number, hair-dolor, s tature")
Q
J 1 \ \ \ \

Figure 3.6 Sequence diagram for the second application with the Different Languages
mechanism

IST - 2001 — 32298 Page 22 of 22
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

(from Log

Entry-turnstie
jcal View)

Exit-turnstile
(fom Logical View)

%Numbevomersons

#PeopleCounter()

RedColor() ﬁpen()
YGreenColor() lose()
Fambercolor() YCheck-people-disappeare d()

Q)Numbe rOfPeop b

MEPeopleCounter ()

Startdevice

(fom Logical View)

istartMechanism()

\

Fairground-mechanism

(rom L @ cal View)

Breakdown

(from Logical View)

Date
Mechanism
name

HN oteBreackdown ()

Operative-device
(from Logical View)

NumberBreakdownsNotRepaired
ddress

Breakdown-manager

(fom Logical View)

Operative-name
Operative-code

/

Stop-device

(fom Logical View)

Operative-status

N oteN ewBreakdown ()
LN oteBreakdownRepaired()

WstopMechanism()

FLook-for-operative-free()
Lstatus (free)()
LsreakdownRepaired(data,name)()

Number-Of-Mechanisms-repaired

Mindicate-Operative-busy/()
P

W heel
(from Logical View)
Visitors-Manager %NumMaxgem
Roller Coaster
(from Logical View)
Werror() (from Logical View)

@D ata-to-be-Loaded(data)()
HCopy (data)()

PHelp()()
Get-Help(help)()
LGet-Help(tour)()

Q)NumMaxsEa's

Vehicle

(from Logical View)

\

Loudspeaker
(rom Logical View)

m-repaired()
WCheckstatus()

Validation-manager
(from Logical View)

®validate(searcher,"name, identificaton-number, hair-color, stature”)()

%Vemc\e-code

@veasureUnity ()

(from Logical View)

%Carrcode

VigilanceCamera
(rom Logical View)

WMeasurePressure()

Visitor
(ro mLo gical iew)

Name
ge

WL oad(data)()
&ystore("name, identification-number, hair-color, stature”)()

[

Searher walicat &
(fomLogcalVew)

Rvalidate("name, identification-number, hair-color, stature”) ()

Language-recognitor
(from Logical View)

Help-point-interface
(rom Logical View)

N ew Visitor()

RvisitorData(name, identification-number, hair-color, stature)()

%VisitorData(name, identficaton-number, hair-color,stature)()

Language-translator
(from Logical View)

@ TranslateVisitorData(name, identfication-number, hair-color, stature)()

Function-dispatcher
(fom LogicalVew)

HisitorData(name, identificaton-number,hair-color, stature)()

Figure 3.7 Class diagram for the second application with the Different Languages mechanism

STEP 3. Abstraction of the design solution for Different Languages

The abstraction of this solution provides the same design solution shown in Figure 3.4.

3.2 Phase 2. Validating design solutions for patterns with practitioners

The above two iterations had provided a preliminary design solution for the usability patterns. This
solution was obtained from software designs made by project researchers. The objective of this third
step is to validate these design solutions by practitioners not involved with STATUS. This was done
by taking the steps 1 and 2, used in Phase 1 for an Intranet application for managing an advertising
company. The application and the results of the two steps have been described in Annex E. The
changes to the original development models due to the consideration of the usability patterns are
highlighted in each model. Moreover, the solution for the usability pattern abstracted in the previous
two iterations can be confirmed.

For reasons of readability, this section only includes a small part of the system, which illustrates what
impact the introduction of the Different Languages usability pattern had on one of the system use
cases. The remainder of the application is documented in Annex E.

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 23 of 23

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Table 3.1 shows the use case for the functionality that permits the user to query a given contract. This
use case has been called Query contract. The table includes all the elements that are useful for defining
a use case in expanded format. The requirement P11 is highlighted in the references section, which
indicates the inclusion of the Different Languages pattern within the system requirements. This pattern
had not been accounted for in the first version of this project which did not include usability patterns:

e Req P11: The system should detect the client operating system language and, depending on
this, show the messages and labels in the detected language. If the detected language is not
one of the parameterised languages or cannot be detected, the messages and labels will be
shown in English.

Additionally, note that the description of the use case within system responsibilities now includes step
(2) as a result of the inclusion of the Different Languages usability pattern.

Actor Marketing_administrator, Marketing_user

Type Primary and essential

Purpose Query the information on a contract with the information requested by marketing.

Overview: The user selects the code of the contract to be queried and asks the system for the

information.

References: Req P5, P10, P11, P13, P14

Typical course Actor action

of events

1. The use case starts when the user | 2. The system recognises the language of the
enters the query contract user and displays the information in the
application. respective language (UP-Different

languages).

3 The administrator fills in the data|4 The system retrieves the information on
required to identify the contract and the contract and this information, if any,
asks the system to display the is displayed. The user is informed if the
information using a button or contract cannot be displayed (UP- Status

abbreviated method (UP-Shortcuts). Indication).

Table 3.1 Query contract use case

The next step will be to define the system sequence diagram for the Query contract use case. This
diagram is illustrated in Figure 3.8. The first system input, Assign Language, has been highlighted in a
different colour, as it stems from the consideration of the Different Language usability pattern.

IST - 2001 — 32298 Page 24 of 24
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

1. The use case starts when B
the user enters the query
contract application.

2. The system recognises the
language of the user and
displays the information in
the respective language
(UP-Different languages).

3 The administrator fills in
the data required to identify
the contract and asks the
system to display the
information using a button or
abbreviated method
(UP-Shortcuts).

4 The system retrieves the
information on the contract
and this information, if any,
is displayed. The user is
informed if the contract
cannot be displayed (UP-
Status Indication).

1
Marketing Administrator IPESP

I
| AssignLanguage(Language, Program) |
1

L
|
|

QueryContract(ContractCode)

Figure 3.8 System sequence diagram for the Query contract use case

For each of the system inputs represented in the diagram illustrated in Figure 3.8, the respective
operation contracts are described in Tables 3.2 and 3.3 below. The operation contract for the
AssignLanguage input (Table 3.3) has been highlighted to indicate that it appears as a result of the
inclusion of the Different Languages usability pattern.

Name: QueryContract(ContractCode:int)

Responsibilities: Retrieve and display data on a contract

Cross-references: Requirements P2, P10

Use case: Query contract

Notes:

Exceptions: The contract does not exist

Output:

Pre-conditions:

Post-conditions: The contract data have been retrieved and displayed

Table 3.2 Operation contract for QueryContract

Name: AssignLanguage (Language:String, Application)
Responsibilities: Assign the language in which the application is to be viewed.
Cross-references: Requirements: P11

Use case: Update contracts

Notes:

IST - 2001 — 32298 Page 25 of 25
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exceptions: The language cannot be assigned.

Output:

Pre-conditions:

Post-conditions: The default application language has been assigned.

Table 3.3 Operation contract for AssignLanguage

A sequence diagram needs to be built for each operation contract defined above in Tables 3.2 and 3.3.
Figure 3.9 shows the sequence diagram built for the QueryContract operation contract from Table 3.2.
Figure 3.10 shows the sequence diagram built for the AssignLanguage operation contract from Table
3.3.

The classes that emerge as a result of having taken into account the Different Languages usability
pattern are shaded in both diagrams. We can check whether the design including usability patterns
matches the design for the applications described in Phase 1 (Annexes C and D) for both the example
included in this section and the remainder of the application described in Annex E.

As we can see, the classes identified in the sequence diagrams of Figure 3.8 and Figure 3.9 show that
the designer has not taken into account as much granularity as was accounted for in the Restaurant
(Annex C) and Amusement Park (Annex D) systems, but, in all cases, the design solution for Phase 2
is similar to the solution applied in the applications taken into account in Phase 1. We can conclude,
therefore, that the abstractions materialised as architectural patterns in Phase 1 are valid as guidelines
for application in other projects.

Marketing A‘:dministrator Event Manager Contract Status Indicator
I :
| ExecuteEvent(event) | : !
1 1 | |
U QueryContract(ContractCode)} :
»! |
l I
' :
: ShowMessage(Message) :
| ! >
| t
| | 'u
|
| L i

Figure 3.9 Sequence diagram for QueryContract contract

IST - 2001 — 32298 Page 26 of 26
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

]
|
|

L. I . |

Administrator marketin I
I
I
I
[

1
: SetLanguage(language, apllication)
I

RetrieveLangData(language, application, data)
T - -
: GetData:=GetData(ltem) : U
I
L] L |
| | |
| | |
| | I
Figure 3.10 Sequence diagram for AssignLanguage contract
IST —-2001 — 32298 Page 27 of 27

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

4 ARCHITECTURAL USABILITY PATTERNS CATALOGUE

The above process has output general design solutions that can be given to developers to be followed
or to serve as inspiration when incorporating a given usability pattern. Annex F describes all the
architectural usability patterns output by the entire process. These patterns are described according to
the following parameters.

= Pattern Name: Patterns must have suggestive names, which give an idea of the problem
addressed and the solution in a word or two.

= Usability Mechanism: Describes the usability mechanism to be incorporated in the software
architecture.

= Architectural Design Solution: This describes the elements that make up the architecture, their
relationships, responsibilities, etc. The solution does not describe a definite design, as a pattern
can be seen as a template that can be applied in many different situations. Particularly, the solution
for a specific pattern will be specified from.

o Diagram: A figure that represents the components of the architecture and their iterations.
Numbered arrows between the different components will represent the iterations. The arrows
with solid lines specify the data flow, while the dotted lines represent the control flow between
the components.

o Participants: A description of the components that take part in the proposed solution and the
iterations (represented by arrows) to determine how they are to assume their responsibilities.

= Usability benefits: Description of which usability aspects (usability properties) can be improved
by including this pattern.

= Usability rationale: A reasonable argumentation for the impact of pattern application on usability,
that is, what usability attributes have been improved, and which ones may get worse. Initially, this
feature will be completed with information coming from other authors or from the experience of
the consortium members. However, once the patterns have been applied to real applications in
WP, this field will be refined with empirical experience.

= Consequences: Impact of the pattern on other quality attributes, like flexibility, portability,
maintainability, etc. Table 4.1 present a preliminary relationship among those attributes that, will
be checked with the results of empirical experience.

= Related patterns: Which architectural patterns are closely related to this one, and what
differences there are.

= Implementation of the pattern in OO: The architectural patterns provided are patterns that can
be applied in any development paradigm. However, as these patterns have been obtained and
refined for OO applications, we will provide guides tending to address pattern application in this
paradigm. Basically, we will describe the classes deriving from the pattern’s main components.
These guides are illustrated in the example shown in the following section.

Example of the application of the pattern in question.

IST - 2001 — 32298 Page 28 of 28
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Reliability | Reusing | Learnability | Efficiency | Memorability | User Performance
Satisfaction
Reusing Information + +
Standard Help + +
Tour - + 4
Different Languages + + + +/- -
Different Access +/- -
Methods
Alerts + +/- -
Status Indication +
History Logging + +
Undo + +
Form or field + +
validation
Provision of views + +
Workflow Model —+ +
User Profiler - - + +
Shortcuts - + -
Context Sensitive + + +
Help
Wizard + - +
Cancel +
Multi tasking - +
Commands +
Aggregation
Actions for Multiple + +
Objects
Table 4.1. Relationship among quality attributes
IST —-2001 — 32298 Page 29 of 29

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

5 CAN UsABILITY PATTERNS HELP FOR EDUCING USABILITY REQUIREMENTS

Examining the process we followed to get the design solutions for the usability patterns, we realised
that the inclusion of a usability mechanism has provided developers with a specific software
requirement that considers the respective usability pattern. This modus operandi led us to think that the
usability mechanisms to be included in the design should be discussed with users in the requirements
analysis phase. In other words, our usability pattern catalogue can serve as guidance for developers
during the discussion with users of what usability requirements they would like the system to satisfy.

This is an original idea as compared with the recommendations given by the traditional approaches to
usability, which specify two tasks for analysis: establish some usability level requirements (preferably
quantitative) and study users and how they perform the task so that there is a natural mapping between
the system and user reality. Everything related to usability mechanisms is dealt with as design
heuristics, design principles, etc., in the traditional approaches. Our proposal is that the usability
mechanisms (not the design solutions) should be brought forward in the software development process
and be included in the analysis phase. Accordingly, not only developers but also the users would be
able to state their opinions on what usability mechanisms are most critical for a given application, as
well as participate in the trade-off between usability and other quality attributes, from which some
usability mechanisms may detract.

As Task 3.4 deals with design rather than analysis, we postpone discussing any further findings until
we have applied the results of Tasks 3.1, 3.2, 3.3 and 3.4 to a real case. However, a brief overview of
how to integrate the entire development process for usability is given in D.3.5. “Usability-centric
software architecture design method”.

IST — 2001 — 32298 Page 30 of 30
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

6 CONCLUSION

Task 3.4 focused on examining the possible design solutions for including usability aspects into each
stage. For this purpose, it was necessary to extend the concept of usability pattern that was set out in
D.2, adding design-related aspects, like, for example, what effect the inclusion of each of these
usability mechanisms has on modules or interactions between modules.

The process followed to provide the design solutions for each usability mechanism was based on
induction from several cases studies and on the generalisation of the design solutions set out in each
case.

Finally, we developed a catalogue of usability patterns (Annex F) with their respective design
solutions, as well as a series of aspects that aim to provide developers with information on how to use
these patterns in their development projects.

Both the design solutions provided for each usability pattern and other aspects of the catalogue will be
improved in the remainder of the STATUS project, as they are used by the industrial partners in the
project context.

IST - 2001 — 32298 Page 31 of 31
© STATUS Consortium 2002. CONFIDENTIAL

—&status

STATUS D.3.4. v.1.0 Techniques, patterns and styles

7 REFERENCES

[Alexander, 77] Alexander C., Ishikawa S., Silverstein M. A PatternLanguage —Towns-Building-
Construction. Oxford University Press, 1977.

[Bass, 01] Bass L., Bonie E. John, Jesse Kates. Achieving Usability Through Software Architecture.
Technical Report. CMU/SEI-2001-TR-005, March 2001.

[Casaday, 97] Casaday G Notes on a Pattern Language for Interactive Usability, Proceedings of the
Computer Human Interface Conference of the ACM, Atlanta, Georgia, 1997.

[Gamma, 98] Gamma E., Helm R., Johnson R., Wlissides J. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison Wesley, 1998.

[Perzel, 99] Perzel, , Kane D. (1999) Usability Patterns for Applications o the World Wide Web.
PloP’99

[Tidwell, 98] Tidwell, J. Interaction Design Patterns. Pattern Languages of Programming 1998,
Washington University Technical Report TR 98-25.

[Welie, 00] Welie M, Troetteberg H. Interaction Patterns in User Interfaces. PloP’00

IST - 2001 — 32298 Page 32 of 32
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

IST — 2001 — 32298 Page 33 of 33
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Anexo A: DETAILED DESCRIPTION OF USABILITY PATTERNS

A.1 Different Languages

Description
Internationalisation refers to the capability of the software to interact with users in different languages.

Relationship with usability properties

This pattern improves system accessibility for users who speak different languages. It supports error
prevention by providing a better understanding of the options and tasks that can be performed using
the system.

Example:

In internet-based systems, it is quite common to find architectures where the functionality and/or
information is duplicated in different languages. In these cases, users usually select the language in
which they want to interact with the system.

Other non-internet-based systems also implement the internationalisation attribute to allow to users to
manually or automatically select the language. For example, word processing system users can select
the spelling and grammar function in the selected language, but also have the option to select another
language, depending on the language they used in the document. Microsoft Word is actually able to
recognise the language that the user is using and adapt the Autocorrect function to the language in
question.

A.2 Different Access Methods

Description

Access method refers to the capability of the software to be accessed using different types of physical
devices. Therefore, this attribute will ease system access not only from a desktop or laptop but also
using means such as WAP, Web, and interactive TV, for example.

Relationship with usability properties
This pattern improves system accessibility by users using different devices.

Example
Internet weather forecasts can be accessed from a desktop/laptop, but this information can also be
obtained using interactive TV or a mobile phone.

IST — 2001 — 32298 Page 34 of 34
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.3 Alerts

Description
An alert is a message from the system to the user that a change of state has occurred that the user
ought to know about.

Relationship with Software Architecture
To support the provision of alerts to the user, there needs to be component that monitors the behaviour
of the system and sends messages to an output device.

Relationship with Usability Properties
Alerts help to keep the user informed about the status of the system.

Example
If a new e-mail arrives, the user may be alerted by means of an aural or visual cue.

If users make a request to a webserver that is currently off line, they will be presented with a popup
window telling them that the server is not responding.

A.4 Status Indication

Description
Users should be provided with information pertaining to the current status of the system.

Relationship with Software Architecture
To support the provision of status information to the user, there needs to be component that monitors
the behaviour of the system and sends a message to an output device.

Relationship with Usability Properties
Giving an indication of the system’s status provides feedback to the user about what the system is
doing at this time and what the result of any action they take will be.

Example

The status bar at the bottom of the screen in Microsoft Word shows the current page number, the
position of the cursor on the screen in rows and columns, whether certain modes, such as overwrite,
are currently active, and the current language.

A.5 Shortcuts

Description
A shortcut allows an experienced user to activate a feature that may be hidden “under the surface” of
the interface with one quick manoeuvre.

Relationship with Software Architecture
To allow shortcuts, several different user interface manoeuvres need to be able to be mapped to the
same underlying action.

Relationship with Usability Properties

The provision of shortcuts allows the system to match the user’s level of expertise. An experienced
user will use the shortcut, whereas a novice will navigate a longer path through the user interface,
perhaps receiving more guidance.

Example
Almost all Windows applications provide keyboard shortcuts for commonly accessed items from
menus.

Websites may provide “deep links” to pages many clicks away on the front page, if (especially
combined with a user profile) they expect the user to want to jump to that page as a result of previous
experience.

IST — 2001 — 32298 Page 35 of 35
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.6 Form or Field Validation

Description

If a user is entering multiple items of data on one screen, it is possible to check that each field contains
valid data either all at once when the “submit” or “ok™ button is pressed (form validation), or
individually each time a data item is entered (field validation). With form validation, one invalid entry
may lead to the whole form having to be filled in again.

Relationship with Software Architecture
In a web situation, form versus field validation often equates to doing the validation check on the
server or on the client, respectively.

Relationship with Usability Properties
This pattern relates to a provision for error management.

Example
These techniques are often employed in forms on websites where the user has to enter a number of
different data items, for example, when registering for a new service, or buying something.

A.7 Undo

Description
The ability to undo an action and return to the previous state.

Relationship with Software Architecture

For undo implementation, there must be a component that can record the sequence of actions carried
out by the user and the system, as well as enough details about the state of the system in-between each
action to go back to the previous state.

Relationship with Usability Properties
Providing the capability to undo an action helps users to correct errors if they make a mistake. It helps
the user to feel that they are in control of the interaction.

Example
Microsoft Word provides the ability to undo and redo (repeatedly) almost any action users can take
when working on a document.

A.8 Context-Sensitive Help

Description
Context-sensitive help monitors what the user is currently doing and supplies information relevant to
the completion of the task in question.

Relationship with Software Architecture
There needs to be provision in the architecture for a component that tracks what the user is doing at
any time and targets a relevant portion of the available help.

Relationship with Usability Properties
The provision of context-sensitive help can give the user guidance.

Example

Microsoft Word includes context-sensitive help. Depending on what feature the user is currently using
(entering text, manipulating an image, selecting a font style), the Office Assistant will offer different
pieces of advice (although some users feel that it is too forceful in its advice).

Depending upon what the mouse cursor is currently pointing to, Word will pop up a small description
or explanation of the feature in question.

IST — 2001 — 32298 Page 36 of 36
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.9 Wizard

Description

The wizard pattern presents users with a structured sequence of steps to carry out an operation, which
it guides them through one by one. The task as a whole is separated into a series of more manageable
subtasks. The user can go back and change earlier steps in the process at any time.

Relationship with Software Architecture

There needs to be provision in the architecture for a wizard component, which can be connected to
other relevant components, that is, the component that triggers the operation and the component that
receives the data collected by the wizard.

Relationship with Usability Properties
The wizard helps with guidance, showing the user what each consecutive step in the process is.

Example
The install wizard used by most Windows programs guides users through several options for
installation

ji& Norton Anti¥irus Corporate Edition - InstallShield Wi x|

Welcome to the InstallShield Wizard for
Morton AntiVirus Corporate Edition

The Installshield{R) wizard will allow vou ko reinstall or remowve
Morkan Antivirus Corporake Edition. To conkinue, click Mext,

= Back

Cancel |

A.10 Standard Help

Description
The system must provide users with help on tasks at any time.

Relationship with Usability Properties
The provision of help will give the user guidance and will improve error management, both error
detection and error correction.

Example
It is now usual practice to present users with interactive books, providing search facilities, indexes and
even troubleshooting for information searching and problem solving.

IST — 2001 — 32298 Page 37 of 37
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.11 Tour

Description
A tour presents users with information explaining how to do routine system tasks, providing step-by-
step guidance.

Relationship with usability properties
The provision of a tour will give the user guidance and will improve error management, both error
detection and error correction.

Example

A system that provides presentation facilities could provide a tour of the application, including
animated explanations, besides displaying text instructions on how to easily perform such
presentations.

A.12 Workflow Model

Description
Modelling workflow provides different users with only the tools or actions that they need to perform
their particular tasks.

Relationship with Software Architecture

A component or set of connectors that model the workflow is required, which describe where the data
flows. A further model of each system user will be required so as to provide the actions that they need
to perform on the data (see A.15 user profile).

Relationship with Usability Properties
Targeting the user interface specifically to each user, depending on the tasks that they need to perform
in the workflow, minimises the user’s cognitive load.

Example
Logic IS has developed software that models workflow.

A.13 History Logging

Description
Logging the actions that users (and possibly the system) take means that users (or the system) can look
back over what was done previously.

Relationship with Software Architecture

To implement this feature, a repository must be provided which can store information about actions.
Consideration should be given to how long the data are required for. Actions must be able to be
represented in a suitable format for recording in the log.

Relationship with Usability Properties

Providing a log helps users to see what went wrong if an error occurs and may help them to correct
that error. Being able to refer to actions that were carried out previously may help with “recognition
rather than recall”.

Example
Web browsers create a history file detailing all the websites that the user has visited. Databases
typically write a log of the transactions that are completed.

IST — 2001 — 32298 Page 38 of 38
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.14 Provision of Views

Description
The system must provide users with different views so that they can see what data they are working on
at any time.

Relationship with usability properties
Having data-specific views available at any time provides the user with guidance and will contribute
to error prevention.

Example
Before printing a specific document, the system can provide the user with an image of the document as
it would be printed.

A.15 User Profile

Description

The software system builds and records a profile of each user, so that specific system attributes
(concerning the layout of the user interface, the data or options to show, etc.) can be set and reset each
time that a different user accesses the system. Different users may have different roles and require
different things from the software.

Relationship with Software Architecture
A repository for user data needs to be provided. This data may be added to or altered either by the user
setting a preference or by the system.

Relationship with Usability Properties
Providing the facility to model different users allows a user to express preferences.

Example
Many websites recognise different types of users (e.g., customers or administrators) and present
different functionality depending on who is using the site.

Amazon.com builds detailed profiles of each of its customers in order to recommend products that it
thinks the user might be interested in on the front page of the site.

A.16 Cancel

Description

Users should be allowed to cancel a command that has been issued if they realise that they have done
the wrong thing before an error state is reached. This is different from being able to undo an action
after it has finished to return to the previous state.

Relationship with Software Architecture

There needs to be provision in the architecture for the component monitoring the user input to run
independently of and concurrently with the components that process actions. The action processing
components need to be able to be interrupted.

Relationship with Usability Properties

Being able to cancel commands helps with error management, as if users realise that they have done
the wrong thing then they can interrupt and cancel an action before the error state is reached. It also
gives users the feeling that they are in control of the interaction.

Example

In most web browsers, if the user types in an incorrect URL and the web browser spends a long time
searching for a page that does not in fact exist, the user can cancel the action by pressing the “stop”
button before the browser presents them with a “404” page or a dialog saying that they server could
not be found.

IST — 2001 — 32298 Page 39 of 39
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.17 Multi-Tasking

Description

Multi-tasking describes the situation where the system (and the user) can manage several tasks at the
same time, allowing switching from one task to another as is most conducive to efficiently and
effectively doing the work.

Relationship with Software Architecture

A system should be designed so that it can be used along side any other system without interference. It
may also be useful for the system to be able to manage more than one set of data at once, for example,
a word processor that can hold multiple documents open simultaneously). All of these things have
architectural considerations.

Relationship with Usability Properties
Providing a multi-tasking environment gives users the feeling that they are in control of the system, as
at any point they can switch to the task that is of most interest to them.

Example

Windows is a multitasking environment which enables the user to run a web browser showing a useful
reference website, while writing a document in a word processor, or switch to check an e-mail when
one arrives.

Mircosoft Excel allows multiple spreadsheets to be opened at the same time without replicating the
controls.

A.18 Command Aggregation

Description
The system should provide the capability to allow users to perform different actions by means of a
single command. Macro creation would be an example of this pattern.

Relationship with usability properties

Providing the ability to group a set of commands into one higher level command reduces the users’
cognitive load, as they do not need to remember how to execute the individual steps of the process
once they have created a macro, they just need to remember how to trigger the macro.

Example
All of Microsoft’s office applications provide the ability to record macros or to create them using the
Visual Basic for Applications language.

Emacs allows the user to execute strings of commands that can be assigned to special key
combinations.

A.19 Actions for Multiple Objects

Description

The same action often needs to be applied to a number of different objects. Providing the user with the
possibility of grouping the objects and applying one action to them all “in parallel” will be of help in
completing such a task more quickly and accurately. Errors are more likely to be made if each object
has to be dealt with separately.

Relationship with Software Architecture
Provision needs to be made in the architecture for objects to be grouped into composites or for it to be
possible to iterate over a set of objects performing the same action for each one.

Relationship with Usability Properties

Providing the ability to perform the same action on a number of objects at once reduces the time that it
will take the user to complete a task, as the system should be much faster in repeating actions than the
human user. The number of clicks (or equivalent actions) that the user has to make to complete the
task is reduced.

IST - 2001 — 32298 Page 40 of 40
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Example
In a vector based graphics package, such as Corel Draw, it is possible to select multiple objects and to
perform the same action (change colour, etc.) on all of them at the same time.

A.20 Reusing Information

Description

This pattern enables the user to move data from one part of a system to another. So users should be
provided with automatic (e.g., data propagation) or manual (e.g., cut and paste) data transports
between different parts of a system.

Relationship with Usability Properties
The data is reused in one or more applications, thus minimising the user’s cognitive load and reducing
errors.

Example
For example, a project management tool must permit the project manager to copy the particular tasks
and their characteristics from one project to another one.

IST - 2001 — 32298 Page 41 of 41
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX B: REQUIREMENTS SPECIFICATIONS FOR THE CASE STUDIES

B.1 CASE 1 specifications: restaurant network management

A restaurant chain wants to automate the reservation process, as well as the orders of each table and
the amount there is in the kitchen of each of the products handled to make up each dish, which,
obviously, needs to be restocked by the warehouse as the products run out.

TABLE RESERVATIONS

The restaurant customers can telephone to book a table, but the restaurant chain is trying to encourage
is the use of point of reservation terminals (PRT) located in the street. The advantage of using these
terminals is that they offer the possibility of choosing a table depending on its location within the
restaurant, which is impossible over the telephone.

All the PRT are owned by the restaurant chain, although other restaurant chains might offer their
services over these terminals in the future. At present, only restaurants belonging to this restaurant
chain will be able to selected.

When customers connect to one of these PRT, the terminal asks at what restaurant, on what day and at
what time they want to book a table. With the support of the Reservations Centre, which has
information on the status of all the restaurant chain tables, the terminal checks whether there is a
vacant table at the specified restaurant at the requested time. If there is, the Reservations Centre, with
the support of the restaurant in question, first sends a plan of the restaurant and then the vacant tables
located in their respective place on the plan to the PRT. Thus, the PRT can reconstruct the plan of the
restaurant with the tables that are free.

The tables are divided into tables for smokers, marked with S and for non-smokers marked with NS.
Additionally, each table is labelled with the number of people that this table can seat.

Users select a table and specify the number of people who are going to occupy the table, the PRT
notifies the Reservations Centre, which then checks with the restaurant that everything is still in order.
If everything is OK, the terminal asks the user to specify the name in which the table is to be reserved,
which the user enters. The terminal then notifies the Reservations Centre, which makes the
reservation, and the terminal issues a ticket specifying the day, time, table and name in which the table
has been reserved.

If the customer arrives at the restaurant 20 minutes after the time for which the table was reserved, the
system will automatically cancel the reservation.

If there are no tables free at the time specified by the user, the PRT notifies customers, also giving
them the option of asking the system for suggestions on restaurants available at the time and on the
date requested. If customers want a suggestion from the system, the Reservations Centre provides
customers, through the PRT, with a list of possible restaurants. Users can select one, in which case the
normal reservation procedure applies, except that the PRT already has some of the customers’
particulars.

If there are tables available but none is to the customer’s liking at the time for which he wants to book,
he can ask the system to specify another chain restaurant that also have vacant tables at the time in
question.

If, in either case, the user changes his mind, all he has to do is cancel the operation at any time.
When a customer arrives at one of the chain restaurants, he is asked whether or not he has booked.

If he has a reservation, all he has to do it present the ticket, the table goes from being reserved to being
occupied and they are seated in their respective place, provided they do not arrive over 20 minutes
later than the time for which they had booked the table.

IST - 2001 — 32298 Page 42 of 42
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

If, on the other hand, they arrive 20 minutes later than the reservation time, the system will have
cancelled the reservation in question and the table will have been released for another possible
customer. Therefore, they will be dealt with as if they had not booked. In this case, the reservations
manager asks the system to display the tables that are free at the time. If there are free tables, he asks
the user if he wants a smoking or non-smoking and how many people there are. The user tells him and,
if a table is available, the reservation manager books the table and they are seated. If no tables are
available, the reservations manager has to ask the system approximately how long it will take for the
next table of the characteristics of the table being requested to become available. The system will be
able to calculate this from the status of the different table at a given time. These statuses are:

«» Free: if it has not been reserved

*,

¢ Reserved: if someone has booked

*

" Occupied: if the diners are at the table

% Ordering: if the waiter is taking the order for the table
% Waiting to be served: if they are waiting to be served
¢ Served: if the diners already have the food on the table
» Waiting for the bill: if the diners have asked for the bill

o
*

*

Paying: if the diners already have the bill at their table

Additionally, if there are no tables available and the customer so wishes, he should be informed of
another or other chain restaurants that do have free tables.

ORDERS
Once the customers have been seated, the waiter gives them the menu and waits for them to order. The
waiters have devices that control part of the system, namely, the orders for each table.

This part of the system waits for the waiter to enter a table number.

When the waiter enters the table number that is going to order, the order time and table that is ordering
is automatically recorded. The customers can order both food and drinks, which are both considered as
foodstuffs. Each foodstuff has a code that the waiter will enter in the system.

If the customer wants what ingredients a given dish contains, he can ask the waiter, who will then
consult the system, keying in the code of the foodstuff followed by a question mark.

The order of each table is composed of order lines, where each order line is a foodstuff. This means
that if three dishes of pasta and two glasses of beer are ordered, the order will have five order lines.

The waiter enters the code of each foodstuff and presses accept, before being able to enter the next
foodstuff code. The system must be able to check that the ingredients required to prepare the dish
ordered are available. If not, that is, if the dish cannot be prepared because one or more ingredients are
not available, the waiter will tell the customer that it is not available and ask him to order something
else. Of course, if this situation is detected, the warehouse should be told to restock each of the
ingredients or drinks that are not available.

When the diners finish ordering, the waiter temporarily closes the order, that is, presses end and the
table status switches to “Waiting to be served” as long as they do not order anything else. The system
automatically advises the kitchen that there is a new order for a given table. At this point, each line of
the order is read again, as are the ingredients of each foodstuff and the amount of the respective
products in the kitchen is reduced accordingly. If the amount of any product falls below the threshold
established for this foodstuff, it is automatically ordered from the warehouse.

The kitchen manager monitors the incoming orders and tells the cooks. When the dishes have been
prepared, the kitchen manager sets the status of order of the table in question to cooked and sends a

IST - 2001 — 32298 Page 43 of 43
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

message to waiter control for the waiter to collect the order for the specified table. The waiter collects
the order and takes it to the respective table and specifies that the table has been served.

INGREDIENTS CONTROL
Additionally, as mentioned above, the ingredients are also controlled from the kitchen. As the exact
ingredients of each dish are known, once the trays containing the table order have been prepared, the
system is told the stock of ingredients that the dishes or foodstuffs contained have fallen and when
these stocks drop below the minimum required in the kitchen, the system automatically advises the
warehouse to restock the ingredient.

PAYMENT AND TABLE VACATION

When the diners have finished, they ask the waiter for the bill, which is when the waiter finally closes
the order for the table in question and specifies the table status as waiting for the bill. The waiter
orders the bill, which is composed of each of the order lines, to be printed. Once printed, it is given to
the customers who deposit the money either in cash or by credit card. The waiter goes to the central
cash desk and specifies that the table is paying. He then returns with the paid bill and specifies the
table status as free.

B.2 CASE 2 specifications: amusement park control

The company DIVERTIMENTO S.A. runs several amusement parks all over Spain. The company is
most concerned about:

e Ride control and maintenance: as for a company of this type, a mechanical error could cause
material and personal losses that would raise serious problems.

e Visitor safety with respect to theft, losses, etc.,: as the visitors must be as relaxed and
confident as possible as regards the park being a safe place for adults and especially children.

With the aim of guaranteeing optimum safety in the park, it wants to implement a pilot project
designed to assure the above two points.

PERMANENT RIDE CONTROL AND MAINTENANCE
The only way of detecting faults in rides at present is when the operators responsible for maintenance
and control perform these activities.

The company intends to computerise its amusement parks and is going to begin by starting up a pilot
project, aimed at equipping one of the amusement parks in the chain with an automatic fault detection
system for rides.

The system is initially to be designed to manage the big wheel and the roller coaster, but it is planned
to eventually use the control system for these and other park rides.

The big wheel has a series of vehicles, each of which is equipped with a detector thanks to which it is
possible to establish at any time whether the vehicle is securely enough anchored to the metallic
structure of the big wheel. Each vehicle is equipped with the control software and hardware required
to be able to detect the state of the anchorage, and the checks should to be run every three seconds.

If the anchorage were found to be deficient, the vehicle concerned would report this to the Fault
Reception Centre (FRCS) and also to the ride of which this vehicle is part. Accordingly, when the ride
next stops, there will be a record that one of its vehicles has requested maintenance.

The roller coaster is likewise equipped with detector of anchorage to the following car (if there is one).
Each car detects whether it is sufficiently anchored to the following car. If anchorage is deficient, it
advises the FRCS and the ride, in this case, the roller coaster.

IST - 2001 — 32298 Page 44 of 44
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

When the FRCS receives an alert, which specifies the possibly faulty car or vehicle and the ride in
question, it immediately locates an available maintenance operator. If none are free, it reports to the
component in question that its request cannot be satisfied, and the component will emit the possible
fault signal until its request is satisfied.

As each maintenance operator receives a bonus depending on the number of faults he attends to per
month. Each operator one is monthly assigned a device which:

1. Manages the faults he attends to monthly

2. And, additionally, reports the possible faults to be attended to, irrespective of which area of the
amusement park he is in, that is, he can always be located.

When the FRCS receives a request for fault control and finds a free operator, it sends a message to the
operator specifying the street of the park on which the ride is located and the number of the vehicle or
car with a possible fault.

The status of the operator’s device switches to occupied, indicating that the operator is attending to a
possible fault. When the operator has finished repairing the fault, he specifies that he is now free for
the next fault request it receives. The device then reports to the FRCS and the repaired component that
everything has been correctly solved. This component will advise its ride that the requested
maintenance operation has been completed so it can be started up again.

CONTROL OF PERSONS ON RIDES

Additionally, the system will have to be capable of counting the number of people who get on and off
a ride for two purposes. It has to control, first, that no more people than the ride is capable of
accommodating get on and, second, that everyone gets off the ride when it has stopped.

The ride stop and start controller receives a message specifying that the ride is full for it to start up the
ride. This message can come from the entrance turnstile, which detects when the maximum ride
occupancy has been reached, or from the operator supervising the ride, if, although it is not full,
nobody else is waiting to get on and he thinks that enough time has passed for the ride to start up.

When the ride stop and start device detects that the ride has stopped, it sends a message to the exit
turnstile for it to prepare to let the people out. What the exit turnstile does before letting the people off
the ride is check whether the ride has a missing person search alert. If it does, it will order the speaker
there is at each ride to broadcast a message naming the person in question and telling this person to
stay the ride entrance until someone comes to pick him up.

Having run the check, the exit turnstile starts to let the people out. This exit turnstile knows how many
people there are on the ride thanks to the entrance turnstile, and accordingly knows how many people
have to get off the ride.

When the exit turnstile determines that the number of people who have got off the ride is equal to the
number of people who got on, it sends a message to the entrance turnstile to reset the counter of people
on the ride to zero, unblock and display the green indicator for people to get on the ride. If the exit
turnstile has not unblocked the entrance turnstile by 5 minutes after the ride has stopped, it means that
someone has not got off and the operator will have to go in to look of him or her.

When the entrance turnstile receives the unblock message from the exit turnstile, it first consults the
ride to see if it has any unrepaired fault. This will be reflected in the ride when one or more vehicles or
cars request repair. The ride has an unrepaired faults counter and the entrance turnstile will only go
green for users to get on if this counter is set at 0. Otherwise, it remain amber, indicating that it is
waiting for repair.

PARK SURVEILLANCE MANAGEMENT
The park will be equipped with two SOS terminals by means of which the parents can enter their
children. These terminals ask parents the name, ID card number, age, hair colour and stature of the

IST - 2001 — 32298 Page 45 of 45
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

person to be registered. If parents discover at any time that someone has gone missing, they should go
to the nearest SOS terminal and enter the member of the family as missing:

e If the person in question has already been entered as a park visitor, all they will have to do is
to enter the ID card no. of the person who has gone missing.

e If the person has not been registered as a park visitor, then they will have to enter the above-
mentioned identification particulars and then report the disappearance at the same terminal.

Once the system has all the available data, it sends the data on the missing person to all the
surveillance cameras located throughout the park and the rides. These cameras are equipped with an
algorithm based on computer vision techniques so that if they detect an individual of the specified
characteristics within their field of view, they automatically report to the surveillance centre, which
will then send the operators responsible for collecting the person in question to the point indicated by
the camera. Additionally, as the cameras are associated with a speaker, the camera that detected the
person will be capable of asking its loudspeaker to broadcast the name of the person in question,
telling him that he is being looked for and asking him not to move from where he is.

If the individual in question is identified when getting on a ride, this ride will be alerted by its

respective camera and when the ride stops, a message will be broadcast by the loudspeaker associated
with the cameras, as described in the “Control of Persons on Rides” section.

IST - 2001 — 32298 Page 46 of 46
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

IST - 2001 — 32298 Page 47 of 47
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX C: PHASE 1 FIRST ITERATION: THE RESTAURANT MANAGEMENT
CASE

C.1 Reusing Information First Iteration

STEP 1. Design solution without Reusing Information

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Restaur ant

Book Request
fom CLAS SES)

(f om CLASSES) (from CLASSES)

Name String -

&, /Address : String B oo

= ClientName(client)() BDae
=

G etName(Name)() Check(date, hour)() Status
AvallableT ables date, hour, Kind)() G et(times-in-week)()
Init reqe st (
Input-CodCq)
0 K(

init-request()

Init-req st (()

Init-req west (()

Init-req west (()

Int CodCors umption c ad &))
RequestConsumtions()()
Bill()()

New-price(price)()

G e Price(pric ¢)

Table
(from CLASSES)

S3iStatus © String

= .Number-persol

Place : XY

n - Integer

Smoker/Non Smoker : Boolean

=4.Code : Integer

ChangeState()
ChangeState()
iC|)

()

ChangeState()(

Request-line
(from CLASSES)

reateLine(code)()
Read(consumption)()

onsumtionPrice(price)()
LineName(name)()

G etPrice(price)()

)
LookForAvailable(kind, data, hour)()

Consum ption

(fom CLAS SES) Alert-Manager
Cod-consumption 9
Description (from CLASSES)

Check-Ing ediert ()
0 K(

ConsumtionName(name)()
LastCodeConsumption()()

Ingredie nt
Books manager / (from CLASSES)
ame
(from CLASSES) inimun-Stock
eal-Stock

G etRestaurants(list)()
G et(restaurant, date, hour, kind)() Recipe

(from CLASSES)

ERAmount
&,Name

.Check()()

Figure C.1 Class diagram for the first application without Reusing Information mechanism

STEP 2. Design solution with Reusing Information

Requirement: the waiter inputs the foodstuff code and, as the next consumption ordered is the same,
the waiter uses the “duplicate last foodstuff” function.

