

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

I

INFORMATION SOCIETIES TECHNOLOGY (IST) PROGRAMME

STATUS

"Software Architecture for Usability"

WORKPACKAGE: 3 Study of the usability/software architecture relationship

DELIVERABLE 3.4. Techniques, patterns and styles for architecture-level usability improvement

Version: 1.0.

Submission Date: 29/4/03

Authors: Natalia Juristo, Ana M. Moreno, Maribel Sanchez

Partners: UPM

Stage:
[] Draft

[] To be reviewed by WP participants

[] Pending of approval by next consortium meeting

[X] Final / Released to CEC

Confidentiality:
[] Public - for public use

[] IST – for IST programme participants

[X] Restricted – for STATUS consortium and PO

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

DOCUMENT CONTROL

Registration of Changes

Date Version Author of Changes Comments

22/10/02 0.1 Ana M. Moreno, Natalia Juristo Initial structure, first draft of section 2

and 3
27/10/02 0.2 Ana M. Moreno, Natalia Juristo First draft of section 4.
5/12/02 0.3 Ana M. Moreno, Natalia Juristo Second draft of section 4.
2/1/03 0.4 Ana M. Moreno, Natalia Juristo Adjustments to section 4
21/1/03 0.5 Maribel Sanchez Inclusion of examples of patterns in

section 4
4/2/03 0.6 Ana M. Moreno, Natalia Juristo Adjustment of deliverable with respect

to the concept of architectural usability
pattern

10/2/03 0.7 Maribel Sánchez, Camilo
Calderón

Inclusion of examples of patterns and
architectural usability patterns in
section 4
Inclusion of Annex E

28/04/03 0.8 Ana M. Moreno , Natalia Juristo Last reveiw
29/4/03 1.0 Ana M. Moreno , Natalia Juristo,

Maribel Sanchez
Changes on command aggregation

List of STATUS Related Documents

Document Name Version

Technical Annex 1.0
Deliverable D.2. 1.0
Deliverable D.3.5. 1.0

IST – 2001 – 32298 Page 2 of 2
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

TABLE OF CONTENTS

1 INTRODUCTION..5
1.1 PURPOSE .. 5
1.2 DOCUMENT STRUCTURE ... 5

2 USABILITY PATTERNS: THE STATUS APPROACH TO IMPROVE USABILITY FROM
ARCHITECTURE...6

2.1 THE STATUS CONCEPT OF USABILITY PATTERN ... 6
2.2 RELATED WORK ON USABILITY PATTERNS ... 6
2.3 USABILITY PATTERNS VERSUS USABILITY SCENARIOS .. 7
2.4 ADJUSTMENTS TO WP 2 USABILITY PATTERNS.. 9

3 DESIGN SOLUTIONS FOR USABILITY PATTERNS ...15
3.1 PHASE 1: GENERATING DESIGN SOLUTIONS FOR USABILITY PATTERS ... 16

3.1.1 First Iteration: Finding Design Solutions for Architectural Usability Patterns .. 16
3 2 Second iteration: Checking Design Solutions... 20 .1.

3.2 PHASE 2. VALIDATING DESIGN SOLUTIONS FOR PATTERNS WITH PRACTITIONERS 23
4 ARCHITECTURAL USABILITY PATTERNS CATALOGUE ..28
5 CAN USABILITY PATTERNS HELP FOR EDUCING USABILITY REQUIREMENTS.................30
6 CONCLUSION ...31
7 REFERENCES..32
ANEXO A: DETAILED DESCRIPTION OF USABILITY PATTERNS ..34

A.1 DIFFERENT LANGUAGES ... 34
A.2 DIFFERENT ACCESS METHODS.. 34
A.3 ALERTS .. 35
A.4 STATUS INDICATION ... 35
A.5 SHORTCUTS.. 35
A.6 FORM OR FIELD VALIDATION.. 36
A.7 UNDO... 36
A.8 CONTEXT-SENSITIVE HELP ... 36
A.9 WIZARD ... 37
A.10 STANDARD HELP .. 37
A.11 TOUR ... 38
A.12 WORKFLOW MODEL... 38
A.13 HISTORY LOGGING ... 38
A.14 PROVISION OF VIEWS.. 39
A.15 USER PROFILE .. 39
A.16 CANCEL ... 39
A.17 MULTI-TASKING .. 40
A.18 COMMAND AGGREGATION.. 40
A.19 ACTIONS FOR MULTIPLE OBJECTS... 40
A.20 REUSING INFORMATION.. 41

ANNEX B: REQUIREMENTS SPECIFICATIONS FOR THE CASE STUDIES42
B.1 CASE 1 SPECIFICATIONS: RESTAURANT NETWORK MANAGEMENT .. 42
B.2 CASE 2 SPECIFICATIONS: AMUSEMENT PARK CONTROL .. 44

ANNEX C: PHASE 1 FIRST ITERATION: THE RESTAURANT MANAGEMENT CASE.................48
C.1 REUSING INFORMATION FIRST ITERATION... 48
C.2 STANDARD HELP FIRST ITERATION... 51
C.3 TOUR FIRST ITERATION .. 53
C.4 DIFFERENT LANGUAGES FIRST ITERATION .. 57
C.5 DIFFERENT ACCESS METHODS FIRST ITERATION... 60
C.6 ALERTS FIRST ITERATION ... 64
C.7 STATUS INDICATION FIRST ITERATION .. 67
C.8 HISTORY LOGGING FIRST ITERATION .. 70
C.9 UNDO FIRST ITERATION.. 73
C.10 FORM OR FIELD VALIDATION FIRST ITERATION... 78
C.11 PROVISION OF VIEWS FIRST ITERATION... 81
C.12 WORKFLOW MODEL FIRST ITERATION.. 85
C.13 USER PROFILER FIRST ITERATION ... 88

IST – 2001 – 32298 Page 3 of 3
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.14 SHORTCUTS FIRST ITERATION... 92
C.15 CONTEXT SENSITIVE HELP FIRST ITERATION .. 96
C.16 WIZARD FIRST ITERATION .. 100
C.17 CANCEL FIRST ITERATION .. 103
C.18 MULTI-TASKING FIRST ITERATION.. 108
C.19 COMMAND AGGREGATION FIRST ITERATION... 111
C.20 ACTIONS FOR MULTIPLE OBJECTS FIRST ITERATION ... 113

ANNEX D: PHASE 1 SECOND ITERATION: THE AMUSEMENT PARK SYSTEM CONTROL CASE118
D.1 REUSING INFORMATION SECOND ITERATION... 118
D.2 STANDARD HELP SECOND ITERATION ... 120
D.3 TOUR SECOND ITERATION .. 122
D.4 DIFFERENT LANGUAGES SECOND ITERATION .. 124
D.5 DIFFERENT ACCESS METHODS SECOND ITERATION... 126
D.6 ALERTS SECOND ITERATION ... 129
D.7 STATUS INDICATION SECOND ITERATION .. 132
D.8 HISTORY LOGGING SECOND ITERATION .. 134
D.9 UNDO SECOND ITERATION.. 137
D.10 FORM OR FIELD VALIDATION SECOND ITERATION... 137
D.11 PROVISION OF VIEWS SECOND ITERATION... 139
D.12 WORKFLOW MODEL SECOND ITERATION .. 139
D.13 USER PROFILE SECOND ITERATION ... 142
D.14 SHORTCUTS SECOND ITERATION... 145
D.15 CONTEXT SENSITIVE HELP SECOND ITERATION... 148
D.16 WIZARD SECOND ITERATION .. 150
D.17 CANCEL SECOND ITERATION .. 152
D.18 MULTI TASKING SECOND ITERATION... 152
D.19 COMMAND AGGREGATION SECOND ITERATION... 155
D.20 ACTIONS FOR MULTIPLE OBJECTS SECOND ITERATION.. 155

ANNEX E: PHASE 2 VALIDATION WITH PRACTITIONERS IN A REAL PROJECT156
ANNEX F: CATALOGUE OF USABILITY PATTERNS ...157

F.1 REUSING INFORMATION ARCHITECTURAL USABILITY PATTERN .. 157
F.2 . STANDARD HELP ARCHITECTURAL USABILITY PATTERN .. 160
F.3 TOUR ARCHITECTURAL USABILITY PATTERN.. 162
F.4 DIFFERENT LANGUAGES ARCHITECTURAL USABILITY PATTERN ... 165
F.5 DIFFERENT ACCESS METHODS ARCHITECTURAL USABILITY PATTERN .. 169
F.6 ALERTS ARCHITECTURAL USABILITY PATTERN .. 172
F.7 STATUS INDICATION ARCHITECTURAL USABILITY PATTERN ... 174
F.8 HISTORY LOGGING ARCHITECTURAL USABILITY PATTERN ... 177
F.9 UNDO ARCHITECTURAL USABILITY PATTERN ... 180
F.10 FORM OR FIELD VALIDATION ARCHITECTURAL USABILITY PATTERN.. 184
F.11 PROVISION OF VIEWS ARCHITECTURAL USABILITY PATTERN.. 187
F.12 WORKFLOW MODEL ARCHITECTURAL USABILITY PATTERN ... 190
F.13 USER PROFILER ARCHITECTURAL USABILITY PATTERN .. 193
F.14 SHORTCUTS ARCHITECTURAL USABILITY PATTERN .. 197
F.15 CONTEXT SENSITIVE HELP ARCHITECTURAL USABILITY PATTERN.. 200
F.16 WIZARD ARCHITECTURAL USABILITY PATTERN.. 203
F.17 CANCEL ARCHITECTURAL USABILITY PATTERN.. 206
F.18 MULTI-TASKING ARCHITECTURAL USABILITY PATTERN ... 210
F.19 COMMAND AGGREGATION ARCHITECTURAL USABILITY PATTERN .. 213
F.20 ACTIONS FOR MULTIPLE OBJECTS ARCHITECTURAL USABILITY PATTERN... 216

IST – 2001 – 32298 Page 4 of 4
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

1 INTRODUCTION

1.1 Purpose
This document forms deliverable D.3.4. Techniques, patterns and styles for architecture-level
usability improvement corresponding to Task 3.4..

As specified in the Technical Annex, the work to be done in WP 2 Usability Attributes Affected by
Software Architecture and WP 3 Relationship between software usability and software architecture is
oriented to providing a solution to the relationship between software architecture and software
usability. The main contribution of Task 3.4. is to provide developers with a set of proposals to
improve the usability of the applications they build. The solutions we propose in Task 3.4. should be
as general as possible and be able to be instantiated for different kinds of specific applications. One
such instantiation will be carried out in WP 4 for applications in the e-commerce domain.

For this reason, the results described in this deliverable focus on providing a set of general design
solutions, which, if accounted for during system architecture definition, can improve the usability of
the software constructed. These design solutions have been generated for every usability pattern
defined in D2, thereby extending the description of usability pattern employed in WP 2 with new
attributes related with software architecture aspects.

1.2 Document Structure
This document is structured as follows. Section 1 presents an introduction that sets out the objectives
and purposes of this deliverable. Section 2 focus on the concept of usability pattern, defined in WP 2,
and how such concept needs to be extended in order to incorporate design solutions to the usability
mechanisms represented by such patterns. This section also studies the differences between the
usability pattern concept used in STATUS and the usability pattern concept that can be found in
literature. As part of the related work studied, this section also details the relationship between the
STATUS work and the SEI work about usability and software architecture. It finishes presenting the
detailed list of usability patterns that will be used from now in STATUS. This definitive list has
suffered some adjustments from the one presented in WP2, those adjustments are exhaustively
detailed.

Section 3 presents the inductive process that has been followed to provide design solutions for each of
the usability patterns outputted from section 2. Section 4 lists a catalogue of the whole description of
usability patterns which includes a full set of aspects that cover the information needed by developers
in order to use such patterns. Section 5 sets out what implications the usability patterns have for
application analysis. Finally, Section 6 includes the conclusions drawn from Task 3.4.

Much information used in D.3.4. has been included in annexes to make easier the reading of this
deliverable. Annex A contains a detailed description of each of the usability patterns. Annex B
contains the original requirements specifications for the cases used to generate the design solutions for
the usability patterns. Annex C covers the first iteration in the process of induction to abstract the
design solutions, which corresponds to the Restaurant Management system case. Similarly, Annex D
contains the second iteration of the process of induction, which corresponds to the Amusement Park
Control system case. Annex E contains the comprehensive development of an Intranet for Advertising
Company Maintenance, which has served to validate the design solutions proposed for the usability
patterns in a real project. Finally, Annex F sets out the catalogue of the usability patterns.

IST – 2001 – 32298 Page 5 of 5
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

2 USABILITY PATTERNS: THE STATUS APPROACH TO IMPROVE USABILITY
FROM ARCHITECTURE

2.1 The STATUS Concept of Usability Pattern
The formal concept of pattern comes from the definition given by Alexander in the context of
construction of buildings and cities [Alexander, 77]. “A pattern describes a problem which occurs over
and over again in our environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the same way twice”.

In software development, the concept of pattern is described as a set of principles and idiomatic
solutions that guide developers in the creation of software [Larman, 98]. Accordingly, a software
pattern focuses on the pragmatic value of using the pattern as a vehicle for presenting and
remembering solutions to a problem by providing useful software engineering principles to the
developer. Thus, the main advantage of patterns is the experience in reusing instead of rediscovering
potential solutions to a problem.

The most commonly used pattern in software development is the design pattern, and it is particularly
used in the object-oriented field. In this context, a design pattern provides a solution to a concrete
problem by describing classes and objects that work together to solve such problem [Gamma, 89].
Note that these patterns show a solution to a problem obtained by its use in different applications, but
it could not in any case be seen as a unique solution.

At this point in STATUS, the usability patterns proposed in D.2. are described as mechanisms to be
applied to the design of the architecture of a system in order to address a particular usability property.
We need to complete this definition with information about how such mechanisms will be reflected in
the system architecture, that is, what effect the use of some of these usability mechanisms will have on
a system’s architectural components. In other words, we need to provide the design solution to the
problem specified by the usability pattern. Design solutions will be a description of the design
components and their intercommunication to provide a solution to a specific mechanism to be applied
to the design of a system in order to address a particular usability property.

Like in design patterns, the design solutions provide for usability patterns will not necessarily be the
only solution. Design solutions for usability patterns are not solutions to specific problems, but should
be able to be applied to solve a number of different problems in a number of different systems in
accordance with the principle of software reuse.

Thus, the final objective of this deliverable is to provide a set of architectural recommendations to
improve the usability of software systems. These recommendations will be summarised in an usability
pattern catalogue.

2.2 Related Work on Usability Patterns
The concept of usability pattern has already been used in the literature. Generally, this concept can be
defined as “a description of solutions that improve usability attributes” [Perzel, 99]. The usability
aspects dealt with by these patterns refer basically to user interfaces, and they are also known as user
interface patterns [Casaday, 97] or interaction design patterns [Tidwell, 98]. As indicated by authors
such as Welie and Troetteberg [Welie, 00], although there are several pattern collections, an accepted
set of such patterns has not yet emerged. There appears to be a lack of consensus about the format and
focus of user interface patterns.

Examples of some of these interface patterns are:

• Feedback

• Wizard

IST – 2001 – 32298 Page 6 of 6
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

• Provide the user with all information needed in the same window

• Mark required fields when filling a form

• You are here

• Grid layout.

The differences between the usability patterns proposed by the STATUS project and the classic
usability or interface patterns existing in the literature are basically related to two aspects:

• Differences in the list of patterns. Among the usability patterns identified in the literature,
we find some that are oriented to improving the interface, like for example “you are here”, and
others oriented to improving interaction, like “wizard”. The patterns proposed by STATUS are
mainly focused on improving the interaction between the user and the system without
considering interface issues. Therefore, some of the patterns traditionally included as usability
patterns in the literature are not considered in the STATUS catalogue of usability patterns. In
STATUS we consider patterns directly related to the interaction between the user and the
system, and not taken into account in the classic literature on user interface patterns, such as
shortcuts, aggregation of commands or the user interface patterns of provision of actions for
multiple objects.

• Differences in the solutions provided for patterns. Although there are patterns that are
common to the two approaches (traditional and STATUS), for these patterns the difference
lies in the solution provided in each one. The classic usability patterns are mainly
implemented during the interface design phase and generally affect low-level components like
pseudo-code (where to place the different icons, how to put together the screen information,
etc). On the other hand, the solutions proposed by STATUS for the identified patterns will
affect the system architecture, trying to evaluate and consider usability aspects in the early
stages of the development process. For example, the solution proposed by [Welie, 00] for the
feedback pattern is “provide a valid indication of progress. Progress is typically the remaining
time for completing, the number of units processed or the percentage of work done. The
progress can be shown using a widget such a progress bar. The progress bar must have a label
stating the relative progress or the unit in which is measured”. This solution will not be taken
into account until the detailed design phase through the pseudo-code As will be seen later, the
solution proposed by STATUS (through the respective architectural solutions) will be based
on the establishment of how to provide feedback to the user at the architectural level
(modules, interaction among modules, etc).

2.3 Usability Patterns versus Usability Scenarios
As far as the consortium has been able to ascertain from the literature, the only work with similar goal
than STATUS project is the research by Bass, John and Kates at SEI [Bass, 01]. Their aim was to
identify the relationship between usability and software architecture through the definition of a set of
26 scenarios: “A scenario describes an interaction that some stakeholder (e.g. user, developer, system
administrator) has with the system under consideration from a usability viewpoint”. The above-
mentioned scenarios were identified by the SEI: through literature surveys, from the personal
experience of the investigators and by consulting colleagues. The complete list of the scenarios is
shown in the Table 2.1. As we will see later, although there are some differences, some of these
scenarios can be considered equivalent to some of the properties and usability patterns taken into
account in STATUS.

IST – 2001 – 32298 Page 7 of 7
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Account for human needs and capability when
interacting
Keep coherence through multiple views
Define upgrades similar to previous ones
Support international use
Predict task duration
Verify resources before beginning an operation
Present system state
Check for errors
Undo
Minimize user recovery work due to systems errors
Provide alternative secure mechanisms
Provide good Help
Novice interfaces for user in unfamiliar contexts

Maintain device independence
Allow searching by different criteria
Make views accessible
Provide reasonable set of views
Cancel
Use applications concurrently
Allow quick switch back and forth between different tasks
Aggregate commands
Aggregate data
Provide test points for evaluation
Reuse information
Design easily modifiable interfaces
Quick navigation into a view

Table 2.1. Usability scenarios proposed by Bass et al [Bass, 01]

The SEI researchers use a bottom-up specification to specify the benefits that a software system can
have in terms of usability as a result of the identified scenarios. These benefits have been classified in
Table 2.2.

SEI Benefits STATUS Attributes
Increases individual user effectiveness
 Expedites routine performance

Accelerates error-free portion of routine performance
 Reduces the impact of routine user errors (slips)

Efficiency, Reliability

 Improves non-routine performance
 Supports problem-solving
 Facilitates learning

Learnability

 Reduces the impact of user errors caused by lack of knowledge
 Prevents mistakes
 Accommodates mistakes

Efficiency

 Reduces the impact of system errors
 Prevents system errors
 Tolerates system errors

Reliability

Increases user confidence and comfort Satisfaction

Table 2.2. Relationship between SEI usability benefits and STATUS usability attributes

Table 2.2 shows how SEI usability benefits generally refer to the usability attributes considered in
STATUS and detailed in D2. Note that there is a main difference with regard to system errors. The
SEI researchers consider the prevention of errors as one of the usability benefits. However, as
discussed in D2, this aspect is not considered as a feature of usability attributes in the usability field.
Following the usability works, the usability attribute related to error management, reliability, refers to
user error and not system error prevention and recovery. This is the approach taken by STATUS.

Both pieces of research agree on the idea of relating the different aspects of usability to architecture
through architectural diagrams. These diagrams show how scenario (SEI approach) or usability pattern
(STATUS approach) can be represented at an architectural level. As in the STATUS approach, the
objective of the SEI is to establish a relationship between the final software system and software
architecture. The main differences between the two works come from the approach taken for the
research.

The SEI has taken a bottom-up approach from the informal identified scenarios, while STATUS has
taken a top-down approach from usability attributes (identified in the literature), through usability
parameters, to finally identify the usability patterns. Accordingly, the usability patterns are the final
links in the chain and give examples of how to achieve some usability requirements. Besides, the users

IST – 2001 – 32298 Page 8 of 8
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

of STATUS results have a procedure for developing new usability patterns for applications to which
the results are applied. This process will be applied in practice in WP 4 Proposal of Architecture for
Usability in E-commerce, where the results of WP 3 will be adapted to the e-commerce environment.
Finally, the architectural solutions are not justified in the SEI research, whereas the architectural
patterns provided by STATUS have been derived through an inductive process applied in several case
studies.

In sum, a general difference between the approach taken by the SEI and ours is that STATUS project
provides a whole approach for designing for usability, including usability assessment techniques and
usability improvement techniques on design models (D.3.5. Usability-centric software architecture
design method will detail such design process).

2.4 Adjustments to WP 2 usability patterns
Table 2.3 below shows the usability patterns that we identified in D.2. As we mentioned in that
document, the list shown in Table 2.3 is preliminary since it is the result of a first approximation. We
were sure at that time that when working on WP 3 looking for design solutions for usability patterns
we would refine this preliminary list arriving to a consolidated one.

Progress indication
Alerts
Status indication
History logging
Undo
Form or field validation
Model/View/Controller separation
Emulation
Workflow model
Actions for multiple objects

Macros
User profile
User modes
Shortcuts
Context-sensitive help
Wizard
Selection indication
Cancel
Multi-tasking

Table 2.3. Preliminary List of Usability Patterns from D.2.

Analysing the preliminary set of patterns has led to modify the D.2 patterns in several ways:

1. Some usability patterns have been added as a result of further research conducted during Task
3.4.

2. Some patterns have been removed because they do not match the consolidated concept of
usability pattern in WP 3.

3. Some usability patterns have been redefined with the aim of providing a more precise
description and/or a more meaningful name.

4. A new usability pattern has been added derived from the identified scenarios [Bass, 00], once
our list has been compared with the SEI proposal.

Below, we describe the above modifications.

The new usability patterns incorporated from further research are:

Different Languages

This pattern emerges to address the property of internationalisation identified in WP2,
Different Languages. In D.2. this property had been identified but it did not had a pattern that
deals with it. Internationalisation means the capability of the software to interact with users in
different languages, so this is the concept we have used for the pattern.

IST – 2001 – 32298 Page 9 of 9
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Different Access Methods

In the same way than internationalisation, the property of accessibility (multichannel,
disabilities) identified in D.2. did not had a pattern to address it. Access method means the
capability of the software of being accessed from different types of physical devices. So, this
attribute will make the system easier to access not only from the desktop or laptop, but also
using devices like WAP, Web, and interactive TV, for example, as well as other devices used
by visually impaired or disabled people.

Standard help

This and the tour pattern emerge to add to the different help types that contribute to addressing
the property of guidance identified in D.2. This pattern deals with the standard help. The
system must provide users with enough information and task help for all the activities they
need to do with the system.

Tour

This pattern addresses a different kind of help than the standard help. In it, the system must
provide users with specific information that shows exactly how to do a particular task.

The patterns we have removed due to the better concretion and definition of the usability pattern
concept are:

Progress Indication

A progress indicator is described in D.2. as “a mechanism that can be used to indicate how
much of the current task has been completed and how long it will take to finish”. This
description is a particular case of another usability pattern defined in D.2., status indication,
We defined in D.2. status indication as “The user should be provided with information
pertaining to the current state of the system”.

Model/View/Controller Separation

As described in D.2, this pattern represents a specific design solution that can be used to
implement different usability patterns, like, for example, patterns related to the provision of
different information views, the pattern we called provision of views.

Emulation

This pattern is defined in D.2 as “A system can be made to emulate the appearance and/or
behaviour of a different system”. This is a very specific pattern for some applications and it is
not common to general-purpose software systems. Additionally, it has not been proposed as a
pattern or heuristic in usability literature.

User modes

This pattern, as specified in D.2., enables the system to provide different modes for different
feature sets required by different types of users, for example, simple or advanced modes. Thus,
this pattern is a particular case of the Workflow Model, which enables different users to be
provided with only the tools or actions that they need in order to perform their specific tasks.

IST – 2001 – 32298 Page 10 of 10
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Selection indication

The user and the system will often have one object or a set of objects that have a special status.
They are the objects that will be acted upon the next time that a command is issued. These
objects should be indicated using some sort of highlighting. This usability aspect is not
directly reflected in the system architecture, but in the system low-level design.

The usability patterns we have redefined are:

Preview

This pattern is defined in D.2 as “A user may wish to see what the results of an action
(possibly a resource consuming one) will be before executing the command.” It can be
considered as a particular case of a more general pattern called Provision of Views, which we
have now defined as “Allow users to have different alternatives to see the data they are
working with at any time”.

Macros

This pattern has been renamed Command Aggregation according to the respective scenario
considered by the SEI. The new pattern can be defined as “The system should provide the
capability to allow the users to do different actions through just one command”. The
generation of a macro is an example of this pattern for some particular applications, whereas
this pattern could be implemented by scripts, batch programs, etc., for other applications.

Finally, the pattern adopted from SEI work is the only aspect not covered by our usability
patterns but addressed by SEI:

Reuse information

This pattern was not originally considered in the D.2 usability patterns. This pattern enables
the user to move data from one part of a system to another. So, users should be provided with
automatic (e.g., data propagation) or manual (e.g., cut and paste) data transports between
different parts of a system.

Table 2.4 shows the final list of usability patterns used in STATUS. The first column shows the
usability patterns already defined in D.2. The second column shows the final architectural usability
pattern used in D.3.4., showing the new patterns in boldface and the redefined patterns in italics. The
last two columns, which will be detailed below, show the relationship between the architectural
usability patterns used in STATUS and the SEI scenarios. The relationships we have found are:

• Content. Achieving a particular STATUS usability pattern implies achieving a particular SEI
scenario. For example, properly implementing the Provision of Views patterns implies the SEI
Make views accessible.

• Instantiation. A STATUS usability pattern is a special case of a SEI scenario. For example, the
STATUS Standard Help is a case of the SEI Help.

• Similarity. A STATUS pattern and a SEI scenario are considered similarly in both approaches,
for example, Cancel.

• Generality. A SEI scenario is a special case of a STATUS usability pattern. For example, the
SEI Novice Interfaces for Users in Unfamiliar Contexts is a special case of provide the
STATUS pattern Workflow model.

IST – 2001 – 32298 Page 11 of 11
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

As we can see from Table 2.4., some SEI scenarios have not been considered in WP3. The specific
reason for every scenario is explained below:

• Account for Human Needs and Capabilities when Interacting, Keep Coherence through
Multiple Views, Define Upgrades Similar to Previous Ones, Provide Test Points for
Evaluation and Design Easily Modifiable Interfaces are the results of specific actions to be
taken during the development process and do not fit in with the definition of usability pattern
considered in STATUS. Considerations of this nature have been taken into account in
STATUS WP5, which deals with the general development process and not only with the
architectural design phase like WP3.

• Minimize User Recovery Work due to System Errors refer to errors made by the software
system and not by the users. As explained earlier, system errors are not considered by classical
usability attributes, which is why this feature has not been considered in STATUS.

• Allow Searching by Different Criteria is a functional requirement that is specific to particular
applications, and is not, therefore, really a usability architectural pattern as it is considered in
this project.

• Provide Alternative Secure Mechanisms is a security requirement and not a usability
architectural pattern as defined in STATUS.