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 48 of 48

Software architactars that supports usabiity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Re staurant
(from CLASSES)

Name : String
ddress : String

etName(Name)()
vailableTables(date, hour, kind)()

Book
(from CLASSES)

lientName(client)()
heck(date, hour)()
et(tim es-in-week)()

Table
(from CLASSES)
SStatus : String
Number-person : Integer
.Smoker/Non Smoker : Boolean
&hPlace : XY
EHCode : Integer

ChangeState()

ChangeState()()

ChangeState()()

LookF orAvailable(kind, data, hour)()

Request
(from CLASSES)

nit-request()
Input-CodC onsum ption()

Init-request()()
InitC odConsum ption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()
GetPrice(price) ()

Consumption
(from CLASSES)
C od-consum ption

ConsumtionName(name)()
LastCodeConsum ption()()

Recipe

(from CLASSES)

Books manager
(from CLASSES)

etRestaurants(list)()
et(restaurant, date, hour, kind)()

s!

2Real-Stock

Interface
(from CLASSES)

Init-request()
Init-request()()

Undo()()

Init-request()()
Input-CodConsum ption(code) ()
Display(list of consumptions)()
DuplicateConsum ption()()
Help()()

Get-help(help) ()
Get-help(tour) ()

NewBook()()

iShowList(list)()
Get(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem ()()
Enable(R equestC ooked)()
Pressed(F1)()

OK()()

SpecificHelp(tppic)()

Show SpecificH elp(help) ()
Cancel(request)()

reuser
(fom CLASSES)

D uplic & eCon sumpti on()()
e Code(code) ()

Request-line
(from CLASSES)

CreatLing(code) ()
Read (consum ption)()
Consumi an Pri ce (price) ()
LineName (name) ()
GetPri e (jr ice) ()

data-to-be-reused

(from CLASSES)

Alert-Manager

(from CLASSES)

heck-Ingredient()
K()

Ingredient
(from CLASSES)

KFor(ingredient)()

Figure C.2 Class diagram for the first application with Reusing Information mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 49 of 49

STATUS D.3.4. v.1.0 Techniques, patterns and styles

:Table

% ‘ - Interface

‘ ireuser

‘ :Request

‘ :Request-line

‘ : Consumption

‘ : Alert-Manager ‘ ‘ : Ingredient

: Waiter

Check-Stock(code) Check-Ingredient()

Dupf,‘uateConsum ption()

|
|
|
|
|
!
|

Du

| | Initrequest() /UME ‘ ‘ ‘

T T
InputJCodConsumptinLn(code) ‘ ‘ ‘ ‘

|

|

|

|

|

cateConsumption()

OK()

‘ OK()

I

Creat%Line(code)

|
—
|
|
|
|
|

LastCod?Consumption()

Ge(bode(code)

:
|

_Ingredient
|
|

L Check()

OK() j
|
|
|
|
|
|
|
|

Figure C.3 Sequence diagram for the first application with Reusing Information mechanism

STEP 3. Abstraction of the design solution for Reusing Information

= Solution:

o Diagram:

Interface

Interface

o Participants:

Interface: collects the data to be processed by the reuser pattern and finally
displays the operation results (if the user needs to see the result). Interface sends
the data to be processed (1) and the function requested by the interface (2), i.e.
copy, paste, move, etc., to Reuser. Also, once the reuser pattern has been applied
the results of the requested function will be displayed on the interface (5), unless
the requested function was “copy”.

Reuser: is the module that gathers the information provided by the interface and
manipulates these data according to the requested function (copy, paste, move,
etc.). Reuser receives the data to be manipulated as well as the function to be
executed (1) (2). If Reuser does not store the data to be manipulated internally, it
has to send these data to the system (3), as happens, for instance, with the Copy
function. Also if Reuser does not store the data internally, it has to ask for these

IST - 2001 — 32298

Page 50 of 50

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

data from the part of the system where they are stored (4) as happens with the
paste or move functions.

= System: this component is optional and is only necessary when the Reuser module
does not store the data internally.

C.2 Standard Help First Iteration

STEP 1. Design solution without Standard Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Request
(from CLASSES)

Restaurant
(fran CLASSES)

Name : String Hour
Ad dress : String D ate
Staus

| G etName(Name)()
v dlable Tables (date, hour, kind)()

i nit-request()

o
BOK()
Bint-re que st()

Book

(from CLASSES)
i ClientName(client)()
\ 2Check(dale, hour)()

G et(times-in-week)()

Table

(from CLASSES)

Status : String
Number-person : Integer
'Smoker/Non Smoker : Boolean

4
4
i rit-requ est()()
& rit-requ est()()

@ rit-requ est()()

43 ritCodConsu mption (code)()
SR g tes tCans um ton 5()()
258 10)()

43N ew-price (i 9)()

G e tPrice (ric ()

Request-line
(from CLA SSES)

& CreateLine(code)()
<5Read(consumption)()

45 ConsumtionPrice(price)()
<3 LineName(name)()

43G etPrice(price)()

Place : XY
Code : Integer
@ChangeState() -
£5ChangeState() Consum ption
L& 00 (from CLASSES)
&5 ChangesState()() Cod-consumption
GyLoo KForAv alab b (kind, data, hour)() Description
Price

@ Check-Stock()

¢
ConsumtionName(name)()
LastCodeConsumption()()

Books manager
(from CLASSES)

G etRestaurants(list)()
Get(restaurant, date, hour, kind)()

Figure C.4 Class diagram for the first application without Standard Help mechanism

STEP 2. Design solution with Standard Help

Requirement: the user can push the Help button

IST — 2001 — 32298 Page 51 of 51

© STATUS Consortium 2002. CONFIDENTIAL

== =0
pmm——"—" STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface
Standard-helper (from CLASSES)

(from CLASSES)

Init-request()
Init-request()()

Undo()()
Book .St-HeIp()() Init-request()()
Restaurant (from CLASSES) Input-CodConsum ption(code)()

Display(list of consumptions)()
DuplicateConsumption()()

(from CLASSES)

- ClientName(client)()
fame : Sting Check(date, hour)() HeR00 o
ress - String G et(times-in-week)() Get—helg((ou[;)()
G etName(Name)() NewBook()()
vailableT ables (date, hour, kind)() iShowList (list)()
G et(restaurant, data, hour kind)()
ShowList (list)()
ConnectingSystem()()
E nable(RequestCooked)()
Request gr;ssed(Fﬂ()
(from CLASSES) SpecificHelp(tppic)()
ShowS pecificHelp(help)()
Cancel(request)()
I nit-requesti
Table AN VoS "
(from CLASSE S) OK()
init-request()
tatus : String Init-request()()
Number-person : Integer Init-request()()
Smoker/Non Smoker : Boolean Init-request()()
Place : XY InitCodConsumption(code)()
Code : Integer RequestConsumtions()()
| | &Bil00
IChangeState() New-price(price)()
ChangeState() G etPrice(price)()
ChangeState()()
ChangeState()()
L ookF orAvailable(kind, data, hour)()
Request-line
(from CLASSES)
Createlire (cad€) ()
Read(cors umptd n)()
Cons tmtion Price (price)()
Lire Name (nam € ()
Ge tPi ce (pre ¢)()
B ooks manager Consum ption

(from CLASSES) (from CLASSES)

G etRe staurants(Ist)() Cod-consumption
Get(re staurant, date, hour, khd)()

Description
Price

ICheck-Stock()

Ky
ConsumtionName(name)()
LastCodeConsumption()()

Figure C.5 Class diagram for the first application with Standard Help mechanism

. Interface . Standard-helper
: User
| HelkO | St-Help() 1
Get-help(help)
|
T \ \

Figure C.6 Sequence diagram for the first application with Standard Help mechanism

IST - 2001 — 32298 Page 52 of 52
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Standard Help

= Solution:

o Diagram:

1

2

o Participants:

Interface: gathers the information from the help application and sends this
information to the module which manages the help (1). Also it will show the help
information sent by the Standard-helper (2)

Standard-helper: will show a general help (that is, not specialised) for the
application. This help is usually identified as an html, doc, etc., document. This
component receives the application from the interface (1) and sends the respective
data to the interface (2). If the help is not stored in this component, the help will
be provided for another component using the data flow from System (3).

System: this component is optional and represents the part of the system where
the help is stored if the Standard-helper does not store the help internally. It will
be the system that provides the Standard-helper with the help (3).

C.3 Tour First Iteration

STEP 1. Design solution without Tour

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST - 2001 — 32298

Page 53 of 53

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request
(from CLASSES)
Book
Restaurant (om CLASSES))
(from CLASSES) e cmption)
Name : String C lentName(client)() OR()
ddress : String C reck(date, hour)() init-request()
G et(tm es-inwes k() Init- t
G etName(Name)() I::l[:gﬂ:‘;%
vailableT ables(date, hour, kind)() Init-request()()
I nitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()
Table
(fran CLASSES)
By Status : String
2. Number-person : Integer
=4 Smoker/Non Smoker : Boolean i
& Place : XY Request-line
Code : Integer (fran CLASSES)
gzangeg:ale() CreateLine(code)()
Ch:ggzstz:zg() Read(consumption)()
ChangeState()() C_onsumtionPrice(price)()
LookF orAvailable(kind, data, hour)() 'é';fgﬁ’c“;(’g':i";ﬁ;()
Books manager Consumption

(from CLASSES)
Cod-consumption
Description

Price

(from CLASSES)

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

iCheck-Stock()
O K()

,ConsumtionName(name)()
LastCodeConsumption()()

Figure C.7 Class diagram for the first application without Tour mechanism

STEP 2. Design solution with Tour

Requirement: the user can push the Guided Help button

IST - 2001 — 32298

Page 54 of 54
© STATUS Consortium 2002. CONFIDENTIAL

Software architecturs that supports

pte

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)

Name : String
ddress : String

Book

(from CLASSES)

G etName(Name|
vailableT ables (date, hour, kind)()

ClientName(client)()
Check (date, hour)()
G et (times-in-week)()

ERStatus :

Table
(from CLASSES)

String
Number-person : | t eger
Smoker/Non Smoker : Boolean

Consumption
(from CLASSES)

od-consumption
Description
Price

Check-Stock()
KO

ConsumtionName(name)()
L astCodeConsumption()()

Request
(from CLASSES)

Init-request()

Lnput-CodC. Y

Place : XY
& ; OK ()
=), Code : | it eger nauest()
Init-request()()
322232 :2:28 Init-request()()
IChargeSt a e() (I | Init-request()()
IChargeStd e() InitCodConsum ption(code)()
LookF orAvailable(kind, data, hour)() gﬁ(ﬁ!;ﬁsmonsumtlonso()
New-price(price)()
G etPrice(price)()
Books manager
(from CLASSES)
G etRestaurants list)()
G et(restaurant, date, hour, kind)()
Requestine

(fom CLAS SES)

ICreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()

G etPrice(price)()

Guided-helper

(from CLASSES)

[5G ided-help()()

Interface
(from CLASSES)

Init-request()
Init-request()()
Undo()()
I nit-request()()
I nput-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewB ook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
onnectingSystem ()()
E nable(RequestCooked)()
Pressed(F 1)()
KO()

peciticHelp(tppic)()
howSpecificHelp(help)()
ancel(request)()

Figure C.8 Class diagram for the first application with Tour mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 55 of 55

STATUS D.3.4. v.1.0 Techniques, patterns and styles

. Interface : Guided-helper

: User

| Help() | , |
Guided-help()

Get-help(tour)

m
|

Figure C.9 Sequence diagram for the first application with Tour mechanism

STEP 3. Abstraction of the design solution for Tour

= Solution:

o Diagram:

1
Guided-helper |4 .. System
3
2 i

o Participants:

Interface: collects the guided help request and sends it to the Guided-helper (1).
Additionally, it will display the help information it receives from the Guided-
helper (2).

Guided-helper: displays a guided help for the application for which the help has
been described (2). This help can range from a pre-recorded tour of the
application, to an interactive tour, which involves the development of a separate
application. If the help is not stored internally in this component, this help will be
provided by any other part of the system through the information flow from
system (3).

System: this is an optional component and represents part of the system in which
the help will be stored if the Guided-helper does not store the information
internally. System will, therefore, be responsible for providing the Guided-helper
with the help through (3).

IST - 2001 — 32298

Page 56 of 56

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.4 Different Languages First Iteration

STEP 1. Design solution without Different Languages

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Restaurant Request
(from CLASSES) (fom CLASSES) Interface
Name :String Book Hour
%Address Sting (fom CLASSES) gnm (rom CLASSES)
Status
ini teque s{)
xe«N‘a:‘weT(N:‘me)d()‘ N cind @C lientN ame (client)() Pnit-request()()
vailableTables (date,hour, kind)() @C heck(date, hour)() Binitrequest() 8undo)0
= | Gel(times-in-week)() §input-CodConsumpton() Binit-request()()

BiroutC odConsumpon(code))
¥Display (listofcon sumptions X)
¥D uplicate Consumption()()
BHelp()()

BGethelp(help)()

BGe thelp(tou r)()

BN ewBook ()()

Table §R equestConsumtons ()()

g
§
SoK()
initrequest()
initrequesi()() I
@nitrequest()()
Ginitrequest(()
&initCodConsumption(code)()
{
§
§
%

S B BEEOBEDEEDEEEEEEHE

(from CLASSES) Reil00 howLis (list)()

S TSving B ov-pricaterico)y Boerosmunont daa, nour kind)0)

INumber-person :Integer L P BishowLis (lis ()

smoker/Non Smoker :Boolean gConnectingSystem())

Place :XY BEnable(Reques(Cooked)()

Code :Integer BPressed(F1)()

BoK)0

Restaurants-manager HChangeState() ispecificHelp(ippic)()

ChangeState() Bishow SpecificHelp(help)()

(rom OLASSES) :Cnanges'zte()() Bcanc el(request)()
&BChangeState()()

MPceRestaurants (list)()
LAvaiableTables (restaurant date, hour,kind)()

SpLookForAvailable(kind,data,hour)()

Request-line
(fom CLASSES)

FCreateLine(code)()

PR ead(consumption)()
&C onsumtionPrice(price)()
PLineName(name)()
QGetPrice(price)()

Consumption
(from CLASSES)

Cod-consumption
Description
Price

Books manager / g;(&)ckrstcck()

(from CLASSES) consumtionName(name)()
&pLastCodeConsumption()()

@G eRestaurants (list)()
fyCet(restaurant date,hour kind)()

Figure C.10 Class diagram for the first application without Different Languages mechanism

STEP 2. Design solution with Different Languages

Requirement: When the user is booking a table from the terminal, the system should be able to
understand the date, time and table time irrespective of the language used by the user. The interaction
diagram does not show the full booking for reasons of visibility on the model.

IST — 2001 — 32298 Page 57 of 57
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)
Name :String
ddress :String

GetName(Name)()
wailableTables (date,hour, kind)()

able
(from CLASSES)

Status :String

Number-person :integer
Smoker/Non Smoker :Boolean
Place :XY

Code :Integer

ChangesState ()
ChangeState()

ChangeState()()

ChangeState()()
LookForAvailable (kind, data,hour)()

Restaurants-manager

(from CLASSES)

GeRestaurants (list)()
vailableTables (restaurant, date, hour, kind)()

Consumption
(fom CLASSES)

Cod-consumption
Description
Price

Books manager
(from CLASSES)

Book
(fom CLASSES)

ClientName(client)()
Check (date,hour)()
Get(times-in-week)()

Request
(fom CLASSES)
Hour
Date
Status

Init-request()
Input-CodConsumpton()

init-request()

hit+ equest(()

hit-r equest(()

hitr equest(()
IntCodConsumpton(code))
Reque sConsumtons ()
Bill()()

New-price(price)()
GetPrice(price)()

Request-line
(from CLASSES)

reateLine(code)()

Check-Stock ()
OK()

ConsumtionName(name)()
LastCodeConsumption()()

GetRestaurants (list)()
Get(restaurant,date, hour,kind)()

Translator
(from CLASSES)

.ChooseLangModeler(daw‘hour‘kmd)()

Language-modeler

(from CLASSES)

-TranslateDaQa(daha,hour,klnd}(J

Read(consumption)()
onsumtionPrice(price)()
LineName(name)()
etPrice(price)()

Interface
(from CLASSES)

Init-reques ()
i t-request()()

Undo ()()

i t-request()()
Input-CodConsumption(code)()
Display (listofconsumptions) ()
DuplicateConsumption()()
Help()()

Gethelp(help)()

Get-h elp(bu r)()

Ne wBook ()()

Show Lis t(list)()
Get(restaurant data, hour kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed F1)()

OK()()

SpecificHelp(tppic)()

show SpecificHelp(help)()
Cancel (requesty)

Figure C.11 Class diagram for the first application with Different Languages mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 58 of 58

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Interface ‘ : Books ‘ ‘ Translator ‘ s ‘ ‘ - ‘ ‘ . Restaurant ‘ _ Table ‘ ‘ _: Book ‘
: User ‘manager L -modeler Res tau ran ts-manager

NewBook() | ‘

G etRestaurantslist) ‘

GetRestaurants(list) GotName(Name)
etName(Name

-

S$howList(list)

o

Gel(res(auran’(, data, hour,kind) ‘

Get(festaurant, date, hour‘ kind)

ChooseLangModeler(restaurant, dlee, hour, kind) ‘

TranslateData(restaurant, date, hoyr, kind)

Av gidb b Tables(e staumnt, date, hlu, kind)

|
|
|
|
|
|
|
|

AygilableT ables(date, hour, kind)

Lookf i da«a1 hour)

Lcr‘e ck(dat e, tour)

howList(list)

.

Figure C.12 Sequence diagram for the first application with Different Languages mechanism

STEP 3. Abstraction of the design solution for Different Languages

= Solution:

o Diagram:

IST — 2001 — 32298 Page 59 of 59
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface

Language
recognitor

Language
Translator n

Language
Translator 1 | =

P g

o Participants:

= Interface: collects the operation to be performed and any associated data, which it
sends to the Language-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Language-translator in the language that originated the request

(3).

= Language-recogniser is a recogniser, not a translator, which determines the
language in which a the respective functionality is requested and sends the data
and the functionality request to the respective Language-translator (3) (4).

= Language-translator (i): there may be one for each language that the system is
capable of recognising. If there is one for each language, which would be
advisable for reasons of system modularity, each Language-translator translates
the functionality and any data it receives from the Language-recogniser (3) (4) to
a common language understood by the system. Once they have been translated to
the common language, it sends them to the system (5) (6). Once the functionality
has been processed in the system, it again receives the response data for the
executed functionality (7), and again translates them from the common language
to the specific language in which the user requested the functionality. After
translating, it sends the data to the user (8) through the interface.

= System: it performs the functionality requested by the Language-translator (i), in
the common language (5) (6), and returns the respective response to the language-
translator in the common language (7).

C.5 Different Access Methods First Iteration

STEP 1. Design solution without Different Access Methods

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST — 2001 — 32298 Page 60 of 60
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Request
Restaurant Book (from CLASSES)
(from CLASSES) (rom CLASSES 2
Name : String
ddress : String QentName(dien §()
Che ok (dat @ ha Init reque s
GetN) Ge‘(«(/ "5;0 apot G oo)
vailableT ables (date, hour, kind)() 50
init-request()
Init request (()
Init request (()
Init request ()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
Table Ge P fice(pric &)()
(from CLASSES) LastRequestConsumtions()()
s : Sting
Numbe rpe s an : Inte ger
S moke {Non Smoker : Boolean
Phce: XY
ok : Integer
::gg:sg Request-line
(from CLASSES)
hengeState (()
L co kFo A vail able(kind, data, houn) reateLine(code
LastRequestConsumptions()() Read(wnsﬂm p“f,(njj()
onsumtionPrice(price)()
LineName(name)()
G etPrice(price)()
Alert-Manager
(from CLASSES)
Consumption
(from CLASSES) lgrﬁc)k'l"gr”'e"“)
od-cors umption
Books manager [P)[eizcenpﬁon
from CLAS SES)
hec k Stock (
GetRes taur ants (ist)() KO—
Get(restaur ant, date, our, kind)) L:g‘sgr(gocry;n;(&?or’r]\(e))ot)
%\ Ingredie nt

(from CLASSES)
/ EfName

&M inimun-Stock

{5 Real-Stock

Recipe iCheck()()

(from CLASSES)

ERAmount
& Name

Figure C.13 Class diagram for the first application without Different Access Methods mechanism

STEP 2. Design solution with Different Access Methods

Requirement: The waiter can ask the waiter device what foodstuffs a table has ordered by simply
saying “I want to know what foodstuffs table x has ordered”. Additionally, the waiter’s device is
capable of verbally reproducing all the foodstuffs.

IST - 2001 — 32298 Page 61 of 61
© STATUS Consortium 2002. CONFIDENTIAL

/éa:us

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Request
(from CLASSES)
H
Restaurant Book Date
(rom GLASSES) (rom CLASSES) Status
Bvaees St SClentName(clent)) S,)
%yCheck(date, hour)() S0K()
| PG etName(Name)() G et(times-in-week)() Syinit-request()
§AvaiableT ables(date, hour, kind)() Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()

#RequestConsumtions()()
Bill)()

New-price(price)()

G etPrice(price)()
LastRequestConsumtions()()

3 /

Table
(from CLASSES)

Status : String K Request-line

Number-person : Integer (from C LASSES)

Smoker/Non Smoker : Boolean

Place : XY BCreateLine(code)()

Code : Integer $Read(consumption)()
BConsumtionPrice(price)()

gp:ﬂgzg:::zg; SLineName(name)()

1< BG etPrice(price))

)0
BChangeState()()
LookF orAvailable(kind, data, hour)()
LastRequestConsumptions()()

Alert-Manager
" fomass ses)
Consumption
(fom CLAS SES) 4BCheck-Ingredient()
Cod-consumption BOK()
Books manager Description
Price
(from CLASSES)
#WCheck-Stock()
Function-dispatcher G etRestaurants(list)() SHOKY——
4G et(restaurant, date, hour, kind)() SgConsumtionName(name)()
(rom CLASSES) 4¥LastCodeConsumption()()
#G etConsumptions (T ablex)()
LpListConsumptions ()()
/ Ingredient
Dev ice-recognitor Device-transf ormer fom CLASSES)
(from CLASSES) N Name
(from CLASSES) Recipe ngmmun-Slock
&V oice(Consumtions in table x)() T ranslateVoice(Consumptions in table x)() fomCASSES) Real-Stock
M odeleVoice(listconsumptions)() %Amum WCheok())
Name

W aiter-device

(from CLASSES)

Corsumptdn n Tabe-x()
S endO utVoice(listconsumptions)()

Figure C.14 Class diagram for the first application with Different Access Methods mechanism

58 5 & & _ Table : Request : Request-line :C
W aiter-device Devi nitor Device-transformer Eunction-dispatcher
e \ \ \ \ \ \ \ \
Clrfsum ulonr\nTauexF) ‘ ‘ ‘ ‘ ‘ ‘ ‘
o|ce (Consumfans in able x)
T omumptions e | | | | |

GetConsum ptions(Tablex) ‘ ‘ ‘ ‘ ‘

L stRe ques € onsum ptons()

dstReque stConsum tions|

)

. LineName(name)

ListConsum ptions(list) ‘ ‘

ModeleVoice(listconsum ptions)
SendOutVoic(! ptions) T ‘ ‘ ‘

Figure C.15 Sequence diagram for the first application with Different Access Methods mechanism

IST — 2001 — 32298 Page 62 of 62
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Different Access Methods

= Solution:

o Diagram:

Device
recognitor

Device
Transformer n

Device
Transformer1 | ==

P g

o Participants:

Interface: collects the operation to be performed and any associated data, which it
sends to the Device-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Device-transformer in the format in which the user placed the
request (8).

Device-recogniser: is a signal format recogniser, which sends the signal to one
device or another for interpretation, depending on the type of signal it receives.
Additionally, it sends the data and the functionality request to the respective
device-transformer (5) (6).

Device-transformer: (i) there may be one for each device that the system is able to
recognise. If there is one for each device, which would be advisable for reasons of
system modularity, each Device-transformer is responsible for converting both the
functionality and any data it receives from the Device-recogniser (3) (4) to a
general functionality understood by the system. Once the signal has been
converted to a functionality and/or data that can be understood by the system, it is
all sent to the system for it to perform the respective operation (5) (6).
Additionally, once the functionality has been processed in the system, it again
receives the response data for the executed functionality (7), which it again
translates to the specific signal format in which the user requested the
functionality. After translation, it sends the data to the user (8) through the
interface.

System: it performs the functionality requested by the Device-transformer (i) in
the common functionality format (5) (6) and returns the response to the respective
device-transformer in the aforesaid common format (7).

IST - 2001 — 32298

Page 63 of 63

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
C.6 Alerts First Iteration
STEP 1. Design solution without Alerts
Requirement: the waiter starts a table order.
Request
(from CLASSES)
Restaurant Book g::lef
(from CLASSES) (from CLA SSE9 Status
Name : String
B - B e Requestins
e Name)() G et(times-in-week)() HOK() (from CLASSES)
AvaiableT ables(date, hour, kind)() linit-request()
S| nit-request()() @ CreateLine(code)()
: -:m:»reques&)i) SpRead(consumption)()
reques i
ooy (| oo
onsumtions :
i 00 G etPrice(price)()
<ENew-price(price)()
<G etPrice(price)()

Table
(from CLASSES)

Status : String

Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY

Code : Integer

ChangeState()

ChangeState()

ChangeState()()

ChangeState()()

LookF orAvailable(kind, data, hour)()

Consumption
(from CLASSES)
Codcamsumpton
Description
Piice
Books manager 2check-stock()
15 O K()

(from CLASSES) [
ConsumtionName(name)()
Las C ode Co rsumption)

#HG etRestaurants(list)()
%3G et(restaurant, date, hour, kind)()

Figure C.16 Class diagram for the first application without Alerts mechanism

: Request : Table : Request-line

+: Waiter Init-request() [Change State() [

Input-CodConsumption(co—Ee)

Createlrine(code)

|

Figure C.17 Sequence diagram for the first application without Alerts mechanism

IST — 2001 — 32298 Page 64 of 64
© STATUS Consortium 2002. CONFIDENTIAL

—&status

p— STATUS D.3.4.v.1.0 Techniques, patterns and styles

STEP 2. Design solution with Alerts

Requirement: the foodstuff code cannot be entered until a check has been run of whether there is a
stock of all the ingredients for the selected foodstuff.

Request
(from CLASSES)
Restaurant Book
(from CLASSES) (from CLASSES)
Name : String
ddress : String C ie ntNam e(client)() Init-request() R i
C he ck(date, hour)() Input-CodConsumption() equest-iine
GetName(Name)() G et(time s-in-wee k)() OK() (from CLASSES)
v ailableTables(date, hour, kind)() init-request()
Init-request()() o | CreateLine(code)()
Init-request()() Read(cons umption)()
Init-request()() iC onsumtionPrice(p ric €)()
InitCodConsumption(code)() LineName(name)()
Table RequestConsumtions()() GetPrice(price)()
(from CLASSES) Bill()()
&status : String New-price(price)()
(E4N um ber-pers on : Integer GetPrice(price)()
[z#3Smoker/Non Smoker : Boolean

larPlace @ XY

ECode : Integer Alert:-Manager

(from CLASSESS)

Consumption

iChangeState()

iChangeState()

iChangeState ()()

Chang eState ()()

L ook ForAv ailable(kind, data, hour)()

{5#3C od-consumption
(5D escription
(=P rice

(from CLASSES) Chec k-Ingredient()
OK()

iCheck-Stock()

OK()
iConsumtionName(name)() q
LastCodeConsumption()() Ingredlent
(from CLASSES)
Books manager /S ZHName
(from CLASSES) Ve (s#;Minim un-Stock
Vv [z#Real-Stock
IG etRes tau rants (iist)()
G et(restaurant, date, hour, kind)() i Check()()
Recme IAskFor(ingredient)()
(from CLASSES)
E8Amount
E=Name

Figure C.18 Class diagram for the first application with Alerts mechanism

% ‘ . Request ‘ ‘ . Table ‘ ‘ :Request-line ‘ ‘ : Consumption ‘ : Alert-Manager ‘ ‘ “Ingredient
: Waiter .
itrequest() |changesState()‘ ‘ ‘ ‘
Inp_nCchonsumption(c‘ode) Check-Stock(coc?e) | Check-Ingredient() ‘
I Check()

OK()

U\ Creale%ine(code)

|
|
|

|
|
|
OK()
oK() [
|
|
|
|
| | | |

:

Figure C.19 Sequence diagram for the first application with Alerts mechanism

STEP 3. Abstraction of the design solution for Alerts

= Solution:

IST - 2001 — 32298 Page 65 of 65
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

o Diagram:

(System

l I
E Alert-manager J

o2 \
| &

Interface } System }

o Participants:

System: represents the element of the system to be checked in order to
identify anything of importance for this element. It is responsible for
notifying the Alert-manager to check the state of the element to be
checked within the system. (1). Depending on what is to be checked, it
also sends the request to the part of the system responsible for running the
check (3) and, when the check has been run, sends the respective results
(if required) to the interface (2).

Alert-manager: represents a component of the system that is capable of
receiving a checking order and forwarding this order to the part of the
system that is capable of processing it. It receives the checking order from
one part of the system (1) and forwards this request to the part of the
system concerned (3). Finally, if applicable, it displays any alert
information that is of interest to the user (2) to check that one or more
system components are working correctly.

IST - 2001 — 32298

Page 66 of 66

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.7 Status Indication First Iteration

STEP 1. Design solution without Status Indication

Re quest
Restaurant (from CLASSES)
(from CLASSES) Book
(om CLASS ES) Hour
Name :String Date
%Address String Status
FClientName (client)() H
@EGetName(Name)() S§Check(date, hour)() @init-request()
AvailableTables (date, hour, kind)() YGet(tmes-in-week)() ginput-CodConsumption()
$OK()
init-request()
&hnitrequest()()
init-request()()
)

Whnit-request()()

4ginitCodConsumption(code)()

\ A¥RequestConsumions ()()

\ i)

\ SN ew-price(price)()
SyGetPrice(price)()

Table
(from CLASSES)

Status :String
Number-person :Integer
Smoker/Non Smoker :Boolean

Place :XY

Code :Integer Request-line

(from CLASSES)

#PChangestate()

SChangeState()

gChangeState()()

uChangeState()()

&L ookForAvailable(kind, data, hour)()

HCreateLine(code)()

4R ead(consumption)()
&ConsumtonPrice(price)()
QpLineName(name)()
LGetPrice(price)()

Consumption
(from CLASSES)

Cod-consumption
Description
Price

Che ck-Sto ck() _
zom Alert-Manager

&5C on sum o nNam e(name)) (fom QL AS SES)
SgLastCad eCon sumption()()

BECheck-Ingredient()
LBOK()

Books manager
(from CLASSES)

WGeRestaurants (list)() e
pGet(restaurant date, hour, kind)() / R
Ingredient
v (fom CLASSES)
i N ame
Recipe M i in w-Stock
(fom CLASSES) | iR eal-Stock
Amo unt
BC hec k(X)
,%Na'“e @Ask For(in gedien 1)

Figure C.20 Class diagram for the first application without Status Indication mechanism

J‘I’M\ml-request() ‘ ChangeState() ‘ ‘ ‘ ‘ ‘

g | | |

ut-CadCo nsumpt b n(cod‘e) Check-Stock(code)

| Check-Ingredient() |

I Check()

\ oK()
| OK()

(1 ‘

C reatel‘,ine(code)
T

\
\
| | oK
| [0 J
\
\

T |

|

‘ |
|

|

Figure C.21 Sequence diagram for the first application without Status Indication mechanism

IST — 2001 — 32298 Page 67 of 67
© STATUS Consortium 2002. CONFIDENTIAL

/gatuiﬁ

ture that supports us:

STATUS D.3.4. v.1.0 Techniques, patterns and styles

As we can see the user is not receiving any information about what the system is doing, which can
lead to confusion during system use.

STEP 2. Design solution with Status Indication

Requirement: the user must be informed about what is happening in the system.

Book
(om CLASSES)
Restaurant Request
ClientName(client)() (from C LASSES)
(rom CLASSES) Check(date, hour)() Hour
Name : String Get (imes- in-week X) Date
ddress : String tatus
G & Name (Name)()
vailableT ables(date, hour, kind)()
it-reque st()
Int + eq ues t()()
Int +eques t()()
It + &g ues 1)()
Int Cod Con sump tion (¢ cde))
Requ es tCo rsumtions())
Tabl)
aole New-price(price)()
(from CLASSES) etP rice (price))
Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer
ChangeState()
ChangeSta|e8
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()
F eedbac ker
(from CLASSES)
F eedback (checking-resource)()
F q ted)()
Request-line
(from C LASSES)
N CreateLine(code)()
Consumption Read(consum ption)()
(from CLASSES) iConsumtionPrice(price)()
S5Co d-consumption LineName(name)()
i Description G etPrice(price)()
. Prlce
Check-Stock() Alert-Manager
OKO— (fom CLASSES)
ConsumtionName(name)()
LastCodeConsum ption()()
Check-Ingredient()
OK()
/ Ingredient
(fom CLASSES)
i EHName
Recipe ByMinimun-Stock
(rom GLASSESS) (5):Real-Stock
A it
Books manager N;"n‘f:" Check()()
(from CLASSES) 2
G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

Figure C.22 Class diagram for the first application with Status Indication mechanism

IST - 2001 — 32298 Page 68 of 68
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
: Request

_: Table ‘ ‘ _:Request-line H _: Consumption ‘ ‘ ~Alert-Manager ‘ ‘ ~Ingredient

| Check-Ingredient() ‘

H WF"e,Init«requeSt() ChangeState() ‘

Ing ut-Cod Con sump tion(code)
1

Check() ‘

OK()

OK()

|

|
Check-Stock(co?e)

[

|

|

|

Answer ("W ait Please C hek|ng Resources")

OK()

\ I

\ \ \
| | |
‘ 17‘ Feedbaci(request-acepted) ‘ ‘

\ \

(03 reateLine(code)

\Answer(" Introduce Next In;iul")

Figure C.23 Sequence diagram for the first application with Status Indication mechanism

STEP 3. Abstraction of the design solution for Status Indication

= Solution:

o Diagram:

Active Process 1 ‘ [Active Process n

s 3 * 9
.

& W

L Feedbacker J

3 "“ ..'0, 4
A“ O.A
Interface] (System]

o Participants:

= Active-process i: this module has been represented more than once, because there
may be several processes running simultaneously that request feedback (1) so that
it will be each active process that sends the information that it wants to be fed
back to Feedbacker (1).

= Feedbacker: this module receives the request and data (1) (2), which indicates the
desired type of feedback and the data to be fed back from each active process.
Additionally, it needs to know the recipient of this feedback and will send this
feedback either to another part of the system (4) and/or to the interface (3) to
inform the user. For some guidelines on how to display this feedback on the
interface, for example, how often it should be refreshed or where to place specific

IST — 2001 — 32298 Page 69 of 69
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

information, see [Welie, 00]. These details should be taken into account in low-
level design.

= Interface: it receives the feedback and displays it to user (3).

= System: this component is optional and represents other parts of the system that
must be informed of the feedback (4).

C.8 History Logging First Iteration

STEP 1. Design solution without History Logging

Requirement: the user starts an order request

Request
Restaurant Book (from CLASSES)
(from CLASSES) (from CLASSES) Hour
Name : String Date
Address : String Clert Nam e dient) () Status
C he dk(date haun ()
I G et(times-in-week)() #Fnit-request()
“BAvailableT ables(date, hour, kind)() 1 SEtnp ¥
OK()
“ginit-request()
&init-request()()
%3 nit-request()()
&3 nit-request()()
I nitCodConsum ption(code)()
? #3RequestConsumtions()()
| Bil()()
| SNew-price(price)()
Table %3G etPrice(price)()
(from CLASSES)
Status : Sting
Numberpesa : Inte ger
Smoke’Non Smok e : Boolean
Phee: XY
Coce : Integer
@EChangeState()
4EChan S tate ()
|| €changestate ()
§:ChangeState (()
5L ook FoAv alsble(kind , data, haur) (

Request-line
(from CLASSES)

Crea te Line(code)()
LsRe ad (c csumption)
S$Co rsumt bnPrice(pric €)()
N sLin eNa me(na me)()
Consumption LGetPrice piice) ()

(from CLASSES)

Cod-consumption
Description
Price

2Check-stock()
H O K ()

ConsumtionName(name)()
LastCodeConsumption()()

Q\\ Ingredient
Books manager / (rom CLASSES)
Name
(from CLASSES) gMimmun-S(ock
Real-Stock
WG etRestaurants(list)() /
%G et(restaurant, date, hour, kind)() FCheck()()
Recipe
(from CLASSES)

/Amount
Name

Figure C.24 Class diagram for the first application without History Logging mechanism

IST — 2001 — 32298 Page 70 of 70
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles
: Interface : Request

: Waiter

Init-request()

\
init-request() ‘
|

=

Figure C.25 Sequence diagram for the first application without History Logging mechanism

STEP 2. Design solution with History Logging

Requirement: When an order request is started, the system records that the user has opened an order.

IST — 2001 — 32298 Page 71 of 71
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)

Book

(from CLASSES)

Name : String
ddress : String

G etName(Name

)
vailableT ables(date, hour, kind)()

ClientName (cliert)()
Chec k(date, hour)()
Gét(times-n-week))

Table
(from CLASSES)

Status : String

Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY

=4 Code : Integer

iChangeState()
IChangeState()
Cl ()

ChangeState()()
L ookF orAvailable(kind, data, hour)()

Request
(from CLASSES)

Init-request()
Input-CodCx)

OK()

init-request()

I nit-request()()

I nit-request()()
Init-request()()

Init CodConsum ption(code)()
RequestConsumtions()()
Bill)()

New-price(price)()

G etPrice(price)()

| Books manager
(from CLASSES)

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

Consumption
(from CLASSES)

{E3 0o d-consumption

Check -Sto ok (

Kty
ConsumtionName(name)()
Last CodeConsumptior()()

|
!

Recipe
(from CLASSES)

maurt
Nam e

Request-line
(fom CLAS SES)

Oreateline(cade) ()

Re ad(c ans ump tion) ()
Consu mtio rPrice (pric €) (
LineNa me(rame))

Ge tPrice (pric &))

Ingredient
(from CLASSES)

Name
Minimun-Stock
Real-Stock

Check()()

Interface
(from CLASSES)

Init reque st()

Init-request()()

Undo()()

Init-request()()
Input-CodConsumption(code)()
D& ay(Istof corsumptians)(
iDuplicateConsumption()()
Help()()

G ethdp(felp (

G ethdp tar) ()

NewBook()()

ShowList(list)()

Ge {(restaurant, data, hour,kind)()
ShowList(list)()

iC nrecth @Sy stem() ()

Enable(Reque st Cooked)()
Pressed(F 1)()

OK()()

S pe dific Hep (pic) (

S howS pecificHelp(help)()
iCancel(re quest) ()

logger

(from CLASSES)

[I8Logg (init-request)()

action-logged
(from CLASSES)

.CrealeAcimn(inii—requesl)()

Figure C.26 Class diagram for the first application with History Logging mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 72 of 72

STATUS D.3.4. v.1.0 Techniques, patterns and styles

X

‘ _ Interface ‘ ‘ _~Request ‘ ‘ : logger ‘ ‘ _: action-logged
:Waiter
| \ \ \ \
[Init-request()
‘ init-request) ‘ ‘ ‘
>
i | |
Logg (in‘it-request) ‘ ‘
‘ ‘ CreateAction(init-request) ‘
\
\ | T
\ \ \
T | | |
\ \ \
\ \ \

— — — A

Figure C.27 Sequence diagram for the first application with History Logging mechanism

STEP 3. Abstraction of the design solution for History Logging

= Solution:

o Diagram:

[Interface] [System]

o Participants:

Interface: it receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed in the respective
part of the system.

System: this module sends the functions and data that are executed in the system
to the logger (3) (4), and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

C.9 Undo First Iteration

STEP 1. Design solution without Undo

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST - 2001 — 32298

Page 73 of 73

© STATUS Consortium 2002. CONFIDENTIAL

mmm—" STATUS D.3.4.v.1.0 Techniques, patterns and styles
Request
(fom CLAS SES)
HHour
Date
Restaurant Book Status
(fom CLAS SES) oo Init-request()
(romCLasSES) 2)

Name : Sting
ddress : String

& Name(Name)()
vailableT ables(date, hour, kind)()

IC le tName(dient)()
C reck(date, haur)()

G et (times-in-week)()

Table
(from CLASSES)

Status : String
INun ber -person : Irt eger
Smoker/Non Smoker : Boolean

ChangeState()
ChangeState()
ChangeStd g)(.

ChangeSta ¢)
LookF orAvaiable(kind, data, hour)()

a

Init-request()()
Init CodConsumption(code)()
RequestConsumtions()()

G etPrice(price))

0 dcors unption
De sz iption
P ice

Consumption
(from CLASSES)

h eck- Stock()

onsumtionName(name)()
L astCoce Consumption()

Books manager
(from CLAS SES)

G etRestaurants(list)()
Get(restaurant, date, hour, kind)()

Feedbacker
(from CLASSES)

F eedback checking-resource)()
F eedback(request-acepted)()

Alert Manager

(from CLASSES)

Request-line
(from CLASSES)

CreateLine(code)()
Read(consumption)()
(ConsumtionPrice(price)()
LineName(name)()

G etPrice(price)()

Check-Ingredient()
OK()

Ingredient
(fom C LASE §

/

BName
ReaI'SIDck
/ .Check()()

Recipe
(from CLASSES)

B

mount

ame

Figure C.28 Class diagram for the first application without Undo mechanism

STEP 2. Design solution with Undo

Requirement: the user can push the undo button

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 74 of 74

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request
(from CLASSES)

Interface
(from CLASSES)

Restaurant Book
(from CLASSES) (fom CLASSES)

Name : String
ddress : String IcnemNamemnenn()

Init-request()
Check(date, hour)() Init-request()()
k)()

)
vailableT ables(date, hour, kind)() Input-GodConaum (code)()
nput-CodConsumption(code}
Display(list of consumptions)()
DuplicateConsumption()()

a iHelp()()
et} o hobihob))
initCodConsumption(code)() G etnelp(our))
;i:};ﬁstcunsumﬂonsu() J&C’.Q’Zﬂﬁiw

i
iNew-price(price) () G et(restaurant, data, hour,kind)()

etPrice(price)() iShowList(ist)()
ConnectingSystem ()()
Enable(RequestCooked)()
iPressed(F 1)()

K

Table
(from CLASSES)
SRS tatus - Stin

Number-person : Integer
Smoker/Non Smoker : Boolean

0K()()

iS pecificHelp(tppic)()
iShowS pecificHelp(help)()
Cancel(request)()

Changestate()()
LookF orAvailable(kind, data, hour)()

Request-line
from CLAS SES)

Feedbacker
CreateLine(code)()
Read(consumption)() fom CIAS SES)
ConsumtionPrice(price)()
LineName(name)() eedback checking-resource)()
Books manager G etPrice(price)() F eedback request-acepted)()
(from CLASSES)

[
G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

Ingredient

(from CLASS ES)
Name
Minimun-Stock

) Real-Stock

Undoer
(from CLASSES)

Undo()()
ctionDounloaded(action)()
- akeCO ntrary contrary-action)()
Consumption
| (omCLASSES) |

od-consumption
Description
Price

heck-Sto &)

heck()()

listerer
(from CLASSES)

init request ()
& (Create Lire (¢ ade)))

Undo()()
nsumtoName(rame)) — ctionDounloaded(action)()
LastCodeConsumption()() Recipe C an el ques Y

Alert-Manager RequestCreated(request)()

(Fom CLASSES)

mount (rom CLASSES)
Name
Chec kg adiert |
0 KO

?

action-done
(from CLASSES)

‘ sy stem-action

fom CIAS SES) ﬁda{"Crea!eLlne((;ude)")()
I—

[RequestCr)
earchContrary(action)()
E xecute(contrary-action, action)()

‘akeContrary(contrary-action))

is- the -op ossite -of

Figure C.29 Class diagram for the first application with Undo mechanism

IST - 2001 — 32298 Page 75 of 75
© STATUS Consortium 2002. CONFIDENTIAL

ASEacUsS

STATUS D.3.4. v.1.0 Techniques, patterns and styles

renitects

—

"
|
|
h

oo 'wse-A K

Wuesyarcaia

LIOE

ogre-feuoifieiue g

=L

ARIUSIA UG DEEL

ﬁ.ﬂ._un_.ﬂnf..onzunu

=

IRIAE S DR

|22) R0 el QU2 BT

AR ipa mRo e U0l

- - - - - -

4t

_
|
|
|
|
|
|
|
|
_
|
|

_
|
|
|
|
_
|
|
_
-
|

7 _ _.__cnumu;h;u‘

fapod U.J__ O Wwnsuo Qpo a-|

o calbana

_ e

thFanba-y

7 7 _ fiepun
flepun
_ _ thepu [
T
[SLLIT | EETREELT IR TETVET
nuu_nuun._nu:nuarunnuuum ﬁ 7 _ 7 _ _
7 tapozaunfaieas o 7 7 ﬁ_ _ _
_ [7 Quuouuu...‘Aunu._o.uuux ._, ﬁ _ _
T
C340
| | _ | | _
[
_ H.nuuh_.Ao“uz Buiyaya aseald :n::_A.._u;ncx _ 7 _ _
L340
K =1 [T _ 7 7 _ 7 _ _
-]
Fa1 _xuu..uu,_unn__uum [INE1].EAL. g = TEa) fapos iy g-42ay 3 7 _ﬁn:_ _
| |
|
_ _
| b

Fanbalq _.

JARM

Japanpaay: _

|uzIpaI0Y _ _

10 i ATy _

_ LI ETEH _ _ J||4 Fanbay : _ ajgey :

|sanhay : __ e ELEN __ R LA __ L R [_ _ LI EH _

eawan

_ = SLUTH _M

1ISm

th Undo mechan

10n wi

Figure C.30 Sequence diagram for the first applicat

Page 76 of 76

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Undo

= Solution:

o Diagram:

(\ >
]
=
=4
@
=
oo
(@}
(¢}
>

o Participants: This pattern has two clearly separate parts. These parts have been labelled in
the illustration as A and B, respectively. Part A collects the actions performed in the
system (the number of actions to be stored will have to be specified when the system is
developed) so that they can be later undone. Part B manages the respective undo.

InterfaceA: receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

SystemA: this module sends the functions and data executed in the system to the
logger (3) (4) and also, optionally, if the logger does not store the actions
internally, will send the information to the part of the system that manages these
actions (5) (6).

Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed by the respective
part of the system. Logger receives the undo request from Undoer (9) and, if the
logged actions are stored in the logger, it then sends them one by one to Undoer
(8). If they are not stored in the logger, it will receive both the data and the
operation to be undone from another part of the system that we have named
System B through (11) and (10), respectively.

Interface B: receives the undo request and sends it to Undoer through (7).

Undoer: sends the undo request to logger (9) and also sends each of the actions to
be undone that it receives from logger to System B (13), as well as receiving the
opposite operation to the one performed from System B (12). When it knows
which opposite operation is to be performed, it sends the operation to System B
along with the data associated with the operation in question through (14) and

(15).

System B: it will search the system for both the action performed and the data
associated with this operation (10) (11) if the data are not stored internally in the
logger. It receives the actions to be undone (13) and provides the opposite
operation (12) (for which purpose it will have to store what the opposite is for
each action, see implementation section, for example). The opposite action and
the respective data will be sent to the respective part of the system (15) and (14).

IST - 2001 — 32298

Page 77 of 77

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.10 Form or Field Validation First Iteration

STEP 1. Design solution without Form or Field Validation

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Request
Restaurant Book (from CLASSES)
(from CLASSES) (from CLASSES) Hour
Name : String Date
/Address : String Clert Nam & dient) () Status
C he ck(datg haup ()
-t G et(times-in-week)() HInit-request()
LeAvailableT ables(date, hour, kind)() 5 Hptit '
“WOK()
“3init-request()
&3 nit-request()()
init-request()()
S Init-request()()
#3nitCodConsum ption(code)()
| LsRequestConsumtions()()
| Bil()()
\ “BNew-price(price)()
Table €3G etPrice(price)()
(from CLASSES)
Status : Sting
Numbe rpers an : Inte ger
Smoke’Non Smok e : Boolean
Phoe: XY
Coc : Integer
MWChan @S tate(
@Chan S ate)
| | 4iChangeState ()
{aChangeState (()
&L ok ForAvalable(kind, data, haur) ()

Request-line
(from CLASSES)

HCrea te Line(code)()
%pRe a (c csumption) ()
%#Co rsumt bnPrice(pric €)()
- $Lin eNa me(na me)()
Consumption WGetPrice price) ()

(from CLASSES)

Cod-consumption
Description
Price
iCheck-Stock()
[&B0K()
ConsumtionName(name)()
LastCodeConsumption()()

\ Ingredient
Books manager / (rom CLASSES)
(from CLASSES) Pame Stock
Real-Stock
4G etRestaurants(list)()
%3G et(restaurant, date, hour, kind)() #Check()()
Recipe
(from CLASSES)

,Amount
Name

Figure C.31 Class diagram for the first application without Form or Field Validation mechanism

STEP 2. Design solution with Form or Field Validation

Requirement: The system should validate the foodstuff code when it has been entered by the waiter
and before it is copied to the order.

IST — 2001 — 32298 Page 78 of 78
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Request
Re staurant (from CLASSES)
(from CLASSES)
Name : String Book
ddress : String
(from CLASSES)
Init-request()
lfel"ra;e'ﬁN;m?d()| hour, kind)() CliertName(client)() Input-C odConsumption()
wvallable I ables(date, hour, n H :
’ ' OK o
C heck(date, hour)() in"_(r)e west) Validation-manager
Get(imes -i n- week)() Init-reguest()() (from CLASSES)
Init-request()()

Init-request()() Manage r(Cons umption, code) ()
InitC odC onsumption(code)() OK()
RequestConsumtions()()

Table Bill()()
(from CLASSES) New-price(price)()
E¥iStatus : String GetPrice(price)()

lz#sN umber-person : Integer
(z#3Smoker/Non Smoker : Boolean
F’Iace XY (from CLASSES)

(E+{Code : Integer

Consumption-Validator

.Validale(code)()

hangeState()
C hang eState()

iChang eState()()

iChangeState()()

LookF orAvailable(kind, data, hour)()

Request-line
Consum ption (from CLASSES)

(from CLASSES)
.C od-consumption CreateLine(codg)()
Description R ead(consumption)()
& rice [— ConsumtionPrice(price)()
= LineName(name)()
GetPrice(price)()

C heck-Stock()

OK()
iConsumtionName(name)()
iLastC odeC onsumption()()

Books manager
(from CLASSES)

Alert-Manager
IGelR estaurants(list)()

Get(restaurant date, hour, kind) () (from CLASSES)
_—
- IChed(—Irgredienl()
: — OK()

Recipe _—

(from CLASSES)
. Ingredient
zsName

(from CLASSES)
|BEName |

Minimun-Stock
[5+;R eal-Stock

heck()()
AskF or (ingredient)()

Figure C.32 Class diagram for the first application with Form or Field Validation mechanism

IST - 2001 — 32298 Page 79 of 79
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Table

g ‘ ‘

‘ : Request-line H c i H Alert-Mana; H - Ingredient

Init-request() ‘ \ ChangeState()
T

Input-CodConsumption(code)
| I

VManager(Consumption, code)

Validate(code) ‘

OK() J
OK()

Check-Stock(Ci’de) Check-Ingredient()

Check()

OK()

OK()

I |
L | | |
| |

\
|
OK() ‘
|
|
|

Creatiune(code)
|

Figure C.33 Class diagram for the first application with Form or Field Validation mechanism

STEP 3. Abstraction of the design solution for Form or Field Validation

= Solution:

o Diagram:

[Interface]

1i]2
A 4
[Checker }'
6 ::,’ 000.0.0 5
| 4 44

[Interface] [System]

o Participants:

Interface: it sends a data set (1) and the function requested by the user (2) to
Checker for validation. Additionally, after data validation, it will receive error
data or OK from the Checker to be displayed to the user if the system is to be
designed this way (6).

Checker: it collects an operation requested by the user through the interface (2) as
well as a data set (1). This module can be designed to validate the data or to send
the data to another system component for validation (3) (4). In the latter case, it
also receives the result of the validation (OK or error) (5) and, in any case, will
send the result of the validation to the user if so required (6).

System: this component will be optional and will only exist if the Checker is not
capable of validating the data. If necessary, it receives both the function and the
associated data for validation from Checker (3) (4) and, after validation, returns
the result of the validation to Checker.

IST - 2001 — 32298

Page 80 of 80

© STATUS Consortium 2002. CONFIDENTIAL

— STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.11 Provision of Views First Iteration

STEP 1. Design solution without Provision of Views

Request
Restaurant (from CLASSES)
(from CLASSES) Book =
E#Name : String (fom CLASSES)
&#;Address : String
ClientName (client) ()
GetName(Name)() Check(dae, hour)() Init-request()
AvailableTables(date, hour, kind)() Get (tim es-in-week)() Input-C odC onsum ption()
OK()
init-request()
Init-request()()
Init-request()()

Init-request()()
InitC odC onsum ption(code)()

p -I;:aLl;l:SES) R equestConsumtions()()
rom Bill()()

Status : String New-price(price)()

..i.' umber-person : Integer GetPrice(price)()

(&+;Sm oker/Non Smoker : Boolean

;P lace : XY
(5#;Code : Integer

~
hang

7
C hangeState()
C hangeState()()

00
lable(kind, data, hour)()

C hangeState!
LookForAvai

Request-line

Books manager

i from CLASSES
(from CLASSES) Consum ption ()

(from CLASSES)

{5+ C od-consum ption
Description
(&k;Price

CreatelLine(code)()

R ead(consum ption)()

L — ConsumtionPrice(price)()
LineName(name)()
GetPrice(price)()

IGetResraurams(list)()

Get(restaurant, date, hour, kind)() \

iCheck-Stock()

OK()
ConsumtionName(name)()
LastC odeConsum ption()()

Recipe
(from CLASSES)
EjAmount — f
EName o
Ingredient
(from CLASSES) Alert-Manager
Name (from CLAS SES)
(&M i mun- Sock —
(5#;R eal-Stock C heck-Ingredient()
OK()
Check () ()
skFor(ingredent)()

Figure C.34 Class diagram for the first application without Provision of Views mechanism

IST - 2001 — 32298 Page 81 of 81
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

/!i ‘ :Reguest‘ ‘ : Table ‘ ‘

- Wai

ter
nit-request() ‘ ChangeState() ‘

STATUS D.3.4. v.1.0 Techniques, patterns and styles
: Request-line

H : Consumption ‘ ‘ : Alert-Manager ‘ ‘ : Ingredient

Inpyt:

T

CodConsumption(cPde)

Check-Stock(coqle)

Createl{.ine(code)

B ‘

7

[
|
|
oK) |
\
|
|

Check-Ingredient()

OK()

Check()

OK()

I

|

Figure C.35 Sequence diagram for the first application without Provision of Views mechanism

STEP 2. Design solution with Provision of Views

Requirement: The system should be able to provide the customer with the list of things ordered so far
at any time while the order is being placed.

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 82 of 82

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Restaurant Request
(fom CLASSES) (from CLASSES)
Eﬁame :String UmmCBL?IOSkSES) Hour
ddress :Strng Date
Status
GetName(Name)() ClientName(client)()
vailable Tables (date, hour, kind)() Check (date, hour)() Init-request()
Get(imes-in-week)() 'O"&(“)"C‘“’“"S“'““"""“
init-request()
Init-request()()

i q)0
Init-request()()

InitC odConsumption(code)()
RequestConsumtions ()()

Tabe z‘!(‘zv(r)price(pnce)()
(fom CLASSES) GetPrice (price)()
Status :Siring
Number-person :integer
Smoker/Non Smoker :Boolean
Place : XY -
Code :Integer Views- manager
ChangeState() (fom CLASSES)
ChangeState()
ChangeState()() Preview(request
ChangeState()() = ey
LookForAvailable (kind, data, hour)()
Request-line
(from CLASSES)

request-viewer

reateLine(code)()

(from CLASSES)
Read(consumption)()
onsumtionPrice(price)()
| ineName(name)() Reque stR evie w(req ues t))
etPrice(price)() onsumtionName(name)()

Books manager
(from CLASSES)

G etRes & urans (ist)()
G et(res bur an tdae hour, kind X)

Alert-Manager

(fom CLASSES)

iCheck-Ingredient()
OK()

Recipe

(fom CLASSES)

Consumption

(fom C LAS SES)
Cod-consumption Ingredient
pescripton (rom CLASSES)
Price]

Check-Stock () Minimun-Stock
OK() M\ Real-Stock

ConsumtionName(name)()
LastCodeConsumption()() lihfskt({() siont)
skFor(ingredien

Figure C.36 Class diagram for the first application with Provision of Views mechanism

IST - 2001 — 32298 Page 83 of 83
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

- Requesl n = - Table ‘R st-line . C : Alert-Manager : Ingredient
views-manager request-viewer
: Waiter
S hierequest) | | Changestate() | | \ ‘ ‘
|

Inpu-:odConsumptior:Uode) ‘ ‘ Check-Stock((‘:ode) ‘ Check-Ingredient() ‘ ‘
| ‘ ‘ Check() |
| | -

OK()

‘ ‘ OK()
‘ CrealeL‘ne(code)

R equeslPrevie\L (request)

Prev iewqrequest)
T
‘ RequestCppsumtions()

ConsumtionName(name)
|
|

Consum name)

R equeJlCcntent(list of cons‘um ptions)

|
|
\
|
|
|
g
|
|
|
|
|
|
|
|

I
|
|
1
|
|
|
|
|

- — d—

Figure C.37 Sequence diagram for the first application with Provision of Views mechanism

STEP 3. Abstraction of the design solution for Provision of Views

= Solution:

o Diagram:

‘ Interface

ol i
\ 4
{ Viewer Dispatcher

Specific Viewer SpecificViewer
1 --------- n
\ & A 4
Interface] ‘ Interface ’

o Participants:

= Interface: it sends the data received (1) and the specific function requested by the
user (2) to viewer-dispatcher. Additionally, when the data have been transferred to
the specific viewer that knows how to interpret them, they are displayed by the
interface (5). For information about how to present some views in the interface,
see [Welie, 00]

= Viewer Dispatcher: it receives the data (1) and the requested function (2) and,
depending on this information, decides which viewer should interpret the
operation and data. These (3) and (4) are sent to the respective Specific Viewer.

IST — 2001 — 32298 Page 84 of 84
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Specific Viewer 1i: it receives a request (4) and data to be viewed (3), which it
interprets as befits the viewer in question, sending them to the interface (5).

C.12 Workflow Model First Iteration

7.1.1.1.1 STEP 1.1. Design solution without Workflow Model First Iteration

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Restaurant Book
(fran CLASSES) (from CLASSES)
Name : String - -
: P ClientName(client)()
. St
%Add'ess sirne ICheck(date, hour)()
G et(times-in-week)()

| G eNam gNam €)()
vailab T ables(date , hour, kind)()

i

‘ Request
(fran CLASSES)
H; .
‘ Dgﬁ; Request-line
‘ Status (from CLASSES)
1 1)::::5{@[1:5{\(([)?‘ umption() CreateLine(code)()
1.QR() Read(consumption)()
&xinit-re quest() ConsumtionPrice(price)()
&3 nit-request()() LineName(name)()
&3 nit-request()() O/ G etPrice(price)()
&5 nit-request()()
53! nitCodConsum ption(code)()
£3Req testConsumt bns()()
‘ Bil()()
£
L

bNew-p_rice(qice)()
Table G et Price(price)()

(from CLASSES)

Stdus : Strhg
N umbe r-person : Integer
S moke r/Non Smoker : Boolean

Phoe : XY
Cade : Integer

C hange State(
,C hange State(
(

C hange State()()
L ock ForAvalable(k h d, data, Four)()

Consumption
(from CLASSES)
Cod-consumption

Description
Price

2Check-3(ock()
H K

Books manager O—
/ ConsumtionName(name)()
(from CLASSES) LastCodeConsumption()()

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

Figure C.38 Class diagram for the first application without Workflow Model mechanism

STEP 2. Design solution with Workflow Model

Requirement: when the cook connects to the system, the only enabled function will be enter as cooked
when he has finished cooking an order.

IST — 2001 — 32298 Page 85 of 85
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Request
Restaurant Book (fom CLASSES)
(from CLASSES) (fom CLASSES)
Eame : Qing
ddress :String ClientName (client) "
Ch eck(date, hou 1) ?:fgffsts?:
GetName(Name)() Get(times-in-week)() init-request()
wvailableTables (date, hour,kind)() input-CodConsumption() reateLine(code)()

OK()
init-request()
init-request()()
Init-request()()
init-request()()
InitCodConsumption(code)()
RequestConsumtions ()()
Bill() ()

New-price(price)()

GetPrice (price)()

Read(consumption)()
onsumtionPrice(price)()

LineName(name)()
etPrice(price)()

Table
(Fom CLASSEY
Status :String
Number-person :Integer
;Smoker/Non Smoker :Boolean
Place : XY
Code :Integer

Filter

(from CLASSES)

iChangeState()
ChangeState()
ChangeState ()()
ChangesState()()
LookForAvailable(kind, data, hour)() Interface

UserConnected(cook)()
GetListFunctions (list)()

(from CLASSES)

Init-request()
nit-request()()

Undo () (

nit-request()()
Input-CodConsumption(code)()

Display (listofconsumptions ()
D uplicateCo nsump fon () () system-func tion
Rl (from CLASSES)
Get-help(help)()
Books manager [Get-h elpoun - -
(from CLASSES) NewBook()() ownloadFunctions (function)()
Show Lis t(list)() xecute(Function)()

et(restaurant date, hour,kind)() il‘:::f;:":;‘lwmo 2

Enable(RequestCooked)()
Pressed(F1)()

OK()()

Spe cifcHe b (tppic) O

Sho w Spec ficHd p(hel p) ()
Cancel(request)()

lgemslamms(”sl)() Get(estai ran t data hou rkind)

User-type

(from CLASSES)
Consumption FunctionsFor(cook)()
(from CLASSES) GetFunction(function)()

Cod-consumption
Description
Price

Check-Stock()
OK()
ConsumtionName(name)()

LastCodeConsumption()()

Figure C.39 Class diagram for the first application with Workflow Model mechanism

IST - 2001 — 32298 Page 86 of 86
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

. Interface . Filter : User-type o
: Cook system-function

ConhectingSystem (cpok) | |
| |

\
|
UserConnected(co‘ok) | |
|
\

FunctionsFor(cook)

DownloadFunctions(function)

GetFunction(RequestCopked)

GetListFunctions(RequestCooked)

Enable(RequestCooked)

Figure C.40 Sequence diagram for the first application with Workflow Model mechanism

STEP 3. Abstraction of the design solution for Workflow Model

= Solution:

o Diagram:

[Interface]

0 0
K3 N
o *,
. 0
o 0
o o,
o,
rSd .,
o .,
‘

[Interface]

o Participants:

IST — 2001 — 32298 Page 87 of 87
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface: it sends the data related to the user who is trying to access the system
(1) to the system. Additionally, the interface receives the data and operations (5)
(6) that make up the interface for the user in question from Filter.

Filter: it receives the type of user who wants to connect to the system (1) from the
interface. Additionally, if it does not store all the functionality that should be
associated with each user internally, it sends the data about the user in question to
another system component (2) and receives both the data (3) and the operations
(4) to which this user should have access from this component. When it has this
information, it then passes it on to the interface for proper display (5) (6).

System: this component is optional and will only exist if the Filter is not capable
of storing the functionalities associated with each system user internally.
Accordingly, this component receives the data on the user type who has connected
from Filter (2) and returns both the data and operations that this user type can
access from the interface (5) (6) to Filter.

C.13 User Profiler First Iteration

STEP 1. Design solution without User Profiler

Requirement: the client can ask for the bill.

IST - 2001 — 32298

Page 88 of 88

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Restaurant Book
(from CLASSES) (fom CLASSES)
Name :String

ddress :String

GetName(Name)()
vailableTables(date,hour,kind)()

Table
(from CLASSES)

ClientName(client)()
Check(date,hour)()
Get(times-in-week)()

Request
(from CLASSES)
Hour
Date
Status

Init-request()
Input-CodConsumption()

OK()
init-request()

Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()
GetPrice(price)()

C hangeSa&()

C hangeSae()

C hange&at ()X)

C hange&at ()X)
LookForAvailable(kind,data,hou ()

Status :String

N umberperson:ine ger

Sm oker/Non Sno ker :Boolean
Place : XY

C ode :Ink ger

R equest- Ine
(from CLASSES)

Books manager
(from CLASSES)

GetRestaurants(list)()
Get(restaurant,date,hour,kind)()

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()

Alert-Manager

(fom CLASSES)

Check-Ingredient()
OK()

GetPrice(price)()

Consumption ;
(from CLASSES) Ingredient

{ran CLASSES)

Cod-consumption
Description
Price

Check-Stock() I
OK()
ConsumtionName(name)() /
LastCodeConsumption()()

Check ()
skFor (ingredient))

Recipe

(from CLASSES)

mount
N ame

Figure C.41 Class diagram for the first application without User Profiler mechanism

STEP 2. Design solution with User Profiler

Requirement: The system should be able to identify the customer who is making the order at a given
table so that he can be given personalised treatment depending what type of customer it is.

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 89 of 89

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Client

(fom CLASSES)

Times-in-week

=

.CIientD ata(times-in-week)()

Table
(from CLASSES)

Status : String

Number person :Integ er
Smoker/Non Smoker :Boolean
Place : XY

Code :Integer

Change Sate()
Change Sate()
ChangeState()()
ChangeState()()

leocoe STPDD

LookForAvailable(kind,data,hour)()

Restaurant
(from CLASSES)

Name :Stiing
ddress :String

GetName(N ame))
v alableTables(dag, hour, kind))

Profiler

(fromCL ASSES)

Gef(tmes-in-week)()

/ lCaIcuIateSpecialPrice()

Book
(from CLASSES)

ClientName(client)()
Check(date,hour)()
Get(times-in-week)()

Recipe

(fromCL ASSES)

mount L
Name

B ooks manager
(from CLASSES)

—
—_

GetRestaurants(list)()
Gef(restaurant,date,hour,kind)()

Consum ption
(from CLASSES)

Cod-consumption
Description
Price

Check-Stock()

OK()
,ConsumtionName(name)()
LastCodeConsumption()()

o00e TBD |

Ingredient

(from CLASSES)

Name
Minimun-Stock
Real-Stock

Check()()
skFor(ingredient)()

g

Request
(from CLASSES)

Hour
Date
Status

Init-request()
Input-CodConsumption()
OK()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()

GetPrice(price)()

Request-line
(from CLASSES)

CreateLine(code)()

Rea d(consumption))
,ConsumtionPrice(price)()
LineNa me(name)()
GetPrice(price)()

Alert-Manager

(from CLASSES)

Check-Ingredient()
OK()

Figure C.42 Class diagram for the first application with User Profiler mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 90 of 90

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

: Request =

- Waiter Reguest-

line Consumption

: Book

: Client

: Profiler

Aill(client,book—code‘) ‘

Cp sumtionPrice(priie)
|

Price(price)

GetPrice(price

For each
requestline|

GetPrice(price)

qalcuIateSpeciaIﬂrice(total—price,qook—code, client‘)

CIientNaTe(cIient)

CligntData(times-in-week)
I

Bet(times-in-week)

Get(times-in-week)

Bill(price, book-code, client)

|

|

|

|

|
Newrprice(price)

—_—

Figure C.43 Sequence diagram for the first application with User Profiler mechanism

STEP 3. Abstraction of the design solution for User Profiler

= Solution:

o Diagram:

[Interface]

.
A

1
v

Profiler

[Interface]

o Participants:

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 91 of 91

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= [Interface:

For profile information creation, it sends both the data (1) and the
operation (2) that the user defines for his system to the profiler.

For profile retrieval, the interface sends the profile data (1) to the profiler.
Additionally, profiler sends the data associated with this profile to the
interface.

= Profiler: .

For profile information creation, it receives the data (1) and the operation
(2) that the user defines for his system from the interface. If it is not
capable of storing this profile information internally, it will send it to
another system component through (3) and (4).

For profile retrieval, it receives the data of the profile to be retrieved (1)
from the interface. If it does not store the profile information internally, it
will ask another system component to process the requested information
and/or operation (3) (4) and will receive the information associated with
the required profile (5) from this system component. Then, if this
information is to be displayed by the interface, it will send it to the
interface through (6).

= System: this component is optional and will only exist if profiler is not capable of
storing the information associated with each system profile internally. It receives
the data and/or operations of the required profile type (3) (4) from profiler and
sends the data associated with this profile (5) to profiler.

C.14 Shortcuts First Iteration

STEP 1. Design solution without Shortcuts

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST - 2001 — 32298

Page 92 0of 92

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request
from CLASSES
Restaurant Book ()
(from CLASSES) (from CLASSES) gotjr
ate
._;.' ame : String -) tatus —
Address : String ClientName(client)() Requestline
Check(date, hour)() Init-request() (from CLASSES)
G etNam e(Name X) Get(times-in-week)(Input-CodConsumption()
Av ailableTables(date, hour, kind)()

K() CreatelLine(code)()
init-request() K>——"| ®Read(consumption))
Init-request()() iConsumtion Price (price)()

i LineName(name)()
rireauesi Get Price (price)()
Init-request()()

{nitCodConsumption(code)()
RequestConsumtions()()
Bill()()

N ew-price(price)()
etPrice(price)()

Table
(from CLASSES)
Stalus : String

Number-person : Integer

iChangeState()

ChangeState()

ChangeState()()

ChangeState()()

LookForAv ailable(kind, data, hour)()

Consumption
(from CLASSES)
ECod-consumption

Des cription
(5P rice

Books manager
(from CLASSES)

iC he ck-Stoc k()
IGelRestaurants(list)()

OK()
Get(restaurant, date, hour, kind)() ConsumtionName(name)()

LastCodeConsumption()()

Figure C.44 Class diagram for the first application without Shortcuts mechanism

STEP 2. Design solution with Shortcuts

Requirement: the waiter presses F1, which corresponds to the function that tells the waiter to go and
collect a given order that has now been cooked.

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 93 of 93

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant

Request
(from CLASSES) fom CIAS SES) Interface
5Name : String
A ddress : String

(from CLASSES)

)
Avala bleT abie s(date, to ur, kind))

init reque st

I nput-CodConsumption(code)()
Display (st of consum ptions)()
DuplicateConsumptian (()
Help()()

et-help(help)()

et-help(tour)()

i nitCodConsum ption(code)()
equestConsumtio s (()

il0()
Book ew-price(price)()
(from CLASSES) etPice(pice) ()

ClientNam e(client)()
Check(date, hour)()
G e (times-in-week)()

how List(lis §)
efres@uat daa fourkind(
how List (s 1) (

pecificHelp(tppic)()
howS pecific Help(help)()
acd(rqe()

Table

(from CLASSES)
Status : String

Request-line
5, INum ber-person : Integer (from CLASSES)
4./Smoker/Non Smoker : Boolean
P lace - XY CreateLine(code)()
(§:Code : Integer Read(consumption)()
ConsumtionPrice(price)()
ChangeState() LineName(name)()
ChangeState() G etPrice(price) ()
.
ChangeState()()
LookF orAvailable(kind, data, hour)()
" Shortcut
Consum ption
(from CLASSES)
(fom CLAS SES)
od-consumption alidate(F 1))
Description G etF unction(function)()
Price
heck-Stock()

‘ansumtionName(name)()
LastCodeConsumption()()

Books manager /
(from CLASSES)

etRestaurants((ist)()
et(restaurant, date, hour, kind)()

Key

(from CLASSES)

B
sy stem-function der

(from CLASSES) .getFunchcn(Funcl n()
DownloadF unctions (function)()
jE xecute(F unction)()

Figure C.45 Class diagram for the first application with Shortcuts mechanism

IST - 2001 — 32298 Page 94 of 94
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

: Interface : Shortcut : Key :

: Cook system-function

| Pressed(F1) | | | |
: Validate(F1) | \ |
\ \

ReturnFunction(F) |

DownIoadFunctions(funEtion)
|

GetFunction(Functjon)
etFunction(functiam)

[¢)

fon)
4

Execute(Function)

OKJ()

Figure C.46 Sequence diagram for the first application with Shortcuts mechanism

STEP 3. Abstraction of the design solution for Shortcuts

= Solution:

o Diagram:

IST — 2001 — 32298 Page 95 of 95
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

o Participants:

Interface: it sends a data set (1) corresponding to a given system function, as well
as the key combination that activates this function, to Shortcut-creator.
Additionally, if a shortcut is to be executed, it sends a key combination (3) to the
Shortcut-executor. When the shortcut has been executed, it will receive the result
of the requested functionality or error if it cannot be executed (5) from Shortcut-
executor.

Shortcut creator: it fills in a sort of array in which the name of the shortcut, the
commands that activate it and the system function to be activated with these quick
commands are stored. For this purpose, it receives a data set and the function to be
executed when these keys are combined (1) from the interface, which it sends to
Shortcut-executor for storage (2).

Shortcut executor: it receives a set of commands (3) from the interface and checks
whether they match a set of commands associated with a given function. If the
command set matches a system functionality, it requests the system to execute the
function associated with this shortcut (4). In any case, whether they match a
function or not, it sends the result of executing this function to the interface
through (5).

System: it receives the order to execute the function associated with this key
combination (4) from shortcut-executor.

C.15 Context Sensitive Help First Iteration

STEP 1. Design solution without Context Sensitive Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST - 2001 — 32298

Page 96 of 96

© STATUS Consortium 2002. CONFIDENTIAL

/éal:uﬁ

Software architecturs that supports usal

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant

Book
(from CLASSES)

(from CLASSES)
Name : String
ddress : String

ClientName(client)()
iCheck(date, hour)()
Get(times-in-week)()

Request
(from CLASSES)

GetName(Name)()
vailableTables(date, hour, kind)()

Table
(from CLASSES)

(& Status : String

Num ber-person : Integer
=#;Smoker/Non Smoker : Boolean
[5H;Place : XY

=#;Code : Integer

c

hang)

iC hangeState()

iC hangeState()()

iC hangeState()()
LookForAvailable(kind, data, hour)()

Init-request()
Input-C odC onsum ption()
OK()

init-request()
Init-request()()
Init-request()()
Init-request()()

InitC odC onsum ption(code)()
R equestConsumtions()()
Bill()()

N ew-price(price)()
GetPrice(price)()

Request-line
(from CLASSES)

CreateLine(code)()

R ead(consum ption)()
iConsumtionPrice(price)()
LineName(name)()
GetPrice(price)()

Consumption
(from CLASSES)

(5#;Cod- consumpion
(E+;Description

Books manager

C heck-Stock()

(from CLASSES) OK()
,ConsumfonName(name) ()
Las {CodeConsumpion() ()

IGetRestaurams(list)()

Get(restaurant, date, hour, kind)()

Figure C.47 Class diagram for the first application without Context Sensitive Help mechanism

STEP 2. Design solution with Context Sensitive Help

Requirement: the user can push the Sensitive Help button

IST - 2001 — 32298 Page 97 of 97

© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request
Restaurant Book (from CLASSES)
(from CLASSES) (rom CLASSES) =iHour
Name : String [S)?;leus
ddress : String ClientName(client)() e
iCheck(date, hour)() Init-request()
G etName(Name)() - G et(times-in-week () Input-CodC.)
vailableT ables (date, hour, kind)() OK()
init-request()
Init-request()()
Init-request()()

Init-request()()
InitCodConsum ption(code)()
RequestConsumtions()()

Bill()()
iNew-price(price)()
G etPrice(price)()
Table
(from CLASSES)
[E¥Status : String
S Numb e-persan @ I it
{z#Smoker/Non Smoker : Boolean
E4Place : XY
5F:Code : Integer
ChangeState()
iChangeState()
Cl)0
ChangeState()()
iLookF orAvailable(kind data, hour)()
Request-line
(from CLASSES)
Interface CreateLine(code)()
Read(consumption)()
(fom CLAS ES) ConsumtionPrice(price)()
LineName(name)()
Init-request() G etPrice(price)()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display (list of consumptions)()
iDuplicateConsumption()()
elp(
G et-help(help)()
G et-help(tour)()
NewB ook ()()
S howList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)() .
ConnectingSystem()() Sensitive-help
E nable(RequestCooked)() m
P rossed(F 1)) (oM CLASSES)
SpecificHelp(tppic)() -G etHelp(topic)()
ShowSpecificHelp(help)()
iCancel(request)()
C onsum ption
(from CLASSES)
ICod-consumption
3 Description

Books manager

(from CLASSES) ’//

G etRestaurants(list)()
Get(restaurant, date, hour, kind)()

iConsumtionName(name)()
LastCodeConsumption()()

Figure C.48 Class diagram for the first application with Context Sensitive Help mechanism

IST - 2001 — 32298 Page 98 of 98
© STATUS Consortium 2002. CONFIDENTIAL

’) . Interface

: User Sensitive-help

STATUS D.3.4. v.1.0 Techniques, patterns and styles

'SpecificHelp(topic)| \
GetHelp(topic) |

ShowSpecificHelp(help)

Figure C.49 Sequence diagram for the first application with Context Sensitive Help mechanism

STEP 3. Abstraction of the design solution for Context Sensitive Help

= Solution:

o Diagram:

Interface

31

= Interface: it warns the sensitive-helper through (1) that the cursor is on top of the
element specified in (2). Additionally, it will display the help information it
receives from Sensitive-helper (3).

o Participants:

= Sensitive-helper: it identifies the help associated with a given element. This
component receives the signal (1), which alerts it to the need to show help about
the specified element through (2), from the interface. If the help is not stored
internally in this component, this help will be provided by another part of the
system through the information flow from System (4). When it has the help data,
it informs the interface through (4).

IST — 2001 — 32298 Page 99 of 99
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= System: this component is optional and represents a part of the system in which
the help will be stored if the Sensitive-helper is not capable of storing it internally.
In this case, System will provide the help to the Sensitive-helper through (4).

C.16 Wizard First Iteration

STEP 1. Design solution without Wizard

In this case, the interaction diagram does not exist in the original version of the system without the

corresponding usability pattern.

Restaurant Inierface
(trom CLASSES) (from CLASSES)
Name : String it t
B s Request oo
G etName(Name)() (from CLASSES) :—\Liri':?ég‘jest()()
VailableT ables (date, hour, kind)() rour & input.CodConsum ption(code)()
sfafus &Display(list of consumptions)()
DuplicateConsumption()()
SHelp()()
Winit-request() 45G et-help(help)()
P ¥ G et-help(tour) ()
g“K(quuesm SNewBook()()
Spinit- ShowList(list)()
"}“"'req“s:()() 4G et(restaurant, data, hour,kind)()
Book jj‘:::j:::ﬁ;t;g showList (lst)()
‘ (Fom CLASSES) IntCodC) Scormectingsyten(o
¥ 0 GPressed(F 1
ClientName(client)() :!\(rz(:)nce(pnce)() 4 orb?(s)s()e 1o
Check(date, h X &5 pecifi i
G;(tir(nes-in-wo:;&())() G etPrice(price)() 1.§ﬁ§3§°§§!ﬁgﬁ§°mﬂ\)0
LastRequestConsumtions()() 4,Cancel([:eques|)(;7 P
Table

(from CLASSES)

Status : String

Number-person : Integer

Smoker/Non Smoker : Boolean

Place : XY
Code : Integer

ChangeState()

HChangeState()

C!)0

BLookF orAvailable(kind, data, hour)()
BLastRequestConsumptions()()

4
4
&5ChangeState()()
4
4

Books manager
(from CLASSES)

G etRestaurants(ist)()
G et(restaurant, date, hour, kind)()

i

Request-line
(from CLASSES)

§iCreateLine(code)()
#Read(consumption)()
BConsumtionPrice(price)()
#LineName(name)()
3G etPrice(price)()

Consumption
(from CLASSES)

(Cod-consumption
Description
Price

§

Check-Stock()

ConsumtionName(name)()
LastCodeConsumption()()

sy stem-function
(from CLASSES)

Daw nloadFu nctions(furc ion)()
Ee cute(F urc on)(

Shortcut
(from CLASSES)

BV alidate(F 1)()

G etF i ction furc o))
%pCreateShortCut(F 2, CreateRequest)()
&YCreated()

Key
(from CLASSES)

Code
O rder

G etF unction(F unction()

| FBReturnF unction(F 1)()
Create(F2, CreateRequest)()

Figure C.50 Class diagram for the first application without Wizard mechanism

STEP 2. Design solution with Wizard

Requirement: the waiter creates a rapid access for the functionality “Create new order” by pressing F2.