IST – 2001 – 32298 Page 12 of 12
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

D.2. USABILITY
PATTERNS

D.3.4. USABILITY
PATTERNS

RELATION SEI SCENARIOS

 Different Languages similarity Support international use

 Different Access Methods generality Maintain device independence

Alert Alert generality Verify resources before beginning an
operation

Status Indication

Progress Indication

 Status Indication similarity

generality

Present system state

Predicting task duration

Shortcuts (key and
tasks)

Shortcuts (key and tasks)

Form/Field Validation Form/Field Validation similarity Checking for errors

Undo Undo similarity Undo

Context-Sensitive Help Context-Sensitive Help instantiation Provide good Help

Wizard Wizard instantiation Provide good Help

 Standard help instantiation Provide good Help

 Tour instantiation Provide good Help

Workflow Model Workflow Model generality Novice interfaces for user on unfamiliar
contexts

History Logging History Logging

Preview Provision of Views

content

similarity

content

Make views accessible

Provide reasonable set of views

Quick navigation into a view

User Profile User Profile

Cancel Cancel similarity Cancel

Multi-Tasking Multi-Tasking

content

content

Use applications concurrently

Allow to quick switch back and forth
between different tasks

Macros Commands Aggregation similarity Aggregate commands

Action for Multiple
Objects

Action for Multiple
Objects

similarity Aggregate data

 Reuse Information similarity Reusing information

 Provide test points for evaluation

 Design easily modifiable interfaces

 Allow searching by different criteria

 Minimize user recovery work due to
system errors

 Provide alternative secure mechanism

 Account human needs and capability when
interacting

 Keep coherence through multiple views

 Define upgrades similar to previous ones

Table 2.4. Relationship between STATUS architectural usability patterns and SEI scenarios

IST – 2001 – 32298 Page 13 of 13
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Table 2.5 shows the final relationship between the usability properties defined in D.2. and the
consolidated list of architectural usability patterns that we will use henceforth in STATUS.

Usability Property Usability Patterns
Natural Mapping
Consistency (Functional, Interface, Evolutionary)
Accessibility (Internationalisation) Different languages
Consistency
Accessibility (Multichannel, Disabilities)

Different access methods

Feedback Alert
Error Management
Feedback

Status indication

Explicit User Control
Adaptability (User Expertise)

Shortcuts (key and tasks)

Error Management (Error Prevention) Form/field validation
Error Management (Error Correction) Undo
Guidance
Error Management

Context-sensitive help

Guidance
Error Management

Wizard

Guidance
Error Management

Standard help

Guidance
Error Management

Tour

Minimise Cognitive Load
Adaptability
Error Management (Error Prevention)

Workflow model

Error Management (Error Correction) History logging
Guidance
Error Management (Error Prevention)

Provision of views

Adaptability (User Preferences) User profile
Error Management
Explicit User Control

Cancel

Explicit User Control Multi-tasking
Minimise Cognitive Load
Error Management (Error Prevention)

Commands aggregation

Explicit User Control Action for multiple objects
Minimise Cognitive Load
Error Management (Error Prevention)

Reuse information

Table 2.5. Relationship between usability properties and architectural usability patterns

It should be noted that the properties of Natural Mapping and Consistency cannot be arranged around
specific usability patterns. The reason is that these properties require the performance of different
tasks and activities throughout the entire development process rather than the application of particular
solutions at the architectural level. For example, the provision of natural mapping between the user
tasks and the tasks to be implemented in the system calls for software requirements to be elicited
during the analysis process bearing in mind this objective and they must be designed according to
these requirements. The same goes for consistency, which involves different activities throughout the
lengthy development process of the original system or new versions.

Annex A contains a detailed description of the usability patterns upon which this WP is based. That is,
Annex A is a second version of section 4 in D2, but refined as explained in this section. Design
solutions for these patterns are presented in the next section.

IST – 2001 – 32298 Page 14 of 14
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

3 DESIGN SOLUTIONS FOR USABILITY PATTERNS

Now we are going to describe the procedure followed to identify the design solution for each
architectural usability pattern. The procedure can be divided into two phases:

• PHASE 1. Generating Architectural Design Solutions

Application of induction to abstract the architectural solutions from particular designs for
some applications developed by both researchers and practitioners. For this purpose, we took
the following steps:

STEP 1. We asked designers to build the design models (represented by class
diagrams and interaction diagrams) for two systems not including the usability
mechanisms specified by the usability patterns.

STEP 2. Once the designs without usability mechanisms were complete, we asked
designers to modify their earlier designs for each usability pattern to include the
functionality corresponding to the usability mechanisms under consideration.

STEP 3. For each usability mechanism, we abstracted the respective architectural
design solution by generalising the modifications made by the different developers to
their designs.

This process was carried out on two different applications developed by different researchers
and practitioners: Restaurant orders and tables management; Ride control and maintenance at
an amusement park. For ease of reading, we are going to illustrate in this section the process
only for one usability pattern, showing just one design example with and without usability
mechanisms for the two applications. The process followed for the rest of usability patterns
has been placed in Annexes C and D.

• PHASE 2. Validating Architectural Design Solutions in a Real Development

Although the inductive process applied to a couple of applications developed by several
developers might well have been sufficient to be sure of the design solutions, we wanted to
validate these architectural solutions from the more comprehensive viewpoint of a full
development. That is, in Phase 1, the researchers and practitioners knew they were
participating in a research project and what the aim of this project was, they were familiar with
the applications (either because they had developed them or had used them for training, etc.).
Therefore, when asked to build design models with and without usability mechanisms, the
developers exclusively addressed the parts of the system affected by the inclusion of the
mechanisms in question. In other words, all the work carried out in Phase 1 was done as an
exercise, not in the environment of a full and real development. By contrast, this validation
phase was run within a development project for an MSc thesis. The development team was
building and about to implement a system, having completed the design phase without
considering usability patterns. The requirements were then changed, stating that the system
should incorporate all the usability mechanisms set out by the usability patterns. The team
then had to modify the design to consider these mechanisms. Again, we were able to observe
what changes were made to the design because of this addition, and we were able to check
whether the changes were equivalent to the instances of the solutions found in Phase 1. Again,
for ease of reading, section 3.2 gives only one example of a use case with its respective
associated interaction diagram. In Annex E the full development can be seen.

IST – 2001 – 32298 Page 15 of 15
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

3.1 Phase 1: Generating Design Solutions for Usability Patters

3.1.1 First Iteration: Finding Design Solutions for Architectural Usability Patterns
Below, we show how Phase 1 was conducted for the Restaurant orders and tables management
application (the requirements for this application are listed in Annex B). This application was taken as
the first step in the process of induction for identifying the architectural usability patterns and,
therefore, has been referred to as the first iteration. Each of the steps identified above has been taken
for each usability pattern:

• STEP 1. Design models (class diagrams and interaction diagrams) without the usability
mechanisms specified by the usability pattern.

• STEP 2. Design models (class diagrams and interaction diagrams) with the usability
mechanism specified by the usability pattern.

• STEP 3. Abstraction of the design solution for the usability pattern.

As explained above, for clarity’s sake, this section will only show the first iteration for the pattern
Different Languages, whereas Annex C includes the first iteration for each one of the usability patterns
from Table 2.4. This will illustrate the first iteration concerning how the design solution for the
usability pattern is abstracted.

STEP 1. Design solution without the Different Languages usability pattern

Figure 3.1 shows the class diagram of the application where the pattern Different Languages has not
been considered. In this case, no interaction diagram is shown as this functionality was not considered
originally.

IST – 2001 – 32298 Page 16 of 16
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Book

C lie n tN a me (c lie n t) ()
C h ec k (d a te , h o u r) ()
G e t(time s - in -w e e k) ()

(from CLA S S E S)

Restaurant

N a me : Str in g
Ad d re s s : Str in g

G e tN a me (N ame) ()
Av a ila b le Ta b le s (d a te , h o u r , k in d) ()

(fr o m C L ASSES)

Request-line

C r e a te L in e (c o d e) ()
R e ad (c o n s ump tio n) ()
C o ns u mtio n Pr ic e (p r ic e) ()
L in eN a me (na me) ()
G e tPr ic e (p r ic e) ()

(from CLA S S E S)

T able

Sta tus : Str in g
N u mb e r - p e rs o n : In teg e r
Smok e r /N o n Smo k e r : Bo o le an
Pla c e : XY
C o de : In te g e r

C h an g e Sta te ()
C h an g e Sta te ()
C h an g e Sta te () ()
C h an g e Sta te () ()
L o o k Fo r Av a ila b le (k in d , d a ta , h o u r) ()

(fr o m C L ASSES)

Consumption

C o d- c o n s u mp tio n
D e s c r ip tio n
Pr ic e

C h ec k - Sto c k ()
O K()
C o ns u mtio n N a me (na me) ()
L a s tC o d e C on s u mp tio n () ()

(from CLA S S E S)

Restaurants-manager

G e tR e s ta u r an ts (lis t) ()
Av a ila b le Ta b le s (r e s ta u r a n t, da te , h o u r , k in d) ()

(fr o m C L ASSES)

Request

H o ur
D a te
Sta tus

In it- re q u e s t()
In p u t- C o d C on s u mp tio n ()
O K()
in it- re q u e s t()
In it- re q u e s t() ()
In it- re q u e s t() ()
In it- re q u e s t() ()
In itC o d C o n s u mp tio n (c o d e) ()
R e qu e s tC o ns u mtio ns () ()
Bill() ()
N e w - p r ic e (p r ic e) ()
G e tPr ic e (p r ic e) ()

(from CLA S S E S)

Books manager

G e tR e s ta u r an ts (lis t) ()
G e t(r e s ta u r an t, d a te , h o u r , k ind) ()

(fr o m C L ASSES)

I nt erf ace

Ini t- req u e s t()
In it- re q u e s t() ()
Un d o () ()
In it- re q u e s t() ()
Inp u t -C o d C on s u mp tio n (c o d e)()
Di s p la y (lis t o f c o n s ump t io n s)()
D u p lic a te C on s u mp tio n () ()
H e lp () ()
G e t-h e lp (h e lp) ()
Ge t-h e lp (tou r) ()
N e w Bo o k () ()
Sh o w L is t(lis t) ()
G e t(r e s ta u r an t, d a ta , h o u r ,k ind) ()
Sh o w L is t(lis t) ()
Co n ne c t in g Sy s te m()()
En a b le (R e q ue s tC o ok e d) ()
Pr e s s e d (F1) ()
OK () ()
Sp e c ific H e lp (tp p ic) ()
Sh o w Sp e c ific H e lp (he lp) ()
Ca n c e l(r e q ue s t) ()

(f ro m CL ASS ES)

Figure 3.1 Class Diagram for the first application without the Different Languages mechanism

STEP 2. Design solution with Different Languages usability pattern

With the aim of incorporating the usability aspect of Different Languages, a new requirements has
been given to the developers: “When the user is booking a table from the terminal, the system should
be able to understand the date, time and table time irrespective of the language used by the user. The
interaction diagram does not show the full booking for reasons of visibility on the model”.

The inclusion of this requirement provokes some changes in the design models as shown in Figure 3.2
and Figure 3.3.

IST – 2001 – 32298 Page 17 of 17
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : User
 : Interface : Books

manager
 :

Res tau ran ts-manager
 : Restaurant : Table : Book :

Language-modeler
 : T ranslator

NewBook()

G etRestaurants(list)
GetRestaurants(list)

G etName(Name)

ShowList(list)

G et(restaurant, data, hour,kind)

G et(restaurant, date, hour, kind)

AvailableT ables(date, hour, kind)

LookF orAvailable(kind, data, hour)

Che ck(dat e, hour)

ShowList(list)

ChooseLangModeler(restaurant, date, hour, kind)

T ranslateData(restaurant, date, hour, kind)

Av ailab le T ables(re sta ura nt, d ate , hour , kind)

Figure 3.2 Sequence diagram for the first application with the Different Languages mechanism

IST – 2001 – 32298 Page 18 of 18
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Translator

C hoos eLangModele r (date , hour , k ind)()

(from C LASSES)

Language-modeler

Trans la teD ata (da te, hour , k ind)()

(from C LASSES)

Book

C lien tN ame(c lien t) ()
C hec k (date, hour) ()
Get(times - in-w eek)()

(from C LA S S E S)

Request-line

C rea teL ine (c ode)()
R ead(c ons umption) ()
C ons umtionPr ic e (pr ic e)()
L ineN ame(name) ()
GetPr ic e (p r ic e) ()

(from C LA S S E S)

Restaurant

N ame : Str ing
Addres s : Str ing

GetN ame(N ame) ()
Av ailab leTables (date , hour , k ind) ()

(from C LASSES)

T able

Status : Str ing
N umber -pers on : In teger
Smok er /N on Smok er : Boolean
Plac e : XY
C ode : In teger

C hangeSta te()
C hangeSta te()
C hangeSta te() ()
C hangeSta te() ()
Look ForAv ailab le (k ind, da ta, hour) ()

(from C LASSES)

Request

H our
D ate
Status

In it- reques t()
Input-C odC ons umpti on ()
OK()
in it- reques t()
In it -r equest () ()
In it -r equest () ()
In it -r equest () ()
In it C odC ons umpti on(c ode)()
Reque s tC ons umt ions () ()
Bill() ()
N ew -pri c e(pr ic e) ()
Ge tPr ic e (pr ic e) ()

(from C LA S S E S)

Consumpt ion

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption () ()

(from C LA S S E S)

Restaurants-manager

GetR es tauran ts (lis t) ()
Av ailab leTables (res tauran t, date , hour , k ind)()

(from C LASSES)

Int erfa ce

In it- reques t()
Ini t- reques t() ()
Undo () ()
Ini t- reques t() ()
Input-C odC ons umption (c ode)()
D is p lay (lis t o f c ons umptions)()
D uplic a teC ons umption() ()
H elp () ()
Get-he lp (he lp) ()
Ge t -h e lp(tou r) ()
Ne w Book () ()
Show Lis t(lis t) ()
Get(res tauran t, da ta, hour ,k ind)()
Show Lis t(lis t) ()
C onnec tingSy s tem() ()
Enab le(R eques tC ook ed)()
Pres s ed(F1)()
OK () ()
Spec ific H e lp(tpp ic) ()
Show Spec ific H elp (help) ()
Canc el (reques t)()

(f rom CLASS ES)

Books manager

GetR es tauran ts (lis t) ()
Get(res tauran t, da te, hour , k ind)()

(from C LASSES)

Figure 3.3 Class diagram for the first application with the Different Languages mechanism

STEP 3. Abstraction of the design solution for Different Languages

From the different solutions provided by the different developers (Figure 3.2 and Figure 3.3 are just
one of them) it is possible to abstract a more general solution, as shown in Figure 3.4. The different
participants in this solution are:

IST – 2001 – 32298 Page 19 of 19
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface

Language
recognitor

Interface

Language
Translator 1

System

Interface

Language
Translator n

.

1 2

3
4

5
6

7

8

Figure 3.4. Abstract design solution for the Different Languages usability mechanisms

• Interface: collects the operation to be performed and any associated data, which it sends to the
Language-recogniser (1) (2). Additionally, once the respective functionality has been
processed, the interface receives the data to be displayed to the user from the Language-
translator in the language that originated the request (8).

• Language-recogniser is a recogniser, not a translator, which determines the language in which
a the respective functionality is requested and sends the data and the functionality request to
the respective Language-translator (3) (4).

• Language-translator (i): there may be one for each language that the system is capable of
recognising. If there is one for each language, which would be advisable for reasons of system
modularity, each Language-translator translates the functionality and any data it receives from
the Language-recogniser (3) (4) to a common language understood by the system. Once they
have been translated to the common language, it sends them to the system (5) (6). Once the
functionality has been processed in the system, it again receives the response data for the
executed functionality (7), and again translates them from the common language to the
specific language in which the user requested the functionality. After translating, it sends the
data to the user (8) through the interface.

• System: it performs the functionality requested by the Language-translator (i), in the common
language (5) (6), and returns the respective response to the language-translator in the common
language (7).

3.1.2 Second iteration: Checking Design Solutions
Having completed the first iteration to get a design solution for usability patterns, the whole process
was repeated with a second application, Amusement park management (whose requirements are
shown in Annex B). Similarly to the process presented in section 3.1.1., we have carried out again the
three above-mentioned steps for each usability pattern.

In the case of the amusement park system, it was not possible to carry out the second iteration for the
following usability patterns:

IST – 2001 – 32298 Page 20 of 20
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

• Undo, Cancel and Provision of Views because, as it is basically a control system, it was not
very sensible to introduce this type of requirements that are more related to management
systems.

• Actions for multiple objects, because this system does not perform simultaneous tasks on
several objects.

As explained above, for the sake of clarity, this section only includes the second iteration for the
pattern Different Languages, whereas Annex D includes the second iteration of each of the usability
pattern.

STEP 1. Design models without Different Languages

In the original version of the system there were not an interaction diagram regarding to the Different
Languages functionality as it is a new functionality. Figure 3.5 shows the class diagram before
including the mechanism of Different Languages

Searcher-validator

Valida te("name, ident if i cat ion-number, hair-col or, stature ")()

(f rom Logical View)

Vehi cl e

Ve hicle -c ode

MeasureUnity()

(fro m L o g ic a l Vie w)

W heel

NumMaxSeats

Error()

(fro m L o g ic a l Vie w)

Car

Car-code

MeasurePressure()

(fro m Lo gi ca l V iew)

Rolle r Coa st er

NumMaxSeats

(fro m L o g ic a l Vie w)

Help-point- interface

NewVisi tor()
VisitorData(name, ident if icat ion-number, hair-color, stature)()

(f rom Logical View)
Validation-m anager

Validate(searcher, "nam e, ident if icat ion-num ber, hair-color, stature")()

(f rom Logical View)

Operative-device

O perat ive-nam e
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(f rom Logical View)

Visitor

Name
Age

Load(data)()
Store("name, ident if icat ion-number, hair-color, stature")()

(f rom Logical View)

Breakdown-m anager

Look-for-operat ive-f ree()
Status(free)()
BreakdownRepaired(data, name)()

(f rom Logical View)

Entry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(fro m L o g ic a l Vie w) Exit- turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(fro m L o g ic a l Vie w)

Start-device

StartM echanism ()

(fro m L o g ic a l Vie w)

Stop-device

StopMechanism()

(fro m L o g ic a l Vie w)

Breakdown

Date
Mechanism
name

NoteBreackdown()

(fro m L o g ic a l Vie w)

Loudspeaker

(fro m L o g ic a l Vie w)

VigilanceCam era

(fro m L o g ic a l Vie w)

Visitors-M anager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et -Help(help)()
G et -Help(tour)()

(fro m L o g ic a l Vie w)

F airground-m echanism

N umberBreak do wns NotRe pa ired
Ad dr es s

N oteNe wBr ea kd own ()
N oteBr ea kd own Repair ed ()

(fro m L og ical View)

Figure 3.5 Class diagram for the second application without the Different Languages mechanism

STEP 2. Design models with Different Languages

With the aim of including in the application the usability pattern of Different Languages a new
requirement has been giving to developers: “The park visitor enters the details of the person who
wants to register in any language and the system is capable of translating this to an exchange language
so the surveillance system then operates identically when searching for a given subject irrespective of
the language in which the subject’s details were entered”.

IST – 2001 – 32298 Page 21 of 21
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

In order to consider such requirement, a version of the design models has been produced. In particular
Figure 3.6 and Figure 3.7 shows the interaction diagram and class diagram respectively produced with
this new functionality.

 : U s er

 :
H elp-point-interf ac e

 :
Validat ion-m anager

 :
Searc her-v alidator

 : V isi to r : F unc ti on-dis pa tcher : Language-trans lator : La ng ua ge-recog ni tor

N ew Visi tor ()

Int roduce(nam e, ident if ic at ion-num ber, hair color, s tature)

V is itorD ata(nam e, ident if ic at ion-num ber, hair-c olor, s tature)

C hoos eLangModeler(nam e, ident if icat ion-num ber, hair-color, s tature)

Trans lateVis itorD ata(nam e, ident if icat ion-num ber, hair-color, s tature)

Valida te("nam e, ident if ic at ion -num ber, h ai r-c olor, s ta tur e")

S to re("na me, i de nt i f ic at ion- nu mb er , h air- co lor , s tat ure ")

V is itorD ata(nam e, ident if ic at ion-num ber, hair-c olor, s tature)

Validate(searc her, "nam e, ident if ic at ion-num ber, hair-color, s tature")

Figure 3.6 Sequence diagram for the second application with the Different Languages

mechanism

IST – 2001 – 32298 Page 22 of 22
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Ve h ic le -c o d e

Me a s u re U n ity ()

(fr om Logical V iew)

W heel

N u mMa x Se a ts

Er ro r ()

(from Logical V iew)

Car

C a r -c o d e

Me a s u re Pre s s u r e ()

(from Logical V iew)

R o lle r C o a s te r

N u mMa x Se a ts

(from Logical V iew)

O p e ra tiv e - d e v ic e

O p e ra tiv e - n a me
O p e ra tiv e - c o d e
O p e ra tiv e - s ta tu s
N u mb e r -O f-Me c h a n is ms - re p a ire d

In d ic a te -O p e ra tiv e -b u s y ()
In d ic a te -Me c h a n is m- re p a ire d ()
C h e c k s ta tu s ()

(from Logical V iew)

Visitor

N a me
Ag e

L o a d (d a ta) ()
Sto r e ("n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu r e ") ()

(fro m L o gi ca l Vi ew)

Bre a k d o w n -ma n a g e r

L o o k - fo r -o p e ra tiv e - fre e ()
Sta tu s (fre e) ()
Bre a k d o w n R e p a ire d (d a ta , n a me) ()

(from Logical V iew)

E ntr y - tu rn s tile

N u mb e rO fPe rs o n s

Pe o p le C o u n te r ()
R e d C o lo r ()
G re e n C o lo r ()
Amb e rC o lo r ()

(fr om Logical V iew)

Exit -turnst ile

N u mbe rO fPeo p le

Pe o p le C o u nt er ()
O pe n ()
C lo s e ()
C h e c k -p e o p le -d is a p p e a re d ()

(from Logical V iew)

Sta r t-d e v ic e

Sta r tMe c h a n is m()

(from Logical V iew)

Sto p -d e v ic e

Sto p Me c h a n is m()

(from Logical V iew)

Bre a k d o w n

D a te
Me c h a n is m
n a me

N o te Bre a c k d o w n ()

(from Logical V iew)

L o u d s p e a k e r
(from Logical V iew)

Vig ila n c e C a me ra
(from Logical V iew)

Vis ito rs -Ma n a g e r

D a ta - to -b e -L o a d e d (d a ta) ()
C o p y (d a ta) ()
H e lp () ()
G e t-H e lp (h e lp) ()
G e t-H e lp (to u r) ()

(from Logical V iew)

Fa ir g ro u n d -me c h a n is m

N u mb e rBr e a k d o w n s N o tR e p a ir e d
Ad d re s s

N o te N e w Bre a k d o w n ()
N o te Bre a k d o w n R e p a ire d ()

(fr om L og ical V iew)

Se arch er- vali dat or

Va lid a te ("n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re ") ()

(fr o m L o gi ca l Vi ew)

Validat ion-manager

Va lid a te (s e a rc h e r , "n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re ") ()

(fro m L o g ic a l Vie w)

Help-point -interface

N e w Vis ito r ()
Vis ito rD a ta (n a me , id e n tific a tio n - n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fr o m L o gi ca l Vi ew)

Language-recognitor

Vis ito rD a ta (n a me , id e n tific a tio n - n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fro m L o g ic a l Vie w)

Language-translator

Tra n s la te Vis ito rD a ta (n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fro m L o g ic a l Vie w) F unct ion-dispatcher

Vis ito rD a ta (n a me , id e n tific a tio n - n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fr o m L o gi ca l Vi ew)

Figure 3.7 Class diagram for the second application with the Different Languages mechanism

STEP 3. Abstraction of the design solution for Different Languages

The abstraction of this solution provides the same design solution shown in Figure 3.4.

3.2 Phase 2. Validating design solutions for patterns with practitioners
The above two iterations had provided a preliminary design solution for the usability patterns. This
solution was obtained from software designs made by project researchers. The objective of this third
step is to validate these design solutions by practitioners not involved with STATUS. This was done
by taking the steps 1 and 2, used in Phase 1 for an Intranet application for managing an advertising
company. The application and the results of the two steps have been described in Annex E. The
changes to the original development models due to the consideration of the usability patterns are
highlighted in each model. Moreover, the solution for the usability pattern abstracted in the previous
two iterations can be confirmed.

For reasons of readability, this section only includes a small part of the system, which illustrates what
impact the introduction of the Different Languages usability pattern had on one of the system use
cases. The remainder of the application is documented in Annex E.

IST – 2001 – 32298 Page 23 of 23
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Table 3.1 shows the use case for the functionality that permits the user to query a given contract. This
use case has been called Query contract. The table includes all the elements that are useful for defining
a use case in expanded format. The requirement P11 is highlighted in the references section, which
indicates the inclusion of the Different Languages pattern within the system requirements. This pattern
had not been accounted for in the first version of this project which did not include usability patterns:

• Req P11: The system should detect the client operating system language and, depending on
this, show the messages and labels in the detected language. If the detected language is not
one of the parameterised languages or cannot be detected, the messages and labels will be
shown in English.

Additionally, note that the description of the use case within system responsibilities now includes step
(2) as a result of the inclusion of the Different Languages usability pattern.

Actor Marketing_administrator, Marketing_user

Type Primary and essential

Purpose Query the information on a contract with the information requested by marketing.

Overview: The user selects the code of the contract to be queried and asks the system for the

information.

References: Req P5, P10, P11, P13, P14

Typical course

of events

Actor action Typical course

of events

 1. The use case starts when the user

enters the query contract

application.

2. The system recognises the language of the

user and displays the information in the

respective language (UP-Different

languages).

 3 The administrator fills in the data

required to identify the contract and

asks the system to display the

information using a button or

abbreviated method (UP-Shortcuts).

4 The system retrieves the information on

the contract and this information, if any,

is displayed. The user is informed if the

contract cannot be displayed (UP- Status

Indication).

Table 3.1 Query contract use case

The next step will be to define the system sequence diagram for the Query contract use case. This
diagram is illustrated in Figure 3.8. The first system input, Assign Language, has been highlighted in a
different colour, as it stems from the consideration of the Different Language usability pattern.

IST – 2001 – 32298 Page 24 of 24
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

1. The use case starts when
the user enters the query
contract application.
2. The system recognises the
language of the user and
displays the information in
the respective language
(UP-Different languages).
3 The administrator fills in
the data required to identify
the contract and asks the
system to display the
information using a button or
abbreviated method
(UP-Shortcuts).
4 The system retrieves the
information on the contract
and this information, if any,
is displayed. The user is
informed if the contract
cannot be displayed (UP-
Status Indication).

IPESPMarketing Administrator

QueryContract(ContractCode)

AssignLanguage(Language, Program)

Figure 3.8 System sequence diagram for the Query contract use case

For each of the system inputs represented in the diagram illustrated in Figure 3.8, the respective
operation contracts are described in Tables 3.2 and 3.3 below. The operation contract for the
AssignLanguage input (Table 3.3) has been highlighted to indicate that it appears as a result of the
inclusion of the Different Languages usability pattern.

Name: QueryContract(ContractCode:int)

Responsibilities: Retrieve and display data on a contract

Cross-references: Requirements P2, P10

Use case: Query contract

Notes:

Exceptions: The contract does not exist

Output:

Pre-conditions:

Post-conditions: The contract data have been retrieved and displayed

Table 3.2 Operation contract for QueryContract

Name: AssignLanguage (Language:String, Application)

Responsibilities: Assign the language in which the application is to be viewed.

Cross-references: Requirements: P11

Use case: Update contracts

Notes:

IST – 2001 – 32298 Page 25 of 25
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Exceptions: The language cannot be assigned.

Output:

Pre-conditions:

Post-conditions: The default application language has been assigned.