IST — 2001 — 32298 Page 100 of 100

© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface
(from CLAS SES)

Restaurant

from CLASSES;
me : String

ddress : String Request Init-request()
(from CLASSES) Init-request()()
iUndo()()

Init-request()()
Input-CodConsumption(code)()
Display (list of consumptions)()
Init-request() D uplicateConsumption()() - -
Input-CodConsum ption() Help()() W aiter-device
Book 0K () Get-help(help)() (from CLASSES)
from CLASSES: init-request() Get-help(tour)()
] 0 NewBook()()

iC onsum ption-In-Table-x()

etName(Name)()
v ailableTables (date, hour, kind)()

ClientN lient)() Init-req) ShowList(list)() iSendOutVoice(listronsum ptions)()
iCheck(date, hour)() Init-request()() Get(restaurant, data, hour kind)() CreateShortcutW jzard()
iGet(times-in-week)() InitC odC onsum ption(code)() iShowList(list)() iGetF unction(IntrgF ucntionName)()

IRequestConsumtions()() iConnectingSy stem ()() iGetF Unction(IntfoKey s)()
Bill()() Enable(RequestCooked)() iCreated()
iN e w-price(price)() iPressed(F1)()
GetPrice(price)() 0K () i
iLastRequestConsumtions. S | ificHelp(t; .
q 00 pecificHelp(tppic)() wizard-manager
iShowSpecificH elp(help)()
Table (fr CIASSES)
Cancel(request)() {fiom J

(from CLASSES)
istatus : Sting
FNumber-person : Integer
EHs moker/N on Smoker : Boolean
EHpiace : xy

&Hcode : Integer

R .Crea(sshor(cm()

Requestline
(from CLASSES)

CreateLine(code)() Wizard
reateLine(code
h
zh“gi:a:e(; Read(consum ption)() (from CLASSE'S)
Ch::gss.:‘j()“ ConsumtionPrice price)()

LineName(name)() ssist()
Chang eState()() iGetFunction(IntroF unctionName)()

IGetP
LookF orAv ailable(kind, data, hour)() etPrice(price))

LastRe que stCon sumptions()()

FunctionName(Greate Request)()

Consumption
(from CLASSES)
od-consumpton

Shortcut

(from CLASSES)

Des cription alldate(F1))
Price GetF unction(function)()
Books manager hook StoekD) CreateS hortCut(F2, CreateRequest)()
(fom CLASSES) X Created()
0 wizard-system-function
etRestaurants(list)() onsumtionNam e(name)y
L as tCo de Consump tion ()() (from GLASSES)
et(restaurant, date, hour, kind)()
Key ENextFunction()
(rom CLASSES))
.NexlFuncuon()

ReturnFunction(F1)()
GetF unction(F unction()

system-function Create(F2, CreateRequest)()

(Fom CLASSES)

iD ownloadF unctions (function)()
JExecute(Function)()

Figure C.51 Class diagram for the first application with Wizard mechanism

IST - 2001 — 32298 Page 101 of 101
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4.v.1.0 Techniques, patterns and styles
E% o = : Wizard = : Shortcut : Key
i . W aiter-device wizard-m anager wizard-s ys tem-function
: Waiter ——
Cr]eateShortcutWizard‘() ‘ ‘ ‘
CreateShortCut() | Assist() ‘ ‘

NextFunction()

=

GetFunction(IntroFunctionNjame)
GetFunction(IntrgFucntionName)

FundtjonNam e(Create Réquest) NextFunction ()
‘ ‘ extFunction

GetFunction(IntroKeys

\
GetFUnctio‘n(IntroKeys)
l
KeyName(F 2) ‘

NextFunction()

|

\

\
End() J
2,

\

\

CreateShortCut(F2, CreateRequest)

‘ Creat>(F2,CreateReq‘uest)

|
|
|
|
‘ Created()
\ OK‘()
CreaFed()
| |
| |
| |
\ \

T
|
r
\
|
|
|
|
|
|
|
Iy
|
|
\

Figure C.52 Sequence diagram for the first application with Wizard mechanism

STEP 3. Abstraction of the design solution for Wizard

= Solution:

o Diagram:

1 i - 4
(Interface]—>[Wizard-Executor H System A

3

A

5 i 6
\ 4 :

[Interface]

System B

o Participants:

= Interface: it sends the functionality to be assisted (1) to Wizard-executor.
Additionally, for every step in wizard execution for which the user needs to enter
information or make a decision, System A sends this notification to the interface
through (5). Once the interface has the required information, it sends it to System
A through (6).

IST - 2001 — 32298 Page 102 of 102
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Wizard-executor: it receives the request to execute a given wizard (1) from the
interface. The information related to the wizard can be stored in the Wizard-
executor or another system component. If Wizard-executor does not store the
different steps of the wizard internally, it consults System B through (2), and,
receives the information on the function to be executed to perform the different
steps of the wizard from System B through (3). For each step to be taken, Wizard-
executor asks the System to execute the functionality associated with each step
through (4).

SystemA: it represents the part of the system that executes each step of the
wizard. It receives the different functions to be executed from the Wizard-
executor through (4) and, if user intervention is required, System A will inform
the interface through (5) and will receive the information entered by the user
through the interface by means of (6).

SystemB: This module is optional and will only be necessary if the Wizard-
executor does not store the steps for each wizard that can be executed in the
system internally. It receives the request for the name of the next step in wizard
execution from the wizard-executor (2) and returns the information on the name
of the function to be executed through (3).

C.17 Cancel First Iteration

STEP 1. Design solution without Cancel

IST - 2001 — 32298

Page 103 of 103

© STATUS Consortium 2002. CONFIDENTIAL

/éal:us

Software architecturs that supports usabity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)

Request

Book (from CLASSES)

(from CLASSES)

Name : String
ddress : String

| FBG etName(Name)()

Hour
Date
RClientName(client)() Status

‘glffﬁ(da'e' h”“rﬂ())() i nit-request()

Lnput-CodCq)

OK()
Binit-request()

Init-request()()
Init-request()()
Init-request()()

3 nitCodConsumption(code)()
¥RequestConsumtions ()()

uAvailableT ables(date, hour, khd)()
Table

R
(from CLASSES)

Bill()()
Ne w-price(pre e)()
BG etPrice(price))

s s s P P

Status : String
Number-person : Integer
{Esmoker/Non Smoker : Boolean
Place : XY

Code : Integer

@ ChangeState()
@ChangeState()
ChangeState()()

angeStatel
SYLookF orAvailable(kind, data, hour)()

/

Request-line
(from CLASSES)

Feedbacker
(from CLASSES)

Books manager
(from CLASSES)

Create Line(code))

SRead(consumption)()

BConsumtionPrice(price)()
Lin eName(name))

#5G etRestaurants(list)()
RBG et(restaurant, date, hour, kind)()

G etPrice(price)()

Consumption
(from CLASSES)

G eedback(checking-resource)()
F cedback(request-acepted)()

Cod
Description
Price

iCheck-Stock
Soegiostock

ConsumtionName(name)()

B LastCodeConsumption()() Ingredient

(fom QL ASS £5)

Q\ n—
/ Minimun-Stock
Real-Stock

/ Wcheck())

/

Recipe

fom @ ASS ES)

mount
Name

Alert-Manager

(fom CLASSES)

®Check-Ingredient()
$OK()

Figure C.53 Class diagram for the first application without Cancel mechanism

N

‘ :Request‘ ‘ : Table ‘ ‘ :Requestline H :Consumption ‘ ‘ : Alert-Manager ‘ ‘ . Feedbacker ‘

: Waiter .
—Hﬁlt-request() |changestate()

Input-CodConsumption(code)
1

: \

Check-Stock(co?e) ‘

Check-Ingredient() ‘

[
Answer("Wait Please Cheking R ")
,

Feedback(checkmgrresource)

OK()

‘ OK() ‘

Createl‘_ine(code)

|
| g

Feedback(request—Jcemed)

‘ Answer(”ILtroduce Next Input") ‘

Figure C.54 Sequence diagram for the first application without Cancel mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFI

DENTIAL

Page 104 of 104

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 2. Design solution with Cancel

Requirement: The waiter can cancel an order even if it has not be sent to the kitchen.

Interface
Restaurant Book
from CLASSES
(from CLASSES) (om CLASSES) Request d)
(rom CLASSES)
Name : Qing init-request()
ddress :String ClientName(client)() Hour nit-request()()
Check (date, hour)() Date ndo()0)
ll(jetName(Name)() Get(imes-in-week)() tatus nit-request))
vailableTables (date, hour, kind)() ereeent) nput CodCons umpton(cods)() po—
oot adCansumpton() Dis play (istofconsumptions ()
K0 DuplicateConsumption()() (rom CLASSES)
init-reques () —| . L0
nit-request()() e ahek)() Bcancelnn
it request)() Gethelp(tour)()
N N ewBook ()()
init-requesi()()
‘WOMTCEE’:SES initCodConsumption(code)() ALY
RequestConsumtons ()() Get(restaurant data, hour kind)()
Status :String 100 ShowLis (lis)()
Number-person :integer " ConnectingSystem()()
smokerNon Smoker :Boolean NZ:';:C;‘C(E(”"C':;:() Enable(RequesCooked)()
Place :XY P Pressed(F1)()
Code :Integer OK()() i
SpecificHelp(tppic)() listerer
ChangeState() show SpecificHelp(help)() (rom CLASSES)
ChangeState() Cancel(request)()
Changestate()() init-request()()
[ChangeState()() Add("CreateLine(code)")()
Look ForAvailable (kind, data,hour)() Und 00 0

/c Lon Dounlca ded(action) (
Cancel(request)()
Req uestCreated e ques §)

Request-line Feedbacker
(omQ ASSE S) (rom CLASSES)
I
F eedb ack(che cking res our ce) ()

Bodcks manager reateLine(code)() "
(from CLASSES) Read(consumption)() F eedb ack (e ques t acep & d)() action-done
onsumionPrice price)()
(rom CLASSES)
eRestaurants (list)() LineName(name)()
el(restaurant,date, hour,kind)() < etPrice(price)()

dd("CreateLine(code)")()
(fom CLASSES) Dounload(action)()
RequesiCreated(request)()

Cod-consumption
Description

Check-Stock()
oK()

onsumtonnamstoame)y |
LastCodeConsumption()()

system-action
(from CLASSES)

Ingredient

(fom CLASSES)

2

=

S Roal-stock
Check()()
skFor(ingredien)()

SearchContrary (action)()
Execute(contrary-action,action)()
TakeContrary(contrary-action)()

X is-theopss te-o
Recipe

(iom CLASSES)

Alert-Manager

(iom CLASSES)

heck-Ingredient()
KO

Figure C.55 Class diagram for the first application with Cancel mechanism

IST - 2001 — 32298 Page 105 of 105
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

]
B B
f-— - — — — — — — —
H i
— 2
bl
H 3
f————— o P
L N
I 5
2
o o
: |l - — — S S
]
T -
2 z .
H 3
= -~ L
= !
| n
g 5
g S — 5 — |4 - .
B 5
B E
F
| z
I)
y | -+ - .
z i z
- [= -
= o
—] - H
o £ ® i
3 i & 2
F — =k — — — 5 T 5 - — — —
3 = .
F i .
= 4 £ ° 5
i & i £
i — 5 , . - .
= u =
L i u
= 3
_ = H
£ z £
" = [N
: F
- i e e e T
?’? = 5 _H,
- = H
— i H H
[£ 2
i £ £
e | -8 1 G\ 4+< __________ _@ S —
H i F
& j : 5 i
g g g i
| | E H g
— = u =
¥ i 5 £
Z z - H
s _i‘____! __g_____ —_— T — 8 —_—
- T n
L s H £ £ 3
i H i ! d
L H g :
a 3 | 2 n
5] E H [] b4
I I . - - S R (S a4 = & 5 .
.=": 3 = +
y
L1 H
; h
S I S AN DR I N
z x
£ E
u
H
g
5
-
— - . —
H
§ 5
& I
o|-<g~L —

Figure C.56 Sequence diagram for the first application with Cancel mechanism

STEP 3. Abstraction of the design solution for Cancel

= Solution:

o Diagram:

IST — 2001 — 32298 Page 106 of 106
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Cancel]
System A Logger T
: 7 :
T ____________ A :.-": [Interface B J
10 11 1y
| 4 14
[System B] ‘ System B]

o Participants:

InterfaceA: it receives the request to execute an operation in the system, which
may contain both the operation and the data (1) (2). As we will see later, this
execution request can also come from the system (3) (4).

SystemA: this module sends the functions and data to be executed in the system
(3) (4) to the logger, and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged actions and
data either internally or in another part of the system, in which case it will have to
send this action and the data to be processed by the respective part of the system
to the system (5) (6). Logger receives the cancel request (9) from Canceler, then,
if the logged actions are stored internally, it sends them one by one to Canceler in
(8), provided that the all the operations stored by the logger have been performed.
If the operations have only be stored but not executed, then nothing is sent in (8)
and if they are stored externally, all the logger will have to do is receive them in
(10) and (11) and delete them. If they are not stored internally, it will receive both
the data and the operation to be cancelled from another part of the system, which
we have called System B, by means of (11) and (10), respectively.

Interface B: it receives the cancel request and sends it to Canceler in (7).
Additionally, it will search the system for both the action performed and the data
associated with this operation (10) (11), provided that the logger does not store the
data internally.

System B: it searches the system for both the action performed and the data
associated with this operation (10) (11), unless the logger stores the data
internally. It receives the actions to be undone. It receives the actions to be undone
(13) and provides the opposite action (12) (for which purpose, it will have to store
the opposite for each action, see implementation section for example). The
opposite action and the respective data will be sent to the respective part of the
system (15) and (14) for execution.

Canceler: it sends the cancel request (9) to logger and also sends each of the
actions to be undone that it receives from logger to System B (13) and receives
the opposite operation to the one performed (13) from system B. When it knows
what opposite operation to be performed is, it sends it to System B along with the
data associated with this operation through (14) and (15). Alternatively, if all the
operations are stored in the system and performed together when the user presses
accept, then Canceler will simply read through (10) and (11) and delete the
accumulated operations, in which case (14) and (15) will not be used at all.

IST - 2001 — 32298

Page 107 of 107

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.18 Multi-tasking First Iteration

STEP 1. Design solution without Multi-tasking

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Restaurant
(from CLASSES) Book Request
Name : String (Fom CLASSES) (from CLASSES)
ddress : String =D at
{EHDate
(G5Hour
GetName(Name)() =S Name
=
v ailableTables(date, hour, kind)() o
IClientName(client)() Init-request()
iCheck(date, hour)() Input-CodConsumption()
iGet(times-in-week)() OK()
iCheckBook() init-requesti

Table GetStatus(status)()

(from CLASSES)
Stalus : String
ENumber-person : Integer
{z#Smoker/Non Smoker : Boolean
[z#jPlace : XY

Code : Integer

Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()
iGetPrice(price)()
LastRequestConsumtions()()

0
Init-request()()

0

)

iChangeState()

iChangeState()

iChangeState ()()

iChangeState ()()

LookForAvailable (kind, data, hour)()
LastRequestConsum ptions ()()
Statu s()

Request-line
(from CLASSES)

Feedbacker
(from CLASSES)

Books manager
(from CLASSES)

CreateLine(code)()
Read(consumption)() -
ConsumtionPrice(price)() IFeedback(checkmg—resource)()

G etRes taurants(list)() LineName(name)() Feedback(request-acepted)()
G et(re staurant, date, hour, kind)() GetPrice(price)()
Check(books)()

Consumption Ingredient
(from CLASSES) e
(from CLASSES)
E%C o d-cons umption (sFName

Alert-Manager
(from CLASSES)

Description
=4 Price

s+Minimun-Stock
(53R eal-Stock I

Check()() Check-Ingredient()
skFor(ingredient)() OK()

iCheck-Stoc k()
OK() \
iConsumtionName(name)()

Las tCode Consumption()() \

Recipe

(from CLASSES)

EBAmount

E¥Name

[

Figure C.57 Class diagram for the first application without Multi-tasking mechanism

STEP 2. Design solution with Multi-tasking

Requirement: the clock advises that any reservations made should be cancelled 20 minutes after
reservation time if the diners have not arrived.

IST - 2001 — 32298 Page 108 of 108
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant Book
(from CLASSES)

Name : String
ddress : String

(from CLASSES) Request
(fom CLASSES)

I(zetNam e(Name)() EStatus
vailableTables(date, hour, kind)() ClientName(client)()
Check(date, hour)() Init-reques ()
Get(times-in-week)() Input-CodConsumption()
iCheckBook() OK()
GetStatus (status)() init-reques ()
Init-reques t()()
Init-reques t()()
Table Init-reques 1()()
(from CLASSES) InitCodConsum ption(cod e)()

(SHStatus : String RequestConsumtions()()
s»sNumber-person : Integer Bill()()

(ZHSmoker/Non Smoker : Boolean N ew -price(price)()

[z#Place : XY GetPrice(price)()

Code :Integer LastRequestConsum tions ()()

iChangeState()

iChangeState()

iChangeState() (|
[®ichangesState()
[SiLookForAvailable(kind, data, hour)()
-LastRequest onsum ptions()()

[Sistatus()
Requestdine
(from CLASSES)
/ Feedbacker
from CLASSES
Books mfnager CreateLine(code)() (from)
(from CL/ SSES) Read(consum ption)()
ConsumtionPrice(price)()

IFeedback (checking-resource)()

/
[¥GetRestaurants (list)() LineName(name)() Feedback(request-acepted)()

Get(restaurant date, hour, kind)() GetPrice(price)()
Check(books)()

Consumption
Dispatcher (from CLASSES)
(from CLASSES) @3Cod-consumption

Ingredient
(from CLASSES)

Alert-Manager

EsMinim un-Stock

[®check(books)() ighPrice > BfReal-Stock || temciasses)
®iCheck-Stock() Check()() [@iCheck-Ingredient()
[oxo kFor(ingredient)() oK

[®iConsumtionName(name)()
[®iLastCodeConsumption()()

Recipe
(from CLASSES)

Figure C.58 Class diagram for the first application with Multi-tasking mechanism

IST - 2001 — 32298 Page 109 of 109
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

: Dispatcher : Books : Book : Table
: Clock manager

| | | | |
 Check(books) e ck(books) | | |
CheckBook() | |

|
Status() 1
GetStatus(status

Figure C.59 Sequence diagram for the first application with Multi-tasking mechanism

STEP 3. Abstraction of the design solution for Multi-tasking

= Solution:

o Diagram:

[Interface]

1

[Dispatcher l

0
o

»
a
/
[\O]
<0

[Interface]

o Participants:

= Interface: it sends the function to be executed to dispatcher in (1). Additionally, if
the user is to be informed of anything that is happening, he receives information
from the dispatcher in (5).

= Dispatcher: this component knows what resources are needed for each function
that it has to execute in the system. It receives the function to be executed from
the interface in (1). It sends the function to be executed to the system component
in question in (2) after having checked that all the resources required to execute

IST - 2001 — 32298 Page 110 of 110
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

this function exist. Additionally, it receives the result of performing this operation
from the system in (3). This result may specify either error or OK if everything
went according to plan. If user has to be informed of the result of the operation
performed, it sends this information to the interface (4).

= System: this component refers to the part of the system responsible for executing
the function specified by dispatcher in (3).

C.19 Command Aggregation First Iteration

STEP 1. Design solution without Command Aggregation

In this case, the interaction diagram does not appear because the “macros” functionality is new.

Book
(from CLASSES)
Date Request
(f:::séf::s':s) %Hour (from CqLASSES)
Name
Name : String '%g;):; Request-line
[EAddress : String WcClientName(client)() Eystatus (from CLASSES)
WCheck(date, hour)()
MGetName(Name)() VGet(times-in-week)() Winit-request() WCreateLine(code)()
SAvailableTables(date, hour, kind)() SCheckBook() %Input-CodConsum ption() k>—1| ®Read(consum ption)()
WGetStatus (status)() $oK() @ConsumtionPrice(price)()
(@InitCodConsum ption (cod e)() $LineName(name)()
\ WRequestConsumtions()() WYGetPrice(price)()
LBill()()
WNew-price(price)()
Table WGetPrice(price)()
(from CLASSES) WL astRequestConsumtions()()
Estatus : String

%Num ber-person : Integer
Smoker/Non Smoker: Boolean

&Place : XY

[@3Code : Integer

WChangeState()()
LookForAvailable(kind, data, hour)()
$lLastRequestConsumptions()()

Consumption
(from CLASSES)

WStatus
" Cod-consumption
Books manager %Dgscription
(from CLASSES) E5Price

WCheck-Stock()

oK ()
WConsumtionName(name)()
WLastCodeConsumption()()

WGetRestaurants (list)()
WGet(restaurant, date, hour, kind)()
WCheck(books)()

Figure C.60 Class diagram for the first application without Command Aggregation mechanism

STEP 2. Design solution with Command Aggregation

Requirement: the system must have the capability to create macros, for instance, to create a macro that
would permit a maitre d’hotel to change the permitted period for arrival at the restaurant before the
booking time, taking into account the number of bookings for each day.

In the next example is represented the creation of a macro.

IST - 2001 — 32298 Page 111 of 111
© STATUS Consortium 2002. CONFIDENTIAL

Software architecturs that supports usabity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)

Name : String
ddress : String

Book
(from CLASSES)

ClientName(client)()
iC heck(date, hour)()
Get(times-in-week)()
CheckBook()

Books manager
(from CLASSES)

Consumption

(from CLASSES)

GetRestaurants(list)()
Get(restaurant, date, hour, kind)()
Check(books)()

Cod-consum ption

GetName(Name)()
vailableTables(date, hour, kind)()

GetStatus status)()

ConsumtionName(name)()
LastC odeConsum ption()()

Request-line

editor
(from CLASSES)

(from CLASSES)

CreateLine(code)()

Interface

(from CLASSES)

CreateCommand(command-name, program-code)()
ommand-created()

Read(consum ption)()
ConsumtionPrice(price)()
LineName(name)()
GetPrice(price)()

Table
(from CLASSES)
{E¥Status : String

&N umber-person : Integer
Smoker/Non Smoker : Boolean
& Place : XY

command
(from CLASSES)

(EC ode : Integer

[®storeCommand(command-name, program-code)()

¥
LookF orAvailable(kind, data, hour)()
LastR equestC onsumptions()()
Status()

Request
(from CLASSES)
Hour
Date
riStatus

Init-request()

Input-CodC onsum ption()
OK()

InitC odC onsum ption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()
GetPrice(price)()
LastRequestConsumtions()()

Figure C.61 Class diagram for the first application with Command Aggregation mechanism

: Inte rface

: Maitre

: editor

: command

Newdommand(command—name, program—c‘ode) ‘

~y
| CreateCﬂmmand(oommand—name, progAam—

\
code) ‘

StoreC?mmand(command—name, progra\‘m—code)

Command-created()

‘ ‘ Command-created() '
| < |
| | |
| | |

Figure C.62 Sequence diagram for the first application with Command Aggregation mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 112 of 112

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Command Aggregation

= Solution:

o Diagram:

» Code-Executer }A 4

o Participants:

Interface: it sends a data set (1) corresponding to a given command, as well as the
program code associated with the command to be created, to Code-Editor.
Additionally, if a command is to be executed, it sends the name of the previously
created command (3) to the Code-executer. When the command has been
executed, it will receive the result of the command or error, if it cannot be
executed, (5) from Code-Executer.

Code-Editor: it receives the name of the command to be created and the program
code to be associated with the command (1) from the interface, which it sends to
system for storage (2).

Code-Executer: it receives a previously created command (3) from the interface. It
asks the system for the program code to be executed (4) and executes this code.
Also it sends the result of executing this command to the interface through (5).

System: it receives the name of the command as well as the associated program
code (3). It also sends the program code associated with a command to the Code-
executer when it is requested for execution (4).

C.20 Actions for Multiple Objects First Iteration

STEP 1. Design solution without Actions for Multiple Objects

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST - 2001 — 32298

Page 113 of 113

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Restaurant
(from CLASSES) Request
Name : String q
ddress : String (from CLASSES)
i3 Hour
G etName(Name)() Book 4. Date
vaiateTabes dae, hou, knd)) (fom CLASSES) S(a(us
Init-request()
ClientName(client)() Input-CodC ion)
ICv hour)() OK()
G et(times-in-week)(

) init-request()

I nit-request()()

I nit-request()()
Init-request()()

I nitCodConsum ption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()

iG etPrice(price)()
Table
(ffom CLASSES)
Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer
ChangeState()
iChangeState()
C)0
(ChangeState()()
iLookF orAvailable(kind, data, hour)()
Request-line
(from CLASSES)
Feedbacker
Cre ateline(c ad e)) (from CLASSES)
Books manager Readcmsumpton)
(from CLASSES) o Rl b riog{price)() F eedback(checking-resource)()
GetPice prce)) F eedback (request-acepted)()
G etRestaurants(list)()
Get(restaurant, date, hour, kind)()

Consumption Ingredient

(from CLASSES) o nsses
Cod-consum ption o (fom)
Description sr{Name
i Minimun-Stock Alert-Manager

Real-Stock fom CLASSES)
iCheck-Stock() [
OKO Check()()
ConsumtionName(name)() Check-Ingredient()
LastCodeConsumption()() \ OK()
Recipe

(fom CLASSES)
EFAmount
¥ ,Name

Figure C.63 Class diagram for the first application without Actions for Multiple Objects mechanism

STEP 2. Design solution with Actions for Multiple Objects

Requirement: the cook selects several ingredients and requests restocking.

IST - 2001 — 32298 Page 114 of 114
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

“oltware aehitectre that supports sabity
Restaurant Book
(from CLASSES) (o mCLASSES)

Name : String
ddress : String

G etName(Name)
vailableT ables date.

ClientName(client)()
Check(date, hour)()
G et (times-in-week)()

Table
(from CLASSES)

[EStatus : String
f&3Number-person : Integer
,Smoker/Non Smoker : Boolean
Place : XY

Code : Integer

ChangeState()
ChangeState()
iC| ()

Request

Init-request()()
Init-request()()

(from CLASSES)

ChangeState()()
LookF orAvailable(kind, data, hour)()

Books manager
(from CLASSES)

Bill()()
New-price(price)()
G etPrice(price) ()

RequestConsumtions()()

Request-line
(from_QLASSES)

CreateLine(code)()
Read(consumption)()
,Cors umtionPice(prc e)()
LineName(name)()

G etRestaurants(list)()
Get(restaurant, date, hour, Kind)()

Figure C.64 Class diagram for the first application with Actions for Multiple Objects mechanism

Consumption
(from CLASSES)

G etPrice(price)()

(Cod-consumption
Description
Price

Check-Stock()

ConsumtionName(name)()
LastCodeConsumption()()

Ingredient
(from CLAS SES)

ame
Minimun-Stock
Real-Stock

/
/

reck()()

(from CLASSES)

Recipe

Function-Manager
(from CLASSES)

.AskFor(hsz-o'-mgrememm

Feedbacker
(from CLASSES)

F eedback checking-resource)()
F eedback(request-acepted)()

Alert-Manager
(from CLASSES)

(Check-Ingredient()
OK()

Selector-manager
(from CLASSES)

skFor(ingre dierte s)()
i ngredients (list-of-ingredients ()

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 115 of 115

STATUS D.3.4. v.1.0 Techniques, patterns and styles

o o : Ingredient
- Cook Selector-manager Function-Manager
AskFor(ingredientesb | |
1 1 ‘ ‘
Selectingredients(| |
| |
Ingredients(list-of-ingre dients) | |
AskFor(Iist-of—ingredient‘g)
LAskFor(ingredient) \
For each |
ingredientin |
the list \
|
|
|
|
\

- — — A

Figure C.65 Sequence diagram for the first application with Actions for Multiple Objects mechanism

STEP 3. Abstraction of the design solution for Actions for Multiple Objects

= Solution:

o Diagram:

[Interface] ! ’[Selector-Manager }

)
v

3 .
[Interface J 4’[Function-Manager

5 4
v
System

: 6
v

[Interface]

o Participants:

IST - 2001 — 32298 Page 116 of 116
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface: it sends the set of objects selected by the user from the interface to
Selector-manager in (1). Additionally, it sends the function to be executed in (3).
If, after the requested operation has been executed, the user is to be informed of
the result of the operation, the respective data are sent to the interface in (6).

Selector-manager: this component receives the set of elements on which to
operate in (1). Additionally, it sends the set of objects on which the system is to
operate to function-manager in (2).

Function-manager: it receives the operation to be executed in (3) and receives the
set of objects on which the system is to operate in (2).

System: it receives the function to be executed (4) and the list of objects on which
the specified function is to be executed in (5). Additionally, it sends the result of
the executed function to the interface in (6).

IST - 2001 — 32298

Page 117 of 117

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX D: PHASE 1 SECOND ITERATION: THE AMUSEMENT PARK SYSTEM
CoONTROL CASE

D.1 Reusing Information Second Iteration

STEP 1. Design models without Reusing Information

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Ertry-umstile Exit-turnstile
(rom Logical View) (from Logical View)
[omberotPersans [E5NumberOfPeople
RedColor() ggzgg
reenColor() Srose0) ople-di "
mberColor() eck-people-disappeared()
R Breakdown
Start-device
from Logical View (from Logical View)
— ! =Dt e
Fairground-mechanism echansm
ame

-SlarlMechamsm()

\ (from Logical View)
ERINumberBreakdownsNotRepaired NoteBreackdown()
Bdaress

NoteNewBreakdown()
NoteBreakdownRepaired()

Stop-device
op]

(from Logical View)

Breakdown-manager
(from Logical View)

Look-for-operative-free()
Status free)()

BreakdownRepaired(data, name)()

.s topMech anism()

W heel

Roller Coaster

(from Logical View)

. NumMaxSeals

Visitors-Manager T

(from Logical View) Vehide
Car

(from Logical View)

Operative-device
(from Logical View)

[E310 perative-name
{50 perative-code
{50 perative-status
(E/Number-O f-Mechanisms-repaired

= hicle-cod (from Logical View)

easureUntty| easurePressure|

Indicate-O perative-busy()
Indicate-Mechanism-repaired()
Cl)

Visitor
(from Logical View)
Name
EAQG ViglanceCane ra Loudspeaker
(rom Logical View) (rom Logical View)

Figure D.1 Class diagram for the second application without Reusing Information mechanism

STEP 2. Design models with Reusing Information

Requirement: a father is entering the description of one of his sons as a park visitor and wants to copy
the son’s description because he has twins.

IST - 2001 — 32298 Page 118 of 118
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

E nir y- turnstie

(from Logical View)

@Num berOfPersons

‘
S4RedColor()
€3G reenColor()
“@AmberColor()

Start-device

(from Logical View)

Exit-turnstile

(trom L aical V ew)

BNumberOfPeople

&

30 pen()

§Close()
§Check-people-disappeared()

Breakdown

(from Logical View)

StartMechanism()

F airground-mechanism

(from Logical View)

Stop-device

(from Logical View)

RStopMechanism ()

%Num berBreakdownsNotRepaired
&
DI

Address

)

NoteBreakdownRepaired()

// BN oteBreackdown()

Date
Mechanism
name

Breakdown-manager
(from Logical View)

[—
W heel A

(from Logical View) Roller Coaster

EENumMaxS eats (rom Logical V iew)

WETO) |

%Num MaxSeats

L ook-for-operative-free()
ystatus(free)()
BreakdownRepaired(data, name)()

Visitors-Manager

(fom Lagi l V o)

|

Vehicle
RData-to-be-Loaded(data)()
@Copy (data)() (rom Logical View) ot
[V ehicle-code
BHCarcoe
/ % oty () His
Visitor
(rom Logical View)
Name
ge
| L oad @t atn ViglanceCamera
Dunitled) (fom Logical View)
reuser
(rom Logical View)
Wy @aa))

Operative-device
(from Logical View)

O perative-name
O perative-code
O perative-status

Number-O f-Mechanisms-repaired

&I ndicate-O perative-busy()
,Indlcate»M echanism-repaired()
e ¥

Loudspeaker

(rom Logical View)

Data-to-be-reused

(fom Logical View)

Rstore (data)()

Figure D.2 Class diagram for the second application with Reusing Information mechanism

:User
D?ta-to-b e-Load ed(dat‘a)

Visitors-Manager

: Visitor

. reuser -
Data-to-be-reused

Copy (data)
It

Load(data)

~T

Copy (qlata)

| Store (data) |

E
|

Figure D.3 Sequence diagram for the second application with Reusing Information mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 119 of 119

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Reusing Information

There are no modifications to the above generalisation presented in the first iteration.

D.2 Standard Help Second Iteration

STEP 2. Design solution without Standard Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Ertry-umsile Exit-turnstile
(rom Logical View) (rom Logical View)
l%Numberomersons [E3NumberOPeople
i PeopleCounterty |
jPeopeCouNteTt |
RedColor() 8@:28
G reenColor()
mberColor() Check-people-disappeared()

. Breakdown
Start device
(from Logical View)
(from LogicalView) Date
- Me chans m
—SwT— Fairground-mechanism %mm o

(from Logical View)
NumberBre akdownsNdt Repat ed @§iNote Breac kd own ()
Addess 1
-

Stop-device | S3NoteBrea kdown Repa red()

(rom LogicalV iew)
W heel \

Breakdown-manager
(from Logical View)

Look-for-operative-free()
Status(free)()

@stopMechanism()

BreakdownRepaired(data, name)()
(from Logical View) Roller Coaster
l%Numrs/laxSeats (rom Logical View)
| mgerrort——————| EENumMaxSeats
Visitors-Manager
(from Logical View) Operafie-device
(from Logical View)
Data-to-be-L) o
; perative-name
Eﬁo‘p{):;ﬁata)() Vehide Car O perative-code
elp Operative-status
(rom Logical View) p
G et-Help(help)() . (from Logical View) Number-O f-Mechanisms-repaired
[E5Vehicte-code Car-code
‘% Indicate-O perative-busy()
RyMeasureUny () QteasurePressura———| Indicate-| Mechamsm repaired()

[

Visitor

(from Logical View)
Name
ge

[Poad(data)) |
Luntitled() (from Logical View)

Vigil C:
iglanceCame ra Loudspeaker

(rom Logical View)

Figure D.4 Class diagram for the second application without Standard Help mechanism

STEP 2. Design solution with Standard Help

Requirement: The user wants to enter his/her particulars in the visitor terminal and asks the system for
help on terminal use.

IST - 2001 — 32298 Page 120 of 120
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exit-turnstile

(from Logical View)

Entry-turnstie

(fom Logi @l View)

%Numneromrsnns ,@Nu mbe OfFe o &

@PeopleCounter()

GPeopleCounter()

RedColor() &E’Z“”
GreenCol
foreenColor() Check-people dsappeared()
AmberColor()
Breakdown
Start-device (from Logical V iew)
(rom Logical View)
Date
Fairground-mechanism Mechanism
s b M cha ism() (rom Logical View) name
NumberBreakdownsNotRepaired /// &N oteBreackdown()
Address
S p-device @EN oteNewBreakdown()
h NoteBreakdownR d
Bre &kd own-manager
&gsopMechanism() (fom Logical View)

@ ook-for-operative-free()
fstats (free)()
4gBreakdownRepaired(data,name)()

W heel

(fom Logi @l View)

BN umMaxseats

Werror() Raler Coas &1

(rom Logical View)

INumM axS eats
Visitors-Manager 1 A
(rom Logical View) Operd ive- e vice
(from Logical View)
g0 ata-to-be-Loaded(data)() Vencl Q Operative-name
&C opy (data)() ehicle Operative-code
GHein()) frnLogal Vier) Car Operative-status
fyGetHelp(help)() (fom Logical View) Number-Ot-Mechanisms-repaired
Bvorcie-code
I A — | 7%(23110(1& ‘Indmale-Dperahve-husy()
MeasureUnity() gyindicate-Mechanism-repaired()
QveasurePressure() Chockstats()
Visitor
(rom Logical View) VigilanceCamera Loudspeaker
(om ogca Vier) (rom Logical View)
Name
Age

@ oad(data)()
Quntited()

Standard-helper

(fronLogal Vier)

Rst-Help()()

Figure D.5 Class diagram for the second application with Standard Help mechanism

. Visitors-Manager . Standard-helper

:User

| Help() | |
M St-Help() |

Get-Help(help)

Figure D.6 Sequence diagram for the second application with Standard Help mechanism

IST - 2001 — 32298 Page 121 of 121
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Standard Help

There are no modifications to the above generalisation presented in the first iteration.

D.3 Tour Second Iteration

STEP 1. Design models without Tour

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Entry-turnstile Exit-turnstile
(rom Logical View)
(fom Logi i View)
BNumber0 fPersons [EjNumberO fPeople
rigPeopfeCountert [
o)
:gedcrz‘\?r‘() 0 :C‘g Z[;
reenColor
&amborcolor() Check-peopl e d sappeared()
Start-device
(from Logical View)

Breakdown

&§StartMechanism () (rom Logical View)

Date
Fair g cun & mech anis m Mechanism
name
(from Logical View)
NumberBreakdownsNotRepaired // RNoteBreackdown()
Address
St p-device
| {NoteNewBreakdown()
(from Logical View) &¥NoteBreakdownRepaired()
StopMechanism
Wstop 0 Breakdown-manager
(from Logical View)

Visitors-Manager
Lo ok- for p erati e-fr ee ()
(from Logical View) QSla(us(lree)()

B reakdownRepaired(data, name)()

@Data-to-be-Loaded(data)() Wheel Roller Coaster
$Copy (data)() (o Logial View)

Help()() NomMaxSeat o Logica View)
£G et-Help(help)() BiumMaxseats B umhiaxseats
G et-Help(tour)() Loge

Operative-device
(from Logical View)
Vehicle Car

(from Logical View)
(rom Logical View)

%Vehic\e—code %Car.code

Mteasuretmity——] b "

Operative-name
O perative-code
O perative-status

Number-Of-Mechanisms-repaired

Wi ndicate-O perative-busy()
Indicate-Mechanism-repaired
P
e Y

Visitor

(from Logical View)

Name
ge
| ILoad(data)(

Aguntitled() (fom Logical View)

VigilanceCamera Loudspeaker

(rom Logical View)

Figure D.7 Class diagram for the second iteration without Tour mechanism

STEP 2. Design models with Tour

Requirement: the user pushes Guided Help button.

IST - 2001 — 32298 Page 122 of 122
© STATUS Consortium 2002. CONFIDENTIAL

/éal:us

Software architecturs that supports usabity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Entry-turnstile

(fom Logical View)

Exit-turnstile

(fom Logical View)

%Numberoﬂ?ersons

Q)Numberofpeop\e

@reopleCounter()
4pRedColor()
&yGreenColor()

Start-device
(from Logical View)

&pAmberColor()

@gstartMec hansm()

@PeopleCounter()

Open()

Close()
LyCheck-people-disappeared()

Fairground-mechanism

(fom Logical View)

Breakdown

(from Logical View)

Date
Mechanism
 / name

Stop-device
(from Logical View)

@FStopMechanism()

NumberBreakdownsNotRepaired
Address

N oteN ewBreakdown()
N oteBreakdownRepaired()

Visitors-Manager

(fom Logical View)

#PD ata-to-be-Loaded(data)()
SpCopy (data)()

Help()()
pGet-Help(help)()
4uGet-Help(tour)()

Wheel

(from Logical View)

Roller Coaster

(fom Logical View)

%NumMaxSeats

Q}NumMaxSeas

Werror()

Visitor
(from Logical View)

Name

Age
WL oad(data)()
Suntited()

Vehicle
(rom Logical View)

@\/emc\e-node

#EMeasureUnity ()

Car

(fom Logical View)

,%c“code

@MeasurePressure()

VigilanceCamera
(from Logical View)

N oteBreackdown()

Breakdown-manager

(from Logical View)

#BLook-for-operative-free()
LpStatus (free)()
4pBreakdownRepaired(data,name)()

Openmty edevice

(fom Logical View)

Operative-name
Operative-code

Operative-status
Number-Of-Mechanisms-repaired

Pindicate-Operative-busy()
4@indicate-Mechanism-repaired()
&pCheckstatus()

Lowdspeak er
(FanLogaiView)

Guided-helper
(fom L agica View)

G uided-help()()

Figure D.8 Class diagram for the second iteration with Tour mechanism

:User

: Visitors-M anager

: Guided-helper

Help() |

Guided-help()

Get-Help(tour)

Figure D.9 Sequence diagram for the second iteration with Tour mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 123 of 123

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Tour

There are no modifications to the above generalisation presented in the first iteration.

D.4 Different Languages Second Iteration

STEP 1. Design models without Different Languages

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Entry-tumstile
Exit-turnstile

(vom Logicalview)

B mberotPersons (vomLagicalview)
BmveroPeope
jPeopeCoumtert————
RedColor() eeoprecomter—————————
AmberColor() 30000 P

lose()

iCheck-people-disappeared()
(FomLogicalview)

Date

Wechanism

NoteB reackdown()

Start-device

(rom Logical View)

89S tartMechanism () \

Fairground-mechanism

(from L g cal View)
N umberB ok o wrs NotRe pa red Breakdown-manager
%‘“ (from Logical View) Operative-device

- —_—
) SpE T %H o

ook foraperatie-ree) O rerate AT ERT v
Stop-device / B reakdownRepaired(data, name)() — Operative-code
(FomLogicalView) N d
i ndicate-O p
s optecharniam(@ indcarcvie i
®Checkstats) |

Wheel Loudspeaker
(FomLogicalview) (+omLogicalView)
Visitors Manager
N B varseats
(rom LogialView)

Data-to-be-Loaded(data)()
opy (data)()
Help()()
et-Help(help)()
et-Help(tour)()

Car
(somiogea Wiew,
Car-code
Vilancecamera &
freasurePTessret———
(romLogicalView) &
Visitor
(from Logical View)
%Name Searcher-validator
Age
(from Logical View)
8§ oad(data)()
&Store(name, Gentiication-number, har-color, stature)] SV aida ("name, dentfication-number, hai-cola, stature ()
Help-point-interface Validation-manager
(from Logical View) (from Logical View)
Newvistor) @ aidate(searcher, “name, identiication-number, hai-color, stature")()
jVisitorData(name, identification-number, hair-color, stature)()

Figure D.10 Class diagram for the second application with Different Languages mechanism

STEP 2. Design models with Different Languages

Requirement: the park visitor enters the details of the person he wants to register in any language, and
the system is capable of translating it to an internal exchange language so that the surveillance system
later operates identically when searching for a given subject, irrespective of the language in which the
subject details were entered.

IST - 2001 — 32298 Page 124 of 124
© STATUS Consortium 2002. CONFIDENTIAL

software architectare that supp

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Entry-turnstie
(fran Logical View)

Exit-turnstile
(fom Logical View)

%Numbevomersons

#PeopleCounter()
yRedColor()
GreenColor()
BamberColor()

Q)Numbe rOfPeop b

MEPeopleCounter ()
KOpen)
LClose()

YCheck-people-disappeare d()

Startdevice

(fom Logical View)

istartMechanism()

\

Fairground-mechanism

(rom L @ cal View)

NumberBreakdownsNotRepaired
ddress

Stop-device

/

N oteN ewBreakdown ()
LN oteBreakdownRepaired()

(fom Logical View)

Breakdown

(from Logical View)

Date
Mechanism
name

HN oteBreackdown ()

Operative-device
(from Logical View)

Breakdown-manager

(fom Logical View)

Operative-name
Operative-code

Operative-status

FLook-for-operative-free()
Lstatus (free)()

WereakdownRepaired(data,name)()

WstopMechanism()

Visitors-Manager

(rom Logical View)

Scopy (dat)()
BHel()()

WD ata-to-be-Loaded(data)()

Get-Help(help)()
LGet-Help(tour)()

W heel

(from Logical View)

%NumMaxSeais

Werror()

Vehicle

(from Logical View)

%Vemc\e-coﬂe

Number-Of-Mechanisms-repaired

Mindicate-Operative-busy/()
P

Roller Coaster
(rom Logical View)

Q)NumMaxsEa's

Loudspeaker
(rom Logical View)

m-repaired()
WCheckstatus()

Validation-manager
(from Logical View)

®validate(searcher,"name, identificaton-number, hair-color, stature”)()

Car

(from Logical View)

%Carrcode

@veasureUnity ()

VigilanceCamera

(from Logical View)

WMeasurePressure()

Visitor

(ro mLo gical iew)

Name
ge

WL oad(data)()

Qstore("name, identification-number, hair-color, stature”)()

Language-recognitor
(from Logical View)

RvisitorData(name, identification-number, hair-color, stature)()

[

Searher walicat &
(fomLogcalVew)

Rvalidate("name, identification-number, hair-color, stature”) ()

Help-point-interface
(rom Logical View)

N ew Visitor()
%VisitorData(name, identficaton-number, hair-color,stature)()

Language-translator
(from Logical View)

@ TranslateVisitorData(name, identfication-number, hair-color, stature)()

Function-dispatcher
(fom LogicalVew)

HisitorData(name, identificaton-number,hair-color, stature)()

Figure D.11 Class diagram for the second application with Different Languages mechanism

User

Help-point-interface

‘ langua

her-v alidator

‘ Visitor ‘

NewVisitor()

T

|

. identif

ber, hair color, stature) ‘

VisitorData(name, m#mmamnrnumner, hair-color, st:lme;

-number, haw*ce\or‘ stature)

VisitorData

cneoTLangMode\ev(name, \denﬂhcahonrr\uTbev, hair-color, stature) ‘

v

alidate(searcher, |n

ame, identification-number, haw—cTﬂav, stature) ‘ ‘ ‘

me, identification-number, hair-color, stature”)

‘ ‘ ‘
entific ation -number, hair-color, stature”)
|

Validate("name, i

Store("name, idefnt|fic ation-number, nawlmar, stature”)

!

Figure D.12 Sequence diagram for the second application with Different Languages mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 125 of 125

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Different Languages

There are no modifications to the above generalisation presented in the first iteration.

D.5

Different Access Methods Second Iteration

STEP 1. Design models without Different Access Methods

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Exit-turnstile
(rom Logical View)

Number0 fPeople
=2 P

y
RedColor()
G roonColor()
mberColor()

&

25O pen()

Close()
SCheck-people-disappeared()

Start-device

(rom Logical View)

startMechanism()

Stop-device
(romLogicalView)

Visitors-Manager

(rom Logicalview)

0ata-to-be-Loaded(data)()
$Copy (data)()

Shelp()()

&G ci-Help(helo)()

&G et-Help(tour)()

Fairground-mechanism

(fomLoged View)

Breakdown
(Fom Logical View)

iNoteBreackdow()

Operative-device
(fomLaged View

NumberBr aakdownsNo Repaie d
Ad dres s

iNoteNewBreakdown:
NoteBre ekdow rRe faired()

Breakdown-manager

(from Logical View)

O perativemame

O perative-cor

O perative-stat
INumber.O-Mechanisms-repaired

free)

d(data, name)()

4
e e Serksd)

NumberOBreakdows Unsettled()()
S et(data)()

Roler Coaster

(rom Logicalview)

EBNumMaxseats
Vehicle
(¥om Logical View) Car
(G ehice-code (om Logical View)
Bhcacae
ViglanceCamera ReTeas wepressural

(vom Logical View)

Visitor
(from Logical View)

5

Wioxiiaa)

Vaidaton-marnager

(from Logical View)

5V aidate(searcher, “name, entiication-number, hai-color, stature")()

Searcher-validator

(from Loy

1 View)

&store("name, ickntifica ion-number, hair-color, stature ()

v aldate("name, identification-number, hair-color, stature*)()

H dlp-point- interface
(fomLaged View)

NewVisitor()
VisitorData(name, identification-number, hair-color, stature)()

Figure D.13 Class diagram for the second application without Different Access Methods mechanism

STEP 2. Design models with Different Access Methods

Requirement: the operator can ask the operator device how many faults are pending repair, which he
can do by simply speaking, that is, by voice, and the device also answers by voice. Additionally, the
system must be capable of recognising what the operator says and who the operator is.

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 126 of 126

Software architecturs that supports usabity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Entry-tumstie Exit-turnstile
(fram Leg e aiviaw)

Breakdown
o g roteenne
0 pen() lechanism
g B

zNoleBreackdow"ﬂ

Start-device

(rom Logicalview)

startbochansm()

\ Fairground-mechanism

(from Logizd View)

Operative-device
Gporatvarae
%::mz:;ﬂmzkdawns!ﬂm Repaired Breakdown-manager opmaivocode
rom Logieal iew) Nimber-01 Mchanisms-repaired
o eNeuBroakdoun |
SRR P —— I—
o S Sievechansn
Stop-device ourRe para (daa, nam) kstatus
opeenee umberoBreakdonsUnsetted())
9| et(data)()
S top Mec s ()
Loudspeater
(romLogialview)
W heel
(romLogcalview)
Vistors-Managor B s
(rom Log aview) 2 Roler Cosster
tram Lege atvw)
Data-to-be-Loaded(data)) i "
copy (i) G mmaseats Validation-manager
Help()()
G et-Help(help)() (from Logical View)
G et-Help(tour)()

i aldatesearcher, "name, identfication-number, hai-calor, stature®)(

Vehicle
(from Log e aiview)

Car
=

(romLogicaiview)
& Eycarcode Help-point-interface
VigianceCamera essurerTessure (from Logical View)
(trom Leg avian) NowVitor)
Vi torData(name, dentiication-number, har-color, stature))
Visitor
(trom Logical View
Name
poe
L di(ch ta);
& Store("name, entiication-number, hair-color, stature™)()

Searcher-validator
(from Logical View)

@ aldate('name, entiication-number, hai-colo, stature’))

Device-recognitor

(from Logical View)

Device-transformer
(irom Logical View
B oice(Number of breakdows unsettied)()

T ansiate(Voice(Number of breakdows unsettied)()
ModeleV oce(data)(

Function-dispatcher

(from Logical View)
Operative-device-interface

(trom Logical View)

VisitorData(name, identfication-number, hair-color, stature)()
reakdowsUnsettled(o erative 1)()
G (@ tal()
iNumberO {BreakdowsUnsetied()
pVoice (data)()

Figure D.14 Class diagram for the second application with Different Access Methods mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 127 of 127

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

x

: Operative

: Operative-device-interface : Device-recognitor : H : : Breakdown
Device-transformer Function-dispatcher Operative-device

NumberOfBreakdowsU nsettlfd() ‘ ‘ ‘ ‘ ‘
Vaqide(Number of breakdows unsem‘ed) ‘ ‘ ‘ ‘
Translate(\Voice(Number of breakdows Lnsemed)) ‘ ‘ ‘
BreagkdowsU nsettled(operativi 1) ‘ ‘
NumberOfBreakdowsU nsenleﬁi() ‘
BreakdownData(dataJ

SendOutVoice¢ |(datav oice)

Get (data) [

ModeleVoice(data) U\

[

Get(data) }
\
\
|
\
|
\

Figure D.1S Sequence diagram for the second application with Different Access Methods mechanism

STEP 3. Abstraction of the design solution for Different Access Methods

There are no modifications to the above generalisation presented in the first iteration.

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 128 of 128

=

Software architecturs that supports usabity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

D.6 Alerts Second Iteration

STEP 1. Design models without Alerts

Entry-tumstile Exit-turnstile
(om Logical View) (from Logical View)
NumberO fPeopk
[E5Number0 Persons BN mberOPeople
s ounterty
I | — o
aRedColor() cEiQS
:fr'ne;e“r%%'gr(()) Check-people-disappeared()
. Breakdown
Start-device
(fomlogicalView)
(fro mLo gica IView) e
st o Me ch anis m() F airground-mechanism %zenigamsm
(from Logical View)
%r:um berBreakdownsNotRepaired HENo te Bre & kd own ()
ddress
LS)
S@NoteBreakdownRepaired()

Stop-device

(fro mLo gca IView)

#istopMechanism ()

Breakdown-manager
(from Logical View)

L ook-for-operative-free()
W heel SyStatus(free)()

(rom Logioarview) Rollor Coaster BreakdownRepaired(data, name)()

@NumMaxSeats (from Logical View)

%NumMaxSea(s

Operative-device
. (from Logical View)
Vehicle Car O perative-name
Visitor (from Logical View) (from Logical View) Operative-code
(from Logical View) ‘%Vemc‘e code @Car-code Sﬁrirba:r\f?)?-ta‘::hamsms-repaired
EENam e [Svez TNy | HIMeastrePessTre | :\ ndicate-O perative-busy()
Indicate-Mechanism- d
I%Age i ‘L:I;cba“ eldwecuamsm repaired()
VigilanceCamera Loudspoaker
(from Logical View) (om Logical View)
Figure D.16 Class diagram for the second application without Alerts mechanism
IST - 2001 — 32298 Page 129 of 129

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4.v.1.0 Techniques, patterns and styles
/ N : Wheel : Vehicle = = : Breakdown
: Operative Breakdown-manager Operative-device

|
‘ M‘easureUnity()
|

|
|
Error() ‘
|
|
|

Look-for—opera?ti\e-ﬂ'ee(data)
Checkstatus()

‘ Status(free, name)

Newﬁ)reakdown()

|
|
|
|
|
|
|
|
|
] |
|
|
|
|
|
|

‘ NoteBreackdown()

NoteNewlﬁ reakdown()

’7
L

|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|

-

Figure D.17 Sequence diagram for the second application without Alerts mechanism

STEP 2. Design models with Alerts

Requirement: add a control of alerts within the park.

IST — 2001 — 32298 Page 130 of 130
© STATUS Consortium 2002. CONFIDENTIAL

—&=tatus

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Exit-turnstile

Start-device

(from Logical View)

YAmberColor()

Entryturngile
(from Logical View) (from Logical View)
@Num berOfPersons @NumberOfPeome
@PeopleCounter() RPeopleCounter()
R edColor() Sopen()
GreenColor() WClose()

Check-people-disappeared()

PstartMechanism ()

Fairground-mechanism
(from Logical View)

@Ad

Stop-device

(from Logical View)

%N umberBreakdownsNotRepaired

dress

#EStopMechanism ()

N oteN ewBreakdown()
YN oteBreakdownRepaired()

Alert-manager

Wheel

(from Lagical View)

[

Breakdown

(from Logical View)

%D ate

@Mechanism

%name

N oteBreackdown()

Breakd own-manag er

(from Logical View)

Roller Coaster

(from Logical View)

%N um Ma xS eats

(from Logical View)

WCheckVehicle()
WError()

E rror ()

%N um MaxSeats

|

Vis tor

Vehicle

(from Lagical View)

Car

(from Logical View)

(from Logical View)

%Ve hic le -co de

@Car-code

EiName

BAge

WMeas ureUnity ()

WPMeasurePressure()

VigilanceCamera

(from Logical View)

Loudspeaker

(from Logical View)

WL ook-for-operativ e-free()
$Status(free)()
BreakdownRepaired(data, name)()

Operative-device

(from Logical View)

Op erativ e-name
.%Op erativ e-code
Operativ es tatus

@N umb er-Of -Mech anism s-repaired

“YCheck status()

#Windicate-Operativ e-busy ()
%YInd icate-Me chanism e paired()

Figure D.18 Class diagram for the second application with Alerts mechanism

Operative

: Wheel

. : Vehicle
Alert manag &

Breakdown-manager

Operative-device

Br n

CheckV eht le()

MeasureUnity()

Error()

Error()

L

i

Look-for-operative-free(Lata)

C heclstatus()

‘ Newbreakdown‘()

Status(free, name)

LI

‘N oteN ewBreakdownJ)

NoteBreackdown()

Figure D.19 Sequence diagram for the second application with Alerts mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 131 of 131

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Alerts

There are no modifications to the above generalisation presented in the first iteration.

D.7

STEP 1. Design models without Status Indication

Status Indication Second Iteration

I In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Entry-turnstile
(rom Logical View)

Q)Num berOfPersons

[
&RedColor()
G reenColor()
&AmberColor()

Start-device

(ffom Logical View)

Exit-turnstile

(trom Logical View)

QPNumba OfP eope

[

S0 pen()
$Close()
4yCheck-people-disappeared()

SEStartMechanism ()

\

Fairground-mechanism

(from Logical View)

Addres

%NumberBreakdcwnsNotRepa\red
s

| IBiNoteNewB)

Sbop-device

(from Logical View)

L

“NoteBreakdownRepaired()

[

Breakdown

(from Logical View)

Date
Mechanism
name

@NoteBreackdown()

st pMe charism()

Visitors-Manager

(fom L i@l V ow)

W heel

(from Logical View)

%NumMaxSeals

FData-to-be-Loaded(data)()
Sy Copy (data)()

SHelp()()

%3G et-Help(help)()

%3G et-Help(tour)()

Werorg——————————|

[

Veticle
(rom Logial View)

BVetivceco
riSteasuretmityt——

Breakdown-manager

(from Logical View)

#Look-for-operative-free()
&YStatus(free)()
%yBreakdownRepaired(data, name)()

Roller Coaster

(tfom Logical View)

Q)Num MaxSeats

Car

(from Logical View)

Bjcarcoe
HvesTePresure

Visitor

(from Logical View)

Vigilarc eCamera

(fom Logical View)

Name
ge

&¥Load(data)()

[1 #§Store("name, Wdentification-number, hair-color, stature")()

Operative-device

(from Logical View)

Operative-name
O perative-code
O perative-status

3 [Number-Of-Mechanisms-repaired

&I ndicate-O perative-busy()
indicate-Mechanism-repaired()

%

7

Loudspeaker

(fom Logical View)

Figure D.20 Class diagram for the second application without Status Indication mechanism

STEP 2. Design models with Status Indication

Requirement: the operator must be informed of what the system is doing.

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 132 of 132

Software architecturs that supports usabity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Entry-turnstile

(from Logical View)

E xt-tumst le
NumberOfPersons (fom Logica IV iew)

NumberOfPeople

PeopleCounter()
RedColor()
reenColor()
mberColor()

PeopleCounter()
Open()
Close()
Check-people-disappeared()

Breakdown

(from Logical View)

Start-device
(from Logical View)

StartMechanism() Fairground-mechanism
(from Logical View)
NumberBreakdownsNotRepaired
ddress
NoteNewBreakdown ()
Stop-device NoteBreakdownRepaired()

(fom Logical View)

NoteBreackdown()

Breakdow n-manag er
(trom o gical View)

Look-for-operative-free()
Status (free)()
BreakdownRepaired(data,name)()

StopMechanism()

W heel

(fon logal View)

Visitors-Manager
(from Logical View)

Roller Coaster
(om Logical View)

ENumMaxSeaE

Data-to- be-Loaded (data)()
Copy (data)()

Help()()

Get-Help(help)()
Get-Help(tour)()

Operative-device
(fom Logical View)

Operative-name

Operative-code

Operative-status

Number-Of-Mechanisms-repaired

Vehicle
trom Logical View)

Car
(fon Lgial View

MeasureUnity () Meas urePre ssure()

Indicate-Operative-busy ()
indicate-Mechanism-repaired()
Checkstatus ()

VigilanceCamera

(from Logical V iew)

Loudspeaker

(from Logical View)

Visitor
(from Logical View)
Name
Age
i Feedbacker
Load(data)() (from Logical View)

Store (“name, identification-number, hair-color, s tature")()

.Feedhack(”Breakdawn "data" assigned with success to operative "name”)()

Figure D.21 Class diagram for the second application with Status Indication mechanism

IST - 2001 — 32298 Page 133 of 133
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

7 N ‘ : Wheel : Vehicle : Feedbacker : Breakdown

: Operative Alert-manager ‘ Breakdown-manager Operative-device

|

Error() ‘ ‘
|
|

|
|
Error() ‘ ‘
[j?
Loo! —for—operative—free(‘dala) ‘
!

Feedback("BrLakduwn "data” ass\gniﬁJ;lth success to upeLuve "name", bregkflowns-manager)

Breakdowns-manager

‘ CheckVehicle() ‘Measureunity()‘

Checkstatus()
I

Status(free, name)

|
Feedback ("B |akdown "data" assigned with success;l‘lperaﬂve “"name")

|
Newaeakdown()
|

‘ NoteBreackdown|

\
|
\
|
\
|
\
|
d]
‘ ITloteNewBreakdowT() ‘ ‘
| jﬁ | | | |
| | | | | |
\ \ \ \

|
1]
|
|
| | | |

Figure D.22 Sequence diagram for the second application with Status Indication mechanism

STEP 3. Abstraction of the design solution for Status Indication

There are no modifications to the above generalisation presented in the first iteration.

D.8 History Logging Second Iteration

STEP 1. Design models without History Logging

Requirement: the user indicates that the ride has been successfully repaired.

IST - 2001 — 32298 Page 134 of 134
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Entry-turns tile
(rom Logical View)
@Numberomrsons

#PeopleCounter()
&pRedColor()
fyGreenColor()
pAmberColor()

Start-device
(fom Logical View)

M§StartMechanism()

Exit-turnstile
(from Logical View)

%Numberomeop\e

#Peop Counter()

open()

QClose()

QYCheck-pe opk- ds appeared()

Fair gound- mechan sm

\

(rom Logical View)

Breakdown
(from Logical View)

Date

Mechan sm
name
Numb erBreak downsNotRepaired &N oteBreackdown ()
Address U

@No eNew Breakdown()
4N oteBreakdow nRepaired()

Stop-device

(from Logical View)

o

&gstopMechanism()

Breakdown-manager
(rom Logical View)

#BLook-for-operative-free()
SYstatus (free)()
PBreakdownRepaired(data,name)()

Wheel

(from Logical View)

l%rxlurnmlaxseats

error()

Visitors-Manager

Roller Coaster
(fom Logical View)

%Nu mM axSeats

(from Logical View)

D ata-to-be-Loaded(data)()
Copy (data)()

YHelp()()
uGet-Help(help)()
uGet-Help(tour)()

O pemtivedevice

(fom Logical View)

Operatve-name

Operatve-code

Operative-status

Number-Of-Mechanisms-repaired
Mfindicate-Operative-busy()

indicate-Mechanism-repaired()
BCheckstatus()

Vehicle
(fom Logical View)

%Vem:\er:ode

VeasureUnity ()

Car

(rom Logical View)

@Carrcode

WWMeasurePressure()

Loudspea ker
(o mL ical View)

Visitor
(from Logical View)

Vigilance Camera
(rom Logical View)

Name
ge

WP oad(data)()
{store("name, identiication-number, hair-color, s tature”)()

Figure D.23 Class diagram for the second application without History Logging mechanism

: >\ Operative-device

: Og%rative ‘ ‘

Indic?te—Mechanism —repaifed()

: Wheel

Breakdown-manager

BreakdownRepaired(data, name)

|

|

|

|
NoteBreakdownRepaired()
EJ
|
|
|
|
\

1
I |
\ \
\ \
Figure D.24 Sequence diagram for the second application without History Logging mechanism

STEP 2. Design models with History Logging

Requirement: the user indicates that the ride has been successfully repaired and this notification is
stored in the system.

IST — 2001 — 32298 Page 135 of 135

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Entry-turnstile Exit-turnstile
o Logeat View) (rom Logical View)
EgNumberOPersons @N“’“bermpe"p‘e
e s
e
4G reenColor()
&AmberColor() %3Check-people-disappeared()
Breakdown
Start-device (from Logical View)
(rom Logical View) Da®
Fairground-mechanism Mechanism
startMechanism () name
\ (from Logical View)
%NumberBreakdownsNutRena\red @¥NoteBreackdown ()
Address
%)
[T &¥NoteBreakdownRepaired()
Sbp-device /
(rom Logical View) Breakdown-manager
Serones 5 (from Logical View)
t pMe cha rism
@Look-for-operative-free()
QStatus(free)()

4BreakdownRepaired(data, name)()

Visitors-Manager Wheel
o Logcal View)
fomtaalyon) & Roller Coaster
W Data-to-be-Loaded(data)() & rom Logist view) Lasdspecker
:ﬁiﬁ,’[)ﬁfa‘“’“ ENumMaxseats o Logiet view)
&G et-Holp(help)() Operative-device
G et-Help(tour)() (rom Logical View)

O perative-name

O perative-code

O perative-status
{&{Number-Of-Mechanisms-repaired

Vehicle i ndicate-O peraliverb}éy()
(rom Logical View) Car &I ndicate-Mechanism/repaired()

e T

(fom Logica View)

,%vahde-cmb @Ca rcode

rteasuretityt——|
HfMeasurePressuret |

Visitor logg :?é
(from Logical View) VigianceCamera (from LogigAl View)
Name
(fom Logieal View, &Logg(breakdown-repaired(Data,name))()

ge

WLoad(da t)()
$Store("name, ientification-number, hair-color, stature")()

action-logged
(omLogicalVe w)

@ CreateAction(breakdown-repaired(data, name)()

Figure D.25 Class diagram for the second application with History Logging mechanism

: Wheel : logginger : action-logged

Operative-device Breakdown-manager

: Operative
| | | | |

Indiﬁate-Mechanism -repairrd()

Logg(breakdown-repaired(Data,name))
| | |
l l

CreateAction(brea wn-repaired(data, name))

BreakdownRepaired(data, name)

E—
Qd()

NoteBreakdownRepail
\ \ \

L | | | |

Figure D.26 Sequence diagram for the second application with History Logging mechanism

STEP 3. Abstraction of the design solution for History Logging

There are no modifications to the above generalisation presented in the first iteration.

IST — 2001 — 32298 Page 136 of 136
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

D.9

Undo Second Iteration

In the case of the amusement park design, as it is essentially a control application where there is not
much human intervention, it does not make sense to apply the Undo pattern, which explains why no
second iteration appears for this pattern.

D.10 Form or Field Validation Second lteration

STEP 1. Design models without Form or Field Validation

In this case, the interaction diagram does not appear because the “data validation” functionality is new.

Start-device

(rom Logical View)

s tartMechanism ()

Stop-device

(rom Logical View)

stopMechanism ()

Visitors-Manager

Entry-turnstile

(rom Logical View)

(rom Logical View)

Exit-turnstile

%Num berOfPersons

s
$Re Color()
&G reenColor()
4BAmberColor()

%Num berO fPeople

élpen()

lose()
4yCheck-people-disappeared()

\

Fairground-mechanism

i om Lo gical View)

\ INumb eBre &d ownsNotRepaired
ddress

)
NoteB reakdownRepaired()

// BN B eac el ovn()

Breakdown

(fom Logical View)

Date
Mech anism
name

/

W heel

fom Logical View)

Breakdown-manager

(fr om Lo gcal View)

@FLook-for-operative-free()
SpStatus(free)()
B reakdownRepaired(data, name)()

Roler Caaster

%Num MaxSeats

(rom Logica View)
BENumMaxSeats
MWData-to-be-Loaded(data)() Emrort—————————
ﬁof’y (data)() &
e
QGetHep(rep))
WGet Hep(ou)) T
Vehicle

(fom Logical View)

{85V ehicle-code
WeasureUnity

trom o gica Wew)
Car

(o Logical View)

@Car-cude

ShreasurePressUTe(|

Visitor
i om Lo goal Vie w)

VigilanceCamera

(rom Logical View)

Operative-device

(from Logical View)

O perative-name
O perative-code

O perative-status

[\Number-Of-Mechanisms-repaired

&I ndicate-O perative-busy()
i ndicate-Mechanism-repaired()
i 7

Loudspeaker

(rom Logical View)

Name
ge

9| oad(data)()

&Store("name, identffication-number, hair-color, stature")()

Figure D.27 Class diagram for the second application without Form or Field Validation mechanism

STEP 2. Design models with Form or Field Validation

Requirement: the visitor who wants to register correctly enters the data requested so that he can be
later located in the park if he gets lost.

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 137 of 137

Software architecturs that supports usabity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Entry-turnstie
(fom Logical View)

Exit-turnstile
(fom Logical View)

BN umveropersons BN umberoPeople
WreopleCounter() :ger;nn‘(efoumero
RedColor() ‘C\r;se()

reenColor
xmbe,culmg 4Check-people-disappeared()

Start-device

fron L cal View)

WstartMechanis m()

\

Fairground-mechanism

(from Logical View)

%NumberﬁreakduwnsNolRepa\red

Address

Stop-device
fron L cal View)

/

N oteNewBreakdown ()
RN oteBreakdownRepaired()

Date
Mechanism
/ name

Breakdown

(o Logical View)

&N oteBreackdown()

Breakdown-manager

(fom Logical View)

BstopMechanism()

Look-for-operative-free()
Ystatus (free)()
WBreakd ownRepaired(data,name)()

Wheel

(fom Logical View)

Visitors-Manager %NumMax sats
o Logical View) Roller Coaster
Berror() (from Logical View)
M0 ata-to-be-Loa ded data) () Q)NumMaxSeats
:Cﬂw(dﬂa) 0 Operative-device
Help()() (from Logical View)
i Ope mtive- rame
SeetHelp(oun0 Operative-code
Ope mive-status
Vehicle Number-Of-Mechanisms-repaired
(from Logical View) Car
%VE?’HC\E'CUde fonLgiaiviow) Windicate-Operative-busy ()
Q}Ca,_code S¥indica & -Mech arism- rep aired ()
RMeasureUnity () Jiche ckstaus ()

VigilanceCamera
(from Logical View)

WMeasurePressure()

Visitor
(from Logical View)

Loudspeaker
(from Logical View)

Name
ge

WL oad (data)()
gpsStore("name, identification-number, hair-color, stature")()

Searcher-validator
(from Logical View)

Wvalidate("name,identification-number, hair-color, stature”)()

Help-point-interface
(from Logical View)

BN ew Visitor()
VisitorData(name, identification-number, hair-color, stature)()

Validation-manager
(from Logical View)

,"nam ber, hair-color, stature")()

Figure D.28 Class diagram for the second application with Form or Field Validation mechani

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 138 of 138

STATUS D.3.4. v.1.0 Techniques, patterns and styles
- . - _ Visitor
_ User Help-goint-in(erface Validation-manager Searcher-v alidator

‘ NewVisitor() ‘

Int oFuce(name, identification-nymber, hair color, stature)

i

VisitorData(name, identification-number, ha'rl—color, stature)

Validate(searcher| jname, identification—number‘, hair-color, stature")

Validate('name,|idlentification-number, hair-color, stature")

Store("nam e, identif ic ation-number, hair-color, stature")

Figure D.29 Sequence diagram for the second application with Form or Field Validation mechanism

STEP 3. Abstraction of the design solution for Form or Field Validation

There are no modifications to the above generalisation presented in the first iteration.

D.11 Provision of Views Second lteration

In the case of the amusement park design, as it is essentially a control application where there is not
much human intervention, it makes not sense to apply the Provision of Views pattern, which explains
why no second iteration appears for this pattern.

D.12 Workflow Model Second Iteration

STEP 1.1. Design models without Workflow Model

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST — 2001 — 32298 Page 139 of 139
© STATUS Consortium 2002. CONFIDENTIAL

/él:mal:us‘

mm———"" STATUS D.3.4. v.1.0 Techniques, patterns and styles

Entry-turns tile Exit-turnstile

(fom Logical View) (rom Logical View)
BBNumberoPersons BN umberoPeople Peo—
WPeopleCounter() @PeopleCounter() (from Logical View)
HRedColor() Sopen() aa(eh
DGreenColor() WClose() echanism
LAmberColor() Chec k-p eople-disappeared() name

N oteBreackdown()
Start-device BreakdownData(data)()

(irom Logical View)

@StartMechanism() Fairground-mechanism
] (from Logical View)
NumberBreakdownsNotRepaired Breakdown-manager
Address
] (fom Logical View)
Stop-device ___—|@NoteNewBreakdown() -
(from Logical View) N oteBreakdownRepaired() Look-for-operative-free()
ystatus (free)()
stopMechanism() 4yBreakdownRepaired(data,name)()
Operative-device
franLgiaView)
Wheel o
perative-name
(fom Logiaa 1V & w) Roler Coaster Operative-code
@NumMaxSeas (from Logical View) Operative-status
S — BENumMax Sats Number-Of-Mechanisms-repaired
@gerror()
Windicate-Operative-busy()
VigilanceCamera Windicate-Mechanism-repaired()
(from Logical View) WCheckstatus()
SNumberOfBreakdowsUnsetied()()
Loudspeaker BGet(data)()
(from Logical View) c i {em(operatve)()
Vehicle Car 4Enable(Breakdown Mended)()
(fran L g cal View) (from Logical View) -
Visiors-Manager @vEmc\e-code %Car-code
(fom Logical Vi
(o Logieal View) WMeasureUnity () @MeasurePressure()
®¥D ata-to-be-Loaded(data)()
LCopy (data)()
GHelp()()
WGet-Help(help)()
gGet-Help(tour)()
Visitor

(from Logical View)

Name
Age
WLoad(data)()
@Store("name, identiication-number, hair-color, stature”)()

Figure D.30 Class diagram for the second application without Workflow model mechanism

STEP 1.2. Design models with Workflow Model

Requirement: when the operator connects to the system only the pending faults and the option of
indicating repair completed appear.

IST - 2001 — 32298 Page 140 of 140
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Entry-turnstile

Exit-turnstie

(from Logical View)

(Fom Logical View)
%Numbero!PerSQr\s

RedColor()
G reenColor()
AmberColor()

@Numberopew\e

Open ()
Cbse()
C hec k-pe p b disappear il)

Start-device
(from Logical View)

Qs tartMechanism()

Fairground-mechanism

(from Logical View)

=)
%Annress

Stop-device
(from Logical View)

)
#yNoteB reakdownRepaired()

8 topMechanism ()

W heel

(from Logical View)

Roller Coaster

(fom Lo geal View)

Q)Num MaxSeats
G U—

%NumMaxSezts

Vehicle

(from Logical View)

Car

(fom Lo geal View)

Visitors-Manager

(from Logical View)

%vemc\e-cude %

Car-code

Data-to-be-Loaded|(data)()
a

@y
iHelp()()

et-Help(help)()

et-Help(tour)()

Uy &

(from Logeal View)

Visitor

Name
Age

@ Load(data)()

&y Store("name, identification-number, hair-color, stature”)()

Breakdown
(from Logical View)

Date
Mechanism
name

NoteBreackdown()

Breakdown-manager

(from Logical View)

o ck for-ope rtiv e free()
st a ws(free)()

Y8 reakdownR epaired(data, name)()

Operative-device
(from Logical View)

O perative-name
O perative-code

O perative-status
Number-Of-Mechanisms-repaired

Indicate-O perative-busy()
43I ndicate-Mechanism-repaired()

NumberO fBreakdowsUnsettled()()

BConnectingSystem (operative)()

ViglanceC
igianceCamera Qe nable(Breakdown Mended)()

(from Logical View)

(from Logical View)

(from Logical View)

Fiter

jUserConnected(operative)()
etListF unctions(Breakdown Mended)()

user-ty pe

(from Logical View)

sy stem-function
(fom Logcal View)

F un dt brs For(cperativ) (
G etF wnction(Br eakdown Mended)()

00w nlca cFu s fon o furc for))

Figure D.31 Class diagram for the second application with Workflow model mechanism

Page 141 of 141

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
;)\ - : Filter : usertype -
: Operative Operative-device system-function

CoﬁnectingSystem(opera{ive) ‘

u

[]

erConnected(operati\qe)

\

|

\

. |
Functions For(operaﬁlve)

DownloadFunctions(funEtion)

GetFunction(Breakdown Mended)

GetListFunctions (Breakdown Mended)

m
=]

able(Breakdown Mended)

]

Figure D.32 Sequence diagram for the second application with Workflow model mechanism

STEP 3. Abstraction of the design solution for Workflow Model

There are no modifications to the above generalisation presented in the first iteration.

D.13 User Profile Second Iteration

STEP 1. Design models without User Profile

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST - 2001 — 32298 Page 142 of 142
© STATUS Consortium 2002. CONFIDENTIAL

/éal:us

Software architecturs that supports usabity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exittumstile
(from Logical View)

Entry-turnstile

(from Logical View)

BNumberOfPersons BiNumberofPeople Breakdown
(from Logi cal View)
WPeopleCounter() SPeopleCounter() Date
RedColor() Sopen() BEMechanism
WGreenColor() MClose() Einame
WAm berColor() WCheck-people-disappeared()
WNoteBreackdown ()
Start-device $BreakdownData(data)()
(from Logical View)
Fairground-mechanism
RWstartMechanism () (from Logical View)
Q)Numberﬁreakduwns NotRepaired Breakdown-manager
Q;Address (from Logical View)
Stop-device
(rom Logica View) |~ | [¥NoteNewBreakdown(L ook-for-operative-free ()
®NoteBreakdownRepaired() Sstatus (free)() 5 vodov
$StopMechanism () ®BreakdownRepaired(data, name)() m’z:rf‘o‘g\'ﬁ;liﬂ?}
@Joperative-name
Wheel @Opera(ive»code
(from Logical View) Roller Coaster %Operative-status
BN um Maxseats (from Logical View) BN um ber-Of-Mechanism s-repaired
NumMaxSeats
SE rror() = Windicate-Operative-busy()
indicate-Mechanism-repaired()
i T VigilanceCamera WCheckstatus()
(from Logical View) $Num berOfBreakdowsUnsettled ()()
Loudspeaker $Get(data)()
Vehicle Car (from Logical View) :g on;‘e((:lEi!ngSi/;tem(('\)Aper:t\;/)e())()
rom Logical View] from Logical View nable(Breakdown Mende
Visitors -Manager Q;Vehi;ﬁode) Q;((:ar-codge ! WSetPreferences (preferences)()
(from Logical View)
WMeasureUnity() WMeasurePressure()
FData-to-be-Loaded(data)()
RCopy (data)()
SHelp() ()

WGet-Help(help)()
WGet-Help(tour)()

Visitor
(from Logical View)

EfName
EAge

WLoad(data)()
Store("'name, identification-number, hair-color, stature")()

Figure D.33 Class diagram for the second application without User Profile mechanism

STEP 1.2. Design models with User Profile

Requirement: the operator connects to the system and his preferences are established in the operator
device.

IST - 2001 — 32298 Page 143 of 143
© STATUS Consortium 2002. CONFIDENTIAL

Software architecturs that supports usabity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exit-turnstile
(from Logical View)

Entry-turnstle
(rom L ical View)

Number OPeople

Breakdown

(from Logical View)

PeopleCounter()
Open()
iClose()
Check-peo pb- dsa ppeared()

PeopleCounter()
RedColor()
GreenColor()
mberColor()

NoteBreackdown()
BreakdownData(data)()

Startdevice
(from Logical View)

Starthe chans m() Fairg roundmechan sm

(from Logical View)

(from Logical View)

/.NoleNewBreakmw n()

Stop-device
from Logical View)

NoteBreakdownRepaired() Look-for-operative-free()
tatus (free)()
BreakdownRepaired(data,name)()

iStopMechanism()

Operative-device
(fom L aical View)

Wheel
(rom Logical View) Roller Coaster

Operative-name
Operative- code
NumMaxSeats rom Logical View) Opera tive-status

BN axseats Number-Of-Mechanisms-repaired
Error()

indicat -Operative-busy ()

indca &- Mec hansm- repaired()
VigilanceCamera Che cksatus ()
(from Logical View) iINumberOfBreakdows Unsetlled()()
" iGet(data)()
C)0
(rom Logical View) Mended)()
Vehicle Ca SetPreferenc es(prefer ences))
(from Logical View) (from Logical View)
Car-code
Visitors-Manager
rom Logical View) Meas ureUnity () MeasurePressure()
Data-to-be-Loaded(data)()
opy (data)()
Help()()
et-Help(help)()
etHelp(tour)() preferences
rom Logical View) profiler
ownloadPreferences(preferences)() (from Logical View)
etPreferences(cod-operative)()
etPreferences (preferences)()
Visitor
(from Logical View) BreakdownsO per ative
IName
o (rom Logical View)
,CodOperative
Load(data)()
IStore("name, identification-number, hair-color, stature”)() iGetPreferences(cos-operative)()
SetPreferences (perferences)()

Figure D.34 Class diagram for the second application with User Profile mechanism

IST - 2001 — 32298 Page 144 of 144
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

/4 ; : : profiler

: Operative | Operative-device

Breakdown_sOperative

preferences

Conne ﬁingSystem(cod-op‘erative)

SetPreferences(cod-operétive)

Se

Rreferences(preferences)

GetRreferences(cod-opera

t‘ive)

Down

S

SetPreferences(preferen

etPreferences(perferen

cels)

L

es)

lpadPreferences(preferences)

Figure D.35 Sequence diagram for the second application with User Profile mechanism

STEP 3. Abstraction of the design solution for User Profile

There are no modifications to the above generalisation presented in the first iteration.