Table 3.3 Operation contract for AssignLanguage

A sequence diagram needs to be built for each operation contract defined above in Tables 3.2 and 3.3.
Figure 3.9 shows the sequence diagram built for the QueryContract operation contract from Table 3.2.
Figure 3.10 shows the sequence diagram built for the AssignLanguage operation contract from Table
3.3.

The classes that emerge as a result of having taken into account the Different Languages usability
pattern are shaded in both diagrams. We can check whether the design including usability patterns
matches the design for the applications described in Phase 1 (Annexes C and D) for both the example
included in this section and the remainder of the application described in Annex E.

As we can see, the classes identified in the sequence diagrams of Figure 3.8 and Figure 3.9 show that
the designer has not taken into account as much granularity as was accounted for in the Restaurant
(Annex C) and Amusement Park (Annex D) systems, but, in all cases, the design solution for Phase 2
is similar to the solution applied in the applications taken into account in Phase 1. We can conclude,
therefore, that the abstractions materialised as architectural patterns in Phase 1 are valid as guidelines
for application in other projects.

Marketing Administrator ContractEvent Manager

ExecuteEvent(event)

Status Indicator

ShowMessage(Message)

QueryContract(ContractCode)

Figure 3.9 Sequence diagram for QueryContract contract

IST – 2001 – 32298 Page 26 of 26
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Administrator marketing

InternationalManager

SetLanguage(language, apllication)

DataStore

RetrieveLangData(language, application, data)
GetData:=GetData(Item)

Figure 3.10 Sequence diagram for AssignLanguage contract

IST – 2001 – 32298 Page 27 of 27
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

4 ARCHITECTURAL USABILITY PATTERNS CATALOGUE

The above process has output general design solutions that can be given to developers to be followed
or to serve as inspiration when incorporating a given usability pattern. Annex F describes all the
architectural usability patterns output by the entire process. These patterns are described according to
the following parameters.

 Pattern Name: Patterns must have suggestive names, which give an idea of the problem
addressed and the solution in a word or two.

 Usability Mechanism: Describes the usability mechanism to be incorporated in the software
architecture.

 Architectural Design Solution: This describes the elements that make up the architecture, their
relationships, responsibilities, etc. The solution does not describe a definite design, as a pattern
can be seen as a template that can be applied in many different situations. Particularly, the solution
for a specific pattern will be specified from.

o Diagram: A figure that represents the components of the architecture and their iterations.
Numbered arrows between the different components will represent the iterations. The arrows
with solid lines specify the data flow, while the dotted lines represent the control flow between
the components.

o Participants: A description of the components that take part in the proposed solution and the
iterations (represented by arrows) to determine how they are to assume their responsibilities.

 Usability benefits: Description of which usability aspects (usability properties) can be improved
by including this pattern.

 Usability rationale: A reasonable argumentation for the impact of pattern application on usability,
that is, what usability attributes have been improved, and which ones may get worse. Initially, this
feature will be completed with information coming from other authors or from the experience of
the consortium members. However, once the patterns have been applied to real applications in
WP6, this field will be refined with empirical experience.

 Consequences: Impact of the pattern on other quality attributes, like flexibility, portability,
maintainability, etc. Table 4.1 present a preliminary relationship among those attributes that, will
be checked with the results of empirical experience.

 Related patterns: Which architectural patterns are closely related to this one, and what
differences there are.

 Implementation of the pattern in OO: The architectural patterns provided are patterns that can
be applied in any development paradigm. However, as these patterns have been obtained and
refined for OO applications, we will provide guides tending to address pattern application in this
paradigm. Basically, we will describe the classes deriving from the pattern’s main components.
These guides are illustrated in the example shown in the following section.

 Example of the application of the pattern in question.

IST – 2001 – 32298 Page 28 of 28
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Reliability Reusing Learnability Efficiency Memorability User

Satisfaction
Performance

Reusing Information + +
Standard Help + +
Tour - + +
Different Languages + + + +/- -
Different Access
Methods

 +/- -

Alerts + +/- -
Status Indication +
History Logging + +
Undo + +
Form or field
validation

+ +

Provision of views + +
Workflow Model + +
User Profiler - - + +
Shortcuts - + -
Context Sensitive
Help

+ + +

Wizard + - +
Cancel + +
Multi tasking - +
Commands
Aggregation

 +

Actions for Multiple
Objects

+ +

Table 4.1. Relationship among quality attributes

IST – 2001 – 32298 Page 29 of 29
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

5 CAN USABILITY PATTERNS HELP FOR EDUCING USABILITY REQUIREMENTS

Examining the process we followed to get the design solutions for the usability patterns, we realised
that the inclusion of a usability mechanism has provided developers with a specific software
requirement that considers the respective usability pattern. This modus operandi led us to think that the
usability mechanisms to be included in the design should be discussed with users in the requirements
analysis phase. In other words, our usability pattern catalogue can serve as guidance for developers
during the discussion with users of what usability requirements they would like the system to satisfy.

This is an original idea as compared with the recommendations given by the traditional approaches to
usability, which specify two tasks for analysis: establish some usability level requirements (preferably
quantitative) and study users and how they perform the task so that there is a natural mapping between
the system and user reality. Everything related to usability mechanisms is dealt with as design
heuristics, design principles, etc., in the traditional approaches. Our proposal is that the usability
mechanisms (not the design solutions) should be brought forward in the software development process
and be included in the analysis phase. Accordingly, not only developers but also the users would be
able to state their opinions on what usability mechanisms are most critical for a given application, as
well as participate in the trade-off between usability and other quality attributes, from which some
usability mechanisms may detract.

As Task 3.4 deals with design rather than analysis, we postpone discussing any further findings until
we have applied the results of Tasks 3.1, 3.2, 3.3 and 3.4 to a real case. However, a brief overview of
how to integrate the entire development process for usability is given in D.3.5. “Usability-centric
software architecture design method”.

IST – 2001 – 32298 Page 30 of 30
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

6 CONCLUSION

Task 3.4 focused on examining the possible design solutions for including usability aspects into each
stage. For this purpose, it was necessary to extend the concept of usability pattern that was set out in
D.2, adding design-related aspects, like, for example, what effect the inclusion of each of these
usability mechanisms has on modules or interactions between modules.

The process followed to provide the design solutions for each usability mechanism was based on
induction from several cases studies and on the generalisation of the design solutions set out in each
case.

Finally, we developed a catalogue of usability patterns (Annex F) with their respective design
solutions, as well as a series of aspects that aim to provide developers with information on how to use
these patterns in their development projects.

Both the design solutions provided for each usability pattern and other aspects of the catalogue will be
improved in the remainder of the STATUS project, as they are used by the industrial partners in the
project context.

IST – 2001 – 32298 Page 31 of 31
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

7 REFERENCES

[Alexander, 77] Alexander C., Ishikawa S., Silverstein M. A PatternLanguage –Towns-Building-
Construction. Oxford University Press, 1977.

[Bass, 01] Bass L., Bonie E. John, Jesse Kates. Achieving Usability Through Software Architecture.
Technical Report. CMU/SEI-2001-TR-005, March 2001.

[Casaday, 97] Casaday G Notes on a Pattern Language for Interactive Usability, Proceedings of the
Computer Human Interface Conference of the ACM, Atlanta, Georgia, 1997.

[Gamma, 98] Gamma E., Helm R., Johnson R., Wlissides J. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison Wesley, 1998.

[Perzel, 99] Perzel, , Kane D. (1999) Usability Patterns for Applications o the World Wide Web.
PloP’99

[Tidwell, 98] Tidwell, J. Interaction Design Patterns. Pattern Languages of Programming 1998,
Washington University Technical Report TR 98-25.

[Welie, 00] Welie M, Troetteberg H. Interaction Patterns in User Interfaces. PloP’00

IST – 2001 – 32298 Page 32 of 32
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

IST – 2001 – 32298 Page 33 of 33
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Anexo A: DETAILED DESCRIPTION OF USABILITY PATTERNS

A.1 Different Languages
Description
Internationalisation refers to the capability of the software to interact with users in different languages.

Relationship with usability properties
This pattern improves system accessibility for users who speak different languages. It supports error
prevention by providing a better understanding of the options and tasks that can be performed using
the system.

Example:
In internet-based systems, it is quite common to find architectures where the functionality and/or
information is duplicated in different languages. In these cases, users usually select the language in
which they want to interact with the system.

Other non-internet-based systems also implement the internationalisation attribute to allow to users to
manually or automatically select the language. For example, word processing system users can select
the spelling and grammar function in the selected language, but also have the option to select another
language, depending on the language they used in the document. Microsoft Word is actually able to
recognise the language that the user is using and adapt the Autocorrect function to the language in
question.

A.2 Different Access Methods
Description
Access method refers to the capability of the software to be accessed using different types of physical
devices. Therefore, this attribute will ease system access not only from a desktop or laptop but also
using means such as WAP, Web, and interactive TV, for example.

Relationship with usability properties
This pattern improves system accessibility by users using different devices.

Example
Internet weather forecasts can be accessed from a desktop/laptop, but this information can also be
obtained using interactive TV or a mobile phone.

IST – 2001 – 32298 Page 34 of 34
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.3 Alerts

Description
An alert is a message from the system to the user that a change of state has occurred that the user
ought to know about.

Relationship with Software Architecture
To support the provision of alerts to the user, there needs to be component that monitors the behaviour
of the system and sends messages to an output device.

Relationship with Usability Properties
Alerts help to keep the user informed about the status of the system.

Example
If a new e-mail arrives, the user may be alerted by means of an aural or visual cue.

If users make a request to a webserver that is currently off line, they will be presented with a popup
window telling them that the server is not responding.

A.4 Status Indication
Description
Users should be provided with information pertaining to the current status of the system.

Relationship with Software Architecture
To support the provision of status information to the user, there needs to be component that monitors
the behaviour of the system and sends a message to an output device.

Relationship with Usability Properties
Giving an indication of the system’s status provides feedback to the user about what the system is
doing at this time and what the result of any action they take will be.

Example
The status bar at the bottom of the screen in Microsoft Word shows the current page number, the
position of the cursor on the screen in rows and columns, whether certain modes, such as overwrite,
are currently active, and the current language.

A.5 Shortcuts
Description
A shortcut allows an experienced user to activate a feature that may be hidden “under the surface” of
the interface with one quick manoeuvre.

Relationship with Software Architecture
To allow shortcuts, several different user interface manoeuvres need to be able to be mapped to the
same underlying action.

Relationship with Usability Properties
The provision of shortcuts allows the system to match the user’s level of expertise. An experienced
user will use the shortcut, whereas a novice will navigate a longer path through the user interface,
perhaps receiving more guidance.

Example
Almost all Windows applications provide keyboard shortcuts for commonly accessed items from
menus.

Websites may provide “deep links” to pages many clicks away on the front page, if (especially
combined with a user profile) they expect the user to want to jump to that page as a result of previous
experience.

IST – 2001 – 32298 Page 35 of 35
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.6 Form or Field Validation
Description
If a user is entering multiple items of data on one screen, it is possible to check that each field contains
valid data either all at once when the “submit” or “ok” button is pressed (form validation), or
individually each time a data item is entered (field validation). With form validation, one invalid entry
may lead to the whole form having to be filled in again.

Relationship with Software Architecture
In a web situation, form versus field validation often equates to doing the validation check on the
server or on the client, respectively.

Relationship with Usability Properties
This pattern relates to a provision for error management.

Example
These techniques are often employed in forms on websites where the user has to enter a number of
different data items, for example, when registering for a new service, or buying something.

A.7 Undo
Description
The ability to undo an action and return to the previous state.

Relationship with Software Architecture
For undo implementation, there must be a component that can record the sequence of actions carried
out by the user and the system, as well as enough details about the state of the system in-between each
action to go back to the previous state.

Relationship with Usability Properties
Providing the capability to undo an action helps users to correct errors if they make a mistake. It helps
the user to feel that they are in control of the interaction.

Example
Microsoft Word provides the ability to undo and redo (repeatedly) almost any action users can take
when working on a document.

A.8 Context-Sensitive Help
Description
Context-sensitive help monitors what the user is currently doing and supplies information relevant to
the completion of the task in question.

Relationship with Software Architecture
There needs to be provision in the architecture for a component that tracks what the user is doing at
any time and targets a relevant portion of the available help.

Relationship with Usability Properties
The provision of context-sensitive help can give the user guidance.

Example
Microsoft Word includes context-sensitive help. Depending on what feature the user is currently using
(entering text, manipulating an image, selecting a font style), the Office Assistant will offer different
pieces of advice (although some users feel that it is too forceful in its advice).

Depending upon what the mouse cursor is currently pointing to, Word will pop up a small description
or explanation of the feature in question.

IST – 2001 – 32298 Page 36 of 36
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.9 Wizard
Description
The wizard pattern presents users with a structured sequence of steps to carry out an operation, which
it guides them through one by one. The task as a whole is separated into a series of more manageable
subtasks. The user can go back and change earlier steps in the process at any time.

Relationship with Software Architecture
There needs to be provision in the architecture for a wizard component, which can be connected to
other relevant components, that is, the component that triggers the operation and the component that
receives the data collected by the wizard.

Relationship with Usability Properties
The wizard helps with guidance, showing the user what each consecutive step in the process is.

Example
The install wizard used by most Windows programs guides users through several options for
installation

A.10 Standard Help
Description
The system must provide users with help on tasks at any time.

Relationship with Usability Properties
The provision of help will give the user guidance and will improve error management, both error
detection and error correction.

Example
It is now usual practice to present users with interactive books, providing search facilities, indexes and
even troubleshooting for information searching and problem solving.

IST – 2001 – 32298 Page 37 of 37
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.11 Tour
Description
A tour presents users with information explaining how to do routine system tasks, providing step-by-
step guidance.

Relationship with usability properties
The provision of a tour will give the user guidance and will improve error management, both error
detection and error correction.

Example
A system that provides presentation facilities could provide a tour of the application, including
animated explanations, besides displaying text instructions on how to easily perform such
presentations.

A.12 Workflow Model
Description
Modelling workflow provides different users with only the tools or actions that they need to perform
their particular tasks.

Relationship with Software Architecture
A component or set of connectors that model the workflow is required, which describe where the data
flows. A further model of each system user will be required so as to provide the actions that they need
to perform on the data (see A.15 user profile).

Relationship with Usability Properties
Targeting the user interface specifically to each user, depending on the tasks that they need to perform
in the workflow, minimises the user’s cognitive load.

Example
Logic IS has developed software that models workflow.

A.13 History Logging
Description
Logging the actions that users (and possibly the system) take means that users (or the system) can look
back over what was done previously.

Relationship with Software Architecture
To implement this feature, a repository must be provided which can store information about actions.
Consideration should be given to how long the data are required for. Actions must be able to be
represented in a suitable format for recording in the log.

Relationship with Usability Properties
Providing a log helps users to see what went wrong if an error occurs and may help them to correct
that error. Being able to refer to actions that were carried out previously may help with “recognition
rather than recall”.

Example
Web browsers create a history file detailing all the websites that the user has visited. Databases
typically write a log of the transactions that are completed.

IST – 2001 – 32298 Page 38 of 38
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.14 Provision of Views
Description
The system must provide users with different views so that they can see what data they are working on
at any time.

Relationship with usability properties
Having data-specific views available at any time provides the user with guidance and will contribute
to error prevention.

Example
Before printing a specific document, the system can provide the user with an image of the document as
it would be printed.

A.15 User Profile
Description
The software system builds and records a profile of each user, so that specific system attributes
(concerning the layout of the user interface, the data or options to show, etc.) can be set and reset each
time that a different user accesses the system. Different users may have different roles and require
different things from the software.

Relationship with Software Architecture
A repository for user data needs to be provided. This data may be added to or altered either by the user
setting a preference or by the system.

Relationship with Usability Properties
Providing the facility to model different users allows a user to express preferences.

Example
Many websites recognise different types of users (e.g., customers or administrators) and present
different functionality depending on who is using the site.

Amazon.com builds detailed profiles of each of its customers in order to recommend products that it
thinks the user might be interested in on the front page of the site.

A.16 Cancel
Description
Users should be allowed to cancel a command that has been issued if they realise that they have done
the wrong thing before an error state is reached. This is different from being able to undo an action
after it has finished to return to the previous state.

Relationship with Software Architecture
There needs to be provision in the architecture for the component monitoring the user input to run
independently of and concurrently with the components that process actions. The action processing
components need to be able to be interrupted.

Relationship with Usability Properties
Being able to cancel commands helps with error management, as if users realise that they have done
the wrong thing then they can interrupt and cancel an action before the error state is reached. It also
gives users the feeling that they are in control of the interaction.

Example
In most web browsers, if the user types in an incorrect URL and the web browser spends a long time
searching for a page that does not in fact exist, the user can cancel the action by pressing the “stop”
button before the browser presents them with a “404” page or a dialog saying that they server could
not be found.

IST – 2001 – 32298 Page 39 of 39
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

A.17 Multi-Tasking
Description
Multi-tasking describes the situation where the system (and the user) can manage several tasks at the
same time, allowing switching from one task to another as is most conducive to efficiently and
effectively doing the work.

Relationship with Software Architecture
A system should be designed so that it can be used along side any other system without interference. It
may also be useful for the system to be able to manage more than one set of data at once, for example,
a word processor that can hold multiple documents open simultaneously). All of these things have
architectural considerations.

Relationship with Usability Properties
Providing a multi-tasking environment gives users the feeling that they are in control of the system, as
at any point they can switch to the task that is of most interest to them.

Example
Windows is a multitasking environment which enables the user to run a web browser showing a useful
reference website, while writing a document in a word processor, or switch to check an e-mail when
one arrives.

Mircosoft Excel allows multiple spreadsheets to be opened at the same time without replicating the
controls.

A.18 Command Aggregation
Description
The system should provide the capability to allow users to perform different actions by means of a
single command. Macro creation would be an example of this pattern.

Relationship with usability properties
Providing the ability to group a set of commands into one higher level command reduces the users’
cognitive load, as they do not need to remember how to execute the individual steps of the process
once they have created a macro, they just need to remember how to trigger the macro.

Example
All of Microsoft’s office applications provide the ability to record macros or to create them using the
Visual Basic for Applications language.

Emacs allows the user to execute strings of commands that can be assigned to special key
combinations.

A.19 Actions for Multiple Objects
Description
The same action often needs to be applied to a number of different objects. Providing the user with the
possibility of grouping the objects and applying one action to them all “in parallel” will be of help in
completing such a task more quickly and accurately. Errors are more likely to be made if each object
has to be dealt with separately.

Relationship with Software Architecture
Provision needs to be made in the architecture for objects to be grouped into composites or for it to be
possible to iterate over a set of objects performing the same action for each one.

Relationship with Usability Properties
Providing the ability to perform the same action on a number of objects at once reduces the time that it
will take the user to complete a task, as the system should be much faster in repeating actions than the
human user. The number of clicks (or equivalent actions) that the user has to make to complete the
task is reduced.

IST – 2001 – 32298 Page 40 of 40
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Example
In a vector based graphics package, such as Corel Draw, it is possible to select multiple objects and to
perform the same action (change colour, etc.) on all of them at the same time.

A.20 Reusing Information
Description
This pattern enables the user to move data from one part of a system to another. So users should be
provided with automatic (e.g., data propagation) or manual (e.g., cut and paste) data transports
between different parts of a system.

Relationship with Usability Properties
The data is reused in one or more applications, thus minimising the user’s cognitive load and reducing
errors.

Example
For example, a project management tool must permit the project manager to copy the particular tasks
and their characteristics from one project to another one.

IST – 2001 – 32298 Page 41 of 41
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX B: REQUIREMENTS SPECIFICATIONS FOR THE CASE STUDIES

B.1 CASE 1 specifications: restaurant network management

A restaurant chain wants to automate the reservation process, as well as the orders of each table and
the amount there is in the kitchen of each of the products handled to make up each dish, which,
obviously, needs to be restocked by the warehouse as the products run out.

T A B L E R E S E R V A T I O N S
The restaurant customers can telephone to book a table, but the restaurant chain is trying to encourage
is the use of point of reservation terminals (PRT) located in the street. The advantage of using these
terminals is that they offer the possibility of choosing a table depending on its location within the
restaurant, which is impossible over the telephone.

All the PRT are owned by the restaurant chain, although other restaurant chains might offer their
services over these terminals in the future. At present, only restaurants belonging to this restaurant
chain will be able to selected.

When customers connect to one of these PRT, the terminal asks at what restaurant, on what day and at
what time they want to book a table. With the support of the Reservations Centre, which has
information on the status of all the restaurant chain tables, the terminal checks whether there is a
vacant table at the specified restaurant at the requested time. If there is, the Reservations Centre, with
the support of the restaurant in question, first sends a plan of the restaurant and then the vacant tables
located in their respective place on the plan to the PRT. Thus, the PRT can reconstruct the plan of the
restaurant with the tables that are free.

The tables are divided into tables for smokers, marked with S and for non-smokers marked with NS.
Additionally, each table is labelled with the number of people that this table can seat.

Users select a table and specify the number of people who are going to occupy the table, the PRT
notifies the Reservations Centre, which then checks with the restaurant that everything is still in order.
If everything is OK, the terminal asks the user to specify the name in which the table is to be reserved,
which the user enters. The terminal then notifies the Reservations Centre, which makes the
reservation, and the terminal issues a ticket specifying the day, time, table and name in which the table
has been reserved.

If the customer arrives at the restaurant 20 minutes after the time for which the table was reserved, the
system will automatically cancel the reservation.

If there are no tables free at the time specified by the user, the PRT notifies customers, also giving
them the option of asking the system for suggestions on restaurants available at the time and on the
date requested. If customers want a suggestion from the system, the Reservations Centre provides
customers, through the PRT, with a list of possible restaurants. Users can select one, in which case the
normal reservation procedure applies, except that the PRT already has some of the customers’
particulars.

If there are tables available but none is to the customer’s liking at the time for which he wants to book,
he can ask the system to specify another chain restaurant that also have vacant tables at the time in
question.

If, in either case, the user changes his mind, all he has to do is cancel the operation at any time.

When a customer arrives at one of the chain restaurants, he is asked whether or not he has booked.

If he has a reservation, all he has to do it present the ticket, the table goes from being reserved to being
occupied and they are seated in their respective place, provided they do not arrive over 20 minutes
later than the time for which they had booked the table.

IST – 2001 – 32298 Page 42 of 42
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

If, on the other hand, they arrive 20 minutes later than the reservation time, the system will have
cancelled the reservation in question and the table will have been released for another possible
customer. Therefore, they will be dealt with as if they had not booked. In this case, the reservations
manager asks the system to display the tables that are free at the time. If there are free tables, he asks
the user if he wants a smoking or non-smoking and how many people there are. The user tells him and,
if a table is available, the reservation manager books the table and they are seated. If no tables are
available, the reservations manager has to ask the system approximately how long it will take for the
next table of the characteristics of the table being requested to become available. The system will be
able to calculate this from the status of the different table at a given time. These statuses are:

 Free: if it has not been reserved

 Reserved: if someone has booked

 Occupied: if the diners are at the table

 Ordering: if the waiter is taking the order for the table

 Waiting to be served: if they are waiting to be served

 Served: if the diners already have the food on the table

 Waiting for the bill: if the diners have asked for the bill

 Paying: if the diners already have the bill at their table

Additionally, if there are no tables available and the customer so wishes, he should be informed of
another or other chain restaurants that do have free tables.

O R D E R S
Once the customers have been seated, the waiter gives them the menu and waits for them to order. The
waiters have devices that control part of the system, namely, the orders for each table.

This part of the system waits for the waiter to enter a table number.

When the waiter enters the table number that is going to order, the order time and table that is ordering
is automatically recorded. The customers can order both food and drinks, which are both considered as
foodstuffs. Each foodstuff has a code that the waiter will enter in the system.

If the customer wants what ingredients a given dish contains, he can ask the waiter, who will then
consult the system, keying in the code of the foodstuff followed by a question mark.

The order of each table is composed of order lines, where each order line is a foodstuff. This means
that if three dishes of pasta and two glasses of beer are ordered, the order will have five order lines.

The waiter enters the code of each foodstuff and presses accept, before being able to enter the next
foodstuff code. The system must be able to check that the ingredients required to prepare the dish
ordered are available. If not, that is, if the dish cannot be prepared because one or more ingredients are
not available, the waiter will tell the customer that it is not available and ask him to order something
else. Of course, if this situation is detected, the warehouse should be told to restock each of the
ingredients or drinks that are not available.

When the diners finish ordering, the waiter temporarily closes the order, that is, presses end and the
table status switches to “Waiting to be served” as long as they do not order anything else. The system
automatically advises the kitchen that there is a new order for a given table. At this point, each line of
the order is read again, as are the ingredients of each foodstuff and the amount of the respective
products in the kitchen is reduced accordingly. If the amount of any product falls below the threshold
established for this foodstuff, it is automatically ordered from the warehouse.

The kitchen manager monitors the incoming orders and tells the cooks. When the dishes have been
prepared, the kitchen manager sets the status of order of the table in question to cooked and sends a

IST – 2001 – 32298 Page 43 of 43
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

message to waiter control for the waiter to collect the order for the specified table. The waiter collects
the order and takes it to the respective table and specifies that the table has been served.

I N G R E D I E N T S C O N T R O L
Additionally, as mentioned above, the ingredients are also controlled from the kitchen. As the exact
ingredients of each dish are known, once the trays containing the table order have been prepared, the
system is told the stock of ingredients that the dishes or foodstuffs contained have fallen and when
these stocks drop below the minimum required in the kitchen, the system automatically advises the
warehouse to restock the ingredient.

P A Y M E N T A N D T A B L E V A C A T I O N
When the diners have finished, they ask the waiter for the bill, which is when the waiter finally closes
the order for the table in question and specifies the table status as waiting for the bill. The waiter
orders the bill, which is composed of each of the order lines, to be printed. Once printed, it is given to
the customers who deposit the money either in cash or by credit card. The waiter goes to the central
cash desk and specifies that the table is paying. He then returns with the paid bill and specifies the
table status as free.

B.2 CASE 2 specifications: amusement park control

The company DIVERTIMENTO S.A. runs several amusement parks all over Spain. The company is
most concerned about:

• Ride control and maintenance: as for a company of this type, a mechanical error could cause
material and personal losses that would raise serious problems.

• Visitor safety with respect to theft, losses, etc.,: as the visitors must be as relaxed and
confident as possible as regards the park being a safe place for adults and especially children.

With the aim of guaranteeing optimum safety in the park, it wants to implement a pilot project
designed to assure the above two points.

P E R M A N E N T R I D E C O N T R O L A N D M A I N T E N A N C E
The only way of detecting faults in rides at present is when the operators responsible for maintenance
and control perform these activities.

The company intends to computerise its amusement parks and is going to begin by starting up a pilot
project, aimed at equipping one of the amusement parks in the chain with an automatic fault detection
system for rides.

The system is initially to be designed to manage the big wheel and the roller coaster, but it is planned
to eventually use the control system for these and other park rides.

The big wheel has a series of vehicles, each of which is equipped with a detector thanks to which it is
possible to establish at any time whether the vehicle is securely enough anchored to the metallic
structure of the big wheel. Each vehicle is equipped with the control software and hardware required
to be able to detect the state of the anchorage, and the checks should to be run every three seconds.

If the anchorage were found to be deficient, the vehicle concerned would report this to the Fault
Reception Centre (FRCS) and also to the ride of which this vehicle is part. Accordingly, when the ride
next stops, there will be a record that one of its vehicles has requested maintenance.

The roller coaster is likewise equipped with detector of anchorage to the following car (if there is one).
Each car detects whether it is sufficiently anchored to the following car. If anchorage is deficient, it
advises the FRCS and the ride, in this case, the roller coaster.

IST – 2001 – 32298 Page 44 of 44
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

When the FRCS receives an alert, which specifies the possibly faulty car or vehicle and the ride in
question, it immediately locates an available maintenance operator. If none are free, it reports to the
component in question that its request cannot be satisfied, and the component will emit the possible
fault signal until its request is satisfied.

As each maintenance operator receives a bonus depending on the number of faults he attends to per
month. Each operator one is monthly assigned a device which:

1. Manages the faults he attends to monthly

2. And, additionally, reports the possible faults to be attended to, irrespective of which area of the
amusement park he is in, that is, he can always be located.

When the FRCS receives a request for fault control and finds a free operator, it sends a message to the
operator specifying the street of the park on which the ride is located and the number of the vehicle or
car with a possible fault.

The status of the operator’s device switches to occupied, indicating that the operator is attending to a
possible fault. When the operator has finished repairing the fault, he specifies that he is now free for
the next fault request it receives. The device then reports to the FRCS and the repaired component that
everything has been correctly solved. This component will advise its ride that the requested
maintenance operation has been completed so it can be started up again.

C O N T R O L O F P E R S O N S O N R I D E S
Additionally, the system will have to be capable of counting the number of people who get on and off
a ride for two purposes. It has to control, first, that no more people than the ride is capable of
accommodating get on and, second, that everyone gets off the ride when it has stopped.

The ride stop and start controller receives a message specifying that the ride is full for it to start up the
ride. This message can come from the entrance turnstile, which detects when the maximum ride
occupancy has been reached, or from the operator supervising the ride, if, although it is not full,
nobody else is waiting to get on and he thinks that enough time has passed for the ride to start up.

When the ride stop and start device detects that the ride has stopped, it sends a message to the exit
turnstile for it to prepare to let the people out. What the exit turnstile does before letting the people off
the ride is check whether the ride has a missing person search alert. If it does, it will order the speaker
there is at each ride to broadcast a message naming the person in question and telling this person to
stay the ride entrance until someone comes to pick him up.

Having run the check, the exit turnstile starts to let the people out. This exit turnstile knows how many
people there are on the ride thanks to the entrance turnstile, and accordingly knows how many people
have to get off the ride.

When the exit turnstile determines that the number of people who have got off the ride is equal to the
number of people who got on, it sends a message to the entrance turnstile to reset the counter of people
on the ride to zero, unblock and display the green indicator for people to get on the ride. If the exit
turnstile has not unblocked the entrance turnstile by 5 minutes after the ride has stopped, it means that
someone has not got off and the operator will have to go in to look of him or her.

When the entrance turnstile receives the unblock message from the exit turnstile, it first consults the
ride to see if it has any unrepaired fault. This will be reflected in the ride when one or more vehicles or
cars request repair. The ride has an unrepaired faults counter and the entrance turnstile will only go
green for users to get on if this counter is set at 0. Otherwise, it remain amber, indicating that it is
waiting for repair.

P A R K S U R V E I L L A N C E M A N A G E M E N T
The park will be equipped with two SOS terminals by means of which the parents can enter their
children. These terminals ask parents the name, ID card number, age, hair colour and stature of the

IST – 2001 – 32298 Page 45 of 45
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

person to be registered. If parents discover at any time that someone has gone missing, they should go
to the nearest SOS terminal and enter the member of the family as missing:

• If the person in question has already been entered as a park visitor, all they will have to do is
to enter the ID card no. of the person who has gone missing.

• If the person has not been registered as a park visitor, then they will have to enter the above-
mentioned identification particulars and then report the disappearance at the same terminal.

Once the system has all the available data, it sends the data on the missing person to all the

surveillance cameras located throughout the park and the rides. These cameras are equipped with an

algorithm based on computer vision techniques so that if they detect an individual of the specified

characteristics within their field of view, they automatically report to the surveillance centre, which

will then send the operators responsible for collecting the person in question to the point indicated by

the camera. Additionally, as the cameras are associated with a speaker, the camera that detected the

person will be capable of asking its loudspeaker to broadcast the name of the person in question,

telling him that he is being looked for and asking him not to move from where he is.

If the individual in question is identified when getting on a ride, this ride will be alerted by its
respective camera and when the ride stops, a message will be broadcast by the loudspeaker associated
with the cameras, as described in the “Control of Persons on Rides” section.

IST – 2001 – 32298 Page 46 of 46
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

IST – 2001 – 32298 Page 47 of 47
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX C: PHASE 1 FIRST ITERATION: THE RESTAURANT MANAGEMENT
CASE

C.1 Reusing Information First Iteration

STEP 1. Design solution without Reusing Information

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

R ec ipe

Amount
Name

(from C LASSES)

Restaur ant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, hour, kind)()

(f ro m C LAS SES)
Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fr om C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CLASSES)

Request

H our
D at e
Sta tu s

Init -req ue st ()
Input-CodConsumption()
O K()
init-request ()
Init-req uest ()()
Init-req uest ()()
Init-req uest ()()
In it Co dCo ns umpti on (c od e) ()
RequestConsumtions()()
Bill()()
New-price(price)()
G e tPrice(pric e) ()

(from CLASSES)

Alert-Manager

Ch eck-In gr edie nt ()
O K()

(from C LASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(from CLASSES)

Request-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(from CLASSES)

Ingr edie nt

Name
Minimun-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(from C LASSES)

Co nsum pt ion

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(fro m C LAS SES)

Figure C.1 Class diagram for the first application without Reusing Information mechanism

STEP 2. Design solution with Reusing Information

Requirement: the waiter inputs the foodstuff code and, as the next consumption ordered is the same,
the waiter uses the “duplicate last foodstuff” function.

IST – 2001 – 32298 Page 48 of 48
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Re stau rant

Nam e : String
Address : String

GetNam e(Nam e)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

ClientNam e(client)()
Check(date, hour)()
Get(tim es-in-week)()

(from CLASSES)

R eques t

Hour
Date
St at us

Init-request()
Input-CodConsum ption()
OK()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestConsum tions()()
Bill()()
New-price(price)()
GetPrice(pr ice)()

(from CLASSES)

C onsum pt ion

Cod-consum ption
Description
Price

Check-Stock()
OK()
Consum tionNam e(nam e)()
LastCodeConsum ption()()

(from CLASSES)

R eques t- line

Crea te Line(co de) ()
Read (co nsu m pt io n)()
Consum ti on Pri ce (pr ice) ()
LineNa me (n am e) ()
GetPri ce (pr ice) ()

(from CLASSES)

Alert -Manager

Check-Ingredient()
OK()

(f rom CLASSES)Ingredient

Nam e
M inim un-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(from CLASSES)

Recipe

Am ount
N am e

(from CLASSES)

Books m anager

GetRestaurants(list)()
Get(restaurant, date, hour, kind)()

(from CLASSES)

Table

Status : String
Num ber-person : Integer
Sm oker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CLASSES)

Interface

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsum ption(code)()
D isplay(list of consum ptions)()
DuplicateConsum ption()()
Help()()
Get-help(help)()
Get-help(tour)()
NewBook()()
ShowList(list)()
Get(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem ()()
Enable(RequestCooked)()
Pressed(F1)()
OK()()
SpecificHelp(tppic)()
ShowSpecificHelp(help)()
Cancel(request)()

(from CLASSES)

dat a-to -be-reused
(from CLASSES)

reus er

Du pl ic at eCon sum pti on()()
Ge tCo de(cod e) ()

(from CLASSES)

Figure C.2 Class diagram for the first application with Reusing Information mechanism

IST – 2001 – 32298 Page 49 of 49
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Reques t

 : Wai ter

 : Tabl e : Cons um ption : Reques t-line : Alert-Manager : Ingred ien t : reus er : Interface

Init-reques t()

Input-CodCons um ption(code)

ChangeSta te()

Check-Stock(code)

O K()

CreateLine(code)

Check-Ing re dien t()

OK()

Check()

OK()

DuplicateCons um ption()

DuplicateCons um ption() Las tCodeCons um ption()

GetCo de(code)

Input-CodCons um ption(code)

Figure C.3 Sequence diagram for the first application with Reusing Information mechanism

STEP 3. Abstraction of the design solution for Reusing Information

 Solution:

o Diagram:

Interface

Reuser

Interface System

1 2

3 4 5

o Participants:

 Interface: collects the data to be processed by the reuser pattern and finally
displays the operation results (if the user needs to see the result). Interface sends
the data to be processed (1) and the function requested by the interface (2), i.e.
copy, paste, move, etc., to Reuser. Also, once the reuser pattern has been applied
the results of the requested function will be displayed on the interface (5), unless
the requested function was “copy”.

 Reuser: is the module that gathers the information provided by the interface and
manipulates these data according to the requested function (copy, paste, move,
etc.). Reuser receives the data to be manipulated as well as the function to be
executed (1) (2). If Reuser does not store the data to be manipulated internally, it
has to send these data to the system (3), as happens, for instance, with the Copy
function. Also if Reuser does not store the data internally, it has to ask for these

IST – 2001 – 32298 Page 50 of 50
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

data from the part of the system where they are stored (4) as happens with the
paste or move functions.

 System: this component is optional and is only necessary when the Reuser module
does not store the data internally.

C.2 Standard Help First Iteration

STEP 1. Design solution without Standard Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Restaurant

Name : String
Ad dress : Strin g

G etName(Name)()
Av ailable Tables (date, hour, kind)()

(fr om CL ASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
Loo kForAv ailab le (kind, data, hour)()

(from CLASSES)

Request

H our
D ate
S tatu s

Init-request()
I np ut-C od Cons um ptio n()
O K()
in it-re que st()
I nit-requ est()()
I nit-requ est()()
I nit-requ est()()
I ni tCodConsu mption (code)()
R eq ues tCons um tion s()()
B il l()()
N ew-pri ce (pr ic e)()
G e tPri ce (pric e)()

(from CL ASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(from CLASSES)

Request-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(from CLA SSES)

Consumption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(from CLASSES)

Figure C.4 Class diagram for the first application without Standard Help mechanism

STEP 2. Design solution with Standard Help

Requirement: the user can push the Help button

IST – 2001 – 32298 Page 51 of 51
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fr o m C LASSES)

Consum ption

Cod-consumption
Description
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(from CLASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CL ASSE S)

B ooks man ager

G etRe staurants(li st)()
G et(re staurant, date, hour, kin d)()

(from CLASSES)

Request-line

Crea teLi ne (cod e) ()
Read(cons umptio n)()
Cons umtion Price (price)()
Li ne Name (nam e) ()
Ge tPri ce (pric e)()

(from CLASSES)

Request

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init -request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(from CLASSES)

In te rface

Init-request()
Init -request()()
Undo()()
Init -request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(from CLASSES)Standard-helper

St-Help()()

(fr o m C LASSES)

Figure C.5 Class diagram for the first application with Standard Help mechanism

 : User
 : Interface : Standard-helper

Help()
St-Help()

Get-help(help)

Figure C.6 Sequence diagram for the first application with Standard Help mechanism

IST – 2001 – 32298 Page 52 of 52
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Standard Help

 Solution:

o Diagram:

Interface

Standard-helper

Interface

System

1

2
3

o Participants:

 Interface: gathers the information from the help application and sends this
information to the module which manages the help (1). Also it will show the help
information sent by the Standard-helper (2)

 Standard-helper: will show a general help (that is, not specialised) for the
application. This help is usually identified as an html, doc, etc., document. This
component receives the application from the interface (1) and sends the respective
data to the interface (2). If the help is not stored in this component, the help will
be provided for another component using the data flow from System (3).

 System: this component is optional and represents the part of the system where
the help is stored if the Standard-helper does not store the help internally. It will
be the system that provides the Standard-helper with the help (3).

C.3 Tour First Iteration

STEP 1. Design solution without Tour

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 53 of 53
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)

Boo k

C lientName(client)()
C heck(date, hour)()
G et(t im es-i n-w ee k)()

(fr om C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(f rom CL ASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Request-line

CreateLine(code)()
Read(consumpt ion)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(f rom CL ASSES)

Consum ption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Figure C.7 Class diagram for the first application without Tour mechanism

STEP 2. Design solution with Tour

Requirement: the user can push the Guided Help button

IST – 2001 – 32298 Page 54 of 54
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interf ace

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(f rom CLASSES)

Guided-helper

G uided-help()()

(from C LASSES)

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)
Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from C LASSES)

Consumption

Cod-consumpt ion
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Table

Status : String
Number-person : I nt eger
Smoker/Non Smoker : Boolean
Place : XY
Code : I nt eger

ChangeS tate()
ChangeS tate()
Chang eSt at e() ()
Chang eSt at e() ()
LookForAvailable(kind, data, hour)()

(f rom CLASSES)

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Request -l ine

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(f ro m CLAS SES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Figure C.8 Class diagram for the first application with Tour mechanism

IST – 2001 – 32298 Page 55 of 55
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : User
 : Interface : Guided-helper

Help()
Guided-help()

Get-help(tour)

Figure C.9 Sequence diagram for the first application with Tour mechanism

STEP 3. Abstraction of the design solution for Tour

 Solution:

o Diagram:

Interface

Guided-helper

Interface

System

1

2
3

o Participants:

 Interface: collects the guided help request and sends it to the Guided-helper (1).
Additionally, it will display the help information it receives from the Guided-
helper (2).

 Guided-helper: displays a guided help for the application for which the help has
been described (2). This help can range from a pre-recorded tour of the
application, to an interactive tour, which involves the development of a separate
application. If the help is not stored internally in this component, this help will be
provided by any other part of the system through the information flow from
system (3).

 System: this is an optional component and represents part of the system in which
the help will be stored if the Guided-helper does not store the information
internally. System will, therefore, be responsible for providing the Guided-helper
with the help through (3).

IST – 2001 – 32298 Page 56 of 56
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.4 Different Languages First Iteration

STEP 1. Design solution without Different Languages

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Book

C lie n tN a me (c lie n t) ()
C h ec k (d a te , h o u r) ()
G e t(time s - in -w e e k) ()

(from CLA S S E S)

Restaurant

N a me : Str in g
Ad d re s s : Str in g

G e tN a me (N ame) ()
Av a ila b le Ta b le s (d a te , h o u r , k in d) ()

(fr o m C L ASSES)

Request-line

C r e a te L in e (c o d e) ()
R e ad (c o n s ump tio n) ()
C o ns u mtio n Pr ic e (p r ic e) ()
L in eN a me (na me) ()
G e tPr ic e (p r ic e) ()

(from CLA S S E S)

T able

Sta tus : Str in g
N u mb e r - p e rs o n : In teg e r
Smok e r /N o n Smo k e r : Bo o le an
Pla c e : XY
C o de : In te g e r

C h an g e Sta te ()
C h an g e Sta te ()
C h an g e Sta te () ()
C h an g e Sta te () ()
L o o k Fo r Av a ila b le (k in d , d a ta , h o u r) ()

(fr o m C L ASSES)

Consumption

C o d- c o n s u mp tio n
D e s c r ip tio n
Pr ic e

C h ec k - Sto c k ()
O K()
C o ns u mtio n N a me (na me) ()
L a s tC o d e C on s u mp tio n () ()

(from CLA S S E S)

Restaurants-manager

G e tR e s ta u r an ts (lis t) ()
Av a ila b le Ta b le s (r e s ta u r a n t, da te , h o u r , k in d) ()

(fr o m C L ASSES)

Request

H o ur
D a te
Sta tus

In it- re q u e s t()
In p u t- C o d C on s u mp tio n ()
O K()
in it- re q u e s t()
In it- re q u e s t() ()
In it- re q u e s t() ()
In it- re q u e s t() ()
In itC o d C o n s u mp tio n (c o d e) ()
R e qu e s tC o ns u mtio ns () ()
Bill() ()
N e w - p r ic e (p r ic e) ()
G e tPr ic e (p r ic e) ()

(from CLA S S E S)

Books manager

G e tR e s ta u r an ts (lis t) ()
G e t(r e s ta u r an t, d a te , h o u r , k ind) ()

(fr o m C L ASSES)

I nt erf ace

Ini t- req u e s t()
In it- re q u e s t() ()
Un d o () ()
In it- re q u e s t() ()
Inp u t -C o d C on s u mp tio n (c o d e)()
Di s p la y (lis t o f c o n s ump t io n s)()
D u p lic a te C on s u mp tio n () ()
H e lp () ()
G e t-h e lp (h e lp) ()
Ge t-h e lp (tou r) ()
N e w Bo o k () ()
Sh o w L is t(lis t) ()
G e t(r e s ta u r an t, d a ta , h o u r ,k ind) ()
Sh o w L is t(lis t) ()
Co n ne c t in g Sy s te m()()
En a b le (R e q ue s tC o ok e d) ()
Pr e s s e d (F1) ()
OK () ()
Sp e c ific H e lp (tp p ic) ()
Sh o w Sp e c ific H e lp (he lp) ()
Ca n c e l(r e q ue s t) ()

(f ro m CL ASS ES)

Figure C.10 Class diagram for the first application without Different Languages mechanism

STEP 2. Design solution with Different Languages

Requirement: When the user is booking a table from the terminal, the system should be able to
understand the date, time and table time irrespective of the language used by the user. The interaction
diagram does not show the full booking for reasons of visibility on the model.

IST – 2001 – 32298 Page 57 of 57
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Translator

C hoos eLangModele r (date , hour , k ind)()

(from C LASSES)

Language-modeler

Trans la teD ata (da te, hour , k ind)()

(from C LASSES)

Book

C lien tN ame(c lien t) ()
C hec k (date, hour) ()
Get(times - in-w eek)()

(from C LA S S E S)

Request-line

C rea teL ine (c ode)()
R ead(c ons umption) ()
C ons umtionPr ic e (pr ic e)()
L ineN ame(name) ()
GetPr ic e (p r ic e) ()

(from C LA S S E S)

Restaurant

N ame : Str ing
Addres s : Str ing

GetN ame(N ame) ()
Av ailab leTables (date , hour , k ind) ()

(from C LASSES)

T able

Status : Str ing
N umber -pers on : In teger
Smok er /N on Smok er : Boolean
Plac e : XY
C ode : In teger

C hangeSta te()
C hangeSta te()
C hangeSta te() ()
C hangeSta te() ()
Look ForAv ailab le (k ind, da ta, hour) ()

(from C LASSES)

Request

H our
D ate
Status

In it- reques t()
Input-C odC ons umpti on ()
OK()
in it- reques t()
In it -r equest () ()
In it -r equest () ()
In it -r equest () ()
In it C odC ons umpti on(c ode)()
Reque s tC ons umt ions () ()
Bill() ()
N ew -pri c e(pr ic e) ()
Ge tPr ic e (pr ic e) ()

(from C LA S S E S)

Consumpt ion

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption () ()

(from C LA S S E S)

Restaurants-manager

GetR es tauran ts (lis t) ()
Av ailab leTables (res tauran t, date , hour , k ind)()

(from C LASSES)

Int erfa ce

In it- reques t()
Ini t- reques t() ()
Undo () ()
Ini t- reques t() ()
Input-C odC ons umption (c ode)()
D is p lay (lis t o f c ons umptions)()
D uplic a teC ons umption() ()
H elp () ()
Get-he lp (he lp) ()
Ge t -h e lp(tou r) ()
Ne w Book () ()
Show Lis t(lis t) ()
Get(res tauran t, da ta, hour ,k ind)()
Show Lis t(lis t) ()
C onnec tingSy s tem() ()
Enab le(R eques tC ook ed)()
Pres s ed(F1)()
OK () ()
Spec ific H e lp(tpp ic) ()
Show Spec ific H elp (help) ()
Canc el (reques t)()

(f rom CLASS ES)

Books manager

GetR es tauran ts (lis t) ()
Get(res tauran t, da te, hour , k ind)()

(from C LASSES)

Figure C.11 Class diagram for the first application with Different Languages mechanism

IST – 2001 – 32298 Page 58 of 58
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : User
 : Interface : Books

manager
 :

Res tau ran ts-manager
 : Restaurant : Table : Book :

Language-modeler
 : T ranslator

NewBook()

G etRestaurants(list)
GetRestaurants(list)

G etName(Name)

ShowList(list)

G et(restaurant, data, hour,kind)

G et(restaurant, date, hour, kind)

AvailableT ables(date, hour, kind)

LookF orAvailable(kind, data, hour)

Che ck(dat e, hour)

ShowList(list)

ChooseLangModeler(restaurant, date, hour, kind)

T ranslateData(restaurant, date, hour, kind)

Av ailab le T ables(re sta ura nt, d ate , hour , kind)

Figure C.12 Sequence diagram for the first application with Different Languages mechanism

STEP 3. Abstraction of the design solution for Different Languages

 Solution:

o Diagram:

IST – 2001 – 32298 Page 59 of 59
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface

Language
recognitor

Interface

Language
Translator 1

System

Interface

Language
Translator n

.

1 2

3
4

5
6

7

8

o Participants:

 Interface: collects the operation to be performed and any associated data, which it
sends to the Language-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Language-translator in the language that originated the request
(8).

 Language-recogniser is a recogniser, not a translator, which determines the
language in which a the respective functionality is requested and sends the data
and the functionality request to the respective Language-translator (3) (4).

 Language-translator (i): there may be one for each language that the system is
capable of recognising. If there is one for each language, which would be
advisable for reasons of system modularity, each Language-translator translates
the functionality and any data it receives from the Language-recogniser (3) (4) to
a common language understood by the system. Once they have been translated to
the common language, it sends them to the system (5) (6). Once the functionality
has been processed in the system, it again receives the response data for the
executed functionality (7), and again translates them from the common language
to the specific language in which the user requested the functionality. After
translating, it sends the data to the user (8) through the interface.

 System: it performs the functionality requested by the Language-translator (i), in
the common language (5) (6), and returns the respective response to the language-
translator in the common language (7).

C.5 Different Access Methods First Iteration

STEP 1. Design solution without Different Access Methods

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 60 of 60
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

R ecipe

Amount
Name

(from C LASSES)

Alert-M anager

Check-Ingredient()
O K()

(from C LASSES)

Ingredie nt

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from C LASSES)

Restaurant

Name : String
Address : String

G etN ame(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)
Book

Cl ientNa me(cli en t)()
Che ck (d at e, h ou r)()
G et(time s-in-wee k)()

(from C LASSES)

Consum ption

C od-cons umpti on
D esc rip ti on
P rice

Ch ec k- Sto ck ()
O K()
Consumtio nName(na me)()
L astCode Consu mption()()

(f rom CLASSES)

Table

S ta tu s : St rin g
Nu mbe r-pe rs on : Inte ger
S moke r/No n Smo ker : Boo lea n
P la ce : XY
Co de : Inte ger

Ch an geS ta te ()
Ch an geS ta te ()
Ch angeState ()()
Ch angeState ()()
L oo kFo rA vail able(ki nd , data, h our) ()
LastRequestConsumptions()()

(f rom CLASSES)

Boo ks ma nage r

G etRes taur an ts (li st)()
G et(restaur ant, date, ho ur, ki nd)()

(f ro m CLAS SES)

Request-line

CreateLine(code)()
Read(consumpt ion)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(f rom CLASSES)

Request

H our
D at e
Sta tu s

Init -reque st ()
Input-CodConsumption()
O K()
init-request()
Init -request ()()
Init -request ()()
Init -request ()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G e tP rice(pric e)()
LastRequestConsumt ions()()

(f rom CLASSES)

Figure C.13 Class diagram for the first application without Different Access Methods mechanism

STEP 2. Design solution with Different Access Methods

Requirement: The waiter can ask the waiter device what foodstuffs a table has ordered by simply
saying “I want to know what foodstuffs table x has ordered”. Additionally, the waiter’s device is
capable of verbally reproducing all the foodstuffs.

IST – 2001 – 32298 Page 61 of 61
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request- line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(from C LASSES)

R eci pe

Amount
Name

(from CLA S S E S)

Alert-M anager

Check-Ingredient()
O K()

(fro m CL AS S ES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from CLA S S E S)

Re stau rant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(from C LASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from CLA S S E S)

Consum ption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(from C LAS SES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(from C LASSES)

Request

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init -request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumpt ion(code)()
RequestConsumt ions()()
Bill()()
New-price(price)()
G etPrice(price)()
LastRequestConsumtions()()

(from C LASSES)

W aiter-dev ice

Co nsu mpt io n- In -T a ble- x()
SendO utVoice(listconsumptions)()

(from C LASSES)

D ev ice-recognitor

Voice(Consumtions in table x)()

(from C LASSES)

Dev i ce-tr ansf ormer

T ranslateVoice(Consumptions in table x)()
ModeleVoice(listconsumptions)()

(from C LASSES)

Function-dispatcher

G etConsumptions(T ablex)()
ListConsumptions()()

(from C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()
LastRequestConsumptions()()

(from C LASSES)

Figure C.14 Class diagram for the first application with Different Access Methods mechanism

 : Request

 : W aiter

 : Consumption : Table :
Device-recognitor

 :
Device-transform er

 :
Function-dispatcher

 :
W aiter-device

 : R equest-line

Cons um ption -In-Tabl e-x()

Voice (Cons um ti ons i n ta ble x)

TranslateVoice(Consumptions in table x)

GetConsumptions(Tablex)

La stRe ques tC on sumptions()

LastRequestConsum tio ns()
LineName(name)

ConsumtionNam e(nam e)

ListConsumptions(list)

ModeleVoice(listconsum ptions)

SendOutVoice(listconsum ptions)

Figure C.15 Sequence diagram for the first application with Different Access Methods mechanism

IST – 2001 – 32298 Page 62 of 62
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Different Access Methods

 Solution:

o Diagram:

Interface

Device
recognitor

Interface

Device
Transformer 1

System

Interface

Device
Transformer n

.

1 2

3
4

5
6

7

8

o Participants:

 Interface: collects the operation to be performed and any associated data, which it
sends to the Device-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Device-transformer in the format in which the user placed the
request (8).

 Device-recogniser: is a signal format recogniser, which sends the signal to one
device or another for interpretation, depending on the type of signal it receives.
Additionally, it sends the data and the functionality request to the respective
device-transformer (5) (6).

 Device-transformer: (i) there may be one for each device that the system is able to
recognise. If there is one for each device, which would be advisable for reasons of
system modularity, each Device-transformer is responsible for converting both the
functionality and any data it receives from the Device-recogniser (3) (4) to a
general functionality understood by the system. Once the signal has been
converted to a functionality and/or data that can be understood by the system, it is
all sent to the system for it to perform the respective operation (5) (6).
Additionally, once the functionality has been processed in the system, it again
receives the response data for the executed functionality (7), which it again
translates to the specific signal format in which the user requested the
functionality. After translation, it sends the data to the user (8) through the
interface.

 System: it performs the functionality requested by the Device-transformer (i) in
the common functionality format (5) (6) and returns the response to the respective
device-transformer in the aforesaid common format (7).

IST – 2001 – 32298 Page 63 of 63
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.6 Alerts First Iteration

STEP 1. Design solution without Alerts

Requirement: the waiter starts a table order.

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fro m C LA SSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(f rom CLASSES)

Request

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init -request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Request-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(f rom CLASSES)

Consum ption

C od -c ons ump tio n
D escrip tio n
P ric e

Check-Stock()
O K()
ConsumtionName(name)()
Las tC ode Co nsu mpti on () ()

(f rom CLASSES)

Figure C.16 Class diagram for the first application without Alerts mechanism

 : Waiter

 : Request : Table : Request-line

Init-req uest() Change Sta te()

Input-CodConsumption(code)

CreateLine(code)

Figure C.17 Sequence diagram for the first application without Alerts mechanism

IST – 2001 – 32298 Page 64 of 64
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 2. Design solution with Alerts

Requirement: the foodstuff code cannot be entered until a check has been run of whether there is a
stock of all the ingredients for the selected foodstuff.