D.14 Shortcuts Second Iteration

STEP 1. Design models without Shortcuts

In this case, the interaction diagram does not exist in the original version of the system without the

corresponding usability pattern.

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 145 of 145

/éal:us

Software architecturs that supports usabity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Entry-turnstile Exit-turnstile
(from Logical View) Breakdown
{tomLogeaen) rom Logical View
%Numteowersms @Numberowecp\e « 9)
Date
ipeopteCouTteTt 1 PeopteCounterty | Mechanism
:Re ol () gg:gz: name
:f ;nese"ge‘;r% Check-people-disappeared() WnoteBreackdown()
Start-device
(Fom Logical View)
W tartMechanm() F airground-mechanism
(from Logical View)
[NumberBreakdownsNotRepaired
Address
- %)
Stop-device L B NoteBreakdownRepaired()
(Fom Logical View)
@StopMechanism () Breakdown-manager
(from Logical View)

Lo dk-for-operativ e free()
Status(free)()
B reakdow nRe par ed(da a, name)()

Wheel

(from Logical View)

%NumMaxSeas

e
Visitors-Manager
(from Logical View)
Roller Coaster Loudspeaker
&PData-to-be-Loaded(data)() (from Logical View) (from Logical View) N N
:g:zy (data)() B mMaxseats Operative-device
@ce Haptely) Vehide (from Logical View)
Gea Hdptain () O perativename
ShovSp ecicH elp(fe p)(. (from Logical View) Opeaivecode
.%Vemme-coae Opeaivestatus
Numte - Of Me ch anis ms- @ paie d
preasreoty
& | icat e Op erative tusy (
Sindicate-Mechanism-repaired()
Car N umberO B reakd ow sUn settled()(
G et(data))
(from LogicalView) BCo mectirg Sys tem (operativ &) (
%Car—code SEnak(Brk dwn Mended) ()
SetPreferences preferences)()
G
VigianceCamera
(om Logical View)
Visibr
from Logical View)
Name
Age
Sloaidaa) ()
gstore("name, identification-number, fair-color, statu e")()

Figure D.36 Class diagram for the second application without Shortcuts mechanism

STEP 2. Design models with Shortcuts

Requirement: the operator creates a rapid access with F1 to indicate that an ongoing fault has just been
repaired.

IST - 2001 — 32298 Page 146 of 146
© STATUS Consortium 2002. CONFIDENTIAL

/éal:us

mm———"" STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exit-turnstile
Entry-turnstile
(o Logical View) (from Logical View) Breakdown
(from Logical View)
NumberOPeople
[umberopersons =2 Ty
HPeopleCounter() SPeopleCounter() Mechanism
R edColor() :COIPQ“(()) ra me
losel
:G'““C"“”” Check-people-disappeared() N ot eB rea ckdo wn()
AmberColor() BreakdownData(data)()
Start-device
(from Logical View)
WstartMechanis m() — Fatgr aund mec ranism
(from Logical View)
NumberBreakdownsNotRepaired
ddress
Stop-device || PN oteNewBreakdown()
(rom Logical View) N oteBreak downRepaired()
iopMechanism() Breakdown-manager
(from Logical View)
&L ook-for-operative-free()
4ystatus (free)()
W heel 4yBreakdownRepaired(data,name)()
from Logical View)
@NumMaxSeas
Werror()
Visitors-Manager
(rom Logical View) Roller Coaster Loudspeaker
(from Logical View) (from Logical View)
WD ata-to-be-Loaded(data)() @NumMaxSeals
Copy (data :
&
&GetHelp(help)() (fom Logical View) T
WGet-Help(tour)() Evenicie-code 3
@show SpecificHelp(help)() Operative-code
WMeasureUniy () Operative-status
Number-Of-Mechanis ms-repaired
Car @indicate-Operative-busy()
(from Logical V iew) Hindicate-Mechanism-repaired()
%Car—code Checkstatus ()
BN umberOfBreakdowsUnsetted()()
@MeasurePressure() o)0
VigilanceCamera $ConnectingSystem(operative)()
(from Logical View) GEnable(Breakdown Mended)()
ySetPreferences(preferences)()
Vit o
(from Logica IVew)
Name —
Age O perative-device-interface
|
#Load(data)() S hort Cut (from Logical View)
LStore("name, identification-number, hair-color, s tature")(
¢ 0 (from Logical View) N umberOMBreakdows Unsetied()
Voice (data)()
WCreateShortcut(F1,BreakdownMended)() SyCreateShortcut(F1,BreakdownMended)()
QCreated()() Created()()
system-function Key

(from Logical V iew) (from Logical View)

Code
&0 ownloadFunctions (function)() [orde

WCrea e (F1, B eakd own mend ed))

Figure D.37 Class diagram for the second application with Shortcuts mechanism

: ShortCut : Key

Operative-device-interface

: Operative

CreafeShortcut(F 1, BreakdownMerrded)

CregteShortcut(F1, BreakdownMehded) ‘
Creatd (F1, Breakdown n}ended)

Created()

Created()

L]

Figure D.38 Sequence diagram for the second application with Shortcuts mechanism

IST —-2001 — 32298 Page 147 of 147

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Shortcut

There are no modifications to the above generalisation presented in the first iteration.

D.15 Context Sensitive Help Second Iteration

STEP 1. Design models without Context Sensitive Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Entry-turnstile Exit-turnstile
Y (o Logical View) Breakdown

(fom Logical View) Brekdown
@Numnerofpeop\e (from Logical View)

ENumberOfPersons Do
Wre opleCou nter() @reopleCounter() IMechanism
©Red Cdor() :Open() name
Close()
GreenColor
:Ambycmm:; &Check-people-disappeared() N oteBreackdown ()
BreakdownData(data)()
Startdevi e
(fom Logical V iew)
startMechanism() Fairground-mechanism
et — (from Logical Vview)

NumberBreakdownsNotRepaired
ddress

Stop-devie |_—|P¥#NoteNewBreakdown()

rom Logleal View) N oteBreakdownRepaired()
Breakdown-manager
&sStopMechanism()
=" (from Logical View)
#Look-for-operative-free()
Lstatus(free)()
Wheel &BreakdownRepaired(data,name)()
(trom Logical Viiew)
EEN umMax Seats
SError()
Visitors-Manager
(from Logical View) Roller Coaster Loud spea ker
(trom Logical View) tonlgialiew)
@Data-to-b eL cade d(d ata)() NumMaxSeats
Copy (data)() Vehich 5] Operative-device
:Help()() o Lfgm: S‘EM (rom Logical View)
Get- Hel p(h el p)() -
RGet Helpfou) [Ejvenicle-code Laoperatve-name
{{Operative-code
show SpecificHelp(help)() .
\oas ureUniy () 4 Operative-status
Number-Of-Mechanisms-repaired
Car Windicate-Operative-busy()
(from Logical View) Windicate-Mechanism-repaired()
l%mr—coae WCheckstatus()
SNumberOfBreakdowsUnsetied()()
@MeasurePressure() WGet(data)()
VigilanceCamera WConnectingSystem(operative)()
(from Logical View) SEnable(Breakdown Mended)()
WsetPreferences(preferences)()

Visitor
(from Logical View)

Name
Age
Lo ad data)
&YStor e 'na me ide nffication- numbe r, hair-color, s & ti ")()

Figure D.39 Class diagram for the second application without Context Sensitive Help mechanism

STEP 2. Design models with Context Sensitive Help

Requirement: the user can get sensitive help when the cursor is placed over specific elements located
in the interface.

IST - 2001 — 32298 Page 148 of 148
© STATUS Consortium 2002. CONFIDENTIAL

ﬁatlﬂaﬁ

oftware areh that suppo

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exit-t umst le
(fom L agical View)

Entry-turnstie
(rom Logical View)

Q)Numberofpersons %Numberomume
SpeopleGounier) AEPeopleCounter()
GRedColor() :S\Zesr:())
fyGreenColor()

§AmberColor() 4sCheck-people-disappeared()

Breakdown
(from Logical View)

Date
Mechanism
Fairground-mechanism Iname
(fan Logia | View) // -
%NumberBreakdownsNoiRepa\red 4N oteBreackdown()

St rtdevice

(from Logical View)

&startMechanism()

Address &pBreakdownData(data)()

Sb pdevice | _—|NoeNewBreakdown()

(from Logical View) %N oteBreakdownRepaired()

@stopMechanism() Breakdown- manag er
U B (mLogaiViey)

#Look-for-operative-free()

Lushtus (free)()
W heel §Breakdow nRepaired(dad ,name)()

(fom Logical View)

%NumMaxSeas
| e o) Roller Coaster
(from Logical View)
%NumMaxSeas Loudspeaker
Visitors-Manager (from Logical View)
(from Logical View)
WD ata-to-be-Loaded(data)() K
‘2""’““"3)" Vehicle
Jreroo (hel)) (fom L ogea Vi av) Car
etHelp(help
zeewelp(mur)() %\emcb-node from Logical View)
[snow SpeciicHelp(help)() [Bcar-code Operative-device
Wveasu eUniy () VigilanceCamera
- HMeasurePressure() (rom Logical View) (from Logical View)
Operative-name
Operative-code
Operative-status
Number-Of-Mechanisms-repaired
@indicate-Operative-busy()
fyindicate-Mechanism-repaired()
dsCheckstatus()
N umberOfBreakdows Unsetied()()
Visitor LpGet(data)()
(from Logical View) $yConnectingSystem(operative)()
Sensitive-help Name d3Enable(Break down Mended)()
N uSetPreferences (preferences)()
(rom Logical View) e
HLoad(data)()
#GetHelp(topic)() SyStore("name, identification-number, hair-color, stature")()

Figure D.40 Class diagram for the second application with Context Sensitive Help mechanism

Visitors-Manager o

:User Sensitive-help

Help(topic)

GetHelp(topic) |

ShowSpecificHelp(help)

ih

Figure D.41 Sequence diagram for the second application with Context Sensitive Help mechanism

IST - 2001 — 32298 Page 149 of 149
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Context Sensitive Help

There are no modifications to the above generalisation presented in the first iteration.

D.16 Wizard Second Iteration

STEP 1. Design models without Wizard

In this case, the interaction diagram does not exist in the original version of the system without the

corresponding usability pattern.

Entry-turnstie

(fom Logical View)

@Numberomersons

GPeopleCounter()
PRedColor()
WGreenColor()
SAmberColor()

Start-device

(from Logical View)

Exit-turnstile
(trom Logical View)
@Numberoﬁ:eup\e

&PeopleCounter()

$open()

BClose()
Check-people-disappeared()

&3 ar tMecha nism()

Fairground-mechanism
(from Logical View)

ddress

gumberBreakdownsNolRepaired

Stop-device
(from Logical View)

SN oteNe wBre akdo wn()
N oteBreakdownRepaired()

Breakdown
(irom Logical View)

Date
Mech:
na me

anism

BN oteB rea ckdo wn ()
BreakdownData(data)()

&StopMechanism()

/

Breakdown-manager

(iom Logical View)

WLook-for-operative-free()
Wstatus (free)()
QBreakdownRepaired(data, name)()

W heel
(from Logical View)
%NumMaxSeals
Herror()
Visitors-Manager
(from Logical View) Roller Coaster
from Logical View)
D ata-to-be-Loaded(data)() BENumMaxSeats
Copy (data)() Vehick
SHelp(() enecie
@GetHelp(help)() from Logical View)
QGet-Help(tour)() BfVehicle-code
Qshow SpecificHelp(help)()
WMeasureUnity ()
Car

Visitor
(from Lo gical View)

Name
e

®Load(data)()
Sstore("name, identificaton-number, hair-color, stature")()

(from Logical View)
B¥icar-code

MMeasurePressure()

Loudspeaker
(from Logical View)

VigilanceCamera
(from Logical View)

Oper ai e-d evice
(from Logical View)

Operative-name
Operative-code
Operative-status

Number-Of-Mechanisms-repaired

#indicate-Operative-busy()
indicate-Mechanis m-repaired()
Checkstatus()

SN umberOfBreakdows Unsetied()()
BGet(data)()
&ConnectingSystem(operative)()
dyEnable (Breakdown Mended)()
4ySetPreferences (preferences)()

S hort Cut

(from Logica IView)

LCreated()()

WCreateShortcut(F1, BreakdownMended)()

system-function

(from Logical V iew)

|

Operative-device-interface

(from Logical View)

&N umberOfBreakdowsUnsetied()

GVoice (data)()
&CreateShortcut(F1,BreakdownMended)()
Created()()

fyCreateShortcutWizard()()
LGetFunction(IntroFunctionName)()

(iom

Key

Logical View)

&0 ownloadFunctions (function)()

Code
Order

@§Create (F1,Breakdown mended)()

Figure D.42 Class diagram for the second application without Wizard mechanism

STEP 2. Design models with Wizard

Requirement: the operator creates a rapid access with F1 for the functionality “Fault repaired” using

the Wizard

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 150 of 150

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exit-turnstile
(from Logical View) Breakdown
Num berOfPeople

Enty-urnste
(fomL ogea Vi av)

(from Logical View)

PeopleCounter()

PeopleCounter()

iRedColor() \‘:)es"e((J)
;ii",iii:i[:: heck-people-disappeared() NoteBreackdown()
BreakdownData(data)()

Start-device
(from Logical View)

.S'aHMechamsm() Fairground-mechanism

(from Logical View)

NumberBreakdownsNotRepaired
Address

/ lNuteNewBreakduwn()

NoteBreakdownRepaired()

Stop-device

(from Logical View)

StopMechanism() Breakdown-manager

(from Logical View)

Look-for-operative-free()

Status (fee)()
ocl BreakdownRepaired(data,name)()
(rom Logical View)
Visitors-Manager
(o mLogical View) Roller Coaster Loudspeaker
(o Logical View) (fom Logical View)
Data-t0-be-Loaded(data)() [erviaxseas
iCopy (data)()
Help()() Vehicle Operative-device
Get-Help(help)() (o Logical View) (rom Logical View)
Get-Help(tour)() ehicle-code
Operatve-name
Show SpecificHelp(help)() oneraive-oads
MeasureUnity() Oper alve-staus
N umber-Of-Mechanisms-repaired
Car indicate-Operaive-busy ()
(rom Logical View) indicale-Mechanism-repaired()
Checksiaus ()
NumberOBreakdowsUnsetied()()
Get(data)()
MeasurePressure
v c 0
VigianceCamera E nabk (Breakdown M ended)()
(omLogaViar) SetPreferences (preferences)()
Visitor
(from Logical View) ShortCut
E:ame (from Logical View) Operative-device-interface
ge
reateShortcut(F1,BreakdownMended)() \ (from Logical View)
Load(data reated()()
Store("name, identification-number, hair-color, stature”)() NumberOBreakdowsUnsetied()

oice (data)()
reateShortcut(F1,BreakdownMended)()
reated()()

reateShortcutWizard()()
efFunction(IntroFunctionName)()

Key
syste m-f urction
(from Logical View) 3
(rom Logical View) ods wizard
Egrdsr (rom Logical View)
DownloadFunctions (function)() W izar d-mana ger
-Crea(e (F1,Breakdown mended)() ssist(C reateShortcut)()
GetFuncton(htoFuncnName)) - (fomLoga! Viev)
Function Name (Br)0
GetFuncton(Int oKeys)) [ic reateshorout))
i i | [@eeynamero
wizard-system-function End ())
(from Logical View) OKO()
NextFunction()()
niited ()

Figure D.43 Class diagram for the second application with Wizard mechanism

IST - 2001 — 32298

Page 151 of 151
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

‘ : wizard ‘

‘ : ShortCut

— Operative ‘ Operative-device-interface ‘ ‘ Wizard-manager wizard-system -fundtion ‘

‘ CreateShortcutW izard()

CreateShortcut()

Assist(CreateShortcut) ‘ NextFunction() ‘

!
GF(F unction(IntroFunctionNam¢

GetFunction(IntroF inctionName)

(I

Fu tionName(BreakdownMendeg

| NextFunction() ‘

|
e

T ‘ GetFunction(IntroKeys)
‘ GetF unclion(lntroKey s)
T |
‘ KeyName(F1) ‘ T
i i NextFunction() ‘
‘ ‘ End()
‘ ‘ [~
‘ ‘ CreateShortcut(FmT reakdownM ended)
! Create|(F 1, Breakdown mended)
‘ ‘ ‘ Created()
‘ ‘ &K()
‘ Created(‘) ‘
T | | |
| |
| |
| |
\ \

Figure D.44 Sequence diagram for the second application with Wizard mechanism

STEP 3. Abstraction of the design solution for Wizard

There are no modifications to the above generalisation presented in the first iteration.

D.17 Cancel Second Iteration

In the case of the amusement park design, as it is essentially a control application where there is not
much human intervention, it makes not sense to apply the Cancel pattern, which explains why no
second iteration appears for this pattern.

D.18 Multi tasking Second Iteration

STEP 1. Design models without Multi tasking

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST - 2001 — 32298 Page 152 of 152
© STATUS Consortium 2002. CONFIDENTIAL

/éﬂal:us

mm———"" STATUS D.3.4. v.1.0 Techniques, patterns and styles

ENSS Exit-turnstile
oL aica v (rom Logical View) Breakdow n
(fom L gica IView) (rom Logical View)
5N omoeroPersons BN mer OPeople
P~ - Date
rcopleCounter() QreopleCounter() Mechanism
&RedColor() :25222’} rere
GreenColor()
SlamberColor() Check-peop b- dsa ppeard() &N oteBreackdown()
[SyBreakdow nData(daa))
Start-device
(rom Logical View)
Qgstartechanism() Fairgr ound-mechan 6m
- (rom Logical View)
NumberBreakdownsNoRepaired
ddress
Stop-device, || gnoteNewsreakdown()
(rom Logical View) QN oteBreakdownRepaired()
Breakdown-manager
GgstopMechanism()
— (rom Logical View)
WL ook-for-operative-free()
Wstats (free)()
W heel BreakdownRepaired(data,name)()
(rom Logical View)
%Nummaxseats
error()
checkVehicles (presure)()
Visitors-Manager
(rom L aical View) Loudspeaker
(rom Logical View)
#0 ata-to-be-Loaded(data)()
SYCopy (data)()
GHelp()() Vehicle Roller Coaster O pemivedevice
Get-Help(help)() (from Logical View) (from Logical View) (from Logical V iew)
‘g:"*‘g‘p“"ﬁ”':“‘ nel BVenicle-code [N umiiax Seas 3i0peratve-name
[SsnowSpecificHelp(help)) 4.Operatve-code
MeasureUnity () Y operatve-status

Number-Of-Mechanisms-repaired

Gindicate-Operative-busy()
&indicate-Mechanism-repaired()
pCheckstatus()
Car 4N umberOBreakdows Unsetied()()
(rom Logical View) BGet(data)()
Bcer-coce ConnectingSystem(operative)()
e VigilanceCamera &BEnable(Breakdown Mended)()
SrloasuroProssure() (rom Logical View) fsetPreferences (preferences) ()

Visitor
(from Logical View)

Name
Age
FLoad(data)()
§store ("name, identification-number, hair-color, stature") ()

Figure D.45 Class diagram for the second application without Multi-Tasking mechanism

STEP 2. Design models with Multi Tasking
Requirement: the clock advises the dispatcher every three seconds to check all the rides.

IST — 2001 — 32298 Page 153 of 153
© STATUS Consortium 2002. CONFIDENTIAL

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Start-device

(Fom LogicalView)

Entry-turnstie

(from Loyt alven)
%Numbero(?ersw\s

§jeop§€oun et

RedColor()
G reenColor()
mberColor()

Exit-turnstile

(om Logical View)

B mveroPeople

pen()
lose()
heck-people-disappeared()

RS tertMechanism() Fairground-mechanism
(from_Logic d View)
&Num berBreakdownsNotRepaired
A
)
Stop-device &yNoteBreakdownRepaired()

(Fom LogicalView)

R8s topM echanism()

/

Wheel

(from LogicalView)

Visitors-Manager

(tromL ogicalView)

g0ata-to-be-Loaded(data)()
opy (data)()

Help()()

3G ot-Help(help) ()

3G et-Help(tour))

&showS pecificHelp(help)()

%NumMaxSeals

gchecKvemc\eslmesme)()

(irom Logical View)

Fairground-m anager

8y Check(presure)()

Vehicle

(from Logical Vi

B enicte-code

/

g
Dispatcher

(from Logical View)

2 Check()()

Visitor

(from Logical View)

Name
Age

Load(data)()

Store("name, entiication-number, hair-color, stature")()

Breakdown
(fromL g alViaw)

Date
Mechanism
name

tNuleEreackdown(}

Breakdown-manager

from Logical View

|

Look-for-operative-free()
Status (free)()
BreakdownRepaired(data, name)()

Roller Coaster

(om Logical View)

%Num MaxSeats

Loudspeaker

(Fom LogicalView)

Vigiance Camera

(fromL ag icalView)

Operative-device
(from Logical View)

Operative-name.

O perative-code

O perative-status
Number-Of-Mechanisms-repaired

Indicate-O perative-busy()
3 Indicate-Mechanism-repaired()

NumberO fBreakdowsUnsettied()()
4G ot (data) ()
liConnectingSystem (operative)()

d

ended)(
4ySetPreferences(preferences)()

Car

(from LogicalView)

Bgoer-code
L

Figure D.46 Class diagram for the second application with Multi-Tasking mechanism

: Clock

: Dispatcher

Fairground-manager

: Wheel

: Vehicle

Check()

Check(presure)

—

heckVehicIes(presurJ‘)

\
|
\
MeasureUnity()‘

For each
V ehicle

Figure D.47 Sequence diagram for the second application with Multi-Tasking mechanism

STEP 3. Abstraction of the design solution for Multi tasking

There are no modifications to the above generalisation presented in the first iteration.

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 154 of 154

STATUS D.3.4. v.1.0 Techniques, patterns and styles

D.19 Command Aggregation Second lteration

In the case of the amusement park design, as it is essentially a real-time control application where no
variables must be changed during the execution of the system, it makes no sense to apply the
Command Aggregation pattern, which explains why no second iteration appears for this pattern.

D.20 Actions for Multiple Objects Second Iteration

In the case of the amusement park design, as it is essentially a real-time control application where
nothing is batch processed, it makes no sense to apply the Actions for Multiple Objects pattern, which
explains why no second iteration appears for this pattern.

IST — 2001 — 32298 Page 155 of 155
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX E: PHASE 2 VALIDATION WITH PRACTITIONERS IN A REAL PROJECT

Because of its size, this annex has been stored in another file.

IST - 2001 — 32298 Page 156 of 156
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX F: CATALOGUE OF USABILITY PATTERNS

F.1Reusing Information Architectural Usability Pattern
= Pattern Name: Reusing Information.

= Usability Mechanism: This pattern enables the user to move data from one part of a system to
another. So users should be provided with automatic (e.g., data propagation) or manual (e.g., cut
and paste) data transports between different parts of a system.

= Solution:

o Diagram:

Interface

o Participants:

= Interface: collects the data to be processed by the reuser pattern and finally
displays the operation results (if the user needs to see the result). Interface sends
the data to be processed (1) and the function requested by the interface (2), i.e.
copy, paste, move, etc., to Reuser. Also, once the reuser pattern has been applied
the results of the requested function will be displayed on the interface (5), unless
the requested function was “copy”.

= Reuser: is the module that gathers the information provided by the interface and
manipulates these data according to the requested function (copy, paste, move,
etc.). Reuser receives the data to be manipulated as well as the function to be
executed (1) (2). If Reuser does not store the data to be manipulated internally, it
has to send these data to the system (3), as happens, for instance, with the Copy
function. Also if Reuser does not store the data internally, it has to ask for these
data from the part of the system where they are stored (4) as happens with the
paste or move functions.

= System: this component is optional and is only necessary when the Reuser module
does not store the data internally.

= Usability benefits: The reuse of data in an application as well as across different applications
minimises users’ cognitive load and also inputs fewer errors into the process. It also improves the
adaptability of the application or applications that enable data reuse.

= Usability rationale: By preventing the error input by users, the application of this pattern
improves system reliability. User efficiency is also improved. Additionally, by building a more
adaptable system, the satisfaction of the end user is improved too.

= Consequences:

IST — 2001 — 32298 Page 157 of 157
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Related patterns:

o System performance will be better if the information to be reused is stored in the Reuser
module rather than in another part of the system, because this reduces the system
interaction level.

= Pattern Implementation in QOO: Interface generates some classes. Reuser generates one or more
“Reuser” classes, furnished with the manipulation methods (copy, paste, move, etc.) and “Data-to-
be-reused” classes, which store the data to be manipulated in the class or through a link to another
one. In this case, it was decided to store the data outside the reuser class to respect the
encapsulation principle.

= Example: Suppose the waiter inputs the foodstuff code and, as the next consumption ordered is
the same, the waiter uses the “duplicate last foodstuff” function.

Interface
(from CLASSES)

Re staurant
(from CLASSES)
EName : String

EAddress : String

&init-request()
init-request()()
Hundo()()

WGetName(Name)()

QAvailableTables(date, hour, kind)()

Binit-request()()
BInput-CodConsum ption(code)()
Display(list of consumptions)()

Request D uplicateC onsum ption()()
(from CLASSES) :Help()()
Get-help(help)()
‘ 'a)gm:" LGet-help(tour)()
%S‘a: N ewBook()()
Egstas RshowList(list)()

Book
(from CLASSES)

#FClientName(client)()
$Check(date, hour)()
WGet(times-in-week)()

Table

(from CLASSES)

Status : String
Num ber-person : Integer

Place : XY
Code : Integer

AN]

Smoker/Non Smoker : Boolean

YLookF orAvailable(kind, data, hour)()

Hinit-request()
Sinput-CodConsum ption()
BOK()

Winit-request()
init-request()()
Winit-request()()
Bnit-request()()
InitC odC onsum ption(code)()
©RequestConsumtions()()
LBill()()

N ew-price(price)()
BGetPrice(price)()

Consumption
(from CLASSES)

RCheck-Stock()

HOK()
<ConsumtionName(name)()
“yLastCodeConsum ption()()

WGet(restaurant, data, hour kind)()
showList(list)()
SConnectingSystem ()()
SEnable(RequestCooked)()
SyPressed(F1)()

HOK()()

specificHelp(tppic)()

&show SpecificHelp(help)()
&Cancel(request)()

reuser
(fom CLASSES)

o
ChangeState() %Codreonsum ption D uplic a eC on sum pti on() ()
“WChangeState()() EDescription $Ge Code(code) ()
“ChangeState()() %F‘Hce

Reques t-ine
(from CLASSES)

WCreakLing code) ()
Read (consumption)()
SConsumi o Pri ce (price) ()
YLineName(name) ()
LGetPrice (price) ()

data-to-be-reused

(from CLASSES)

-
Recipe
(from CLASSES) Alert-Manager
@Amount Ingredient (from CLASSES)
&iName 9
(from CLASSES)
Books manager BName " :gaf?k""gremem()
(from CLASSES) Minim un-Stock
Real-Stock
WG etRestaurants(list)()
Get(restaurant, date, hour, kind)() #CheckO) |
RAskFor(ingredient)()

Figure F.1 Class diagram for restaurant management with Reusing Information mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 158 of 158

“ T STATUS D.3.4.v.1.0 Techniques, patterns and styles
‘ - Interface ‘ ireuser ‘ :Request :Table ‘ :Request-line ‘ : Consumption ‘ : Alert-Manager ‘ ‘ - Ingredient
: Waiter
Check-Stock(code) Check-Ingredient()

‘ OK()

I

Creat%Line(code)

| | Initrequest() /UME ‘ ‘ ‘

T T
InputJCodConsumptinLn(code) ‘ ‘ ‘ ‘

|

|

|

|

|

|
|
‘ L Check()
‘ OK()
OK()
|
|
|
|
|
|
|
|

DupTgateConsump}ion() ‘

DupljcateConsum ption() LastCod?Consumption()

Ge(bode(code)

:
|

Figure F.2 Sequence diagram for restaurant management with Reusing Information mechanism

IST — 2001 — 32298 Page 159 of 159
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.2. Standard Help Architectural Usability Pattern

Pattern Name: Standard help.

Usability Mechanism: The system must allow the user to ask for information and help about the
tasks performed by the system.

1

Solution:

o Diagram:

2

= Interface: gathers the information from the help application and sends this
information to the module which manages the help (1). Also it will show the help
information sent by the Standard-helper (2)

o Participants:

= Standard-helper: will show a general help (that is, not specialised) for the
application. This help is usually identified as an html, doc, etc., document. This
component receives the application from the interface (1) and sends the respective
data to the interface (2). If the help is not stored in this component, the help will
be provided for another component using the data flow from System (3).

= System: this component is optional and represents the part of the system where
the help is stored if the Standard-helper does not store the help internally. It will
be the system that provides the Standard-helper with the help (3).

Usability benefits: The provision of help will give the user guidance, and will improve error
management, both error detection and error correction.

Usability rationale: Help is essential in any system because it improves learnability by providing
the user with guidance about system functions. Efficiency also improves, because this is one of the
spaces used for error management. However, this help must be well organised and displayed in the
user language, otherwise user efficiency may fall.

Consequences: System performance will be better if the help files are stored in the same
Standard-helper module rather than in any other part of the system.

Related patterns: Guided-helper and Sensitive-helper, because both helps can be stored in the
same “Help” class, furnished with special methods to manage each kind of help provided by either
Standard-helper or Guided-helper.

Pattern implementation in OO: The interface generates some classes. The Standard-helper
component will be implemented using a class with an attribute that stores the help or a link to
another class (represented by System) that contains the help.

IST — 2001 — 32298 Page 160 of 160
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Example: The user can push the Help button

Interface
Standard-helper (from CLASSES)

(from CLASSES)

I nit-request()

Init-request()()

Undo()()

Book [®st-Help()() Init-request()()

Restaurant (fom CLASSES) Input-CodConsumption(code)()
Display(list of consumptions)()
(from CLASSES) I DuplicateConsumption()()

- ClientName(client)()

[Name : String Check(date, hour)() Help()()
B il geCreson
G) NewBook()()
vailableT ables (date, hour, kind)() ShowList(list)()

Get(restaurant, data, hour,kind)()

ShowList(list)()

ConnectingSystem()()

E nable(RequestCooked)()
Request Zr;ssed(F 10

(from CLASSES) S pecificHelp(tppic)()

ShowS pecificHelp(help)()
Cancel(request)()

Init-request()

Table P Y
OK()
] (from CLASSE S) nit-request()
SpiStatus : String I nit-request()()

Number-person : Integer
.Smoker/Non Smoker : Boolean
Place : XY

Init-request()()
Init-request()()
it CodConsum ption(code)()

£4.Code : Integer RequestConsumtions()()
L—| [&Bil(0
ChangeState() New-price(price)()
rc‘hangeSIate(g‘ G etPrice(price)()

ChangeState()()
LookF orAvailable(kind, data, hour)()

Request-line
(from CLASSES)

reatelire (cad) ()
Read(cors umptb n)()

ns ution Price (price)()
Lire Name (nam ¢) ()
Ge tPrice (prt: €)()

B ooks manager Consumption
(from CLASSES)

(from CLASSES)
od-consumption

.G etRe staurants(Ist)() Description

Get(re staurant, date, hour, knd)() |

heck-Stock()

Kty
onsumtionName(name)()
| astCodeConsumption()()

Figure F.3 Class diagram for restaurant management with Standard Help mechanism

: Interface : Standard-helper
: User

| HelbO | St-Help() |

Get-help(help)

Figure F.4 Sequence diagram for restaurant management with Standard Help mechanism

IST - 2001 — 32298 Page 161 of 161
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.3Tour Architectural Usability Pattern

Pattern Name: Tour.

Usability Mechanism: A tour presents users with information explaining how to do routine
system tasks, providing step-by-step guidance.

1

Solution:

o Diagram:

2 i

= Interface: collects the guided help request and sends it to the Guided-helper (1).
Additionally, it will display the help information it receives from the Guided-
helper (2).

= Guided-helper: displays a guided help for the application for which the help has
been described (2). This help can range from a pre-recorded tour of the
application, to an interactive tour, which involves the development of a separate
application. If the help is not stored internally in this component, this help will be
provided by any other part of the system through the information flow from
system (3).

o Participants:

= System: this is an optional component and represents part of the system in which
the help will be stored if the Guided-helper does not store the information
internally. System will, therefore, be responsible for providing the Guided-helper
with the help through (3).

Usability benefits: The provision of a tour will give the user guidance and will improve error
management, both error detection and error correction.

Usability rationale: System learnablity and memorability may be improved, but it may have a
negative impact on efficiency, as users might be induced to follow a specific task order, passing up
the use of possible shortcuts.

Consequences: System performance will be better if the help files are stored in the Standard-
helper module rather than in any other part of the system, as this requires fewer interactions.

Related patterns: Standard-helper and sensitive-helper, because both helps can be stored in the
same “Help” class, furnished with special methods to properly handle the two types of help
provided by Standard-helper and Sensitive-helper.

Pattern implementation in OO: The Interface component will generate one or more classes. The
Guided-helper component will generate a class that will have an attribute that contains the help or

IST - 2001 — 32298 Page 162 of 162
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

a pointer to another place (another class or another system) that is capable of providing this help.
In this example, the Guided-helper class stores the help internally and does not need to ask another

part of the system for the help.

(from

Restaurant

Example: the user can push the Guided Help button.

CLASSES)

Name : String
ddress : String

Book

(from CLASSES)

G etName(Name)()
VailableT ables (date, hour, kind)()

iClientName(client)()
iCheck(date, hour)()
G et(times-in-week)()

Table
(from CLASSES)

SiStatus : String

Number-person : | rt eger
Smoker/Non Smoker : Boolean
Place : XY

4, Code : | it eger

IChangeb tate()
Change tate()
Chamg eSt & e()

Charg et e())
LookF orAvailable(kind, data, hour)()

Books manager
(from CLASSES)

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

Consumption
(from CLASSES)

ZPCod-consumption
(=4 Description
(EhPrice

Check-Stock()
OK()

ConsumtionName(name)()
LastCodeConsum ption()()

Request
(from CLASSES)

Init-request()
Lnput-CodC. ion()

OK()
init-request()

Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()

G etPrice(price)()

Interface
(from CLASSES)

Request-line
(fom CLAS SES)

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()

G etPrice(price)()

Init-request()

Init-request()()

Undo()()

Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()

G et-help(help)()

G et-help(tour)()

NewBook()()

ShowList(list)()

G et(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem ()()

E nable(RequestCooked)()
Pressed(F1)()

OK()()

S pecificHelp(tppic)()

S howS pecificHelp(help)()
iCancel(request)()

Guided-helper

(from CLASSES)

[uided-hei()()

Figure F.5 Class diagram for restaurant management with Tour mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 163 of 163

STATUS D.3.4. v.1.0 Techniques, patterns and styles

_Interface : Guided-helper
: User
\ Help() \ \
Guided-help() |
Get-help(tour)

L)
o |
| |
| |
| |

Figure F.6 Sequence diagram for restaurant management with Tour mechanism

IST - 2001 — 32298 Page 164 of 164
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.4Different Languages Architectural Usability Pattern

= Pattern Name: Different Languages.

= Usability Mechanism: Internationalisation refers to the capability of the software to interact with
users in different languages.

= Solution:

o Diagram:

Language
recognitor

Language
Translator 1 |

P g

Language
Translator n

o Participants:

Interface: collects the operation to be performed and any associated data, which it
sends to the Language-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Language-translator in the language that originated the request

(3).

Language-recogniser is a recogniser, not a translator, which determines the
language in which a the respective functionality is requested and sends the data
and the functionality request to the respective Language-translator (3) (4).

Language-translator (i): there may be one for each language that the system is
capable of recognising. If there is one for each language, which would be
advisable for reasons of system modularity, each Language-translator translates
the functionality and any data it receives from the Language-recogniser (3) (4) to
a common language understood by the system. Once they have been translated to
the common language, it sends them to the system (5) (6). Once the functionality
has been processed in the system, it again receives the response data for the
executed functionality (7), and again translates them from the common language
to the specific language in which the user requested the functionality. After
translating, it sends the data to the user (8) through the interface.

IST - 2001 — 32298

Page 165 of 165

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= System: it performs the functionality requested by the Language-translator (i), in
the common language (5) (6), and returns the respective response to the language-
translator in the common language (7).

= Usability benefits: This pattern improves system accessibility by users using different languages.
It also improves error prevention by giving a better understanding of the options and tasks to be
performed by the system.

= Usability rationale: The use of this pattern improves reliability and user efficiency, as it
eliminates possible sources of error in system use. User satisfaction may be increased by allowing
the use of the system in different languages. However, system performance falls because of it
having to manage these languages, which may also have a negative impact on satisfaction.
Learnability also increases by enabling the user to use the system in the language with which he
feels most at home.

= Consequences:

o Decreased system performance, as it involves a longer translation time from one language
to another.

o Increased portability, as the system will be able to operate on the same platform in
different locations.

o If different Language-translator modules are used, increased maintainability of the system,
as if a new language included, all that has to be done is to add a new module.
Additionally, system maintainability is improved if the Function-Dispatcher class that
appears in the implementation section is used.

= Related patterns: The diagram is similar to the Device-recogniser, but the functionality is
different even though they share the Function-dispatcher.

= Pattern implementation in OO: This pattern generates a language recognition class (recogniser),
a class for each language to be translated (translator) and another Function-dispatcher class,
which, once a request has been translated to the generic language, is responsible for conveying this
request to the respective class for processing.

= Example: When the user is booking a table from the terminal, the system should be able to
understand the date, time and table time irrespective of the language used by the user. The
interaction diagram does not show the full booking for reasons of visibility on the model.