Recipe

Am ount
Nam e

(from CLASSES)

Ingredient

Nam e
Minim un-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(from CLASSES)

A lert-M anager

Chec k-Ingred ient()
OK()

(from CL AS SE S)

Restauran t

Na m e : String
Addr ess : String

GetN am e(Nam e)()
Av ailableTables(date, hour, k ind)()

(from CLASSES)
Book

C lie ntNam e(c lient)()
C he ck(d ate , hou r)()
G et(t i me s-in -wee k)()

(from CLASSES)

T able

Sta tus : Strin g
Num ber-pers on : Integ er
Sm oker/N on Sm oker : Boolean
Pl ace : XY
Co de : In teg er

Ch ang eSta te()
Ch ang eSta te()
Cha ng eState ()()
Cha ng eState ()()
L ook ForAv a ila bl e(k i nd, data , hour)()

(from CLASSE S)

Request

Hour
Date
Status

Init-request()
Input-CodConsum pt ion()
OK()
init-reques t()
Init-request()()
Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestC onsum tions()()
Bill()()
New-price(price)()
GetPrice(price)()

(from CLASSES)

Books m anager

G etR es tau rants (lis t)()
G et(re sta uran t, da te, h our, k in d)()

(from CLASSES)

Request-l i ne

CreateLine(code)()
Read(cons um ptio n)()
Consu mtio nPri ce(p ric e)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)

Consum ption

Cod-consum ption
Descript ion
Price

Check-Stock()
OK()
Consum tionNam e(nam e)()
LastCodeC onsum ption()()

(from CLASSES)

Figure C.18 Class diagram for the first application with Alerts mechanism

 : Reques t

 : Wai te r

 : Table : Cons um ption : Reques t-line : Alert-Manager : Ingred ient

Init-reques t()

Input-CodConsum ption(code)

ChangeState()

Ch eck-S to ck(code)

OK()

CreateLine(code)

Check-Ingredient()

OK()

Check()

OK()

Figure C.19 Sequence diagram for the first application with Alerts mechanism

STEP 3. Abstraction of the design solution for Alerts

 Solution:

IST – 2001 – 32298 Page 65 of 65
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

o Diagram:

 System

Alert - manager

Interface System

1

2 3

o Participants:

• System: represents the element of the system to be checked in order to
identify anything of importance for this element. It is responsible for
notifying the Alert-manager to check the state of the element to be
checked within the system. (1). Depending on what is to be checked, it
also sends the request to the part of the system responsible for running the
check (3) and, when the check has been run, sends the respective results
(if required) to the interface (2).

• Alert-manager: represents a component of the system that is capable of
receiving a checking order and forwarding this order to the part of the
system that is capable of processing it. It receives the checking order from
one part of the system (1) and forwards this request to the part of the
system concerned (3). Finally, if applicable, it displays any alert
information that is of interest to the user (2) to check that one or more
system components are working correctly.

IST – 2001 – 32298 Page 66 of 66
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.7 Status Indication First Iteration

STEP 1. Design solution without Status Indication

Restaurant

N ame : Str ing
Addres s : Str ing

GetN ame(N ame)()
Av a ilableTables (date, hour , k ind)()

(from C LASSES) Book

C lientN ame(c lien t) ()
C hec k (date, hour) ()
Get(times - in-w eek)()

(from CL AS S ES)

Re quest

H our
D ate
Sta tus

Init- reques t()
Input-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e)()
GetPr ic e(pr ic e)()

(from C LASSES)

Request-line

C reateLine(c ode)()
R ead(c ons umption)()
C ons umtionPr ic e(pr ic e)()
L ineN ame(name)()
GetPr ic e(pr ic e)()

(from C LASSES)

Alert-M anager

C hec k - Ingred ient()
OK()

(fro m CL AS S ES)

Consumption

C od-c ons umption
D es c r iption
Pr ic e

Che ck -Sto c k()
OK()
C on sum tio nNam e(name)()
Las tC od eC on s umption() ()

(from C LASSES)

Ingredient

N ame
M in im un-Stoc k
R eal-Stoc k

C hec k()()
As k For(in gredien t)()

(from CLA S S E S)

R ec ipe

Amo unt
N ame

(from CLA S S E S)

Books manager

GetR es taurants (lis t) ()
Get(res taurant, da te , hour , k ind)()

(from C LASSES)

T able

Status : Str ing
N umber-pers on : Integer
Smok er /N on Smok er : Boolean
Plac e : XY
C ode : In teger

C hangeState()
C hangeState()
C hangeState() ()
C hangeState() ()
Look ForAv a ilab le(k ind, data , hour) ()

(from C LASSES)

Figure C.20 Class diagram for the first application without Status Indication mechanism

 : Request

 : W aiter

 : Table : Consumption : Request-line : Alert-Manager : Ing red ie nt

Init-request()

Inp ut- CodCo nsumpt io n(cod e)

ChangeState()

Check-Stock(code)

OK()

CreateLine(code)

Check-Ingredient()

OK()

Check()

OK()

Figure C.21 Sequence diagram for the first application without Status Indication mechanism

IST – 2001 – 32298 Page 67 of 67
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

As we can see the user is not receiving any information about what the system is doing, which can
lead to confusion during system use.

STEP 2. Design solution with Status Indication

Requirement: the user must be informed about what is happening in the system.

F eedbac ker

F eedback(checking-resource)()
F eedback(request-acepted)()

(fr o m C L ASSES)

R ec ipe

Amount
Name

(from CLA S S E S)

Restaurant

Name : String
Address : St ring

G et Name (Na me)()
AvailableT ables(date, hour, kind)()

(fr o m C L ASSES)

Book

ClientName(client)()
Check(date, hour)()
G et (t imes- in-week)()

(from CLA S S E S)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()

(fr o m C L ASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(fr o m C L ASSES)

Request-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(fr o m C L ASSES)

Req uest

Hour
Date
Status

In it -r eq ues t()
In put -C odCo nsu mpt ion()
O K()
in it -reque st()
Init -r eq ues t()()
Init -r eq ues t()()
Init -r eq ues t()()
In it Cod Con sump tion (c ode)()
Requ es tCo nsu mtion s()()
Bill()()
New-price(price)()
G etP rice (p rice)()

(fr o m C L ASSES)

Consum ption

Co d-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(fr o m C L ASSES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from CLA S S E S)

Alert-M anager

Check-Ingredient ()
O K()

(from CLA S S E S)

Figure C.22 Class diagram for the first application with Status Indication mechanism

IST – 2001 – 32298 Page 68 of 68
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Feedbacker : Request

 : W aiter

 : Table : Consumption : Reques t-line : Alert -Manager : Ingredient

Init -r eques t ()

Input-CodCon sump tion(code)

ChangeState()

C heck-Stock(code)

OK()

C reateLine(code)

Check-Ingredient()

OK()
F eedback(checking-resource)

Answer ("W ait Please C heki ng Re source s")

Feedback(request-acepted)

Answer("Introduce Next Input")

C heck()

OK()

Figure C.23 Sequence diagram for the first application with Status Indication mechanism

STEP 3. Abstraction of the design solution for Status Indication

 Solution:

o Diagram:

Active Process

Feedbacker

Interface System

Active Process 1

Feedbacker

Interface System

Active Process Active Process n

1

3 4

2

o Participants:

 Active-process i: this module has been represented more than once, because there
may be several processes running simultaneously that request feedback (1) so that
it will be each active process that sends the information that it wants to be fed
back to Feedbacker (1).

 Feedbacker: this module receives the request and data (1) (2), which indicates the
desired type of feedback and the data to be fed back from each active process.
Additionally, it needs to know the recipient of this feedback and will send this
feedback either to another part of the system (4) and/or to the interface (3) to
inform the user. For some guidelines on how to display this feedback on the
interface, for example, how often it should be refreshed or where to place specific

IST – 2001 – 32298 Page 69 of 69
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

information, see [Welie, 00]. These details should be taken into account in low-
level design.

 Interface: it receives the feedback and displays it to user (3).

 System: this component is optional and represents other parts of the system that
must be informed of the feedback (4).

C.8 History Logging First Iteration

STEP 1. Design solution without History Logging

Requirement: the user starts an order request

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

R ec ipe

Amount
Name

(from C LASSES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from C LASSES)

Consumption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Request-line

Crea te Line(code)()
Re ad (c onsumpt io n) ()
Co nsumt ionPrice(pric e)()
Lin eNa me(na me)()
G e tPri ce (p ric e) ()

(f rom CLASSES)

Request

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init -request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)Book

C lie nt Nam e(cl ien t) ()
C he ck(dat e, h ou r) ()
G et(t imes-in-week)()

(from C LASSES)

Restaurant

Name : St ring
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)

Table

Statu s : St rin g
Nu mbe r-pe rs on : Inte ger
Smo ke r/No n Smok er : Boo lea n
P la ce : XY
Co de : Inte ger

Ch an geS ta te ()
Ch an geS ta te ()
ChangeState ()()
ChangeState ()()
L ook Fo rAv ail ab le(ki nd , da ta, h ou r) ()

(f rom CLASSES)

Figure C.24 Class diagram for the first application without History Logging mechanism

IST – 2001 – 32298 Page 70 of 70
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Request

 : Waiter

 : Interface

Init-request()
init - reques t()

Figure C.25 Sequence diagram for the first application without History Logging mechanism

STEP 2. Design solution with History Logging

Requirement: When an order request is started, the system records that the user has opened an order.

IST – 2001 – 32298 Page 71 of 71
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface

Init -reque st()
Init -request()()
Undo()()
Init -request()()
Input-CodConsumption(code)()
D is pla y(lis t of co nsu mpti on s) ()
DuplicateConsumption()()
Help()()
G et-h el p(he lp) ()
G et-h el p(tour) ()
NewBook()()
ShowList(list)()
G e t(restaurant, data, hour,kind)()
ShowList(list)()
C on nec tin gSy st em() ()
Enable(Reque st Cooked)()
Pressed(F1)()
O K()()
S pe ci f ic Help (t pp ic) ()
ShowSpecif icHelp(help)()
Cancel(re qu est) ()

(f rom CLASSES)

log g er

Logg (init-request)()

(fr om C LASSES)

action-logg ed

CreateAction(init-request)()

(f rom CLASSES)R ec ipe

Amou nt
Nam e

(fr om C LASSES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(fr om C LASSES)

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, hour, kind)()

(f rom CLASSES)
Book

ClientName (client)()
Chec k(date , hour)()
G et(time s- in -wee k) ()

(fr om C LASSES)

Consumptio n

Co d-consumption
De script ion
Price

Ch eck -Sto ck ()
O K()
ConsumtionName(name)()
Last CodeConsumption()()

(f rom CLASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(f rom CLASSES)

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Req uest-line

Cr ea te Line (c od e) ()
Re ad(c ons ump tio n) ()
Consu mtio nPrice (pric e) ()
LineNa me(na me) ()
Ge tPr ice (p ric e) ()

(f ro m C LAS SES)

Req uest

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init-request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Figure C.26 Class diagram for the first application with History Logging mechanism

IST – 2001 – 32298 Page 72 of 72
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : logger : ac t ion-logged : Req uest

 : Wai te r

 : Interface

Init-req uest()
in it -r eq ue st()

Logg (init -reques t)
CreateAction(init-req uest)

Figure C.27 Sequence diagram for the first application with History Logging mechanism

STEP 3. Abstraction of the design solution for History Logging

 Solution:

o Diagram:

Interface

Logger System

1 2
5

6

System

3 4

o Participants:

 Interface: it receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

 Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed in the respective
part of the system.

 System: this module sends the functions and data that are executed in the system
to the logger (3) (4), and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

C.9 Undo First Iteration

STEP 1. Design solution without Undo

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 73 of 73
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

R ec ipe

Amount
Name

(from C LASSES)

Restaurant

Name : Stri ng
Address : String

G et Name(Name)()
AvailableT ables(date, hour, kind)()

(f ro m C LAS SES)
Book

C lie ntName(cli ent)()
C heck(date, h our)()
G et(t imes-in-week)()

(from C LASSES)

Table

Status : String
Num ber -person : Int eg er
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
Cha ngeSt at e()()
Cha ngeSt at e()()
LookF orAvailable(kind, data, hour)()

(from CLASSES)

Books manag er

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom C LAS SES)

Req uest-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(from CLASSES)

Req uest

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init -request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f ro m C LAS SES)

Consumption

Co d-co ns ump tio n
De sc rip tio n
P ri ce

Ch eck- Stock()
O K ()
ConsumtionName(name)()
L astCo de Con su mpt ion() ()

(from CLASSES)

Feedbacker

Feedback(checking-resource)()
Feedback(request-acepted)()

(from CLASSES)

Ingredien t

Name
Minimun-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(fr om C LASSE S)

Aler t- Ma nag e r

Check-Ingredient()
O K()

(from C LASSES)

Figure C.28 Class diagram for the first application without Undo mechanism

STEP 2. Design solution with Undo

Requirement: the user can push the undo button

IST – 2001 – 32298 Page 74 of 74
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Undo er

Undo()()
Act ionDounloaded(act ion)()
T akeCO ntrary(contrary-act ion)()

(f rom CLASSES)

R ec ipe

Amount
Name

(from C LASSES)

Restaurant

Name : String
Address : St ring

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)
Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fr om C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(f rom CLASSES)

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Req uest- line

CreateLine(code)()
Read(consumpt ion)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(from CLAS SES)

Consumption

Cod-consumption
Descript ion
Price

Check-Sto ck ()
O K()
Con su mtio nNa me(na me) ()
LastCodeConsumption()()

(f rom CLASSES)

Feedbacker

F eedback(checking-resource)()
F eedback(request -acepted)()

(f ro m CLAS SES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(fro m CLA SS ES)

Alert-M anag er

Ch ec k- In gr edie nt ()
O K()

(from C LASSES)

sy s tem -act ion

SearchContrary(act ion)()
Execute(contrary-act ion, act ion)()
T akeContrary(contrary-act ion)()

(f ro m CLAS SES)

is- the -opossite -of

Req uest

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

ac t ion-done

Add("CreateLine(code)")()
Dounload(act ion)()
RequestCreated(request)()

(f rom CLASSES)

Interf ace

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F 1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(f rom CLASSES)

lis terer

Init -request ()()
A dd (" Cr eate Line (c ode)") ()
Undo()()
Act ionDounloaded(act ion)()
C an cel(re qu es t) ()
RequestCreated(request)()

(f rom CLASSES)

Figure C.29 Class diagram for the first application with Undo mechanism

IST – 2001 – 32298 Page 75 of 75
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Figure C.30 Sequence diagram for the first application with Undo mechanism

IST – 2001 – 32298 Page 76 of 76
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Undo

 Solution:

o Diagram:

 A

Interface A

System A

Logger
Undoer

System B
B

Interface B

1

2

3

4

5

6
10

9

7
8

11

System B

12
13

14
15

o Participants: This pattern has two clearly separate parts. These parts have been labelled in
the illustration as A and B, respectively. Part A collects the actions performed in the
system (the number of actions to be stored will have to be specified when the system is
developed) so that they can be later undone. Part B manages the respective undo.

 InterfaceA: receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

 SystemA: this module sends the functions and data executed in the system to the
logger (3) (4) and also, optionally, if the logger does not store the actions
internally, will send the information to the part of the system that manages these
actions (5) (6).

 Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed by the respective
part of the system. Logger receives the undo request from Undoer (9) and, if the
logged actions are stored in the logger, it then sends them one by one to Undoer
(8). If they are not stored in the logger, it will receive both the data and the
operation to be undone from another part of the system that we have named
System B through (11) and (10), respectively.

 Interface B: receives the undo request and sends it to Undoer through (7).

 Undoer: sends the undo request to logger (9) and also sends each of the actions to
be undone that it receives from logger to System B (13), as well as receiving the
opposite operation to the one performed from System B (12). When it knows
which opposite operation is to be performed, it sends the operation to System B
along with the data associated with the operation in question through (14) and
(15).

 System B: it will search the system for both the action performed and the data
associated with this operation (10) (11) if the data are not stored internally in the
logger. It receives the actions to be undone (13) and provides the opposite
operation (12) (for which purpose it will have to store what the opposite is for
each action, see implementation section, for example). The opposite action and
the respective data will be sent to the respective part of the system (15) and (14).

IST – 2001 – 32298 Page 77 of 77
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.10 Form or Field Validation First Iteration

STEP 1. Design solution without Form or Field Validation

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

R ec ipe

Amount
Name

(from C LASSES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from C LASSES)

Consumption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Request-line

Crea te Line(code)()
Re ad (c onsumpt io n) ()
Co nsumt ionPrice(pric e)()
Lin eNa me(na me)()
G e tPri ce (p ric e) ()

(f rom CLASSES)

Request

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init -request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)Book

C lie nt Nam e(cl ien t) ()
C he ck(dat e, h ou r) ()
G et(t imes-in-week)()

(from C LASSES)

Restaurant

Name : St ring
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)

Table

Statu s : St rin g
Nu mbe r-pe rs on : Inte ger
Smo ke r/No n Smok er : Boo lea n
P la ce : XY
Co de : Inte ger

Ch an geS ta te ()
Ch an geS ta te ()
ChangeState ()()
ChangeState ()()
L ook Fo rAv ail ab le(ki nd , da ta, h ou r) ()

(f rom CLASSES)

Figure C.31 Class diagram for the first application without Form or Field Validation mechanism

STEP 2. Design solution with Form or Field Validation

Requirement: The system should validate the foodstuff code when it has been entered by the waiter
and before it is copied to the order.

IST – 2001 – 32298 Page 78 of 78
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Ingredient

Name
M inimun-Stock
Real-Stock

Check()()
AskFor(ing redient)()

(from CLASSES)

Recipe

Am ount
N am e

(from CLASSES)

Alert-Manager

Che ck-I ng r edient()
OK()

(f rom CLASSES)

Re s tau rant

Name : Str ing
Address : Str ing

GetName(Name)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

Cl ie ntName(cli ent)()
Check(date, hour)()
Get(times -i n- week)()

(from CLASSES)

Co nsum pt ion

Cod-consumption
Description
Price

Check-Stock()
OK()
ConsumtionName(name)()
LastCodeConsumption()()

(from CLASSES)

Table

Status : String
Number-person : Integ er
Smoker/Non Smoker : Boolean
Place : XY
Code : Integ er

Chang eState()
Chang eState()
Chang eState()()
Chang eState()()
LookForAvailable(kind, data, hour)()

(from CLASSES)

Books m anager

GetRestaurants(list)()
Get(restauran t, date, hou r, kind) ()

(from CLASSES)

R equest-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(pr ice)()
LineName(name)()
GetPrice(pr ice)()

(from CLASSES)

R equest

Hour
Date
Status

Init-req uest()
Input-CodConsumption()
OK()
init-req uest()
Init-req uest()()
Init-req uest()()
Init-req uest()()
InitCodConsumption(code)()
Req uestConsumtions()()
Bill()()
New-price(price)()
GetPrice(pr ice)()

(from CLASSES)

Consum ption-Val idator

Validate(code)()

(from CLASSES)

Validation-m anager

VM a nag e r(Cons umpti on, cod e) ()
OK()

(from CLASSES)

Figure C.32 Class diagram for the first application with Form or Field Validation mechanism

IST – 2001 – 32298 Page 79 of 79
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 :
Validation-manag er

 : Consumption-Validator : Req uest

 : Waiter

 : Table : Consumption : Reques t-line : Alert-Manager : Ing redient

Init -reques t()

Input-CodConsum ption(code)

Chang eState()

C heck-Stock(code)

OK()

Cr eateLine(cod e)

Check-Ing redient()

OK()

C heck()

OK()

VManager(C onsum ption, code)

Validate(code)

OK()

OK()

Figure C.33 Class diagram for the first application with Form or Field Validation mechanism

STEP 3. Abstraction of the design solution for Form or Field Validation

 Solution:

o Diagram:

Interface

Checker

2

Interface System

1

3
4

5 6

o Participants:

 Interface: it sends a data set (1) and the function requested by the user (2) to
Checker for validation. Additionally, after data validation, it will receive error
data or OK from the Checker to be displayed to the user if the system is to be
designed this way (6).

 Checker: it collects an operation requested by the user through the interface (2) as
well as a data set (1). This module can be designed to validate the data or to send
the data to another system component for validation (3) (4). In the latter case, it
also receives the result of the validation (OK or error) (5) and, in any case, will
send the result of the validation to the user if so required (6).

 System: this component will be optional and will only exist if the Checker is not
capable of validating the data. If necessary, it receives both the function and the
associated data for validation from Checker (3) (4) and, after validation, returns
the result of the validation to Checker.

IST – 2001 – 32298 Page 80 of 80
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.11 Provision of Views First Iteration

STEP 1. Design solution without Provision of Views

Recipe

Am ount
N am e

(from CLASSES)

R es taurant

Nam e : Str ing
Address : String

GetNam e(Nam e)()
AvailableTables(date, hour, kind)()

(from CLASSES) Book

Cli entNam e (cli ent) ()
Check(d at e, h our)()
Get (t im es-in-week)()

(from CLASSES)

Table

Status : Str ing
Num ber-person : Integer
Sm oker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CLASSES)

R equest

Hour
Date
Status

Init-request()
Input-CodConsum ption()
OK()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestConsum tions()()
Bill()()
New-price(price)()
GetPrice(price)()

(from CLASSES)

Boo ks m anag er

GetRestaurants(list)()
Get(restaurant, date, hour, kind)()

(fro m CLA SSES)

R equest-line

CreateLine(code)()
Read(consum ption)()
Consum tionPrice(price)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)Co nsum ption

Cod-consum ption
Description
Price

Check-Stock()
OK()
Consum tionNam e(nam e)()
LastCodeConsum ption()()

(from CLASSES)

Ingredient

Na me
M i ni m un- Sto ck
Real-Stock

Ch eck () ()
As kFo r(in gre di ent)()

(from CLASSES) Alert-Manager

Check-Ingredient()
OK()

(from CLAS SES)

Figure C.34 Class diagram for the first application without Provision of Views mechanism

IST – 2001 – 32298 Page 81 of 81
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Request

 : Waiter

 : Table : Consumption : Request-line : Alert-Manager : Ingredient

Init-request()

Input-CodConsumption(code)

ChangeState()

Check-Stock(code)

OK()

CreateLine(code)

Check-Ingredient()

OK()

Check()

OK()

Figure C.35 Sequence diagram for the first application without Provision of Views mechanism

STEP 2. Design solution with Provision of Views

Requirement: The system should be able to provide the customer with the list of things ordered so far
at any time while the order is being placed.

IST – 2001 – 32298 Page 82 of 82
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

R ec ipe

Amount
N ame

(from C LA S S E S)

Alert-M anager

C hec k -Ingredien t()
OK()

(from C LA S S E S)

Ingredient

N ame
Minimun-Stoc k
R eal-Stoc k

C hec k () ()
As k For (ingredien t) ()

(from C LA S S E S)

Restaurant

N ame : Str ing
Addres s : Str ing

GetN ame(N ame)()
Av ailab leTab les (da te, hour, k ind) ()

(from C LASSES)

Book

C lien tN ame(c lien t)()
C hec k (date, hour)()
Get(times - in-w eek) ()

(from C LA S S E S)

Consumption

C od-c ons umption
D es c r iption
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption()()

(from C LAS SES)

Table

Sta tus : Str ing
N umber-pers on : In teger
Smok er/N on Smok er : Boo lean
Plac e : XY
C ode : Integer

C hangeSta te ()
C hangeSta te ()
C hangeSta te () ()
C hangeSta te () ()
Look ForAv ailable (k ind, da ta , hour) ()

(from C LASSES)

Bo oks ma nag er

G etR es ta urants (l is t) ()
G et (res taur an t, da te , h ou r, kind)()

(from C LASSES)

Request-line

C reateLine(c ode)()
R ead(c ons umption)()
C ons umtionPr ic e(pr ic e) ()
L ineN ame(name)()
GetPr ic e(pr ic e) ()

(from C LASSES)

views- man ager

Prev iew (reques t) ()

(from C LA S S E S)

Request

H ou r
D ate
Sta tus

In it- reques t()
Input-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e) ()
GetPr ic e(pr ic e) ()

(from C LASSES)

reques t-v iewer

R eque st Pr ev ie w (req ues t)()
C ons umtionN ame(name)()

(from C LASSES)

Figure C.36 Class diagram for the first application with Provision of Views mechanism

IST – 2001 – 32298 Page 83 of 83
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Request

 : W aiter

 : Tab le : Consumption : Request- line : Alert -Manager : Ingredient :
request-viewer

 :
views-m anager

Init-request()

Input-CodConsumption(code)

C hangeState()

C heck-Stock(code)

OK()

C reateLine(code)

Check-Ingredient()

OK()

C heck()

OK()

Prev iew(request)
RequestPreview(request)

RequestContent(list of consumptions)

R equestC onsum tions ()

C onsum tionN am e(nam e)

ConsumtionName(nam e)

Figure C.37 Sequence diagram for the first application with Provision of Views mechanism

STEP 3. Abstraction of the design solution for Provision of Views

 Solution:

o Diagram:

Interface

Viewer Dispatcher

1

Specific Viewer
1

SpecificViewer
n

Interface Interface

.........

2

3
4

5

o Participants:

 Interface: it sends the data received (1) and the specific function requested by the
user (2) to viewer-dispatcher. Additionally, when the data have been transferred to
the specific viewer that knows how to interpret them, they are displayed by the
interface (5). For information about how to present some views in the interface,
see [Welie, 00]

 Viewer Dispatcher: it receives the data (1) and the requested function (2) and,
depending on this information, decides which viewer should interpret the
operation and data. These (3) and (4) are sent to the respective Specific Viewer.

IST – 2001 – 32298 Page 84 of 84
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Specific Viewer i: it receives a request (4) and data to be viewed (3), which it
interprets as befits the viewer in question, sending them to the interface (5).

C.12 Workflow Model First Iteration

7.1.1.1.1 STEP 1.1. Design solution without Workflow Model First Iteration

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Request

Ho ur
Da te
Statu s

Init -request()
Input-CodC onsumption()
O K()
init -re quest ()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
Req uestConsumt ions()()
Bill()()
New-price(price)()
G et Price(price)()

(f rom CL ASSES)

Restaurant

Name : String
Ad dres s : Str in g

G etNam e(Nam e)()
Availab leT ables(date , hour , kind)()

(f rom CL ASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from C LASSES)

Table

S tatu s : Strin g
N umbe r-person : In teger
S moke r/Non Smoke r : Bo olean
P la ce : XY
C ode : Integer

C hange State()
C hange State()
C hange State()()
C hange State()()
L ook F orAva il able(k in d, da ta, ho ur)()

(f rom CLASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Request-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(f rom CLASSES)

Consu mpti on

Cod-consumpt ion
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Figure C.38 Class diagram for the first application without Workflow Model mechanism

STEP 2. Design solution with Workflow Model

Requirement: when the cook connects to the system, the only enabled function will be enter as cooked
when he has finished cooking an order.

IST – 2001 – 32298 Page 85 of 85
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant

N ame : St ring
Addres s : Str ing

GetN ame(N ame)()
Av ailab leTables (date, hour , k ind)()

(from C LASSES)
Book

C li en tN ame (c li ent) ()
C h eck (date , hou r) ()
Get(times - in -w eek)()

(from C LA S S E S)

Request-line

C rea teL ine(c ode) ()
R ead(c ons umption)()
C ons umtionPr ic e(pr ic e)()
L ineN ame(name)()
GetPr ic e (pr ic e) ()

(from C LA S S E S)

T able

Status : Str ing
N umber -pers on : In teger
Smok er /N on Smok er : Boolean
Plac e : XY
C ode : In teger

C hangeState()
C hangeState()
C hangeState() ()
C hangeState() ()
Look ForAv a ilab le(k ind, data , hour) ()

(fr om C LAS SES)

Consumption

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption() ()

(from C LA S S E S)

Request

H our
D ate
Status

In it- reques t()
Input-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e)()
GetPr ic e (pr ic e) ()

(from C LA S S E S)

Books manager

GetR es taurants (lis t) ()
Get(res taurant, da te, hour , k ind) ()

(from C LASSES)

Interface

In it- reques t()
In it- reques t() ()
U ndo () ()
In it- reques t() ()
Input-C odC ons umption(c ode)()
D is p lay (lis t o f c ons umptions)()
D upli cateC o nsump tion () ()
H elp() ()
Get-he lp (he lp) ()
Get -h e lp (tou r) ()
N ew Book () ()
Show Lis t(lis t) ()
Get(r est au ran t, dat a, hou r ,k ind) ()
Show Lis t(lis t) ()
C onn ec tingSy s tem() ()
Enab le(R eques tC ook ed)()
Pres s ed(F1)()
OK() ()
Spe c ifi cH e lp (tppi c) ()
Sho w Spec if ic H el p(hel p) ()
C anc el(reques t) ()

(from C LASSES)

Filter

U s erC onnec ted(c ook)()
GetL is tFunc tions (lis t) ()

(from C LA S S E S)

system-func tion

D ow n loadFunc tions (func tion)()
Ex ec ute (Func tion) ()

(from C LA S S E S)

User-type

Func tions For(c ook)()
GetFunc tion (func tion) ()

(from C LA S S E S)

Figure C.39 Class diagram for the first application with Workflow Model mechanism

IST – 2001 – 32298 Page 86 of 86
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cook
 : Inte rface : Filter : User-type :

system-function

ConnectingSystem(cook)

UserConnected(cook)

FunctionsFor(cook)

D ownloadFunct ions (fu nct ion)

GetFunction(RequestCooked)

GetListFunctions(RequestCooked)

Enable(RequestCooked)

Figure C.40 Sequence diagram for the first application with Workflow Model mechanism

STEP 3. Abstraction of the design solution for Workflow Model

 Solution:

o Diagram:

Interface

Filter

1

Interface System

2
3

4
5 6

o Participants:

IST – 2001 – 32298 Page 87 of 87
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Interface: it sends the data related to the user who is trying to access the system
(1) to the system. Additionally, the interface receives the data and operations (5)
(6) that make up the interface for the user in question from Filter.

 Filter: it receives the type of user who wants to connect to the system (1) from the
interface. Additionally, if it does not store all the functionality that should be
associated with each user internally, it sends the data about the user in question to
another system component (2) and receives both the data (3) and the operations
(4) to which this user should have access from this component. When it has this
information, it then passes it on to the interface for proper display (5) (6).

 System: this component is optional and will only exist if the Filter is not capable
of storing the functionalities associated with each system user internally.
Accordingly, this component receives the data on the user type who has connected
from Filter (2) and returns both the data and operations that this user type can
access from the interface (5) (6) to Filter.

C.13 User Profiler First Iteration

STEP 1. Design solution without User Profiler

Requirement: the client can ask for the bill.

IST – 2001 – 32298 Page 88 of 88
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Alert-Manager

C hec k - Ingred ien t()
OK()

(from CLA S S E S)

Recipe

Am ount
N ame

(from CLA S S E S)

Restaurant

N ame : Str ing
Addres s : Str ing

GetN ame(N ame)()
Av ailab leTab les (date , hour , k ind) ()

(from C LASS ES)
Book

C lien tN ame(c lien t) ()
C hec k (date , hour) ()
Get(times - in -w eek)()

(from CLA S S E S)

Table

Sta tus : Str ing
N umber-pe rs on : In te ger
Sm ok er /N on Smo k er : Boo lean
Pl ac e : XY
C ode : In te ger

C hangeSta te()
C hangeSta te()
C hangeSt ate ()()
C hangeSt ate ()()
Look ForAv a ilabl e(k ind , da ta, hou r) ()

(from C LASSES)

Request

H our
D ate
Sta tus

In it- reques t()
Input-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e) ()
GetPr ic e(pr ic e) ()

(from CLA S S E S)

Books manager

GetR es taurants (lis t) ()
Get(res taurant, date , hour , k ind) ()

(from C LASSES)

R equest- line

C reateL ine(c ode)()
R ead(c ons umption) ()
C ons umtionPr ic e(pr ic e) ()
L ineN ame(name)()
GetPr ic e(pr ic e) ()

(from CLA S S E S)

Consumption

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption() ()

(from CLA S S E S) Ingredient

N ame
M in im un-Stoc k
R eal-Stoc k

C hec k () ()
As k For (i ngred i ent)()

(fr om CLA S S E S)

Figure C.41 Class diagram for the first application without User Profiler mechanism

STEP 2. Design solution with User Profiler

Requirement: The system should be able to identify the customer who is making the order at a given
table so that he can be given personalised treatment depending what type of customer it is.

IST – 2001 – 32298 Page 89 of 89
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request-line

C reateL ine(c ode)()
Rea d(c ons umpt ion)()
C ons umtionPr ic e(pr ic e) ()
L ineNa me(name)()
GetPr ic e(pr ic e) ()

(from CLA S S E S)

Recipe

Amount
N ame

(from CL A S S E S) Alert-Manager

C hec k - Ingredien t()
OK()

(from CLA S S E S)

Ingredient

N ame
Min imun-Stoc k
R ea l-Stoc k

C hec k () ()
As k For(ingred ient) ()

(from CLA S S E S)

Restaurant

N ame : St ring
Addres s : Str ing

Get N ame(N ame)()
Av a ilab l eTab l es (da te, hour , k ind)()

(from C LASSES)

Consum ption

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption() ()

(from CLA S S E S)

T able

Status : Str ing
N umber -per s on : I nteg er
Smok er / Non Smok er : Boo lean
Plac e : XY
C ode : In teger

C hange Sta te ()
C hange Sta te ()
C hangeSta te () ()
C hangeSta te () ()
Look ForAv ailab le(k ind, data, hour) ()

(from C LASSES)

B ooks manag er

GetR es taurants (lis t) ()
Get(res taurant, da te , hour , k ind) ()

(from C LASSES)

Book

C lien tN ame(c lien t) ()
C hec k (da te , hour) ()
Get(times - in -w eek)()

(from CLA S S E S)

C lient

N ame
Times - in -w eek

C lien tD ata(times - in -w eek)()

(from CLA S S E S)

Request

H our
D ate
Status

In it- reques t()
Inpu t-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e) ()
GetPr ic e(pr ic e) ()

(from CLA S S E S)

Profiler

C alc u la teSpec ia lPr ic e()
Get(times - in -w eek)()

(from CL A S S E S)

Figure C.42 Class diagram for the first application with User Profiler mechanism

IST – 2001 – 32298 Page 90 of 90
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cl ient : Pro fi le r
 : W aiter

 : Request :
R equest-line

 :
C onsum ption

 : Book

For eac h
request- line

Bill(c lient,book-code)

Bill(price, book-code, c lient)

C onsum tionPrice(price)

Price(price)

Calcu la teSpecia lPrice(to ta l -price,book-code, cl ient)

New-price(price)

GetPrice(price)

GetPrice(price)

Cl ientNam e(cl ient)

C lientD ata(t im es-in-week)

Get(t im es-in-week)

Get(tim es-in-week)

Figure C.43 Sequence diagram for the first application with User Profiler mechanism

STEP 3. Abstraction of the design solution for User Profiler

 Solution:

o Diagram:

Interface

Profiler

Interface System

1 2

3 4 5 6

o Participants:

IST – 2001 – 32298 Page 91 of 91
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Interface:

• For profile information creation, it sends both the data (1) and the
operation (2) that the user defines for his system to the profiler.

• For profile retrieval, the interface sends the profile data (1) to the profiler.
Additionally, profiler sends the data associated with this profile to the
interface.

 Profiler: .

• For profile information creation, it receives the data (1) and the operation
(2) that the user defines for his system from the interface. If it is not
capable of storing this profile information internally, it will send it to
another system component through (3) and (4).

• For profile retrieval, it receives the data of the profile to be retrieved (1)
from the interface. If it does not store the profile information internally, it
will ask another system component to process the requested information
and/or operation (3) (4) and will receive the information associated with
the required profile (5) from this system component. Then, if this
information is to be displayed by the interface, it will send it to the
interface through (6).

 System: this component is optional and will only exist if profiler is not capable of
storing the information associated with each system profile internally. It receives
the data and/or operations of the required profile type (3) (4) from profiler and
sends the data associated with this profile (5) to profiler.

C.14 Shortcuts First Iteration

STEP 1. Design solution without Shortcuts

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 92 of 92
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Book

C lientN am e(c lient)()
C heck (date, hour)()
Get(t im es-in-week)()

(f rom C LASSES)
R est auran t

N am e : St rin g
Add re ss : Strin g

G et N am e(Na me)()
Av ailableTables(date, hour, k ind)()

(f rom C LASSES)

T ab le

Status : String
N um ber-person : Integer
Sm oker/N on Sm oker : Boolean
Place : XY
C ode : Integer

C hangeState()
C hangeState()
C hangeState()()
C hangeState()()
LookForAv ailable(k ind, data, hour)()

(f rom CLASSE S)

Request

H our
D ate
Status

Init -reques t()
Input-C odC onsum ption()
OK()
init-reques t()
Init -reques t()()
Init -reques t()()
Init -reques t()()
InitC odC onsum ption(code)()
R equestC onsum tions()()
Bill()()
N ew-price(price)()
GetPrice(price)()

(f rom C LASSES)

Books m anager

GetRestaurants (lis t)()
Get(res taurant, date, hour, k ind)()

(f rom C LASSES)

Consum ption

C od-consum ption
D es cript ion
Price

C he ck- Stoc k()
OK()
C on sum tionN am e(nam e)()
Las tC odeC onsum ption()()

(f rom C LASSES)

Requ est-l ine

C reateLine(code)()
Rea d(con sum p ti on)()
Co nsum tion Price (price)()
LineN am e(nam e)()
Get Price (p rice)()

(f rom C LASSES)

Figure C.44 Class diagram for the first application without Shortcuts mechanism

STEP 2. Design solution with Shortcuts

Requirement: the waiter presses F1, which corresponds to the function that tells the waiter to go and
collect a given order that has now been cooked.

IST – 2001 – 32298 Page 93 of 93
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant

Nam e : S t ring
Address : S tring

G etName(Nam e)()
Availa bleT able s(date, ho ur, kin d)()

(f rom CLASSES)

Book

ClientNam e(client)()
Check(date, hour)()
G et (t imes-in-week)()

(from C LASSES)

Request- line

CreateLine(code)()
Read(consumpt ion)()
Consumt ionPrice(price)()
LineName(nam e)()
G etPrice(price)()

(f rom CLASSES)

Table

Status : S t ring
Num ber-person : Integer
Smoker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()

(f rom CLASSES)

Co nsum ption

Cod-consumpt ion
Descript ion
Price

Check-Stock()
O K()
Con sumti onNam e(name)()
LastCodeConsumpt ion()()

(f ro m CLAS SES)

Request

H our
D ate
St atu s

I ni t -r eq ue st ()
Input -Co dCons umpt ion()
O K()
i nit -req ue st ()
I ni t -r eq ues t () ()
I ni t -r eq ues t () ()
I ni t -r eq ues t () ()
InitCodConsum ption(code)()
RequestConsum tio ns ()()
B il l()()
New-price(price)()
G e tP ri ce (p ric e) ()

(f ro m CLAS SES)

Books m anager

G etRestaurants(list)()
G et (restaurant , date, hour, kind)()

(f rom CLASSES)

Interf ace

Init -reque st ()
Init -request ()()
Undo ()()
Init -request ()()
Input -CodConsumpt ion(code)()
Display(list of consum pt ions)()
DuplicateConsumpt i on ()()
Help()()
G et -help(help)()
G et -help(tour)()
NewBook ()()
Show List (lis t) ()
G e t(r es ta ur an t, d at a, hou r,kin d) ()
Show List (lis t) ()
Connect ingSystem()()
E nab le(Req ue st Coo ke d) ()
Pressed(F 1)()
O K () ()
Specif icHelp(tppic)()
ShowSpecif ic Help(help)()
C anc el(re qu es t) ()

(f rom CLASSES)

Shortcut

Validate(F 1)()
G etF unct ion(funct ion)()

(from C LASSES)

Key

Code
O rder

ReturnF unct ion(F 1)()
G etF unct ion(F unct ion()

(from C LASSES)

sy s tem -f unc tion

DownloadF unct ions(funct ion)()
Execute(F unct ion)()

(f rom CLASSES)

Figure C.45 Class diagram for the first application with Shortcuts mechanism

IST – 2001 – 32298 Page 94 of 94
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cook
 : Interface : Shortcut : Key :

system-function

Pressed(F1)
Validate(F1)

ReturnFunction(F1)

D ownloadFun ctions(function)

GetFunction(Function)
GetFunction(function)

Execute(Function)

OK()

Figure C.46 Sequence diagram for the first application with Shortcuts mechanism

STEP 3. Abstraction of the design solution for Shortcuts

 Solution:

o Diagram:

IST – 2001 – 32298 Page 95 of 95
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface 1

System

Interface

Shortcut-Creator

Shortcut-Executer
3

4

2

5

o Participants:

 Interface: it sends a data set (1) corresponding to a given system function, as well
as the key combination that activates this function, to Shortcut-creator.
Additionally, if a shortcut is to be executed, it sends a key combination (3) to the
Shortcut-executor. When the shortcut has been executed, it will receive the result
of the requested functionality or error if it cannot be executed (5) from Shortcut-
executor.

 Shortcut creator: it fills in a sort of array in which the name of the shortcut, the
commands that activate it and the system function to be activated with these quick
commands are stored. For this purpose, it receives a data set and the function to be
executed when these keys are combined (1) from the interface, which it sends to
Shortcut-executor for storage (2).

 Shortcut executor: it receives a set of commands (3) from the interface and checks
whether they match a set of commands associated with a given function. If the
command set matches a system functionality, it requests the system to execute the
function associated with this shortcut (4). In any case, whether they match a
function or not, it sends the result of executing this function to the interface
through (5).

 System: it receives the order to execute the function associated with this key
combination (4) from shortcut-executor.

C.15 Context Sensitive Help First Iteration

STEP 1. Design solution without Context Sensitive Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 96 of 96
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Re stau rant

Nam e : String
Address : Str ing

GetNam e(Nam e)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

ClientNam e(client)()
Check(date, hour)()
Get(tim es-in-week)()

(from CLASSES)
R eques t

Hour
Date
Status

Init-request()
Input-CodConsum ption()
OK()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestConsum tions()()
Bill()()
New-price(price)()
GetPrice(pr ice)()

(from CLASSES)

Table

Status : String
Num ber-person : Integer
Sm oker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CLASSE S)

Books m anager

GetRestaurants(list)()
Get(restaurant, date, hour, kind)()

(from CLASSES)

C onsum ption

Cod- con sum p ti on
Description
Pri ce

Check-Stock()
OK()
Consum ti onNam e(nam e) ()
Las tCo deCo nsum p ti on () ()

(from CLASSES)

R equest-line

CreateLine(code)()
Read(consum ption)()
Consum tionPrice(pr ice)()
LineNam e(nam e)()
GetPrice(pr ice)()

(f rom CLASS ES)

Figure C.47 Class diagram for the first application without Context Sensitive Help mechanism

STEP 2. Design solution with Context Sensitive Help

Requirement: the user can push the Sensitive Help button

IST – 2001 – 32298 Page 97 of 97
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, hour, kind)()

(from C LASSES)
Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from CLA S S E S)

Table

Status : String
Numb er-pers on : I nt ege r
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kin d, data, ho ur)()

(from C LASSES)

Request- line

CreateLine(code)()
Read(consumpt ion)()
Consumt ionPrice(price)()
LineName(name)()
G etPrice(price)()

(from C LASSES)

C onsum ption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
Consumt ionName(name)()
LastCodeConsumption()()

(from C LASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(from C LASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(from C LASSES)

Sensitive-help

G etHelp(topic)()

(from CLA S S E S)

Interf ace

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList (list)()
G et(restaurant, data, hour,kind)()
ShowList (list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(f rom C LAS SES)

Figure C.48 Class diagram for the first application with Context Sensitive Help mechanism

IST – 2001 – 32298 Page 98 of 98
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Interface :
Sensitive-help : User

SpecificHelp(topic)
GetHelp(topic)

ShowSpe cificHe lp(help)

Figure C.49 Sequence diagram for the first application with Context Sensitive Help mechanism

STEP 3. Abstraction of the design solution for Context Sensitive Help

 Solution:

o Diagram:

Interface

Sensitive-helper

Interface

System

1

3
4

2

o Participants:

 Interface: it warns the sensitive-helper through (1) that the cursor is on top of the
element specified in (2). Additionally, it will display the help information it
receives from Sensitive-helper (3).

 Sensitive-helper: it identifies the help associated with a given element. This
component receives the signal (1), which alerts it to the need to show help about
the specified element through (2), from the interface. If the help is not stored
internally in this component, this help will be provided by another part of the
system through the information flow from System (4). When it has the help data,
it informs the interface through (4).

IST – 2001 – 32298 Page 99 of 99
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 System: this component is optional and represents a part of the system in which
the help will be stored if the Sensitive-helper is not capable of storing it internally.
In this case, System will provide the help to the Sensitive-helper through (4).

C.16 Wizard First Iteration

STEP 1. Design solution without Wizard

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Key

Code
O rder

ReturnF unct ion(F 1)()
G etF unct ion(F unction()
Create(F2, CreateRequest)()

(f rom CLASSES)

Restaurant

Name : String
Address : St ring

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fr om C LASSES)

Request-line

CreateLine(code)()
Read(consumpt ion)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(f rom CLASSES)

Table

Status : St ring
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()
LastRequestConsumptions()()

(f rom CLASSES)

Consum ption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumpt ion()()

(f rom CLASSES)

Req uest

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init-request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()
LastRequestConsumtions()()

(f rom CLASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

sy s tem -f unc t ion

Dow nloadFu nct ions(func ti on)()
Exe cute(F unc ti on)()

(f rom CLASSES)

Shortcut

Validate(F 1)()
G etF un ct ion(func tio n)()
CreateShortCut(F 2, CreateRequest)()
Created()

(f rom CLASSES)

I nter face

Init -request()
Init -request()()
Undo()()
Init -request()()
Input-CodConsumption(code)()
Display(list of consumpt ions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F 1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(f rom CLASSES)

Figure C.50 Class diagram for the first application without Wizard mechanism

STEP 2. Design solution with Wizard

Requirement: the waiter creates a rapid access for the functionality “Create new order” by pressing F2.

IST – 2001 – 32298 Page 100 of 100
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

W izard

Ass is t()
GetF unc t ion(IntroF unc t ionN am e)()
F unc t ionN am e(C reate R eques t)()
GetF unc t ion(IntroKey s)()
Key N am e(F 2)()
End()
OK()

(from CLAS SE S)

Restauran t

N am e : String
Addres s : S t ring

GetN am e(N am e)()
Av ailableTables (date, hour, k ind)()

(from CLASSES)

Book

C lientN am e(c lient)()
C hec k (date, hour)()
Get(t im es -in-week)()

(from CLASSES)

Request-l ine

C reateLine(c ode)()
R ead(c ons um pt ion)()
C ons um t ionPrice(price)()
LineN am e(nam e)()
GetPric e(pric e)()

(from CLASSES)

T able

Sta tus : St rin g
N um ber-pers on : Integer
S m ok er/N on Smo ker : Bool ea n
Pl ace : XY
C od e : In teg er

C ha ng eStat e()
C ha ng eStat e()
C ha ng eState()()
C ha ng eState()()
Look F orAv ailable(k ind, data, hour)()
L as tR e que stC on sum pt i ons ()()

(from CLASSES)

Consum ption

C o d-co ns ump t io n
D es cript io n
Pric e

C he ck -Stoc k()
OK()
C on su mt io nN am e(n am e)()
L as tCo de Co ns u mp t ion ()()

(from CLASSES)

Request

H o ur
D a te
Status

Init -reques t()
Input -C odC ons um pt ion()
OK()
init -reques t ()
Init -reques t()()
In it -reques t()()
In it -reques t()()
In itC odC ons um pt ion(c ode)()
R eques tC onsum tions ()()
B ill()()
N e w-pric e(price)()
GetPric e(pric e)()
Las tR eques tC onsum tions ()()

(from CLASSES)

Books m anager

GetR es taurants (lis t)()
Get(res taurant , date, hour, k ind)()

(fro m CLAS SES)

Key

C ode
Order

R eturnF unc t ion(F 1)()
GetF unc t ion(F unc t ion()
C reate(F 2, C reateR eques t)()

(from CLAS SE S)

system-function

D ownloadF unc t ions (f unc t ion)()
Exec ute(F unc t ion)()

(fro m CL AS SE S)

Shortcut

Validate(F 1)()
GetF unc t ion(f unc t ion)()
C reateS hortC u t(F2, C reateR eques t)()
C reated()

(from CLASSES)

In terface

Init -reques t()
Init -reques t()()
U ndo()()
Init -reques t()()
Input -C odC ons um pt ion(c ode)()
D is play (lis t of consum pt ions)()
D uplicateC ons um pt ion()()
H elp()()
Get-help(help)()
Get-help(tour)()
N ewBook ()()
ShowLis t (lis t)()
Get(res taurant , data, hour,k ind)()
ShowLis t (lis t)()
C onnec t ingSy s tem ()()
Enable(R eques tC ook ed)()
Press ed(F 1)()
OK()()
Spec if icH elp(tppic)()
ShowSpec if ic H elp(help)()
C anc el(reques t)()

(fro m CLAS SES)

w izard-s ys tem -function

NextFunction ()
NextFunction ()
NextFunction ()

(from CLASSES)

wiza rd-m anager

C reateShortC ut()

(from CLASSES)

W aiter-device

C ons um pt ion-In-Table-x ()
SendOutVoic e(lis tc ons um pt ions)()
C reateShortc utW izard()
GetF unc t ion(IntroF ucnt ionN am e)()
GetF U nc t ion(IntroKey s)()
C reated()

(from CLAS SE S)

Figure C.51 Class diagram for the first application with Wizard mechanism

IST – 2001 – 32298 Page 101 of 101
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : W aiter

 :
W aiter-device

 :
w iza rd-m ana ger

 : W izard :
w iza rd-s ys tem- function

 : Shortcut : Key

CreateShortcutWizard()

CreateShortCut() Assis t()
Next Function ()

GetFunction(IntroFunctionNam e)

GetFunction(IntroFucntionName)

F unct ionNam e(Create Request)
Next Function ()

GetFunction(IntroKeys)
GetFUnction(IntroKeys)

KeyName(F 2)

Next Function ()

End()

CreateShortCut(F2, CreateRequest)

Create(F2, CreateReques t)

Created()
OK()

Crea ted()

Figure C.52 Sequence diagram for the first application with Wizard mechanism

STEP 3. Abstraction of the design solution for Wizard

 Solution:

o Diagram:

Interface
Wizard-Executor System A

Interface
System B

1 4

2
3

5 6

o Participants:

 Interface: it sends the functionality to be assisted (1) to Wizard-executor.
Additionally, for every step in wizard execution for which the user needs to enter
information or make a decision, System A sends this notification to the interface
through (5). Once the interface has the required information, it sends it to System
A through (6).

IST – 2001 – 32298 Page 102 of 102
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Wizard-executor: it receives the request to execute a given wizard (1) from the
interface. The information related to the wizard can be stored in the Wizard-
executor or another system component. If Wizard-executor does not store the
different steps of the wizard internally, it consults System B through (2), and,
receives the information on the function to be executed to perform the different
steps of the wizard from System B through (3). For each step to be taken, Wizard-
executor asks the System to execute the functionality associated with each step
through (4).

 SystemA: it represents the part of the system that executes each step of the
wizard. It receives the different functions to be executed from the Wizard-
executor through (4) and, if user intervention is required, System A will inform
the interface through (5) and will receive the information entered by the user
through the interface by means of (6).

 SystemB: This module is optional and will only be necessary if the Wizard-
executor does not store the steps for each wizard that can be executed in the
system internally. It receives the request for the name of the next step in wizard
execution from the wizard-executor (2) and returns the information on the name
of the function to be executed through (3).

C.17 Cancel First Iteration

STEP 1. Design solution without Cancel

IST – 2001 – 32298 Page 103 of 103
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

R ec ipe

Amount
Name

(from CL AS S ES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(from CL AS S ES)

Alert-M anager

Check-Ingredient()
O K()

(from C LA S S E S)

Feedbacker

Feedback(checking-resource)()
Feedback(request-acepted)()

(fro m C LASSES)

Re quest -l in e

Crea te Li ne(code)()
Read(consumption)()
ConsumtionPrice(price)()
Lin eNa me(name)()
G etPri ce(price)()

(fro m C LASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
Ne w-price(pric e)()
G etPrice(price)()

(fro m C LASSES)

Cons um pt ion

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(fro m C LASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(fro m C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(fro m C LASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from C LA S S E S)

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, h our, kin d)()

(fro m C LASSES)

Figure C.53 Class diagram for the first application without Cancel mechanism

 : Reques t

 : Wai ter

 : Table : Cons um ption : Reques t-line : Alert-Manager : Feedbacker

In it-reques t()

Input-CodConsum ption(code)

ChangeState()

Check-Stock(code)

O K()

CreateLine(code)

Check-In gre dient()

OK()

Feedback(checking-resource)

Answer("W ait Please C hek ing R esources")

F eedback(reques t-acepted)

Ans wer("I ntr oduce N ext I nput ")

Figure C.54 Sequence diagram for the first application without Cancel mechanism

IST – 2001 – 32298 Page 104 of 104
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 2. Design solution with Cancel

Requirement: The waiter can cancel an order even if it has not be sent to the kitchen.