IST — 2001 — 32298 Page 166 of 166
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)
Name :String
ddress :String

GetName(Name)()
wailableTables (date,hour, kind)()

able
(from CLASSES)

Status :String

Number-person :integer
Smoker/Non Smoker :Boolean
Place :XY

Code :Integer

ChangesState ()
ChangeState()

ChangeState()()

ChangeState()()
LookForAvailable (kind, data,hour)()

Restaurants-manager

(from CLASSES)

GeRestaurants (list)()
vailableTables (restaurant, date, hour, kind)()

Consumption
(from CLASSES)

Cod-consumption
Description
Price

Books manager
(from CLASSES)

Book
(fom CLASSES)

ClientName(client)()
Check (date,hour)()
Get(times-in-week)()

Request
(fom CLASSES)
Hour
Date
Status

Init-request()
Input-CodConsumpton()

init-request()

hit+ equest(()

hit-r equest(()

hitr equest(()
IntCodConsumpton(code))
Reque sConsumtons ()
Bill()()

New-price(price)()
GetPrice(price)()

Request-line
(from CLASSES)

reateLine(code)()

Check-Stock ()
OK()

ConsumtionName(name)()
LastCodeConsumption()()

GetRestaurants (list)()
Get(restaurant,date, hour,kind)()

Translator
(from CLASSES)

.ChooseLangModeler(daw‘hour‘kmd)()

Language-modeler

(from CLASSES)

-TranslateDaQa(daha,hour,klnd}(J

Read(consumption)()
onsumtionPrice(price)()
LineName(name)()
etPrice(price)()

Interface
(from CLASSES)

Init-reques ()
i t-request()()

Undo ()()

i t-request()()
Input-CodConsumption(code)()
Display (listofconsumptions) ()
DuplicateConsumption()()
Help()()

Gethelp(help)()

Get-h elp(bu r)()

Ne wBook ()()

Show Lis t(list)()
Get(restaurant data, hour kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed F1)()

OK()()

SpecificHelp(tppic)()

show SpecificHelp(help)()
Cancel (requesty)

Figure F.7 Class diagram for restaurant management with Different Languages mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 167 of 167

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Interface : Books Translator 2, o : Restaurant _~Table _: Book
: User ‘manager L -modeler Res tau an ts-manager

NewBook() ‘ ‘

IGetRestaurants(list) ‘

GetRestaurants(list) GetName(Name)
etName(Name

-

howList(list)

—

Gel(restauran’t. data, hour,kind) ‘

Get(, date, hour‘ kind)

ChooseLang) (restaurant, the, hour, kind) ‘

TranslateData(restaurant, date, hour, kind)

Av 3labk Tables(estaurant, date, hlu’, kind)

AvyailableT ables(date, hour, led)

LookFofAvailable(kind, data, hour)

|
|
|
|
|
|
|
|
|
|
|
|
|

ShowList (list)

:

\—’Check(da e, hour)
|
|
|
|
|
|
\

Figure F.8 Sequence diagram for restaurant management with Different Languages mechanism

IST — 2001 — 32298 Page 168 of 168
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.5Different Access Methods Architectural Usability Pattern
= Pattern Name: Different Access Methods.

= Usability Mechanism: Access method means the capability of the software of being accessed
from different types of physical devices. So, this attribute will make the system easier to access
not only from the desktop or laptop, but also using devices like WAP, Web, and interactive TV,
for example.

= Solution:

o Diagram:

Device
recognitor

Device
Transformer n

Device
Transformer1 | =

i g

o Participants:

Interface: collects the operation to be performed and any associated data, which it
sends to the Device-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Device-transformer in the format in which the user placed the
request (8).

Device-recogniser: is a signal format recogniser, which sends the signal to one
device or another for interpretation, depending on the type of signal it receives.
Additionally, it sends the data and the functionality request to the respective
device-transformer (5) (6).

Device-transformer: (i) there may be one for each device that the system is able to
recognise. If there is one for each device, which would be advisable for reasons of
system modularity, each Device-transformer is responsible for converting both the
functionality and any data it receives from the Device-recogniser (3) (4) to a
general functionality understood by the system. Once the signal has been
converted to a functionality and/or data that can be understood by the system, it is
all sent to the system for it to perform the respective operation (5) (6).
Additionally, once the functionality has been processed in the system, it again

IST - 2001 — 32298

Page 169 of 169

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

receives the response data for the executed functionality (7), which it again
translates to the specific signal format in which the user requested the
functionality. After translation, it sends the data to the user (8) through the
interface.

= System: it performs the functionality requested by the Device-transformer (i) in
the common functionality format (5) (6) and returns the response to the respective
device-transformer in the aforesaid common format (7).

= Usability benefits: This pattern improves system accessibility for users who use different devices.

= Usability rationale: User satisfaction may be increased by enabling access to the system through
different devices. However, system performance falls because of having to manage these devices,
which may also have a negative impact on satisfaction.

= Consequences:

o Decreased system performance, as it involves a longer conversion time for signals
interpreted by different devices.

o If different Device-transformer modules are used, increased maintainability of the system,
as if it is decided to include a new device, all that has to be done is to add a new module.
Additionally, system maintainability is improved if the Function-Dispatcher class that
appears in the Implementation section is used.

= Related patterns: The diagram is similar to the Language-translator, but the functionality is
different even though they share the Function-dispatcher.

= Pattern implementation in OOQO: This pattern generates a device recognition class (device-
recogniser), a class for each signal type to be interpreted (device-transformer) and another
Function-dispatcher class, which, once a request has been translated to the generic language, is
responsible for conveying this request to the respective class for processing.

= Example: The waiter can ask the waiter device what foodstuffs a table has ordered by simply
saying “I want to know what foodstuffs table x has ordered”. Additionally, the waiter’s device is
capable of verbally reproducing all the foodstuffs.

IST — 2001 — 32298 Page 170 of 170
© STATUS Consortium 2002. CONFIDENTIAL

/éﬁal:us

STATUS D.3.4. v.1.0 Techniques, patterns and styles
Request
(from CLASSES)
Hi
Restaurant Book Dete
(rom CLASSES) fomcLasSES) Status
Name : String - W nit-request()
ety ClientName(client)()
%Address : String S renametclent(inpu-Codc
-) G et(times-in-week)() init-request()
AvailableT ables(date, hour, Kind)() & nit-request()()
& nit-request()()
£init-request()()

3 nitCodConsumption(code)()
RequestConsumtions()()

Bill()()

New-price(price)()

G etPrice(price)()
Table LastRequestConsumtions()()
(rom CLASSES) -
Status : String K Request-line
Number-person : Integer (from CLASSES)
Smoker/Non Smoker : Boolean
Place : XY & CreateLine(code)()
Code : Integer “3Read(consum ption)()
G ConsumtionPrice(price)()
g:::gzg::{zz; 43LineName(name)()
¥ n G etPrice(price)()
BChangeState()()
LookF orAvailable(kind, data, hour)()
LastRequestConsumptions()()
Alert-Manager
- (omass ses)
Consumption
(fom CLAS SES) & Check-Ingredient()
Cod-consum ption SOK()
Books manager Description
Price
(from CLASSES)
HCheck-Stock()
Function-dispatcher 4G etRestaurants(list)() oKy
G et(restaurant, date, hour, kind)() HConsumtionName(name)()
(from CLASSES) &LastCodeConsumption()()
G etConsumptions (T ablex)()
&ListConsumptions()()
/ Ingredient
Device-recognitor Device-transf ormer (rom CLASSES)
(from CLASSES) N Name
(from CLASSES) Recipe Minim un-Stock
B\ oice(Consumtions in table x)() T ranslateV oice(Consumptions in table x)() fomcLasSES) Real-Stock
M odeleVoice(listconsumptions)() %Amum FCheok())
Name i

Waiter-device

(from CLASSES)

&Corsumpt b InTabe-x)
&S endO utVoice(listconsum ptions)()

Figure F.9 Sequence diagram for restaurant management with Different Access Methods mechanism

2 2 2 _ Table : Request ~ Request-line : Consumption
W aiter-device Device-recognitor Device-transformer Euncti

. | | | | | | | |

Clorjs um ption-In-Tablex() ‘ ‘ ‘ ‘ ‘ ‘ ‘

lojce (Consumions intable x)

Tr Consumptions mlaL\e x) ‘ ‘ ‘ ‘ ‘

GetConsumptons(Tablex) | ‘ ‘ ‘ ‘

| |
)

L LineName(name)

L3stReques € onsumptionsi()

dstReque stConsum tionst

ConsumtionName(name) ‘

ListConsum ptions(list) ‘ ‘

ModeleVoice(listconsum ptions)

SendOutVoice(l{stconsum ptions) T ‘ ‘ ‘

Figure F.10 Sequence diagram for restaurant management with Different Access Methods mechanism

IST - 2001 — 32298 Page 171 of 171
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.6Alerts Architectural Usability Pattern

= Pattern Name: Alerts

= Usability Mechanism: An alert is a message from the system to the user that a change of state has
occurred that the user ought to know about. It can be used, for example, for e-mail arrival, stock

control alerts, etc.
= Solution:

o Diagram:

System

l I
[Alert-manager }
3

:’. 2 \
>

Interface } System }

o Participants:

System: represents the element of the system to be checked in order to
identify anything of importance for this element. It is responsible for
notifying the Alert-manager to check the state of the element to be
checked within the system. (1). Depending on what is to be checked, it
also sends the request to the part of the system responsible for running the
check (3) and, when the check has been run, sends the respective results
(if required) to the interface (2).

Alert-manager: represents a component of the system that is capable of
receiving a checking order and forwarding this order to the part of the
system that is capable of processing it. It receives the checking order from
one part of the system (1) and forwards this request to the part of the
system concerned (3). Finally, if applicable, it displays any alert
information that is of interest to the user (2) to check that one or more
system components are working correctly.

= Usability benefits: Alerts help to keep the user informed about the state of the system with
respect to given actions so it provides feedback about the system state.

= Usability rationale: Informing the user about given effects of actions that occur in the system
raises user satisfaction, as users know what is going on. On the other hand, satisfaction may also
be affected by the decreased system performance due to alert processing. User efficiency may also
increase, as they are alerted about given situations and do not have to waste time checking the
system state under these circumstances.

= Consequences:

o System performance may be affected when processing the respective checking.

= Related patterns:

IST - 2001 — 32298

Page 172 of 172

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Implementation in OO: This pattern generates an Alert-manager class responsible for managing
all the alert checking requests in the system. Each class that represents one of the components
affected by the alert will have methods for controlling these alerts at the Alert-manager’s request.

= Example: the foodstuff code cannot be entered until a check has been run of whether there is a
stock of all the ingredients for the selected foodstuft.

Request
(from CLASSES)

Restaurant
(from CLASSES)

Book
(from CLASSES)

Name : String
ddress : String

GetName(Name)()

Av ailableTables (date, hour, kind)()

G et(time s-in-wee k)()

C lie ntNam e(client)()
C heck(date, hour)()

Table

(from CLASSES)

Status : String

{z#Code : Integer

Nurn ber-person : Integer
(z=:Smoker/Non Smoker : Boolean

iChangeState()
ChangesState()
Chang eState ()()
iChangeState ()()

Init-request()
Input-CodConsum ption()
OK()

init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()

N ew-price(price)()
GetPrice(price)()

Consumption
(from CLASSES)

Cod-consumption
Descrip(ion

Request-line
(from CLASSES)

CreateLine(code)()
iRead(cons umption)()
iConsumtionPrice(pric e)()
LineName(name)()
GetPrice(price)()

Alert-Manager
(from CLAS SES)

iChec k-Ingredient()
OK()

p . zHPrice
L ook ForAv ailable(kind, data, hour)()

iCheck-Stock()

OK()
iConsumtionName(name)()
LastCodeConsumption()()

/ Ingredient
(from CLASSES)

Books manager e
(from CLASSES) e

E#Minimun-Stock
xR eal-Stock

s
IG etRes taurants (list)()
G et(restaurant, date, hour, kind)() Reci Check()()
ecipe AskF or(ingredient)()
(from CLASSES)
BSAmount
EEName

Figure F.11 Class diagram for restaurant management with Alerts mechanism

N

J*ﬁﬁﬁit-request() [changestate)‘ ‘ ‘ ‘
| | |

Check-Stock(coqe) | Check-Ingredient() |
1

:

‘ :Request

‘ . Table H :Request-line H : Consumption

‘ : Alert-Manager ‘ ‘ “Ingredient

InplittCodConsumption(code)
1

Check()

|
|
|
OK()
i
|
|
|
|
|

OK()

OK()

U\ Create%ine(code)

|
|
|

Figure F.12 Sequence diagram for restaurant management with Alerts mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 173 of 173

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.7 Status Indication Architectural Usability Pattern

= Pattern Name: Status Indication

= Usability Mechanism: The user should be provided with information pertaining to the current
state of the system.

= Solution:

o Diagram:

Active Process 1 [Active Process n

“ ."
& W

[Feedbacker }

2 “" .'0,. 4
A“ Q.A
Interface] (System]

o Participants:

Active-process i: this module has been represented more than once, because there
may be several processes running simultaneously that request feedback (1) so that
it will be each active process that sends the information that it wants to be fed
back to Feedbacker (1).

Feedbacker: this module receives the request and data (1) (2), which indicates the
desired type of feedback and the data to be fed back from each active process.
Additionally, it needs to know the recipient of this feedback and will send this
feedback either to another part of the system (4) and/or to the interface (3) to
inform the user. For some guidelines on how to display this feedback on the
interface, for example, how often it should be refreshed or where to place specific
information, see [Welie, 00]. These details should be taken into account in low-
level design.

Interface: it receives the feedback and displays it to user (3).

System: this component is optional and represents other parts of the system that
must be informed of the feedback (4).

= Usability benefits: giving an indication of the system’s status provides users with feedback about
what the system is doing and what will the result of any action they carry out will be.

= Usability rationale: providing feedback gives the user information about what the system is
working on and whether the application is still processing or has died. Accordingly, the pattern
raises satisfaction.

= Consequences:

o This pattern averts additional system load by discouraging retries from users [Welie, 00].

o This pattern increases system maintainability, because it channels the feedback better than
any existing feedback that is issued indiscriminately by any other system module.

= Related patterns:

IST - 2001 — 32298

Page 174 of 174

© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

= Implementation in QO: This architectural pattern will generate a Feedbacker class specialised in
notifying the user and system about what is happening. This means that all the classes that want to
report anything must inform the feedback manager, Feedbacker, so that this then properly
distributes this information either within or outside the limits of the system.

= Example: the user must be informed about what is happening in the system.

Restaurant
(from CLASSES)

Name : String
ddress : String

| PEEG & Name (Name)(

)
A vaiableT ables(date, hour, kind)()

[

Table

(from CLASSES)

Place : XY

Status : String
Number-person : Integer
;Smoker/Non Smoker : Boolean
Code : Integer

#ChangeState()
iChangeState;
IChangeState()()

&

ChangeState()()
RLookF orAvailable(kind, data, hour)()

Books manager
(from CLASSES)

HHG etRestaurants(list)()
%3G et(restaurant, date, hour, kind)()

Book

(fom CLASSES)

F eedbac ker
(from CLASSES)

#F eedback (checking-resource)()
45F eedback(request-acepted)()

Request
&EClientNam e(client)() (rom CLASSES)
uCheck(date, hour)() Hour
PG (imes- in-wesk)) Date
Status
Wint regues t()
[&oko
S it-reque st()
int + equest()()
it + eq ues 1()()
Sint + eques t()()
&in t Cod Can sump tion (c ode X)
LRequ es tCorsumtons())
:B\l(X)
New-price(price)()
3 G eP fice (price))
//
/
_—
Request-line
(from CLASSES)
" HPCreateLine(code)()
Consumption S@Read(consumption)()
(from CLASSES) :COnsumnonPnce(pnce)()
- - LineName(name)()
gf’egccr?p"‘i)“n’“ ption 4G etPrice(price)()
Price
iCheck-Stock
B8 eck-stocko
#HConsumtionName(name)()
@LastCodeConsumption()()
/ Ingredient
(from CLASSES)
; Name
Recipe Minimun-Stock
(fom CLASSES) Real-Stock
e oo

Alert-Manager

(from CLASSES)

@Check-Ingredient()
WOK()

Figure F.13 Class diagram for restaurant management with Status Indication mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 175 of 175

STATUS D.3.4. v.1.0 Techniques, patterns and styles

: Request

‘ _: Table ‘ ‘ _:Request-line H _: Consumption ‘ ‘ ~Alert-Manager ‘ ‘ ~Ingredient

| Check-Ingredient() ‘

H WEiﬁe"niHeq“eSt() ChangeState() ‘

Ing ut-Cod Con sumpttion(code)
1

Check() ‘

OK()

|

|
Check-Stock(co?e)

[

|

|

OK()

A‘nswer ("W ait Please C hek{ng Resources")

OK()

!
|

| | |
‘ /u Feedbaci(request-acepted) ‘ ‘
\ \

C reateLine(oode)

\Answer(" Introduce Next In;iul")

Figure F.14 Sequence diagram for restaurant management with Status Indication mechanism

IST — 2001 — 32298 Page 176 of 176
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.8History Logging Architectural Usability Pattern

Pattern Name: History Logging

Problem: Record a log of the actions that the user (and possibly the system) has performed in
order to allow the user (or system) to look back over what was done previously.

Solution:

o Diagram:

{ Interface] [System J

o Participants:

= Interface: it receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

= Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed in the respective
part of the system.

= System: this module sends the functions and data that are executed in the system
to the logger (3) (4), and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

Usability benefits: Providing a log helps users to see what went wrong if an error occurs and may
help them to correct that error. Being able to refer to actions that were carried out previously may
help with “recognition rather than recall”.

Usability rationale: The provision of this pattern improves reliability in use, as it provides users
with information on how to correct errors. It also has a positive effect on learnability, as the user
learns how to work the system.

Consequences:

o System performance will be better if the logged actions are stored in the Logger module
rather than another part of the system, as fewer interactions are required.

Related patterns:

Pattern implementation in OO: This pattern will generate a logger class that will send all the
actions requested by users through the interface to the action-logged class, as we have
implemented the case in which the logger does not store the logged actions internally but in
another class.

Example: When an order request is started, the system records that the user has opened an order.

IST — 2001 — 32298 Page 177 of 177
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Restaurant
(from CLASSES)

Book

(from CLASSES)

Name : String
ddress : String

G etName(Name

)
VailableT ables(date, hour, kind)()

ClientName (cliert)()
Chec k(date, hour)()
Gét(times-n-week))

Table
(from CLASSES)

Status : String

Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY

=4 Code : Integer

iChangeState()
IChangeState()
Cl ()

ChangeState()()
L ookF orAvailable(kind, data, hour)()

Request
(from CLASSES)

Init-request()
Input-CodCx)

OK()

init-request()

I nit-request()()

I nit-request()()
Init-request()()

Init CodConsum ption(code)()
RequestConsumtions()()
Bill)()

New-price(price)()

G etPrice(price)()

| Books manager
(from CLASSES)

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

Consumption
(from CLASSES)

{E3 0o d-consumption

Check -Sto ok (

Kty
ConsumtionName(name)()
Last CodeConsumptior()()

|
!

Recipe
(from CLASSES)

maurt
Nam e

Request-line
(from CLAS SES)

Oreateline(cade) ()

Re ad(c ans ump tion) ()
Consu mtio rPrice (pric €) (
LineNa me(rame))

Ge tPrice (pric &))

Ingredient
(from CLASSES)

Name
Minimun-Stock
Real-Stock

Check()()

Interface
(from CLASSES)

Init reque st()

Init-request()()

Undo()()

Init-request()()
Input-CodConsumption(code)()
D& ay(Is tof corsumptians)(
iDuplicateConsumption()()
Help()()

G ethdp(felp

G ethdp tar) ()

NewB ook ()()

ShowList(list)()

Ge {(restaurant, data, hour,kind)()
S howlList(list)()

iC nrecthgSy stem() ()

Enable(Reque st Cooked)()
Pressed(F 1)()

OK()()

S pe dific Hep ¢ pic) (

S howS pecificHelp(help)()
iCancel(re quest) ()

logger

(from CLASSES)

[I8Logg (init-request)()

action-logged
(from CLASSES)

.CrealeAcimn(inii—requesl)()

Figure F.16 Class diagram for restaurant management with History Logging mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 178 of 178

STATUS D.3.4. v.1.0 Techniques, patterns and styles
; >\ ‘ Interface ‘ ‘ : Request ‘ ‘ . logger ‘ ‘ . action-logged
:Waiter
| \ \ \ \
[Init-request()
‘ init-request) ‘ ‘ ‘
—>
[| |
Logg (injt-request) ‘ ‘
‘ ‘ CreateAction(init-request) ‘
\
| | L
L \ \ \
T | | | |
\ \ \ \
\ \ \ \

Figure F.17 Sequence diagram for restaurant management with History Logging mechanism

IST — 2001 — 32298 Page 179 of 179
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.9Undo Architectural Usability Pattern

= Pattern Name: Undo.

= Usability Mechanism The ability to undo an action and return to the previous state.

= Solution:

o Diagram:

>
el
=
-t
o
=
oo
(@}
o
>

‘ System A

o Participants: This pattern has two clearly separate parts. These parts have been labelled in
the illustration as A and B, respectively. Part A collects the actions performed in the
system (the number of actions to be stored will have to be specified when the system is
developed) so that they can be later undone. Part B manages the respective undo.

InterfaceA: receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

SystemA: this module sends the functions and data executed in the system to the
logger (3) (4) and also, optionally, if the logger does not store the actions
internally, will send the information to the part of the system that manages these
actions (5) (6).

Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed by the respective
part of the system. Logger receives the undo request from Undoer (9) and, if the
logged actions are stored in the logger, it then sends them one by one to Undoer
(8). If they are not stored in the logger, it will receive both the data and the
operation to be undone from another part of the system that we have named
System B through (11) and (10), respectively.

Interface B: receives the undo request and sends it to Undoer through (7).

Undoer: sends the undo request to logger (9) and also sends each of the actions to
be undone that it receives from logger to System B (13), as well as receiving the
opposite operation to the one performed from System B (12). When it knows
which opposite operation is to be performed, it sends the operation to System B
along with the data associated with the operation in question through (14) and

(15).

System B: it will search the system for both the action performed and the data
associated with this operation (10) (11) if the data are not stored internally in the

IST - 2001 — 32298

Page 180 of 180

© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

logger. It receives the actions to be undone (13) and provides the opposite
operation (12) (for which purpose it will have to store what the opposite is for
each action, see implementation section, for example). The opposite action and
the respective data will be sent to the respective part of the system (15) and (14).

make a mistake. It helps the user to feel that they are in control of the interaction.

made by the system and also improves user efficiency.

Consequences:

Usability benefits: Providing the ability to undo an action helps the user to correct errors if they

Usability rationale: This patter improves reliability, as it makes it possible to correct any errors

Related patterns: History Logging is equivalent to part A of this pattern. Therefore, if undo is

provided, it would also be advisable to provide History Logging without any additional cost.

Pattern implementation in OO: This pattern will generate an “undoer” class responsible for

triggering the entire undo process. Additionally, the listener and action-done classes appear, which
are used to store the actions that are performed as the system operates. It is also necessary to
include a “system-action” class to establish what the opposite is for each action that can be undone
through the “is-the-opposite” relationship.

Restaurant

(from CLASSES)

Example: the user can push the undo button.

(rom CLASSES)

Request
(from CLASSES)

Name : String
ddress : String

ClientName(client)()
SCheck(date, hour)()

Hour
Date
Status

%)
RpAvailableT ables(date, hour, kind)()

Q

50 init-request()

K()
&init-request()

|
Table

(from CLASSES)

Status : String
Number-person Integer

Place : XY
Code : Integer

fiChangeState()

. Smoker/Non Smoker : Boolean

o
ChangeState()()

BiLookForAvailable(kind, data, hour)()

\

Bool

ks manager

(from CLASSES)

G etRestaurants|
Get(restaurant,

(ist))
date, hour, kind)()

|

Consumption
(from CLASSES)

\Cod-consumption

Description

Price
heck-So &)

sumtoName(rame))
LastCodeConsumption()()

|

&init-request()()
S§init-request()()
&init-request()()

Binit CodConsumption(code)()
RequestConsumtions ()(
Bill()()

&New-price(price)()

G etPrice(price))

Request-line
from CLAS SES)

R CreateLine(code)()
&Read(consumption)()

& ConsumtionPrice(price)()
&LineName(name)()
&3GetPrice(price)()

Interface
(from CLASSES)

I nit-request()
&init-request()()

jundo()()

Sy nit-request()()
Input-CodConsumption(code) ()
SDispiay(ist of consumptions)()
DupicateConsumption()()

Help()()

&G et-help(help)()

&G et-help(tour)()

NewBook()()

yShowList (ist)()

G et(restaurant, data, hour,kind)()
§ShowList(list)()
BConnectingSystem ()()

YE nable(RequestCooked)()
GPressed(F 1)()

&S pecificHelp(tppic)()
S howS pecificHelp(help)()
§Cancel(request)()

Feedbacker
om CIAS SES)

 eedback(checking-resource)()
F eedback(request-acepted)()

Ingredient
(from CLA SS ES)

Name
Minimun-Stock
Real-Stock

heck()()

\

Recipe

(Fom CLASSES)

mount
Name

Undoer
(from CLASSES)

undo()()

A ctionDounloaded(action)()
&7 akeCO ntrary (contrary-action))

Alert-Manager
(Fom CLASSES)

Chec kg adiert |
0 K(

from CLASSES!

listerer

Undo()()

init t
Bt oo
&BA ctionDounloaded(action)()

KCacelea
SRequestCreated(request)()

1)

?

sy stem-action
from CLAS SES)

action-done
(from CLASSES)

2Add(“cremeune(cude)“)()
D
| EReqvenicreatedlo

E xecute(contrary-action, action)()

SearchContrary(action)()
T akeContrary(contrary-action))

)0

is- the op ossite-of

Figure F.18 Class diagram for restaurant management with Undo mechanism

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

Page 181 of 181

STATUS D.3.4. v.1.0 Techniques, patterns and styles

renitects

ASEacUsS

—

o IAro 3

_
ﬁﬁ e upoe-As

LE

oope- ey e aue g el

AR UCIEE U O HEEL

=

ﬁb.unuah.cn.uﬁhu

[=J R =Y [Ry Tl -1

22 TP AR D U T

| aelpapRer e qual

_
|
|
|
|
|
|
|
|
_
|
|

"
|
|
|
|
|
ﬁ
1
|

|
_.._uu_uuun._nu:__u_u_xun._uu: _._._
T

fopun
_ _ e pu |
T
fandufpzan uu:__o__:_ﬁ:u;wcx. 7 7 _ 7
7 fapoeziaunfaieas o 7 _w _ 7
_ [7 __.nu_uou:_..‘*unzo.z_u« H ﬁ _ 7
T
B EN]
| | | | | | |
i
ﬂ.“"UhAOWH-& Aupyay s asead __n_{._Auhu;“C.(. _ 7 7 _ 7
CXA D
U_un fazaun 7 7 _ 7 7 _ 7
rosal-0lppap) qpaay T -
_ 7 € ua|paiby -pay g 7 fape> 1aools-oag o 7 7 _ fapox _:A__ dwnsus Hpo o._ﬁ__:_ _
[ramzanmy [| 0 sabb 2y I _
i Fanba-gu
| | | | o | | | | | Pt
AR
ua|paiby _
Japeopaay : 30 iy AN - wondunae o FaH sanbay aj : Isanhay : wore-wA s wone- washs: a0 iza s erean A

Page 182 of 182

IST - 2001 — 32298

© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Figure F.19 Sequence diagram for restaurant management with Undo mechanism

IST — 2001 — 32298 Page 183 of 183
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.10 Form or Field Validation Architectural Usability Pattern

= Pattern Name: Form or Field Validation.

= Usability Mechanism: If a user is entering multiple items of data on one screen, it is possible to
check that each field contains valid data either all at once when the “submit” or “ok™ button is
pressed (form validation), or individually each time a data item is entered (field validation). With
form validation, one invalid entry may lead to the whole form having to be filled in again.

= Solution:

o Diagram:

[Interface]

1t
v
[Checker }

o
o . ‘e
o * 0
o o ‘e
o ° ‘e
" .,
‘e
.

[Interface] [System]

o Participants:

Interface: it sends a data set (1) and the function requested by the user (2) to
Checker for validation. Additionally, after data validation, it will receive error
data or OK from the Checker to be displayed to the user if the system is to be
designed this way (6).

Checker: it collects an operation requested by the user through the interface (2) as
well as a data set (1). This module can be designed to validate the data or to send
the data to another system component for validation (3) (4). In the latter case, it
also receives the result of the validation (OK or error) (5) and, in any case, will
send the result of the validation to the user if so required (6).

System: this component will be optional and will only exist if the Checker is not
capable of validating the data. If necessary, it receives both the function and the
associated data for validation from Checker (3) (4) and, after validation, returns
the result of the validation to Checker.

= Usability benefits: This pattern relates to a provision for error prevention.

= Usability rationale: The application of this pattern reduces the number of errors, increasing
reliability and user efficiency.

= Consequences:

o System performance might be affected depending on when the validation is done. In
client/server applications, in particular, validation should be done whenever possible at the
client site in order to avoid interactions between both parts. Additionally, better
performance might be achieved if validation is done inside the Checker component,
which, however, violates the encapsulation principle in the object-oriented paradigm.

= Related patterns:

= Pattern implementation in OO: This pattern will generate a “validation manager” responsible
for asking the specific validator to validate the sent data depending on the operation received.

IST - 2001 — 32298

Page 184 of 184

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

There will be as many specific validators (e.g., foodstuff-validator) as different data sets to be
validated. All this applies if the implementation takes into account that the checker does not run
the validations internally.

= Example: The system should validate the foodstuff code when it has been entered by the waiter
and before it is copied to the order.

Init-request()()
Init-request()()

Request
Re staurant (from CLASSES)
(from CLASSES)
Name : String Book
ddress : String
(from CLASSES)
Init-request()
lfe‘TabTiENbalme()d()x hour, kind)() Clie rtName(cli ent)() Input-CodConsumption()
vallableT ables(date, hour, kin . .
’ ' 0K o
C heck(date, hour)() init_(r)equesm Validation-manager
Get(imes - n- week)() Init-request()() (from CLASSES)

Manager(Cons umption, code) ()
OK()

InitC odC onsumption(code)()
RequestConsumtions()()
Bill()()

N ew-price(price)()
GetPrice(price)()

Table
(from CLASSES)
{5 Status : String
(5#N umber-person : Integer
(z#;Smoker/Non Smoker : Boolean
z#;Place : XY
Code : Integer

Consumption-Validator
(from CLASSES)

.Validate(code)()

iChang eState()

iChang eState()()

Chang eState()()

LookF orAvailable(kind, data, hour)()

Request-line
(from CLASSES)

Consum ption

(from CLASSES)
{5#:C od-consumption
Description

CreateLine(code)()
Read(consumption)()
iConsumtionPrice(price)()
LineName(name)()
iGetPrice(price)()

iC heck-Stock()

OK()

iC onsumtionName(name)()
iLastC odeC onsumption()()

Books manager
(from CLASSES)

Alert-Manager

(from CLASSES)

GetRestaurants(list)()
Get(restaurant date, hour, kind) ()

— ICheck»Ingredient()
. — OK()

Recipe -

(from CLASSES)
EgAmount Ingredient
zsName

(from CLASSES)
lzsName

{z#4M inimun-Stock
(=R eal-Stock

Check()()
skFor(ingredient)()

Figure F.21 Class diagram for restaurant management with Form or Field Validation mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 185 of 185

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Validation-manager

Witer 1 Init-request() 1 | changestate()
|
L \
I

‘ Consumption-Validator ‘ ‘ Request

Table H : Request-line H c i H Alert-Mana; H - Ingredient

Input-CodConsumption(code)
| I

VManager(Consumption, code)

Validate(code) ‘

OK() J
OK()

Check-Stock(Ci’de) Check-Ingredient()

Check()

‘ OK()
‘ OK()
OK() ‘
| |
\
| |
| |

] I
L | |
| |

Creatiune(code)
|

Figure F.22 Sequence diagram for restaurant management with Form or Field Validation mechanism

IST — 2001 — 32298 Page 186 of 186
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.11 Provision of Views Architectural Usability Pattern
= Pattern Name: Provision of Views

= Usability Mechanism: The system must provide users with different views so that they can see
what data they are working on at any time.

= Solution:

o Diagram:

‘ Interface ’

(Viewer Dlspatcher]

i i SpecificViewer
1 --------- n

\ & v

t Interface Interface

—

o Participants:

= Interface: it sends the data received (1) and the specific function requested by the
user (2) to viewer-dispatcher. Additionally, when the data have been transferred to
the specific viewer that knows how to interpret them, they are displayed by the
interface (5). For information about how to present some views in the interface,
see [Welie, 00]

= Viewer Dispatcher: it receives the data (1) and the requested function (2) and,
depending on this information, decides which viewer should interpret the
operation and data. These (3) and (4) are sent to the respective Specific Viewer.

= Specific Viewer i: it receives a request (4) and data to be viewed (3), which it
interprets as befits the viewer in question, sending them to the interface (5).

= Usability benefits: Having data-specific views available at any time provides the user with
guidance and will contribute to error prevention.

= Usability rationale: Error prevention improves user efficiency, in which case satisfaction will
also be increased. Additionally, specific viewers usually consume fewer resources than the
original action, for which reason users will also work with the system more efficiently.

= Consequences:

o Having different specific viewers increases system maintainability, as adding or
modifying a view has less impact on the system.

= Related patterns:

= Pattern implementation in OO: This pattern generates a “viewer-manager” class that is
responsible for selecting the specific viewer to be used in each case. Additionally, a specific class
appears for each viewer.

IST — 2001 — 32298 Page 187 of 187
© STATUS Consortium 2002. CONFIDENTIAL

_—&=rac

Software architactars that supports usabiity

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Example: The system should be able to provide the customer with the list of things ordered so far
at any time while the order is being placed.

Restaurant Request
(fom CLASSES) (from CLASSES)
Book
Name :String (from CLASSES) Hour
ddress :String Date
Status
GetName(Name)() ClientName(client)()
vailable Tables (date, hour, kind)() Check(date, hour)() Init-request()
Gel(times-in-week)() 'O"EE‘)"C‘“’C"”“'“""“"“
init-request()
Init-request()()

Init-request()()
Init-request()()

InitC odC onsumption(code)()
RequesiConsumtions ()()
Tabe Bil)0

New-price(price)()
(fom CLASSES) GetPrice(price)()

Status :String

Number-person :Integer

Smoker/Non Smoker :Boolean

Place :XY -

Code :Integer views- manager

ChangeState() (fom CLASSES)
ChangeState()
ChangesState()() Preview (reques
ChangesState()() B (eei®

LookForAvailable (kind, data, hour)()

Request-line
(from CLASSES)

request-viewer

reateLine(code)()

(from CLASSES)
Read(consumption)()
onsumtionPrice (price)()
ineName(name)() Reque stR evie w(req tes 1)
etPrice(price)() onsumtonName(name)()

Books manager
(from CLASSES)

Alert-Manager

(fom CLASSES)
lG etRes b urans (ist)()

G et(res Burantdae hour, kind)) Check-Ingredient()
eck-Ingredi
lOK()

Recipe

(fom CLASSES)

Consumption
(fom C LAS ES)

Cod-consumption

Description

Price

Name
Check-Stock () Minimun-Stock
OK() M\ Real-Stock
ConsumtionName(name)()
LastCodeConsumption()() lih;:k(()() siony)
skFor(ingredien

Ingredient

(fom CLASSES)

Figure F.23 Class diagram for restaurant management with Provision of Views mechanism

IST - 2001 — 32298 Page 188 of 188
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

: Request = 2 . Table : Request-line :c : Alert-Manager : Ingredient
views-manager request-viewer

i
Inpuf-E odConsum ptior:Uode)

Check-Stock(code) Check-Ingredient()

Check()

OK()

OK()

: Waiter
S itrequest() | ‘ ChangeState() ‘

OK()

CrealeL‘ne(code)

Prev iewqrequest)
T
\

R equeslPrevie\L (request)

RequestCppsumtions()

ConsumtionName(name)
|
|

Consum (name)

R equeJlCcntent(list of cons‘um ptions)

I
|
|
1
|
|
|
|
|

|
|
\
|
|
|
g
|
|
|
|
|
|
|
|

- — d—

Figure F.24 Sequence diagram for restaurant management with Provision of Views mechanism

IST — 2001 — 32298 Page 189 of 189
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.12 Workflow Model Architectural Usability Pattern

Pattern name: Workflow Model

Usability Mechanism: Modelling workflow provides different users with only the tools or actions
that they need to perform their particular tasks.

Solution:

o Diagram:

[Interface]

F
h 4
[Filter

[Interface] [System]

o Participants:

= Interface: it sends the data related to the user who is trying to access the system
(1) to the system. Additionally, the interface receives the data and operations (5)
(6) that make up the interface for the user in question from Filter.

= Filter: it receives the type of user who wants to connect to the system (1) from the
interface. Additionally, if it does not store all the functionality that should be
associated with each user internally, it sends the data about the user in question to
another system component (2) and receives both the data (3) and the operations
(4) to which this user should have access from this component. When it has this
information, it then passes it on to the interface for proper display (5) (6).

= System: this component is optional and will only exist if the Filter is not capable
of storing the functionalities associated with each system user internally.
Accordingly, this component receives the data on the user type who has connected
from Filter (2) and returns both the data and operations that this user type can
access from the interface (5) (6) to Filter.

Usability benefits: Targeting the user interface specifically to each user, depending on the tasks
that they need to perform in the workflow, minimises the user’s cognitive load and prevents errors.

Usability rationale: This pattern improves user efficiency and reliability, as the user will only see
the information and tasks corresponding to the operations to be done.

Consequences:
Related patterns:

Pattern implementation in QO: If the Filter stores only the relationship between users and the
functionality which each one can access, this pattern generates the filter class, which is responsible
for building the interface suited for the user type that has connected to the system. Additionally, it
will generate a “user” class, where all the possible system user types are stored, and a “system-
function” class, where the different functionalities provided by the system are stored. These two
classes will have to be linked by an association that determines what function each user can

IST — 2001 — 32298 Page 190 of 190
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

perform. For example, supposing that user 1 can only access F1 and F3, then the “user” and
“system-function” relationship would contain the following information:

SYSTEM FUNCTIONALITY

USER TYPE F1 F2 F3
USER 1 X X
USER 2 X
USER 3 T O

= Example: when the cook connects to the system, the only enabled function will be enter as
cooked when he has finished cooking an order.

Request

Restaurant Book (fom CLASSES)
(from CLASSES) (fom CLASSES)
Name : Sing
EAddress String ClientName (client) Request-line
Ch eck(date, hou 1) (fom CLASSES)
GetName(Name)() Get(times-in-week)() initrequest()
lAvauameTames(aam,nour,kma)() input-CodConsumption() reateLine(code)()

OK()
init-request()
initrequest()()
init-request()()
init-request()()
InitCodConsumption(code)()
RequestConsumtons ()()
Bill()()

New-price(price)()
GetPrice(price)()

Read(consumption)()
onsumtionPrice (price)()

LineName(name)()

GetPrice (price)()

Table
(Fom CLASSEY
E¥istatus :String
SN umber-person :Integer
{z+;Smoker/Non Smoker :Boolean
EpPlace : XY
EHCode :Integer

Filter

(fom CLASSES)

iChangeState()
iChangeState()
ChangeState()()
iChangesState()()
LookForAvailable(kind, data, hour)() Interface

UserConnected(cook)()
GetListFunctions (list)()

(from CLASSES)

Init-request()

Init-request()()

Undo (0

Init-request()()
Input-CodConsumption(code)()
Display (listofconsumptions) ()
D upli cateCo nsump fon ()
Help()()

Get-help(help)()

Geth elpou 1) ()

Books manager //
N ewBook ()()

(from CLASSES)
ShowLis(list)()

.Gems'amms(hst)() Get(estau ran t data, hou rkind)

Get(restaurant date, hour,kind)() glﬁv:‘cs;:"::/(ltemo 2

Enable(RequestCooked)()
Pressed(F1)()

OK()()

Spe cifcHe b (tppic) (

Sho w Spec ficHel p(hel p) ()
Cancel(request)()

system-func ton

(fom CLASSES)

DownloadFunctions (function)()
Execute(Function)()

User-type

(fom CLASSES)

Consumption FunctionsFor(cook)()
(from CLASSES) GetFunction (function)()

Cod-consumption

Check-Stock()

OK()
ConsumtonName(name)()
LastCodeConsumption()()

Figure F.25 Class diagram for restaurant management with Workflow Model mechanism

IST - 2001 — 32298 Page 191 of 191
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
. Interface : Filter : User-type -
: Cook system-function
ConhectingSystem (cpok) | |
| |

FunctionsFor(cook)

\
|
UserConnected(co‘ok) | |
|
\

DownloadFunctions(function)

GetFunction(RequestCopked)

GetListFunctions(RequestCooked)

Enable(RequestCooked)

Figure F.26 Sequence diagram for restaurant management with Workflow Model mechanism

IST - 2001 — 32298 Page 192 of 192
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.13 User Profiler Architectural Usability Pattern

= Pattern Name: User Profiler

= Usability Mechanism: The software system builds and records a profile of each user so that
specific system attributes (concerning the layout of the user interface, the data or options to show,
etc.) can be set and reset each time that a different user accesses the system. Different users may
have different roles and require different things from the software.

= Solution:

o Diagram:

o Participants:

[Interface]

lglz
\ 4

[Profiler

.
o
o
.

= [Interface:

For profile information creation, it sends both the data (1) and the
operation (2) that the user defines for his system to the profiler.