Recipe

Amo un t
N ame

(from C LA S S E S)

Restaurant

N ame : St ring
Ad dre s s : Str ing

G etN ame (N ame) ()
Av a ila b leTab le s (da te , ho u r , k in d) ()

(fro m C L ASSES)
Book

C lien tN a me(c lien t) ()
C he c k (da te , ho u r) ()
G e t(times - in -w ee k) ()

(from C LA S S E S)

Consumption

C od -c o ns ump tion
D es c r ip tio n
Pr ic e

C he c k -Stoc k ()
O K()
C on s u mtion N ame(n ame) ()
La s tC od eC o ns umptio n () ()

(from C LA S S E S)

Ingredient

N ame
Min imu n-Sto c k
R ea l-Sto c k

C he c k () ()
As k For (ing red ie n t) ()

(from C LA S S E S)

Alert-Manager

C he c k - In g re d ien t()
O K()

(from C LA S S E S)

system -action

Se arc hC o n tra ry (ac tio n) ()
Ex ec u te (c on tra ry -ac tion , ac tion) ()
Ta k e C on tra ry (c on tra ry -ac tion) ()

(fro m C L ASSES)

is-th e-o poss ite- of

Table

Sta tus : Str ing
N umb er -p e rs on : In te ge r
Smo k e r /N o n Smo k er : Bo o lea n
Plac e : XY
C od e : In te ge r

C ha ng eSta te ()
C ha ng eSta te ()
C ha ng eSta te () ()
C ha ng eSta te () ()
Lo ok Fo rAv a ila b le (k ind , da ta , ho u r) ()

(fr o m C L ASS ES)

Bo oks m anag er

G etR es ta u ra n ts (lis t) ()
G e t(res ta u ra n t, da te , h ou r , k ind) ()

(fro m C L ASSES)

Request-line

C rea te L ine (c o de)()
R ea d(c on s u mption) ()
C on s u mtion Pr ic e (p r ic e) ()
L ine N ame (na me) ()
G e tPr ic e (p r ic e) ()

(fro m CL A SS E S)

Feedbacker

F ee db ac k(c he c k ing- re s our c e) ()
F eed b ack (re que s t- ac e p te d) ()

(from C LA S S E S)

action-done

Ad d("C re a teL in e (c o de) ") ()
D ou n loa d(a c tio n) ()
R eq ue s tC rea te d (req ue s t) ()

(from C LA S S E S)

Int erface

In it- req ue s t()
In it- req ue s t() ()
U nd o() ()
In it- req ue s t() ()
In pu t-C o dC o ns umptio n (c od e) ()
D is p lay (lis t o f c o ns u mptio ns) ()
D up lic a te C on s u mp tion () ()
H e lp () ()
G e t-he lp (he lp) ()
G e t-he lp (to u r) ()
N ew Boo k () ()
Sh ow L is t(lis t) ()
G e t(res ta u ra n t, da ta , h ou r ,k in d) ()
Sh ow L is t(lis t) ()
C on ne c tin gSy s te m() ()
En ab le (R eq ue s tC o ok ed) ()
Pre s s ed (F1) ()
O K() ()
Sp ec ific H e lp (tpp ic) ()
Sh ow Spe c ific H e lp (h e lp) ()
C an c e l(re qu es t) ()

(fro m C L ASSES)Request

H ou r
D a te
Sta tus

In it- req ue s t()
In pu t-C o dC o ns umptio n ()
O K()
in it- req ue s t()
In it- req ue s t() ()
In it- req ue s t() ()
In it- req ue s t() ()
In itC od C on s u mption (c o de) ()
R eq ue s tC on s u mtio ns () ()
Bill() ()
N ew -p r ic e (p r ic e) ()
G e tPr ic e (p r ic e) ()

(from C LA S S E S)

listerer

In it- req ue s t() ()
Ad d("C re a teL in e (c o de) ") ()
U nd o() ()
Ac ti on D ou nl oa de d(act ion) ()
C an c e l(re qu es t) ()
R eq ue st C rea te d(re q ues t) ()

(from C LA S S E S)

canceler

C an c e l() ()

(from C LA S S E S)

Figure C.55 Class diagram for the first application with Cancel mechanism

IST – 2001 – 32298 Page 105 of 105
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Figure C.56 Sequence diagram for the first application with Cancel mechanism

STEP 3. Abstraction of the design solution for Cancel

 Solution:

o Diagram:

IST – 2001 – 32298 Page 106 of 106
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 A

Interface A

System A

Logger
Cancel

System B
B

Interface B

1

2

3

4

5

6
10

9

7
8

11

System B

12
13

14
15

o Participants:

 InterfaceA: it receives the request to execute an operation in the system, which
may contain both the operation and the data (1) (2). As we will see later, this
execution request can also come from the system (3) (4).

 SystemA: this module sends the functions and data to be executed in the system
(3) (4) to the logger, and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

 Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged actions and
data either internally or in another part of the system, in which case it will have to
send this action and the data to be processed by the respective part of the system
to the system (5) (6). Logger receives the cancel request (9) from Canceler, then,
if the logged actions are stored internally, it sends them one by one to Canceler in
(8), provided that the all the operations stored by the logger have been performed.
If the operations have only be stored but not executed, then nothing is sent in (8)
and if they are stored externally, all the logger will have to do is receive them in
(10) and (11) and delete them. If they are not stored internally, it will receive both
the data and the operation to be cancelled from another part of the system, which
we have called System B, by means of (11) and (10), respectively.

 Interface B: it receives the cancel request and sends it to Canceler in (7).
Additionally, it will search the system for both the action performed and the data
associated with this operation (10) (11), provided that the logger does not store the
data internally.

 System B: it searches the system for both the action performed and the data
associated with this operation (10) (11), unless the logger stores the data
internally. It receives the actions to be undone. It receives the actions to be undone
(13) and provides the opposite action (12) (for which purpose, it will have to store
the opposite for each action, see implementation section for example). The
opposite action and the respective data will be sent to the respective part of the
system (15) and (14) for execution.

 Canceler: it sends the cancel request (9) to logger and also sends each of the
actions to be undone that it receives from logger to System B (13) and receives
the opposite operation to the one performed (13) from system B. When it knows
what opposite operation to be performed is, it sends it to System B along with the
data associated with this operation through (14) and (15). Alternatively, if all the
operations are stored in the system and performed together when the user presses
accept, then Canceler will simply read through (10) and (11) and delete the
accumulated operations, in which case (14) and (15) will not be used at all.

IST – 2001 – 32298 Page 107 of 107
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

C.18 Multi-tasking First Iteration

STEP 1. Design solution without Multi-tasking

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

T able

Status : String
Nu mb er-p erso n : In teg er
Sm oker/N on Sm oker : Boolean
Place : XY
C ode : Integer

C hangeState()
C hangeState()
C hangeState ()()
C hangeState ()()
Lo okF o rAv ai la ble (ki nd, d ata , hou r)()
Las tR eq uestC onsum ptions ()()
Statu s()

(from CLAS SE S)

Recipe

Am ount
Nam e

(from CLASSES)

Restauran t

N am e : String
Address : String

GetN am e(N am e)()
Av ailableTables (date, hour, k ind)()

(from CLASSES) Book

D ate
H our
N am e

C lientN am e(c lient)()
C heck(date, hour)()
Get(t im es-in-week)()
C heckBook()
GetStatus(s tatus)()

(fro m CL AS SE S)

Consum ption

C o d-cons um ptio n
D esc ript ion
Price

C heck-Stoc k()
OK()
C onsum tionN am e(nam e)()
Las tCode Consum ption()()

(from CLASSES)

Books m anager

G etR es taurants (lis t)()
G et(re stauran t, da te, hour, k ind)()
C heck(books)()

(from CLASSES)

Request-l i ne

C reateLine(code)()
R ead(consum ption)()
C onsum tionPrice(price)()
LineN am e(nam e)()
GetPrice(price)()

(from CLASSES)

Ingredient

N am e
Minim un-Stock
R eal-Stock

C heck()()
AskF or(ingredient)()

(from CLASSE S)

A lert-Manager

C heck-Ingredient()
OK()

(from CLASSES)

Request

H our
D ate
Status

Init -request()
Input-C odC onsum ption()
OK()
init-request()
Init -request()()
Init -request()()
Init -request()()
InitC odC onsum ption(code)()
R equestC onsum tions ()()
Bill()()
N ew-price(price)()
GetPrice(price)()
Las tR equestC onsum tions()()

(from CLASSES)

Feedbacker

F eedback(check ing-resource)()
F eedback(reques t-acepted)()

(from CLASSES)

Figure C.57 Class diagram for the first application without Multi-tasking mechanism

STEP 2. Design solution with Multi-tasking

Requirement: the clock advises that any reservations made should be cancelled 20 minutes after
reservation time if the diners have not arrived.

IST – 2001 – 32298 Page 108 of 108
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Recipe

Am ount
Name

(f rom C LASSES)

Restaurant

Nam e : String
Addres s : String

GetNam e(Nam e)()
AvailableTables (date, hour, kind)()

(from CLASSES)
Book

Date
Hour
Nam e

ClientNam e(client)()
Chec k(date, hour) ()
Get(tim es -in-week)()
CheckBook()
GetStatus (s tatus)()

(from CLASSES)

Consumption

Cod-cons um ption
Des cription
Price

Check-Stock()
OK()
Cons um tionNam e(nam e)()
Las tCodeCons um ption()()

(from CLASSES)

Table

Status : String
Numbe r-pers on : Integer
Sm oker/Non Sm oker : Boolean
Plac e : XY
Code : In teger

ChangeState()
ChangeState()
ChangeState() ()
ChangeState() ()
LookForAvailable(kind, data, hour)()
Las tReques tConsum ptions ()()
Status ()

(from CLASSES)

Request -l ine

CreateLine(code)()
Read(cons um ption)()
Cons um tionPrice(price)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)

Ingredient

Nam e
Minim un-Stock
Real-Stock

Check()()
As kFor(ingredient)()

(from CL ASSES)

Alert-Manager

Check-Ingredient()
OK()

(from CLASSES)

Request

Hour
Date
Status

Init- reques t()
Input-CodCons um ption()
OK()
i nit- reques t()
Init- reques t()()
Init- reques t()()
Init- reques t()()
InitCodCons um ptio n(cod e)()
Reques tCons um tions ()()
Bill()()
N ew -p rice(p ri ce) ()
GetPrice(price)()
Las tReques tC ons um tions () ()

(fro m CLA SSES)

Feedbacker

Feedback (ch ecking-res ource) ()
Feedback (reques t-a cepted)()

(from CLASSE S)

D ispatcher

Check(books)()

(from CLASSES)

Books manager

GetRes ta urants (lis t)()
Get(res tauran t, d ate, hour, ki nd)()
Chec k(boo ks)()

(from CLASSES)

Figure C.58 Class diagram for the first application with Multi-tasking mechanism

IST – 2001 – 32298 Page 109 of 109
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Clock

 : D ispatcher : Books
manager

 : Book : Table

Check(books)
Check(books)

CheckBook()
Status()

GetStatus(status)

Figure C.59 Sequence diagram for the first application with Multi-tasking mechanism

STEP 3. Abstraction of the design solution for Multi-tasking

 Solution:

o Diagram:

Interface

Dispatcher

1

Interface System

2 3 4

o Participants:

 Interface: it sends the function to be executed to dispatcher in (1). Additionally, if
the user is to be informed of anything that is happening, he receives information
from the dispatcher in (5).

 Dispatcher: this component knows what resources are needed for each function
that it has to execute in the system. It receives the function to be executed from
the interface in (1). It sends the function to be executed to the system component
in question in (2) after having checked that all the resources required to execute

IST – 2001 – 32298 Page 110 of 110
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

this function exist. Additionally, it receives the result of performing this operation
from the system in (3). This result may specify either error or OK if everything
went according to plan. If user has to be informed of the result of the operation
performed, it sends this information to the interface (4).

 System: this component refers to the part of the system responsible for executing
the function specified by dispatcher in (3).

C.19 Command Aggregation First Iteration

STEP 1. Design solution without Command Aggregation

In this case, the interaction diagram does not appear because the “macros” functionality is new.

Restaurant

Nam e : String
Addres s : String

GetNam e(Nam e)()
AvailableTables (date, hour, kind)()

(from CLASSES)

Book

Date
Hour
Nam e

ClientNam e(client)()
Check(date, hour)()
Get(tim es -in-week)()
CheckBook()
GetStatus (s tatus)()

(from CLASSES)

Table

Status : String
Num ber-pers on : Integer
Sm oker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()()
LookForAvailable(kind, data, hour)()
Las tReques tCons um ptions ()()
Status ()

(from CLASSES)

Request

Hour
Date
Status

Init-reques t()
Input-CodCons um ption()
OK()
In itCodCons um ption (cod e)()
Reques tCons um tions ()()
Bill()()
New-price(price)()
GetPrice(price)()
Las tReques tCons um tions ()()

(from CLASSES)

Books manager

GetRes taurants (lis t)()
Get(res taurant, date, hour, kind)()
Check(books)()

(from CLASSES)

Request-line

CreateLine(code)()
Read(cons um ption)()
Cons um tionPrice(price)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)

Consumption

Cod-cons um ption
Des cription
Price

Check-Stock()
OK()
Cons um tionNam e(nam e)()
Las tCodeCons um ption()()

(from CLASSES)

Figure C.60 Class diagram for the first application without Command Aggregation mechanism

STEP 2. Design solution with Command Aggregation

Requirement: the system must have the capability to create macros, for instance, to create a macro that
would permit a maître d’hôtel to change the permitted period for arrival at the restaurant before the
booking time, taking into account the number of bookings for each day.

In the next example is represented the creation of a macro.

IST – 2001 – 32298 Page 111 of 111
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

R es taurant

Nam e : Str ing
Address : String

GetNam e(Nam e)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

Date
Hour
Nam e

ClientNam e(client)()
Check(date, hour)()
Get(times-in-week)()
CheckBook()
GetStatus(status)()

(from CLASSES)

Table

Status : Str ing
Num ber-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()()
LookForAvailable(kind, data, hour)()
LastRequestConsumptions()()
Status()

(from CLASSES)

R equest-line

CreateLine(code)()
Read(consumption)()
Consum tionPrice(price)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)

C onsum pt ion

Cod-consumption
Description
Price

Check-Stock()
OK()
Consum tionNam e(nam e)()
LastCodeConsumption()()

(from CLASSES)

R equest

Hour
Date
Status

Init-request()
Input-CodConsum ption()
OK()
InitCodConsum ption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
GetPrice(price)()
LastRequestConsumtions()()

(from CLASSES)

Books m anager

GetRestaurants(list)()
Get(restaurant, date, hour, kind)()
Check(books)()

(from CLASSES)

Interface
(from CLASSES)

editor

CreateComm and(comm and-name, program -code)()
Com mand-created()

(from CLASSES)

com m and

StoreCom mand(com mand-nam e, program -code)()

(from CLASSES)

Figure C.61 Class diagram for the first application with Command Aggregation mechanism

 : Maitre

 : editor : command : Inte rface

NewCommand(command-name, program-code)

Cr eateCommand(command-name, program-code)

StoreCommand(command-name, program-code)

Command-created()
Command-created()

Figure C.62 Sequence diagram for the first application with Command Aggregation mechanism

IST – 2001 – 32298 Page 112 of 112
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Command Aggregation

 Solution:

o Diagram:

Interface 1

System

Interface

Code-Editor

Code-Executer
3 4

2

5

o Participants:

 Interface: it sends a data set (1) corresponding to a given command, as well as the
program code associated with the command to be created, to Code-Editor.
Additionally, if a command is to be executed, it sends the name of the previously
created command (3) to the Code-executer. When the command has been
executed, it will receive the result of the command or error, if it cannot be
executed, (5) from Code-Executer.

 Code-Editor: it receives the name of the command to be created and the program
code to be associated with the command (1) from the interface, which it sends to
system for storage (2).

 Code-Executer: it receives a previously created command (3) from the interface. It
asks the system for the program code to be executed (4) and executes this code.
Also it sends the result of executing this command to the interface through (5).

 System: it receives the name of the command as well as the associated program
code (3). It also sends the program code associated with a command to the Code-
executer when it is requested for execution (4).

C.20 Actions for Multiple Objects First Iteration

STEP 1. Design solution without Actions for Multiple Objects

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 113 of 113
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

R ec ipe

Amount
Name

(from CLA S S E S)

Restaurant

Name : S tr ing
Address : String

G etName(Name)()
Ava ila bleTa bles (d ate , ho ur , kind)()

(from C LASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from CLA S S E S)

Consumption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(from C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()

(from C LASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant , date, hour, kind)()

(from C LASSES)

Request-line

Cre ateLin e(c od e)()
Rea d(c on sump tion)()
Con sumt i onPrice(price)()
Line Name(na me)()
G etPrice (p rice)()

(from C LASSES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from CLA S S E S)

Alert-Manager

Check-Ingredient()
O K()

(from CLA S S E S)

Request

Hour
Date
Status

Init-request()
Input-CodConsumpt ion()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(from C LASSES)

Feedbacker

Feedback(checking-resource)()
Feedback(request-acepted)()

(from C LASSES)

Figure C.63 Class diagram for the first application without Actions for Multiple Objects mechanism

STEP 2. Design solution with Actions for Multiple Objects

Requirement: the cook selects several ingredients and requests restocking.

IST – 2001 – 32298 Page 114 of 114
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Re cipe

Amount
Nam e

(from C LASSES)

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CL ASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fro m C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()

(f rom CLASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Request- line

CreateLine(code)()
Read(consumpt ion)()
Cons umti onPri ce(pric e)()
LineName(name)()
G etPrice(price)()

(f rom CL ASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumpt ion()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumpt ion(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Consum ption

Cod-consumpt ion
Description
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Feedbacker

F eedback(checking-resource)()
F eedback(request-acepted)()

(f rom CLASSES)

Al ert- Man age r

Check-Ingredient()
O K()

(from C LASSES)

Ingred ient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from C LAS SES)

Function-M anager

AskF or(list -of-ingredients)()

(f rom CLASSES)

Se lector-m anager

AskF or(ingre diente s)()
Ingredients(list -of-ingredients)()

(f rom CLASSES)

Figure C.64 Class diagram for the first application with Actions for Multiple Objects mechanism

IST – 2001 – 32298 Page 115 of 115
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cook
 :

Selector-manager
 :

Function-Manager
 : Ingredient

AskFor(ingredientes)

SelectIngredients()

Ingr edients(l is t-of -ingre dients)

AskFor(list-of-ingredients)

AskFor(ingredient)

For each
ingredient in
the list

Figure C.65 Sequence diagram for the first application with Actions for Multiple Objects mechanism

STEP 3. Abstraction of the design solution for Actions for Multiple Objects

 Solution:

o Diagram:

4

Interface

Interface

Selector-Manager

Function-Manager

System

Interface

1

2

3

5

6

o Participants:

IST – 2001 – 32298 Page 116 of 116
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Interface: it sends the set of objects selected by the user from the interface to
Selector-manager in (1). Additionally, it sends the function to be executed in (3).
If, after the requested operation has been executed, the user is to be informed of
the result of the operation, the respective data are sent to the interface in (6).

 Selector-manager: this component receives the set of elements on which to
operate in (1). Additionally, it sends the set of objects on which the system is to
operate to function-manager in (2).

 Function-manager: it receives the operation to be executed in (3) and receives the
set of objects on which the system is to operate in (2).

 System: it receives the function to be executed (4) and the list of objects on which
the specified function is to be executed in (5). Additionally, it sends the result of
the executed function to the interface in (6).

IST – 2001 – 32298 Page 117 of 117
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX D: PHASE 1 SECOND ITERATION: THE AMUSEMENT PARK SYSTEM
CONTROL CASE

D.1 Reusing Information Second Iteration

STEP 1. Design models without Reusing Information

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Operative-device

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perative-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(from Logical View)

Vehi cl e

Vehicle-code

MeasureUnity()

(from Log ic a l View)

W heel

NumMaxSeats

Error()

(from Log ic a l View)

Ca r

Car-code

MeasurePressure()

(from Log ic a l View)

Roller Coaster

NumMaxSeats
(from Log ic a l View)

Breakdown-m anager

Look-for-operat ive-free()
Status(free)()
BreakdownRepaired(data, name)()

(from Logical View)

Ent ry-tu rn st ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(from Log ic a l View)

Exit-turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Log ic a l View)

Start-device

StartMechanism()

(from Log ic a l View)

St op -de vic e

S topMech anism()

(from Log ic a l View)

Breakdown

Dat e
Mechan ism
name

NoteBreackdown()

(from Log ic a l View)

Loudspeaker

(from Log ic a l View)

VigilanceCame ra

(from Log ic a l View)

Visitor

Nam e
Age

(from Log ic a l View)

Visitors-Manager

(from Log ic a l View)

Fairground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(from Logical View)

Figure D.1 Class diagram for the second application without Reusing Information mechanism

STEP 2. Design models with Reusing Information

Requirement: a father is entering the description of one of his sons as a park visitor and wants to copy
the son’s description because he has twins.

IST – 2001 – 32298 Page 118 of 118
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Vehicle-code

MeasureUnity()

(from Logical V iew)

W heel

NumMaxSeats

Error()

(from Logical V iew)

Car

C ar-c ode

Meas urePr essur e()

(from Logical V iew)

Roller Coaster

NumMaxSeats
(from Logical V iew)

Operative-device

O perative-name
O perative-code
O perative-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(from L og ic a l View)

Breakdown-m anager

Look-for-operat ive-free()
Status(free)()
BreakdownRepaired(data, name)()

(from L og ic a l View)

E ntr y- turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(from Logical V iew)

Exit- turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from L ogical V iew)

Start-device

StartMechanism()

(from Logical V iew)

Stop-device

StopMechanism()

(from Logical V iew)

Break down

Date
Mechanism
name

NoteBreackdown()

(from Logical V iew)

Loudspeaker

(from Logical V iew)

VigilanceCamera

(from Logical V iew)

Visitor

Name
Age

L oad (d ata)()
u ntit led()

(from Logical V iew)

F airground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(from L og ic a l View)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()

(f rom L ogi cal V iew)

reuser

Cop y (d ata)()

(from Logical V iew)

Data-to-be-reused

Store (data)()

(from Logical V iew)

Figure D.2 Class diagram for the second application with Reusing Information mechanism

 : Us er

 : V is it or : reus er :
Da ta- to -be- reus e d

 :
Vis itors -Manager

Data-to-b e-Load ed(data)

C opy (d ata)

Load(data)

C opy (dat a) Store (data)

Figure D.3 Sequence diagram for the second application with Reusing Information mechanism

IST – 2001 – 32298 Page 119 of 119
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Reusing Information

There are no modifications to the above generalisation presented in the first iteration.

D.2 Standard Help Second Iteration

STEP 2. Design solution without Standard Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Vehi cl e

Vehicle-code

MeasureUnity()

(from Log ic a l View)

W heel

NumMaxSeats

Error()

(from Log ic a l View)

Ca r

Car-code

MeasurePressure()

(from Log ic a l View)

Roller Coaster

NumMaxSeats
(from Log ic a l View)

Op era ti ve-devic e

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(f rom Logical View)

Visitor

Name
Age

Load(data)()
unt it led()

(from Log ic a l View)

Breakdown-manag er

Look-for-operat ive-free()
Status(free)()
BreakdownRepaired(data, name)()

(f rom Logical View)

Ent ry-tu rn st ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(from Log ic a l View)

Exit- turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Log ic a l View)

S tar t- devic e

StartMechanism()

(from Log ic a l V iew)

Stop-device

StopMechanism()

(from Log ic a l V iew)

Breakdown

Da te
Me chanis m
nam e

Note Breac kd own ()

(from Log ic a l View)

Loudspeaker

(from Log ic a l View)

VigilanceCame ra

(from Log ic a l View)

F airground-mechanism

NumberBre akdownsNot Repair ed
Ad dr es s

NoteNewBreakdown()
NoteBrea kdown Repai red()

(from Logical View)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et-Help(help)()

(from Log ic a l View)

Figure D.4 Class diagram for the second application without Standard Help mechanism

STEP 2. Design solution with Standard Help

Requirement: The user wants to enter his/her particulars in the visitor terminal and asks the system for
help on terminal use.

IST – 2001 – 32298 Page 120 of 120
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Ve h ic le -c o de

Mea s ure U n ity ()

(f rom Lo gi cal Vi ew)

W heel

N umMax Se a ts

Er ro r ()

(f rom Logi cal V iew)

Car

C ar -c ode

Mea s ure Pres s u re ()

(from Logical V iew)

R oll er C o as te r

N umM axS ea ts

(from Logical V iew)

O per at ive- de vi ce

O pe ra tiv e -name
O pe ra tiv e -c od e
O pe ra tiv e -s ta tu s
N umb er -O f-Mec han is ms - rep a ire d

In d ic a te -O p era tiv e -bu s y ()
In d ic a te -Me c ha n is m- rep a ire d ()
C he c k s ta tu s ()

(fro m Lo g ic a l Vie w)

Visitor

N ame
Ag e

Lo ad (da ta) ()
un titled ()

(from Logical V iew)

Bre akd own -man age r

Lo ok - fo r -o pera tiv e - free ()
Sta tus (free) ()
Bre ak dow n R e pa ired (da ta , n ame) ()

(fro m Lo g ic a l Vie w)

En try - tu rn s tile

N umb erO fPers o ns

Pe op leC o un te r ()
R ed C o lo r ()
G ree nC o lo r ()
Amb erC o lo r ()

(f rom Logi cal V iew)

Exit-turnst ile

N u mbe rO f Pe op le

Pe op leC o un te r ()
O p en()
C lo se ()
C he c k -p eo p l e- di sap pe ared ()

(from Logical V iew)

Start-device

S ta rtMe ch a ni sm()

(from Logical V iew)

St op -devi ce

Stop Mec h an is m()

(from Logical V iew)

Breakdown

D ate
Mec han is m
na me

N oteBre ac k do w n()

(from Logical V iew)

Lo ud s pe ak er
(from Logical V iew)

Vig ila nc e C amera
(f rom Lo gi cal Vi ew)

Fa irg roun d-mec han is m

N umb erBre ak d ow ns N otR e pa ired
Ad dre s s

N oteN ew Break do w n ()
N o teBre ak dow n R epa ire d ()

(fro m Lo g ic a l Vie w)

Vis ito rs -Mana ge r

D a ta - to -be -Loa de d(da ta) ()
C op y (d a ta) ()
H e lp () ()
G e t-H e lp (he lp) ()

(from Logical V iew)

Standard-helper

St-Help()()

(f rom Lo gi cal Vi ew)

Figure D.5 Class diagram for the second application with Standard Help mechanism

 : Us er
 : V is itors-Manager : S tandard-helper

Help()
St-Help()

Get-Help(help)

Figure D.6 Sequence diagram for the second application with Standard Help mechanism

IST – 2001 – 32298 Page 121 of 121
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Standard Help

There are no modifications to the above generalisation presented in the first iteration.

D.3 Tour Second Iteration

STEP 1. Design models without Tour

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Ve hicle

Vehicle-code

MeasureUnity()

(from Logical V iew)

Wheel

NumMaxSeats

Error()

(from Logical V iew)

Car

Car-code

MeasurePressure()

(from Logical V iew)

Roller Coaster

NumMaxSeats
(from Logical V iew)

Operative-device

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(fro m Lo g ic a l Vie w)

Visitor

Name
Age

Load(data)()
unt it led()

(from Logical V iew)

Breakdown-manag er

Lo ok- for- op erat iv e-fr ee ()
Status(free)()
BreakdownRepaired(data, name)()

(fro m Lo g ic a l Vie w)

Entry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(f rom Logi cal V iew)

Exit-turnstile

NumberO fPeople

Pe ople Coun te r()
O p en()
Clo se()
Check-peopl e- di sappeared()

(from Logical V iew)

Start-device

StartMechanism()

(from Logical V iew)

Sto p-device

StopMechanism()

(from Logical V iew)

Breakdown

Date
Mechanism
name

NoteBreackdown()

(from Logical V iew)

Loudspeaker

(from Logical V iew)

VigilanceCamera

(from Logical V iew)

Fair gr oun d- mech anis m

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(fro m Lo g ic a l Vie w)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et-Help(help)()
G et-Help(tour)()

(from Logical V iew)

Figure D.7 Class diagram for the second iteration without Tour mechanism

STEP 2. Design models with Tour

Requirement: the user pushes Guided Help button.

IST – 2001 – 32298 Page 122 of 122
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Stop-dev ic e

StopMec hanis m()

(from Logical V iew)

Vehicle

Vehic le-c ode

Meas ureU nity ()

(from Logical V iew)

Wheel

N umMax Seats

Error()

(from Logical V iew)

Car

C ar-c ode

Meas urePres s ure()

(from Logical V iew)

R o lle r C oas ter

N umMax Seats

(from Logical V iew)

Operat iv e -dev ic e

Operativ e -name
Operativ e -c ode
Operativ e -s ta tus
N umber -Of-Mec hanis ms -repa ired

Ind ic a te-Operativ e-bus y ()
Ind ic a te-Mec hanis m-repa ired()
C hec k s ta tus ()

(from Logical V iew)

Visitor

N ame
Age

Load(data) ()
untitled()

(from Logical V iew)

Break dow n-manager

Look - for -opera tiv e- free()
Sta tus (free)()
Break dow nR epaired(data , name) ()

(from Logical V iew)

Entry - turns tile

N umberOfPers ons

PeopleC ounter ()
R edC olor ()
GreenC olor()
AmberC olor()

(from Logical V iew)

Exit -turnst ile

N umberOfPeople

PeopleC ounter ()
Open()
C los e()
C hec k -peop le-d is appeared()

(from Logical V iew)

Star t-dev ic e

Start Mec hanis m()

(from Logical V iew)

Break dow n

D ate
Mec hanis m
name

N oteBreac k dow n()

(from Logical V iew)

Louds peak er
(fr om L ogi ca l Vi ew)

Vig ilanc eC amera
(from Logical V iew)

Fa irground-mec hanis m

N umberBreak dow ns N otR epaired
Addres s

N oteN ew Break dow n()
N oteBreak dow nR epaired()

(from Logical V iew)

Vis ito rs -Manager

D ata- to-be-Loaded(data) ()
C opy (data)()
H e lp() ()
Get-H elp(he lp) ()
Get-H elp(tour) ()

(from Logical V iew)

Guided-he lper

Guided-he lp() ()

(from L ogica l V iew)

Figure D.8 Class diagram for the second iteration with Tour mechanism

 : Us er
 : V is itors-M anager : Guided-helper

Help()
Guided-help()

Get-Help(tour)

Figure D.9 Sequence diagram for the second iteration with Tour mechanism

IST – 2001 – 32298 Page 123 of 123
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Tour

There are no modifications to the above generalisation presented in the first iteration.