For profile retrieval, the interface sends the profile data (1) to the profiler.
Additionally, profiler sends the data associated with this profile to the
interface.

= Profiler: .

For profile information creation, it receives the data (1) and the operation
(2) that the user defines for his system from the interface. If it is not
capable of storing this profile information internally, it will send it to
another system component through (3) and (4).

For profile retrieval, it receives the data of the profile to be retrieved (1)
from the interface. If it does not store the profile information internally, it
will ask another system component to process the requested information
and/or operation (3) (4) and will receive the information associated with
the required profile (5) from this system component. Then, if this
information is to be displayed by the interface, it will send it to the
interface through (6).

= System: this component is optional and will only exist if profiler is not capable of
storing the information associated with each system profile internally. It receives
the data and/or operations of the required profile type (3) (4) from profiler and
sends the data associated with this profile (5) to profiler.

= Usability benefits: Providing the facility to model different users allows a user to express
preferences , thereby increasing system adaptability.

IST - 2001 — 32298

Page 193 of 193

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Usability rationale: Expert users can tweak the application for their particular purposes, which
increases satisfaction and possible performance, but this solution decreases memorability and
learnability [Welie, 00].

= Consequences:
= Related patterns:

= Pattern implementation in OO: This pattern generates a “profiler” class that is responsible for
performing given operations depending on who the requested profile belongs to.

= Example: The system should be able to identify the customer who is making the order at a given
table so that he can be given personalised treatment depending what type of customer it is.

IST - 2001 — 32298 Page 194 of 194
© STATUS Consortium 2002. CONFIDENTIAL

/éal:uﬁ

Software architecturs that supports usal

STATUS D.3.4. v.1.0 Techniques, patterns and styles

Profiler

(fromCL ASSES)

/ lCaIcuIateSpecialPrice()

Client

(from CLASSES)

Name
Times-in-week

.CIientD ata(times-in-week)()

Gef(tmes-in-week)()

Book
(from CLASSES)

ClientName(client)()
Check(date,hour)()
Get(times-in-week)()

Table
(from CLASSES)

Status : String

Request
(from CLASSES)

Number person :Integ er
Smoker/Non Smoker :Boolean
Place : XY

Hour
Date
Status

Init-request()
Change Sate() Input-CodConsumption()
Change Sate() OK()

ChangeState()() init-request()
ChangeState()() Init-request()()
LookForAvailable(kind,data,hour)() Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()

New-price(price)()

Code :Integer

leocoe STPDD

GetPrice(price)()

Restaurant
(from CLASSES)

Name :Stiing
ddress :String

GetName(N ame))
v alableTables(dag, hour, kind))

B ooks manager
(from CLASSES)

GetRestaurants(list)()
Gef(restaurant,date,hour,kind)()

Request-line
(from CLASSES)

CreateLine(code)()

Rea d(consumption))
,ConsumtionPrice(price)()
LineNa me(name)()
GetPrice(price)()

Consum ption
(from CLASSES)

Cod-consumption

Description
Price
. Check-Stock()
Recipe OK()
(fromCL ASSES) ConsumtionName(name)()

LastCodeConsumption()() Alert-Manager

o00e TBD |

(from CLASSES)

— Check-Ingredient()
OK()

mount
—
Name —
—

—
—_

Ingredient

(from CLASSES)

Name
Minimun-Stock
Real-Stock
Check()()
skFor(ingredient)()

Figure F.27 Class diagram for restaurant management with User Profiler mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 195 of 195

STATUS D.3.4. v.1.0 Techniques, patterns and styles

: Request : : : Book : Client : Profiler

< Waiter Request-line Consumption

dill(client,book-code‘) ‘

Cp sumtionPrice(prile)
|

For each
request—line‘

Price(price)

GetPrice(price

GetPrice(price)

CfalcuIateSpeciaIﬂrice(total-price,tﬂook—code, client‘)

‘ ‘ ‘ CIientNaTe(cIient)

ClientData(times-in-week)
|

Bet(times-in-week)

Get(times-in-week)

Bill(| price, book-code, [client)

\
|
\
|
\
Newrp rice(price)
\
|
\
|
\
|

—_—

Figure F.28 Sequence diagram for restaurant management with User Profiler mechanism

IST — 2001 — 32298 Page 196 of 196
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.14 Shortcuts Architectural Usability Pattern

= Pattern Name: Shortcuts

= Usability Mechanism: A shortcut allows an experienced user to activate a feature that may be
hidden “under the surface” of the interface with one quick manoeuvre.

= Solution:

o Diagram:

[et |l ,[Shortcut-Creator J

t Interface

o Participants:

Interface: it sends a data set (1) corresponding to a given system function, as well
as the key combination that activates this function, to Shortcut-creator.
Additionally, if a shortcut is to be executed, it sends a key combination (3) to the
Shortcut-executor. When the shortcut has been executed, it will receive the result
of the requested functionality or error if it cannot be executed (5) from Shortcut-
executor.

Shortcut creator: it fills in a sort of array in which the name of the shortcut, the
commands that activate it and the system function to be activated with these quick
commands are stored. For this purpose, it receives a data set and the function to be
executed when these keys are combined (1) from the interface, which it sends to
Shortcut-executor for storage (2).

Shortcut executor: it receives a set of commands (3) from the interface and checks
whether they match a set of commands associated with a given function. If the
command set matches a system functionality, it requests the system to execute the
function associated with this shortcut (4). In any case, whether they match a
function or not, it sends the result of executing this function to the interface
through (5).

System: it receives the order to execute the function associated with this key
combination (4) from shortcut-executor.

= Usability benefits: The provision of shortcuts allows the system to match the user’s level of
expertise. An experienced user will use the shortcut, whereas a novice will navigate a longer path
through the user interface, perhaps receiving more guidance. Shortcuts also provide the user with
explicit control of the system.

= Usability rationale: This pattern enables expert users to work with the system more efficiently.
Nevertheless, for non-expert users, this option might decrease learnability. Also shortcuts might
be inefficient for long-term memorability.

IST - 2001 — 32298

Page 197 of 197

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Consequences:

o This pattern improves system performance, users do not need to follow a specific
sequence of steps to perform an action.

o Performance is also better if Shortcut-creator stores the shortcut information internally
rather than in other system modules.

= Related patterns:

= Pattern implementation in QOO: This pattern will generate a “shortcut” class associated with
another “key” class responsible for recording the keys and the order in which they should be
pressed to activate a given system functionality. Additionally, there will be “system-function”
class associated with the key set defined for each shortcut. The “shortcut”, “key” and “system-
function” classes represent the shortcut-executor module, because this example shows a shortcut
that has already been created.

= Example: the waiter presses F1, which corresponds to the function that tells the waiter to go and
collect a given order that has now been cooked.

Restaurant Request
(from CLASSES) fom CLAS SES) Interface
Hou
%ﬂ:j"zsss‘g"‘?‘"g b ate (from CLASSES)
Status
&) }n:: +feque s: 0
&3Avala bleT atle s(date, ho ur, ki d)() b} "H.Ti\zim ront Jm;e&n:es 00
80 K(Init request (()
it req e st () Input-CodConsumption(code)()
Bl ritreqest(() Display list of consumptions)()
Bl ritreqwest(() BDuplicateConsumptian ()
Bl ritrequest(() Help()()
§ nit CodConsum ption(code) () 4G et-help(help)()
&aRequestConsumtio rs (() 4G et-help(tour)()
58il10() SaNewB ook (()
Book SNew-price(price) () .(Ssho"(w Gieng 9
etPrcepice efirestauant daa hourkin
(Fom CLASSES) 9 Pice)) X

iConnectingSystem ()()

s pecificHelp(tppic)()
s hows pecific Help(help) ()
‘ BCancd(eqest)()

Table K

EClientName(client)()
&yCheck (date, hour)() --E’:::s‘:d’(‘;i;?)s Cooke d) ()
PG et (times-in-week)() e

(from CLASSES) Request-line
Status : String
Number-person : Integer (from CLASSES)
Smoker/Non Smoker : Boolean
Place - XY CreateLine(code)()
Code : Integer §yRead(consumption)()
BConsumtionPrice(price)()
ChangeState() LineName(name)()
45ChangeState() G etPrice(price))
€ChangeState()()
&JLookF orAvaiable(kind, data, hour)()

Shortcut

(from CLASSES)

Consum ption
(fom CLAS SES)

(Cod-consumption Validate(F 1)()
Description G etF unction(function)()

Price

heck-Stock()

o sumtionName(name)()
)

LastCodeConsum ption()(
Books manager

(from CLASSES)

4G etRestaurants(list)()
&G et(restaurant, date, hour, kind)()

Key

(from CLASSES)

%Code
. 3O rde
sy stem-function raer
Bt
(from CLASSES) %etFunct\Dn(Functan[)

DownloadF unctions(function)()
Execute(F unction)()

Figure F.29 Class diagram for restaurant management with Shortcuts mechanism

IST — 2001 — 32298 Page 198 of 198
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles
: Interface : Shortcut : Key o
: Cook system-function
| Pressed(F1) | | | |
: 5 Validate(F1) | \ |
| |
ReturnFunction(F) |
DownIoadFunctions(funEtion)
|
GetFunction(Functjon)
GetFunction(functiam)
Execute(Function)
OK()

L)

L |

T | |

Figure F.30 Sequence diagram for restaurant management with Shortcuts mechanism

IST — 2001 — 32298 Page 199 of 199
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.15 Context Sensitive Help Architectural Usability Pattern

Pattern Name: Context Sensitive Help.

Usability Mechanism: Context-sensitive help monitors what the user is currently doing and
supplies information relevant to the completion of the task in question.

Solution:

o Diagram:

Interface

3 i

= Interface: it warns the sensitive-helper through (1) that the cursor is on top of the
element specified in (2). Additionally, it will display the help information it
receives from Sensitive-helper (3).

o Participants:

= Sensitive-helper: it identifies the help associated with a given element. This
component receives the signal (1), which alerts it to the need to show help about
the specified element through (2), from the interface. If the help is not stored
internally in this component, this help will be provided by another part of the
system through the information flow from System (4). When it has the help data,
it informs the interface through (4).

= System: this component is optional and represents a part of the system in which
the help will be stored if the Sensitive-helper is not capable of storing it internally.
In this case, System will provide the help to the Sensitive-helper through (4).

Usability benefits: The provision of context sensitive help can give the user guidance and will
prevent errors made by the user.

Usability rationale: This pattern will improve reliability and efficiency, as well as learnability for
non-expert users.

Consequences:
o Performance will improve if the help is stored in Sensitive-helper.

Related patterns: Guided-helper and Standard-helper, because both helps can be stored in the
same “Help” class, furnished by special methods for properly handling each of the two help types
provided by Standard-helper and Guided-helper.

Pattern implementation in OO: The Interface component will generate one or more classes. The
Sensitive-helper component will generate a class that will have an attribute containing the help, or
a pointer to another place (class) that contains this help if it is not stored in the class itself. The

IST — 2001 — 32298 Page 200 of 200
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

first option corresponds to the case in which the help is saved in the Sensitive-helper and the
second to the case in which it is saved in another system component.

= Example: the system must provide the user with sensitive help when the cursor is positioned over
certain elements in the interface.

Request
(from CLASSES)

Restaurant Book
(from CLASSES) (from CLASSES)

Name : String
ddress : String ICIienlName(c\ien()()

G etName(Name)() Check(date, hour)() Init-request()
VailableT ables (date, hour, Kind)()

G et (times-in-week () |nput-CodConsumptiond)
OK()

init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestConsumtions()()
Bill()()

iNew-price(price)()

iG etPrice(price)()
Table
(from CLASSES)
[E¥Status : String
{ELNumb e-pers an : I teger
S5 Smoker/Non Smoker : Boolean
E¥Place : XY
(5%:Code : Integer
ChangeState()
iChangeState()
C)0
iChangeState()()
LookF orAvailable(kind data, hou)()
Request-line
(from CLASSES)
Interface CreateLine(code)()
iRead(consumption)()
(fom CLAS ES) iConsumtionPrice(price)()
LineName(name)()
I nit-request() iG etPrice(price)()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuFIicateConsump(ion()()
Help!
G et-help(help)()
G et-help(tour)()
iINewB ook ()()
iShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)() s
ConnectingSystem ()() Sensitive-help
Enable(RequestCooked)() o
Prossed(F1)() (rom CLASSES)
SpecificHelp(tppic)() G etHelp(topic)()
ShowSpecificHelp(help)()
iCancel(request)()
C onsum ption
(from CLASSES)
#Cod-consumption
4, Description

kP rice

Books manager

(from CLASSES) ’//

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

Check-Stock()
OK(

ConsumtionName(name)()
LastCodeConsumption()()

Figure F.31 Class diagram for restaurant management with Context Sensitive Help mechanism

IST - 2001 — 32298 Page 201 of 201
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

_ Interface =
- User Sensitive-help

'SpecificHelp(topic)| \
GetHelp(topic) |

ShowSpecificHelp(help)

Figure F.32 Sequence diagram for restaurant management with Context Sensitive Help mechanism

IST - 2001 — 32298 Page 202 of 202
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.16 Wizard Architectural Usability Pattern
= Pattern Name: Wizard

= Usability Mechanism: The wizard pattern presents users with a structured sequence of steps to
carry out an operation, which it guides them through one by one. The task as a whole is separated
into a series of more manageable subtasks. The user can go back and change earlier steps in the
process at any time.

= Solution:

o Diagram:

1 izard- 4
Interface]—>[Wizard-Executor System A }

A i
3 l2 P A
: i 5 i 6

System B Y :
[Interface]

o Participants:

= Interface: it sends the functionality to be assisted (1) to Wizard-executor.
Additionally, for every step in wizard execution for which the user needs to enter
information or make a decision, System A sends this notification to the interface
through (5). Once the interface has the required information, it sends it to System
A through (6).

= Wizard-executor: it receives the request to execute a given wizard (1) from the
interface. The information related to the wizard can be stored in the Wizard-
executor or another system component. If Wizard-executor does not store the
different steps of the wizard internally, it consults System B through (2), and,
receives the information on the function to be executed to perform the different
steps of the wizard from System B through (3). For each step to be taken, Wizard-
executor asks the System to execute the functionality associated with each step
through (4).

= SystemA: it represents the part of the system that executes each step of the
wizard. It receives the different functions to be executed from the Wizard-
executor through (4) and, if user intervention is required, System A will inform
the interface through (5) and will receive the information entered by the user
through the interface by means of (6).

= SystemB: This module is optional and will only be necessary if the Wizard-
executor does not store the steps for each wizard that can be executed in the
system internally. It receives the request for the name of the next step in wizard
execution from the wizard-executor (2) and returns the information on the name
of the function to be executed through (3).

= Usability benefits: The wizard helps with guidance, showing the user what each consecutive step
in the process is.

= Usability rationale: The task sequence informs the user at once which steps will need to be taken
and where the user currently is. The learnability and memorability of the task are improved, but it
may have a negative impact on the efficiency of users forced to follow the sequence.

IST — 2001 — 32298 Page 203 of 203
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

= Consequences:

o Wizard execution might affect system performance of specific tasks.

o Storing the functions to be executed outside the Wizard may reduce system performance
but, in exchange, improve system modularity and the encapsulation principle.

= Related patterns:

Pattern implementation in OO: This pattern will generate a “wizard-manager” class, which is

responsible for knowing what wizard it has to execute depending on the request received from the
interface. Additionally, the “wizard” class is responsible for ascertaining one by one the different
steps to be taken using the “wizard-system-function” for this purpose, which will have the name of
the system function to be executed and the order number by means of which it can identify the
order of the different wizard steps. In this case, the Wizard-manager and wizard correspond to the
Wizard-executor module, and the wizard-system-function class represents the System module, as
it stores the information outside the Wizard-executor module. Additionally, the Waiter-device,

represents the Interface module.

F2.

Restaurant
from CLASSES)
N st
ihame : sting Request
Q}Address String
(from CLASSES)

WGetName(Name)() Byrow
DAy ailableTables (date, hour, kind)() Egoate
@smus

Q Winit-request()
&input-CodConsum ption()

Book Sok()
(from CLASSES) Rinit-request()

Rinit-request()()

RC lientN ame(client)() Sinit-request()()

yCheck(date, hour)() Winit-request()()

RGet(times-in-week)() &nitC odConsum ption(code)()
%
BBill()()

onsumtions()()
SN e w-price(price)()

QGetPrice(price)()
‘ LastRequestConsumtions()()

A

Table

(trom CIASSES)
@smus Stiing
@Numner—person Integer
(@S moker/N on Smoker : Boolean

Interface
(fom CLAS SES)

init-request()

init-request()()

[Undo()()

Yinit-request()()
YInput-CodConsum ption(code)()
RDisplay (list of consumptions)()
D uplicateConsum ption()()
[Help()()

RGet-help(help)()
YGet-help(tour)()

YN ewBook()()

BshowList(list)()
WGet(restaurant, data, hour,kind)()
HshowList(list)()
WConnectingSy stem ()()
Enable(RequestCooked)()
Brressed(F1)()

HoK()()

WspecificHelp(tppic)()
showSpecificHelp(help)()
Cancel(request)()

Example: the waiter creates a rapid access for the functionality “Create new order” by pressing

W aiter-device
(from CLASSES)

RYC onsum ption-In-Table-x()
BsendOutVoice(listponsum ptions ()
SC reateShortcutW fzard()

G etFunction(IntrgFucntionName)()
WGetF Unction(IntfoKey s)()
RVCreated()

/
wizard—janager

(from CIJASSES)

HC reateShortCut()

Requestline
(from CLASSES)

EPiace - XY

@ceae. Integer

®C reateLine(code)()

@R ead(consumption)()
®ConsumtionPrice(price)()
WLineName(name)()

W GetPrice(price)()

WChangeState()
WChangeState()
#ChangeState()()
BChangeState()()
WLookForAv ailable(kind, data, hour)()
L astRe que stCon sumptions()()

Consumption
(from CLASSES)
[Cod-consumption
%Descnpﬂun
%Pnce
Books manager —Erv—
fom CLASSE o<
WG etRestaurants(list)() :f“”i:“ ";;';"Nam S(”lam;:?
2stCode Consump tion
QYcet(restaurant, date, hour, kind)() P

system-function
(Fom CLASSES)

M0 ownloadF unctions(function)()
SExecute(Function)()

I

Shortcut

(from CLASSES)

|

Wizard

(from CLASSES)

WAssist()
WGetFunction(IntroF unctionName)()

RF unctionName(Greate Request)()
G etF unctioh(IntroKey s)()

WK ame(F2)()

End()

By alidate(F1)()
BGetFunction(function)()

RCreated()

RCreateShortCut(F2, CreateRequest)()

1

Key

(from CLASSES)

[OK()

wizard-system-function
(from CLASSES)

NextFunction()
&

Code

Eorder

R eturnF unction(F 1)()
GetFunction(F unction()
RYCreate(F2, CreateRequest)()

)
WNextFunction()

Figure F.33 Class diagram for restaurant management with Wizard mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 204 of 204

STATUS D.3.4. v.1.0 Techniques, patterns and styles

E% - = : Wizard = : Shortcut : Key

. W aiter-device wizard-m anager wizard-s ys tem-function
: Waiter ——

Cr]eateShortcutWizard‘() ‘ ‘

CreateShortCut() Assist()
| | NextFunction() |

\ \
| |
GetFunction(IntroFunctionNjame) ‘ ‘
GetFunction(IntrgFucntionName) ‘ ‘
| | |
FundtjonNam e(Create Réquest) ‘) ‘ ‘ ‘
T ‘ . NextFunction() | ‘ ‘
‘ ‘ ‘ GetFunction(IntroKeys ‘ ‘
‘ | GetFUnctio‘n(IntroKeys) ‘ ‘
U\ [
| | | N | | |
‘ ‘ KeyName(F 2) ‘ ‘ ‘ ‘ ‘
‘ ‘ NextFunction() | ‘ ‘
| | me0 J | |
CreateShortCut(FZ‘, CreateRequest) 1
l
‘ ‘ ‘ Cregte(F2, CreateReq‘uest)
‘ ‘ ‘ Created()
OKI()
‘ CreaFed()
0 | |
| | |
\ \ \
\ \ \

Figure F.34 Sequence diagram for restaurant management with Wizard mechanism

IST — 2001 — 32298 Page 205 of 205
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.17 Cancel Architectural Usability Pattern

= Pattern Name: Cancel.

= Usability Mechanism: Users should be allowed to cancel a command that has been issued if they
realise that they have done the wrong thing before an error state is reached. This is different from
being able to undo an action after it has finished to return to the previous state.

= Solution:

o Diagram:

(\ >
[l
=
=+
o
=
oo
o
¢}

Logger

A
10 E

[System B J ‘

o Participants:

InterfaceA: it receives the request to execute an operation in the system, which
may contain both the operation and the data (1) (2). As we will see later, this
execution request can also come from the system (3) (4).

SystemA: this module sends the functions and data to be executed in the system
(3) (4) to the logger, and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged actions and
data either internally or in another part of the system, in which case it will have to
send this action and the data to be processed by the respective part of the system
to the system (5) (6). Logger receives the cancel request (9) from Canceler, then,
if the logged actions are stored internally, it sends them one by one to Canceler in
(8), provided that the all the operations stored by the logger have been performed.
If the operations have only be stored but not executed, then nothing is sent in (8)
and if they are stored externally, all the logger will have to do is receive them in
(10) and (11) and delete them. If they are not stored internally, it will receive both
the data and the operation to be cancelled from another part of the system, which
we have called System B, by means of (11) and (10), respectively.

Interface B: it receives the cancel request and sends it to Canceler in (7).
Additionally, it will search the system for both the action performed and the data
associated with this operation (10) (11), provided that the logger does not store the
data internally (esto lo hace el sistema B?).

System B: it searches the system for both the action performed and the data
associated with this operation (10) (11), unless the logger stores the data
internally. It receives the actions to be undone (or cancelled?). It receives the
actions to be undone (or cancelled?) (13) and provides the opposite action (12)

IST - 2001 — 32298

Page 206 of 206

© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

(for which purpose, it will have to store the opposite for each action, see
implementation section for example). The opposite action and the respective data
will be sent to the respective part of the system (15) and (14) for execution.

= Canceler: it sends the cancel request (9) to logger and also sends each of the
actions to be undone (or cancelled?) that it receives from logger to System B (13)
and receives the opposite operation to the one performed (13 (12)) from system B.
When it knows what opposite operation to be performed is, it sends it to System B
along with the data associated with this operation through (14) and (15).
Alternatively, if all the operations are stored in the system and performed together
when the user presses accept, then Canceler will simply read through (10) and
(11) and delete the accumulated operations, in which case (14) and (15) will not
be used at all.

= Usability benefits: Being able to cancel commands helps with error management, as if users
realise that they have done the wrong thing then they can interrupt and cancel an action before the
error state is reached. It also gives users the feeling that they are in control of the interaction.

= Usability rationale: This pattern improves reliability, as it prevents users from making errors, at
the same time as it improves user efficiency, enabling them to go back when they have taken an
incorrect action.

= Consequences:
= Related patterns: History Logging, Undo.

= Pattern implementation in QO: This pattern generates a Canceler class responsible for
triggering the whole cancel process. Additionally, the listener and action-done classes appear,
which are used to store the actions that are either performed as the system operates or are stored
and then all executed together. The “system-action” class is used to establish what the opposite is
for any action that can be cancelled and has been executed by the system.

= Example: The waiter can cancel an order even if it has not be sent to the kitchen.

IST — 2001 — 32298 Page 207 of 207
© STATUS Consortium 2002. CONFIDENTIAL

Software architactars that supports usabiity

STATUS

D.3.4. v.1.0 Techniques, patterns and styles

Interface
Restaurant Book
from CLASSES)
(from CLASSES) (fom CLASSES) Request (rom)
Name : Sing I (fom CLASSES)
EAadress sting ClientName(client)() Hour Im~r::::§5))()
Check(date, hour)() Date nicreque
etName(Name) Get{times-in-week)() tatus init-request()()

G ()
lAvanamnamestaam,nounkma)()

init-request()
input-CodConsumption()
K()

init-request()
init-request()()
init-request()()
init-request()()

input-CodConsumption(code)()
Dis play (listofconsumptions ()
DuplicateConsumption()()
Help()()

Gethelp(help)()
Gethelp(tour)()

N ewBook ()()

Table ShowLis(list)()
initCodConsumption(code)()
r om CLASS E:
¢ S RequestConsumtons ()() Get(restaurant data,hour kind)()
Status :String 3100 ShowLis (lis)()

Number-person :iteger
SmokerNon Smoker :Boolean
Place :XY

Code :Integer

iChangeState()
ChangeState()

New-price(price)()
etPrice(price)()

ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()

OK()()
SpecificHelp(tppic)()

show SpecificHelp(help)()
Cancel(reques{)()

canceler

(from CLASSES)

.Cancel“()

listerer

(fom CLASSES)

ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

init-request()()
Add("CreateLine(code)")()
Und o()

/c Lon Dounlca ded(action) (
Cancel(request)()

Req uestCreated e ques §)

e

action-done

(fom CLASSE'S)

dd("CreateLine(code)")()
iDounload(action)()
Reques(Created(request)()

Feedbacker
(fom CLASSES)

Request-line
(omQ ASSE S)

F eedb ack(che cking: s ou ce) ()
F eedb ack (e ques t acep & d)()

Bodcks manager
(from CLASSES)

reateLine(code)()

Read(consumption)()
onsumtonPrice (price)()

LineName (name)()
etPrice(price)()

eRestaurants (list)()
el(restaurant date, hour,kind)()

C
(fom CLASSES)

Cod-consumption
S.Description

Check-Stock()
oK()

onsumtonnamstoame)y |
iLastCodeConsumption()()

system-action
(from CLASSES)

SearchContrary (action)()
Execute(contrary-action,action)()

Ingredient

(fom CLASSES)

TakeContary(contrary-action)()

iCheck()()
skFor(ingredient)()

is-theopss te-o

Recipe

(iom CLASSES) Alert-Manager

(iom CLASSES)

iCheck-Ingredient()
OK()

Figure F.35 Class diagram for restaurant management with Cancel mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 208 of 208

STATUS D.3.4. v.1.0 Techniques, patterns and styles

renitects

- .

tuarmed E Ao E e oL

ESITILETEC:

L0 D

ez e

LEE LIRS,

tiFanbanasue

tpajdaze-| sanba

taposiauaRa g
T

tia

|
|
|
|
|
|
|
|
|
|
|
_
|
|
h

[SLLITR 127 uu_.:_o:..__.:kxucx

t.sazgosay Dupaydh asead __n_.s.u._u*mcx

—_—] —

T
s BIPAR) PRI (S UCTETL T T TEY

tapos Juon d

LETLETT o._:nL

|
|
|
|
f
|

tdapestam ﬁn:u..uux

QFanbanpasa o sy

[T ppp— '
| | |

_ th :_.:.L._E_
thFanba g

_ _ _ _ T sanbad m_

FLUE

BELELE TR

ﬁ (SR
Bz ay o
(=

:uouﬁxuo_m.xu"z 2

AsScacuUs

_uﬁnuuu:__ 30 i 430 ¢ _ _S:_E._Eou_ _ _ i sy © _u_.n._._ _ _n!._ug__ _S_un..._u:n

_S_un..._u:n __ npacie: __ AR _ E EM

Page 209 of 209

Figure F.36 Sequence diagram for restaurant management with Cancel mechanism

© STATUS Consortium 2002. CONFIDENTIAL

IST - 2001 — 32298

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.18 Multi-tasking Architectural Usability Pattern

Pattern Name: Multi-tasking

Usability Mechanism : Multi-tasking describes the situation where the system (and the user) can
manage several tasks at the same time, allowing switching from one task to another as is most
conducive to efficiently and effectively doing the work..

Solution:

o Diagram:

[Interface]

1

[Dispatcher l

0
o

»
s

rd
[\]

OS]

[Interface J

o Participants:

= Interface: it sends the function to be executed to dispatcher in (1). Additionally, if
the user is to be informed of anything that is happening, he receives information
from the dispatcher in (5).

= Dispatcher: this component knows what resources are needed for each function
that it has to execute in the system. It receives the function to be executed from
the interface in (1). It sends the function to be executed to the system component
in question in (2) after having checked that all the resources required to execute
this function exist. Additionally, it receives the result of performing this operation
from the system in (3). This result may specify either error or OK if everything
went according to plan. If user has to be informed of the result of the operation
performed, it sends this information to the interface (4).

= System: this component refers to the part of the system responsible for executing
the function specified by dispatcher in (3).

Usability benefits: Providing a multi-tasking environment gives users the feeling that they are in
control of the system, as at any point they can switch to the task that is of most interest to them.

Usability rationale: This pattern might improve efficiency in system use by expert users, but it
might also provoke more mistakes, thereby having a negative impact on reliability.

Consequences:

o System performance might be negatively affected, as resources have to be shared by
different actions or applications.

Related patterns:

Pattern implementation in OQO: The Dispatcher component generates a “dispatcher” class
responsible for distributing the different user requests depending on the resources available at the
time.

IST - 2001 — 32298 Page 210 of 210
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Example: the clock advises that any reservations made should be cancelled 20 minutes after
reservation time if the diners have not arrived.

Restaurant Book
(from CLASSES) (from CLASSES) Request
EZame : String (fom CLASSES)
ddress : String &3Hour &=Hour
Name EDate
lfetName(Name)() E5Status
vailableTables (date, hour, kind)() ClientNam e (client)()
Check(date, hour)() Init-reques t()
Get(tim es-in-week)() Input-CodConsum ption()
CheckBook() OK()
GetStatus (status)() init-reques ()

Init-reques t()()
Init-reques ()()

Table Init-reques t()()
(from CLASSES) InitCodConsum ption(cod e)()
&¥Status : String RequestConsumtions()()
zNumber-person : Integer Bill()()
{z#Smoker/Non Smoker : Boolean N ew price(price)()
&¥Place : XY GetPrice(price)()
EhCode : Integer LastRequestC onsum tions ()()

iChangeState()

IChangeState()

iChangeState() (|
[®ChangesState()
.LookForAvaila le(kind, data, hour)()
-LastRequest onsum ptions()()

[®status()
Requestdine
/ (from CLASSES) Foodbacker
from CLASSES
Books mfnager CreateLine(code)() (fom)
(from CL/ SSES) Read(consum ption)() i
] Consum tionPrice(price)() Feedback(checking-resource)()
.GetResta urants (list)() LineName(name)() Feedback(request-acepted)()
Get(restaurant date, hour, kind)() GetPrice(price)()
Check(books)()
Consumption Ingredient
Dispatcher (fom CLASSES) (from CLASSES)
(from CLASSES) (EHCod-consumption SN
= ipti yhame Alert-Manager
Ee.scrlptlon EMinim un-Stock (om CLASSE%)
[®icheck(books)() ayhrice K>———T1— | [@4Real-Stock _
[®iCheck-Stock() Check()() I®iCheck-Ingredient()
-OK() " lskFor(ingredient)() -OK()
[®iconsumtionName(name)()
[®iLastCodeConsumption()()
Recipe

(from CLASSES)

Figure F.37 Class diagram for restaurant management with Multi-tasking mechanism

IST - 2001 — 32298 Page 211 of 211
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

: Dispatcher : Books : Book : Table
: Clock manager

| | | | |
 Check(books) e ck(books) | | |
CheckBook() | |

|
Status() 1
GetStatus(status

u
|
|
|
|
|
|

u
T |
T | |
| | |
| | |

Figure F.38 Sequence diagram for restaurant management with Multi-tasking mechanism

IST - 2001 — 32298 Page 212 of 212
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.19 Command Aggregation Architectural Usability Pattern
= Pattern Name: Command Aggregation

= Usability Mechanism: The system should provide the capability to allow users to perform
different actions by means of a single command. Macro creation would be an example of this
pattern.

= Solution:

STEP 3. Abstraction of the design solution for Command Aggregation

= Solution:

o Diagram:

Interface Code-Editor

o Participants:

= Interface: it sends a data set (1) corresponding to a given command, as well as the
program code associated with the command to be created, to Code-Editor.
Additionally, if a command is to be executed, it sends the name of the previously
created command (3) to the Code-executer. When the command has been
executed, it will receive the result of the command or error, if it cannot be
executed, (5) from Code-Executer.

= (Code-Editor: it receives the name of the command to be created and the program
code to be associated with the command (1) from the interface, which it sends to
system for storage (2).

= (Code-Executer: it receives a previously created command (3) from the interface. It
asks the system for the program code to be executed (4) and executes this code.
Also it sends the result of executing this command to the interface through (5).

= System: it receives the name of the command as well as the associated program
code (3). It also sends the program code associated with a command to the Code-
executer when it is requested for execution (4).

= Usability benefits: Providing the ability to group a set of commands into one higher level
command reduces the users’ cognitive load, as they do not need to remember how to execute the
individual steps of the process once they have created a macro, they just need to remember how to
trigger the command.

= Usability rationale: This pattern improves user efficiency and prevents any errors that may be
made during the individual actions grouped in the aggregate command, which means that it
improves reliability. On the other hand, it can have a negative impact on long-term learnability,
that is, on user memorability.

= Consequences:

o Increases system performance in executing the aggregated commands.

IST - 2001 — 32298 Page 213 of 213
© STATUS Consortium 2002. CONFIDENTIAL

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Related patterns: The wizard pattern should be used combined with commands aggregation to
facilitate and guide the process to create or execute a command.

= Pattern implementation in QO: In this case, the class editor includes the name of the command
to be created and the code lines of the created program. Code lines must be stored to be reloaded
in the future in the class command.

Example: the system must have the capability to create macros, for instance, to create a macro that
would permit a maitre d’hotel to change the permitted period for arrival at the restaurant before the
booking time, taking into account the number of bookings for each day.

Restaurant
(from CLASSES)

@¥Name : String

@Address : String

WcetName(Name)()
@ AvailableTables(date, hour, kind)()

¢

Book
(from CLASSES)

Date
&
EName

$C heck(date, hour)()
YGet(times-in-week)()
2C heckBook()

G GetStatus(status)()

B¥ClientNam e(client)()

Books manager
(from CLASSES)

Consumption

(from CLASSES)

WGetRestaurants(list)()
LGet(restaurant, date, hour, kind)()
4C heck(books)()

Cod-consum ption

D escription
iEPrice

C heck-Stock()

Interface
(from CLASSES)

HOK()
ConsumtionName(name)()
WLastC odeConsumption()()

Request-line

editor
(from CLASSES)

(from CLASSES)

#BCreateLine(code)()

#HC reateC ommand(command-name, program-code)()
Command-created()

&R ead(consumption)()
§Consum tionPrice(price)()

SLineName(name)()
RGetPrice(price)()

Table
(from CLASSES)
[E¥status : String
@Numnerperson : Integer
%Smoker/Non Smoker : Boolean

&Place : XY

(&icode : Integer

command
(from CLASSES)

& StoreC ommand(command-name, program-code)()
&

¥
ook F orAvailable(kind, data, hour)()
SsLastRequestConsumptions()()
status()

Request
(from CLASSES)

@Hour

Date
i Status

Winit-request()

&Input-C odC onsum ption()
| soK()

S¥InitC odC onsum ption(code) ()
LR equestConsumtions()()
RBill()()

HNew-price(price)()
SGetPrice(price)()
SLastRequestConsumtions()()

Figure F.39 Class diagram for the first application with Command Aggregation mechanism

IST - 2001 — 32298
© STATUS Consortium 2002. CONFIDENTIAL

Page 214 of 214

oftware arehi

STATUS D.3.4. v.1.0 Techniques, patterns and styles
% . Inte rface : editor : command
: Maitre
New&ommand(command-name, program-code) ‘

~
CreateCﬂmmand(oommand—name, progrlam—code)

[
33— — —

StoreCommand(command-name, program-code)

Command-created()

Command-created()

I B2

—— 5 — — —

Figure F.40 Sequence diagram for the first application with Command Aggregation mechanism

IST - 2001 — 32298 Page 215 of 215
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.20 Actions for Multiple Objects Architectural Usability Pattern
= Pattern Name: Actions for Multiple Objects.

= Usability Mechanisms: The same action often needs to be applied to a number of different
objects. Providing the user with the possibility of grouping the objects and applying one action to
them all “in parallel” will be of help in completing such a task more quickly and accurately. Errors
are more likely to be made if each object has to be dealt with separately.

= Solution:

o Diagram:

)

; v
[Interface]4{ Function-Manager]
5 4
* 1\
System
L 6
'd v ~
Interface

o Participants:

= Interface: it sends the set of objects selected by the user from the interface to
Selector-manager in (1). Additionally, it sends the function to be executed in (3).
If, after the requested operation has been executed, the user is to be informed of
the result of the operation, the respective data are sent to the interface in (6).

= Selector-manager: this component receives the set of elements on which to
operate in (1). Additionally, it sends the set of objects on which the system is to
operate to function-manager in (2).

= Function-manager: it receives the operation to be executed in (3) and receives the
set of objects on which the system is to operate in (2).

= System: it receives the function to be executed (4) and the list of objects on which
the specified function is to be executed in (5). Additionally, it sends the result of
the executed function to the interface in (6).

= Usability benefits: Providing the ability to perform the same action on a number of objects at
once reduces the time that it will take the user to complete a task, as the system should be much
faster in repeating actions than the human user. The number of clicks (or equivalent actions) that
the user has to make to complete the task is reduced.

= Usability rationale: This pattern improves user efficiency because users do not have to repeat the
same action several times on different objects, and it also improves reliability through error
prevention.

IST - 2001 — 32298 Page 216 of 216
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

= Consequences:
= Related patterns:

= Pattern implementation in QO: This pattern generates a “selector-manager” class, responsible
for receiving any user requests referring to a set of resources, and a “function-manager” class,
which is responsible for collecting the list of elements to which the specified function is to be
applied and requests that this function be applied to each element in the list.

= Example: the cook selects several ingredients and requests restocking.

Restaurant Book
(from OLASSES) (Fo mCLASSES)
Name : String
i ClientName(client)()
%Address st Check(date, hour)()
G et(times-in-week)()

&
)
@A vaiableT ables(date, hour, kind)()

P

Request
(from CLASSES)
Hour
Table Date
Status
(from CLASSES)
Status : String init-request()
INumber-person : Integer [input-CodC.
Smoker/Non Smoker : Boolean S50 KO
Place : XY init-request()
Code : Integer 4sinit-request()()
4sinit-request()()
gChangeState() i nit-request()()
&3ChangeState() InitCod
iC)0 &sRequestConsumtions()()
&iChangeState()() SEBil()()
LookF orAvailable(kind, data, hour)() SENew-price(price)()
G etPrice(price))

\

BCreateLine(code)()
isRead(consumption)() :F eedback(checking-resource)()

Request-line
(from CLASSES) Feedbacker
(from CLASSES)

Books manager
(from CLASSES)

@Cors umtionPiice(pre e)() F eedback (request-acepted)()

LineName(name)()
4G etPrice(price)()

G etRestaurants(list)() Consumption
G et(restaurant, date, hour, kind)()

(from CLASSES)

(Cod-consumption
Description
Price

Check-Stock()

ConsumtionName(name)()
LastCodeConsumption()()

Ingredient

(from CL/S SES)

Name
Minimun-Stock
Real-Stock

/ Check()()

Alert-Manager

(from CLASSES)

Recipe zgh:(z;k-\ngred\enu)

(rom CLASSES)

Amount
Nam e

Selector-manager
(from CLASSES)

Function-Manager zAska(ingMMes)()
|

(from CLASSES) ngredients list-of -ingredients)()

A skF or(list-of -ingredients)()

Figure F.39 Class diagram for restaurant management with Actions for Multiple Objects mechanism

IST - 2001 — 32298 Page 217 of 217
© STATUS Consortium 2002. CONFIDENTIAL

STATUS D.3.4. v.1.0 Techniques, patterns and styles

o o : Ingredient
- Cook Selector-manager Function-Manager
AskFor(ingredientesb | |
1 1 ‘ ‘
Selectingredients(| |
| |
Ingredients(list-of-ingre dients) | |
AskFor(Iist-of—ingredient‘g)
LAskFor(ingredient) \
For each |
ingredientin |
the list \
|
|
|
|
\

L)
v |
| |
| |
| |

Figure F.40 Sequence diagram for restaurant management with Actions for Multiple Objects
mechanism

IST - 2001 — 32298 Page 218 of 218
© STATUS Consortium 2002. CONFIDENTIAL