D.4 Different Languages Second Iteration

STEP 1. Design models without Different Languages

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Searcher-validator

Valida te("name, ident if i cat ion-number, hair-col or, stature ")()

(f rom Logical View)

Vehi cl e

Ve hicle -c ode

MeasureUnity()

(fro m L o g ic a l Vie w)

W heel

NumMaxSeats

Error()

(fro m L o g ic a l Vie w)

Car

Car-code

MeasurePressure()

(fro m Lo gi ca l V iew)

Rolle r Coa st er

NumMaxSeats

(fro m L o g ic a l Vie w)

Help-point- interface

NewVisi tor()
VisitorData(name, ident if icat ion-number, hair-color, stature)()

(f rom Logical View)
Validation-m anager

Validate(searcher, "nam e, ident if icat ion-num ber, hair-color, stature")()

(f rom Logical View)

Operative-device

O perat ive-nam e
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(f rom Logical View)

Visitor

Name
Age

Load(data)()
Store("name, ident if icat ion-number, hair-color, stature")()

(f rom Logical View)

Breakdown-m anager

Look-for-operat ive-f ree()
Status(free)()
BreakdownRepaired(data, name)()

(f rom Logical View)

Entry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(fro m L o g ic a l Vie w) Exit- turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(fro m L o g ic a l Vie w)

Start-device

StartM echanism ()

(fro m L o g ic a l Vie w)

Stop-device

StopMechanism()

(fro m L o g ic a l Vie w)

Breakdown

Date
Mechanism
name

NoteBreackdown()

(fro m L o g ic a l Vie w)

Loudspeaker

(fro m L o g ic a l Vie w)

VigilanceCam era

(fro m L o g ic a l Vie w)

Visitors-M anager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et -Help(help)()
G et -Help(tour)()

(fro m L o g ic a l Vie w)

F airground-m echanism

N umberBreak do wns NotRe pa ired
Ad dr es s

N oteNe wBr ea kd own ()
N oteBr ea kd own Repair ed ()

(fro m L og ical View)

Figure D.10 Class diagram for the second application with Different Languages mechanism

STEP 2. Design models with Different Languages

Requirement: the park visitor enters the details of the person he wants to register in any language, and
the system is capable of translating it to an internal exchange language so that the surveillance system
later operates identically when searching for a given subject, irrespective of the language in which the
subject details were entered.

IST – 2001 – 32298 Page 124 of 124
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Ve h ic le -c o d e

Me a s u re U n ity ()

(fr om Logical V iew)

W heel

N u mMa x Se a ts

Er ro r ()

(from Logical V iew)

Car

C a r -c o d e

Me a s u re Pre s s u r e ()

(from Logical V iew)

R o lle r C o a s te r

N u mMa x Se a ts

(from Logical V iew)

O p e ra tiv e - d e v ic e

O p e ra tiv e - n a me
O p e ra tiv e - c o d e
O p e ra tiv e - s ta tu s
N u mb e r -O f-Me c h a n is ms - re p a ire d

In d ic a te -O p e ra tiv e -b u s y ()
In d ic a te -Me c h a n is m- re p a ire d ()
C h e c k s ta tu s ()

(from Logical V iew)

Visitor

N a me
Ag e

L o a d (d a ta) ()
Sto r e ("n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu r e ") ()

(fro m L o gi ca l Vi ew)

Bre a k d o w n -ma n a g e r

L o o k - fo r -o p e ra tiv e - fre e ()
Sta tu s (fre e) ()
Bre a k d o w n R e p a ire d (d a ta , n a me) ()

(from Logical V iew)

E ntr y - tu rn s tile

N u mb e rO fPe rs o n s

Pe o p le C o u n te r ()
R e d C o lo r ()
G re e n C o lo r ()
Amb e rC o lo r ()

(fr om Logical V iew)

Exit -turnst ile

N u mbe rO fPeo p le

Pe o p le C o u nt er ()
O pe n ()
C lo s e ()
C h e c k -p e o p le -d is a p p e a re d ()

(from Logical V iew)

Sta r t-d e v ic e

Sta r tMe c h a n is m()

(from Logical V iew)

Sto p -d e v ic e

Sto p Me c h a n is m()

(from Logical V iew)

Bre a k d o w n

D a te
Me c h a n is m
n a me

N o te Bre a c k d o w n ()

(from Logical V iew)

L o u d s p e a k e r
(from Logical V iew)

Vig ila n c e C a me ra
(from Logical V iew)

Vis ito rs -Ma n a g e r

D a ta - to -b e -L o a d e d (d a ta) ()
C o p y (d a ta) ()
H e lp () ()
G e t-H e lp (h e lp) ()
G e t-H e lp (to u r) ()

(from Logical V iew)

Fa ir g ro u n d -me c h a n is m

N u mb e rBr e a k d o w n s N o tR e p a ir e d
Ad d re s s

N o te N e w Bre a k d o w n ()
N o te Bre a k d o w n R e p a ire d ()

(fr om L og ical V iew)

Se arch er- vali dat or

Va lid a te ("n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re ") ()

(fr o m L o gi ca l Vi ew)

Validat ion-manager

Va lid a te (s e a rc h e r , "n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re ") ()

(fro m L o g ic a l Vie w)

Help-point -interface

N e w Vis ito r ()
Vis ito rD a ta (n a me , id e n tific a tio n - n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fr o m L o gi ca l Vi ew)

Language-recognitor

Vis ito rD a ta (n a me , id e n tific a tio n - n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fro m L o g ic a l Vie w)

Language-translator

Tra n s la te Vis ito rD a ta (n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fro m L o g ic a l Vie w) F unct ion-dispatcher

Vis ito rD a ta (n a me , id e n tific a tio n - n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fr o m L o gi ca l Vi ew)

Figure D.11 Class diagram for the second application with Different Languages mechanism

 : U s er

 :
H elp-point-interf ac e

 :
Validat ion-m anager

 :
Searc her-v alidator

 : V isi to r : F unc ti on-dis pa tcher : Language-trans lator : La ng ua ge-recog ni tor

N ew Visi tor ()

Int roduce(nam e, ident if ic at ion-num ber, hair color, s tature)

V is itorD ata(nam e, ident if ic at ion-num ber, hair-c olor, s tature)

C hoos eLangModeler(nam e, ident if icat ion-num ber, hair-color, s tature)

Trans lateVis itorD ata(nam e, ident if icat ion-num ber, hair-color, s tature)

Valida te("nam e, ident if ic at ion -num ber, h ai r-c olor, s ta tur e")

S to re("na me, i de nt i f ic at ion- nu mb er , h air- co lor , s tat ure ")

V is itorD ata(nam e, ident if ic at ion-num ber, hair-c olor, s tature)

Validate(searc her, "nam e, ident if ic at ion-num ber, hair-color, s tature")

Figure D.12 Sequence diagram for the second application with Different Languages mechanism

IST – 2001 – 32298 Page 125 of 125
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Different Languages

There are no modifications to the above generalisation presented in the first iteration.

D.5 Different Access Methods Second Iteration

STEP 1. Design models without Different Access Methods

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Vehicle

Vehicle-code

MeasureUnity()

(fro m L o g ic a l Vie w)

W heel

NumMaxSeats

Error()

(f ro m Lo gic a l V iew)

Car

C ar -c od e

Meas urePressure()

(fro m L o g ic a l Vie w)

Roller Coaster

NumMaxSeats

(fro m L o g ic a l Vie w)

Operative-device

O perat ive-nam e
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()
NumberO fBreakdowsUnset t led()()
G et (data)()

(f ro m L og ic al Vi ew)

Visitor

Na me
Ag e

Lo ad (d at a) ()
Store("n ame, i dent if ica tion-number, hair-color, stature ")()

(f rom Logical View)

Breakdown-m anager

Look-for-operat ive-f ree()
Status(free)()
BreakdownRepaired(data, nam e)()

(f rom Logical View)

Entry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(fro m L o g ic a l Vie w)

Exi t- turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(fro m L o g ic a l Vie w)

Start-device

StartM echanism ()

(fro m L o g ic a l Vie w)

Stop-device

StopMechanism()

(fro m L o g ic a l Vie w)

Breakdown

Date
Mechanism
name

NoteBreackdown()
BreakdownData(data)()

(fro m L o g ic a l Vie w)

Loudspeaker

(fro m L o g ic a l Vie w)

VigilanceCam era

(fro m L o g ic a l Vie w)

Visitors-M anager

Data-to-be-Loaded(data)()
Cop y (data)()
Help()()
G et -Help(help)()
G et -Help(tour)()

(fro m L o g ic a l Vie w)

F airground-m echanism

NumberBr eakdownsNo tRepai re d
Ad dres s

NoteNewBreakdown()
NoteBre akdow nRe paired()

(fro m L ogic al View)

Searcher-validator

Validate("name, ident if icat ion-num ber, hair-color, stature")()

(f rom Logical View)

H elp-po int- interfa ce

NewVisitor()
VisitorData(name, ident if icat ion-number, hair-color, stature)()

(f ro m L og ic al View)

Valida tion-m a nage r

Validate(searcher, "name, ident if icat ion-number, hair-color, stature")()

(f rom Logical View)

Figure D.13 Class diagram for the second application without Different Access Methods mechanism

STEP 2. Design models with Different Access Methods

Requirement: the operator can ask the operator device how many faults are pending repair, which he
can do by simply speaking, that is, by voice, and the device also answers by voice. Additionally, the
system must be capable of recognising what the operator says and who the operator is.

IST – 2001 – 32298 Page 126 of 126
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Vehicle-code

MeasureUnity()

(f r om Log ic a l Vi ew)

W heel

Nu mMaxSeats

Error()

(from Log ic a l View)

Car

Ca r-code

MeasurePressure()

(from Log ic a l View)

Roller Coaster

NumMaxSeats
(f r om Log ic a l Vi ew)

Visitor

Name
Age

Loa d(da ta)()
Store("name, identif icat ion-number, hair-color, stature")()

(from Logical View)

Breakdown-m anager

Lo ok -for -op erat i ve -fre e()
Status(free)()
Br eakd ownRe pai red (data , nam e) ()

(from Logical View)

Ent ry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(f r om Log ic a l Vi ew)

Exit-turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Log ic a l View)

Start-device

StartMechanism()

(from Log ic a l View)

Stop-device

S top Mec ha nis m()

(from Log ic a l View)

Breakdown

Date
Mechanism
name

NoteBreackdown()
BreakdownData(data)()

(from Log ic a l View)

Loudspeaker

(from Log ic a l View)

VigilanceCamera

(f r om Log ic al Vi ew)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et-Help(help)()
G et-Help(tour)()

(from Log ic al View)

Fairground-mechanism

NumberBreakdownsNotRepaired
Address

No teNewBreakdown()
NoteBreakdownRepaired()

(from Log ic al Vi ew)

Searcher-validator

Validate("name, identif icat ion-number, hair-color, stature")()

(from Logical View)

Validation-m anager

Validate(searcher, "name, ident if icat ion-number, hair-color, stature")()

(from Logical View)

Help-point- interface

NewVisitor()
VisitorData(name, identif icat ion-number, hair-color, stature)()

(from Logical View)

Device-transformer

Translate(Voice(Number of breakdows unset t led)()
ModeleVoice(data)()

(from Logical View)

Function-dispatcher

VisitorData(name, identif icat ion-number, hair-color, stature)()
Brea kdowsUnset t led(o perat ive 1)()
G et(da ta)()

(from Logical View)

Operative-device

O perative-name
O perative-code
O perative-status
Number-O f-Mechanisms-repaired

Indicate-O perative-busy()
Indicate-Mechanism-repaired()
Checkstatus()
NumberO fBreakdowsUnsett led()()
G et(data)()

(from Logical View)

O perative-device-interface

NumberO fBreakdowsUnsett led()
Voice (data)()

(from Logical View)

Device-recognitor

Voice(Number of breakdows unset t led)()

(from Logical View)

Figure D.14 Class diagram for the second application with Different Access Methods mechanism

IST – 2001 – 32298 Page 127 of 127
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Operative
 : Operative-device-interface : Device-recognitor :

Device-transform er
 :

Function-dispatcher
 :

Operative-device
 : Breakdown

Num berOfBreakdowsUnsettled()

Voice(Num ber of breakdows unsettled)

Translate(Voice(Num ber of breakdows unsettled))

BreakdowsUnsettled(operative 1)

Num berOfBreakdowsUnsettled()

BreakdownData(data)

Get(data)

Get (data)

M odeleVoice(data)

SendOutVoice (datav oice)

Figure D.15 Sequence diagram for the second application with Different Access Methods mechanism

STEP 3. Abstraction of the design solution for Different Access Methods

There are no modifications to the above generalisation presented in the first iteration.

IST – 2001 – 32298 Page 128 of 128
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

D.6 Alerts Second Iteration

STEP 1. Design models without Alerts

Visitor

Nam e
Age

(from Log ic a l View)

VigilanceCamera

(from Log ic a l View)
Loudspeaker

(from Log ic a l View)

Vehicle

Vehicle -cod e

Me as ur eUn ity ()

(from Log ic a l View)

W heel

NumMaxSeats

Error()

(from Log ic a l View)

Ca r

Car-code

MeasurePressure()

(from Log ic a l View)

Roller Coaster

NumMaxSeats
(from Log ic a l View)

Operat ive-de vi ce

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(f rom Logical View)

Breakdown-m anager

Look-for-operat ive-f ree()
Status(f ree)()
BreakdownRepaired(data, name)()

(f rom Logical View)

Entr y-turnst i le

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(from Log ic a l View)

Exit-turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Log ic a l View)

Start-device

St ar tMe ch anis m()

(f ro m Lo gic a l Vi ew)

Stop-device

StopMechanism()

(f ro m Lo gic a l Vi ew)

Breakdown

Date
Mechanism
na me

No te Bre ac kd own ()

(fro m Lo gi ca l V iew)

F airground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(f rom Logical View)

Figure D.16 Class diagram for the second application without Alerts mechanism

IST – 2001 – 32298 Page 129 of 129
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Vehic le :
Breakdown-m anager

 :
Operative-device

 : Breakdown : W heel
 : Operative

Look-for-operative-free(dat a)
Checkstatus()

Status(free, name)

NoteBreackdown()

NoteNewBreakdown()

Newbreakdown()

Meas ureUnity()

Error()

Figure D.17 Sequence diagram for the second application without Alerts mechanism

STEP 2. Design models with Alerts

Requirement: add a control of alerts within the park.

IST – 2001 – 32298 Page 130 of 130
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Visi tor

Nam e
Age

(from Logical View)

Vi gilanceC am era
(from Logical View)

Loudspeaker
(from Logical View)

Car

C ar-code

MeasurePressure()

(from Logical View)

R oller C oas ter

N um MaxSeats
(from Logical View)

Operative-device

Op era tiv e-n am e
Op erativ e-code
Opera t iv e-s tatus
N umb er- Of -Mech an ism s-repai red

Indicate-Operat iv e-bu sy ()
Ind ica te- Me ch anism -re pa ire d()
C heck st atu s ()

(from Logica l View)

Brea kd ow n-man ag er

Look -f or-operat iv e-f ree()
Status (f ree)()
BreakdownR epaired(data, nam e)()

(from Logical View)

En try -tu rn sti l e

N um berOf Persons

PeopleC ounter()
R edC olor()
GreenC olor()
Am berC olor()

(f rom Logical View)

Exi t-turnsti le

N um berOf People

PeopleC ounter()
Open()
C lose()
C heck -people-disappeared()

(from Logica l View)

S tart-device

StartMechanism ()

(from Logical View)

S top-device

StopMechanism ()

(from Logical View)

Breakdown

D ate
Mechanism
nam e

N oteBreackdown()

(from Logical View)

Fa i rg round-m echanism

N um berBreakdownsN otR epaired
Address

N oteN ewBreakdown()
N oteBreakdownR epaired()

(from Logica l View)

Wheel

N um Ma xS ea ts

E rror ()

(f rom Log ical V iew)

Veh icle

Ve hic le -co de

Meas ur eU nit y ()

(f rom Log ical V iew)

A lert-m anager

C heckVehic le()
Error()

(f rom Logical View)

Figure D.18 Class diagram for the second application with Alerts mechanism

 : Vehicle :
Breakdown-manager

 :
O perat ive-device

 : Br eakd ow n :
Alert- manag er

 : Wheel

 : O perat ive

Look-for-operative-free(data)
C hec kstat us()

Status(free, name)

NoteBreackdown()

NoteNewBreakdown()

C heckV ehic le()
MeasureUnity()

Error()

Error()

Newbreakdown()

Figure D.19 Sequence diagram for the second application with Alerts mechanism

IST – 2001 – 32298 Page 131 of 131
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Alerts

There are no modifications to the above generalisation presented in the first iteration.

D.7 Status Indication Second Iteration

STEP 1. Design models without Status Indication

I In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Vehic le

Ve hi cle -co de

MeasureUnit y()

(from Logical V iew)

W heel

NumMaxSeats

Error()

(from Logical V iew)

Car

Car-c ode

Meas ur ePr essur e()

(from Logical V iew)

Roller Coaster

NumMaxSeats
(from Logical V iew)

Operative-device

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatu s()

(fro m Lo g ic a l View)

Breakdown-m anager

Look-for-operat ive-free()
Status(free)()
BreakdownRepaired(data, name)()

(fro m Lo g ic a l View)

Entry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(from Logical V iew)

Exit-turnstile

Number O fP eople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Logical V iew)

Start-device

StartMechanism()

(from Logical V iew)

Sto p-dev ice

St opMe cha nism()

(from Logical V iew)

Breakdown

Date
Mechanism
name

NoteBreackdown()

(from Logical V iew)

Loudspeaker

(from Logical V iew)

Vigilanc eCamera

(from Logical V iew)Visitor

Name
Age

Load(data)()
Store("name, ident if icat ion-number, hair-color, stature")()

(fro m Lo g ic a l View)

F airground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(fro m Lo g ic a l View)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et-Help(help)()
G et-Help(tour)()

(f rom L ogi cal V iew)

Figure D.20 Class diagram for the second application without Status Indication mechanism

STEP 2. Design models with Status Indication

Requirement: the operator must be informed of what the system is doing.

IST – 2001 – 32298 Page 132 of 132
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Vehic le-c ode

Meas ureU nity ()

(from Logical V iew)

W heel

N umMax Seats

Erro r ()

(fr om Lo gi ca l Vi ew)

Car

C ar-c ode

Meas urePre s s ure()

(fr om Lo gica l V iew)

R olle r C oas ter

N umMax Seats

(from Logical V iew)

Operativ e -dev ic e

Operativ e -name
Operativ e -c ode
Operativ e -s tatus
N umber-Of-Mec hanis ms -repaired

Indic a te-Operativ e-bus y ()
Ind ic a te-Mec hanis m-repaired()
C hec k s ta tus ()

(from Logical V iew)

En try - turns tile

N umberOfPers ons

Peop leC oun ter ()
R edC olo r ()
GreenC olor ()
AmberC olor ()

(from Logical V iew) E xit-t urnst ile

N umberOfPeop le

Peop leC oun ter ()
Open()
C los e()
C hec k -people -d is appeared()

(from Logica l V iew)

Star t-dev ic e

Star tMec han is m()

(from Logical V iew)

Stop-dev ic e

StopMec han is m()

(from Logical V iew)

Break dow n

D ate
Mec han is m
name

N oteBreac k dow n()

(from Logical V iew)

Louds peak er
(from Logical V iew)

Vig ilanc eC amera
(from Logical V iew)

Visitor

N ame
Age

Load(data) ()
Store ("name, identific a tion -number , ha ir -c o lo r , s ta tu re") ()

(from Logic a l View)

Fa irg round-mec hanis m

N umberBreak dow ns N otR epa ired
Addres s

N oteN ew Break dow n()
N oteBreak dow nR epa ired()

(from Logical V iew)

Vis ito rs -Manager

D ata- to- be-Loaded (da ta) ()
C opy (data) ()
H elp() ()
Get-H elp (he lp) ()
Get-H elp (tour) ()

(from Logical V iew)

F eedbacker

Feedbac k ("Break dow n "da ta " as s igned w ith s uc c es s to opera tiv e "name") ()

(from Logic a l View)

B reak dow n-manag er

Look - for -opera tiv e -free ()
Status (free) ()
Break dow nR epa ired (da ta, name)()

(from Lo gical V iew)

Figure D.21 Class diagram for the second application with Status Indication mechanism

IST – 2001 – 32298 Page 133 of 133
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Feedback ("Breakdown "data" as s igned w ith s ucces s to operative "nam e"")

 : Vehic le :
Breakdown-m anager

 :
Operative-device

 : Breakdown
 :

Breakdowns -m anager

 : Feedbacker :
A le rt-manager

 : W heel
 : O perative

Look -for-operati ve-free(da ta)
Checks tatus()

S tatus(free, name)

NoteBreackdow n()

NoteNewBreakdown()

CheckVehic le() M easureUnit y()

Error()

Error()

Newbreakdown()

Feedback("Breakdown "data" as s igned w ith s ucces s to operative "nam e"", breakdowns -m anager)

Figure D.22 Sequence diagram for the second application with Status Indication mechanism

STEP 3. Abstraction of the design solution for Status Indication

There are no modifications to the above generalisation presented in the first iteration.

D.8 History Logging Second Iteration

STEP 1. Design models without History Logging

Requirement: the user indicates that the ride has been successfully repaired.

IST – 2001 – 32298 Page 134 of 134
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Veh ic le - c ode

Meas u reU n ity ()

(from Logical V iew)

W heel

N umMax Sea ts

Error ()

(from Logical V iew)

Car

C ar-c ode

Meas u rePres s u re()

(from Logical V iew)

R o lle r C oas te r

Nu mM axSea t s

(from Logical V iew)

O pera t iv e -dev i ce

Opera tiv e-name
Opera tiv e-c ode
Opera tiv e-s ta tus
N umber -O f-Mec han is ms -repa ired

Ind ic a te-Operativ e-bus y ()
Ind ic a te-Mec hanis m- repa ired()
C hec k s ta tus ()

(from Logical V iew)

Break dow n-manager

Look - for -opera tiv e- free ()
Sta tus (free) ()
Break dow nR epa ired (da ta , name) ()

(from Logical V iew)

Entry - turns tile

N umberOfPe rs ons

Peop leC oun te r ()
R edC o lo r ()
GreenC olo r ()
AmberC olo r ()

(from Logical V iew)

Exit-turnst ile

N umberOfPeop le

Peop leC oun t e r()
Open()
C los e()
C hec k -pe op le - dis appeared ()

(from Logical V iew)

Sta r t-dev ic e

Sta r tMec han is m()

(from Logical V iew)

Stop-dev ic e

StopMec han is m()

(from Logical V iew)

Break dow n

D a te
Mec han is m
name

N oteBreac k dow n()

(from Logical V iew)

Louds pea k er
(fro m L ogical V iew)Vig ilanc eC amera

(from Logical V iew)

Visitor

N ame
Age

Load(da ta) ()
Sto re ("name, iden tific a tion -number , ha ir - c o lor , s ta tu re ") ()

(from Log ic a l View)

Fa ir g round - mec han is m

N umb erBreak downs N o t R epa ired
Addr es s

No teN ew Break dow n()
N o teBreak dow nR epa ired()

(from Logical V iew)

Vis ito rs -Manager

D a ta - to -be -Loaded (da ta) ()
C opy (data) ()
H e lp () ()
Ge t-H e lp (he lp) ()
Ge t-H e lp (tou r) ()

(from Logical V iew)

Figure D.23 Class diagram for the second application without History Logging mechanism

 :
Operat iv e-dev ice

 : Oper at i ve

 :
Breakdown-m anager

 : Whee l

Indicate-Mechanism -repaired()

BreakdownR epaired(data, nam e)

N oteBreakdownR epaired()

Figure D.24 Sequence diagram for the second application without History Logging mechanism

STEP 2. Design models with History Logging

Requirement: the user indicates that the ride has been successfully repaired and this notification is
stored in the system.

IST – 2001 – 32298 Page 135 of 135
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Ve hi cle-co de

MeasureUnity()

(from Logical V iew)

W heel

NumMaxSeats

Error()

(from Logical V iew)

Car

Ca r-co de

MeasurePressure()

(from Logical V iew)

Roller Coaster

NumMaxSeats

(from Logical V iew)

Breakdown-m anager

Look-for-operat ive-f ree()
Status(f ree)()
BreakdownRepaired(data, name)()

(fr om Lo g ic a l View)

Entry-turnst ile

NumberO fPersons

Pe ople Coun te r()
Re dCo lo r()
G reenColor()
AmberColor()

(from Logical V iew)

Exit-turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Logical V iew)

Start-device

StartMechanism()

(from Logical V iew)

S to p-dev ice

St opMe cha nism()

(from Logical V iew)

Breakdown

Da te
Mechanism
name

NoteBreackdown()

(from Logical V iew)

Lou dsp eak er

(from Logical V iew)

VigilanceCamera

(from Logical V iew)

Visitor

Name
Age

Load(da ta)()
Store("name, identif icat ion-number, hair-color, stature")()

(fr om Lo g ic a l View)

F airground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(fr om Lo g ic a l View)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et-Help(help)()
G et-Help(tour)()

(f rom L ogi cal V iew)

Operative-device

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(fr om Lo g ic a l View)

action- logged

CreateAct ion(breakdown-repaired(data, name)()

(fr om L o gi ca l V ie w)

l oggi nger

Logg(breakdown-repaired(Data,name))()

(fr om Lo g ic a l View)

Figure D.25 Class diagram for the second application with History Logging mechanism

 : O pe rati v e

 :
Operativ e-dev ice

 :
Breakdown-m anager

 : Whee l : logg inger : ac t ion -log ge d

Indicate-Mechanism -repaired()

BreakdownR epaired(data, nam e)

Logg(breakdown-repai red(Data ,nam e))

C reateAct ion(breakdown-repaired(data, nam e))

N oteBreakdownR epaired()

Figure D.26 Sequence diagram for the second application with History Logging mechanism

STEP 3. Abstraction of the design solution for History Logging

There are no modifications to the above generalisation presented in the first iteration.

IST – 2001 – 32298 Page 136 of 136
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

D.9 Undo Second Iteration
In the case of the amusement park design, as it is essentially a control application where there is not
much human intervention, it does not make sense to apply the Undo pattern, which explains why no
second iteration appears for this pattern.

D.10 Form or Field Validation Second Iteration

STEP 1. Design models without Form or Field Validation

In this case, the interaction diagram does not appear because the “data validation” functionality is new.

Vehicle

Vehicle-code

MeasureUnity ()

(from Logical V iew)

W heel

NumMaxSeats

Error()

(from Logical V iew)

Car

Car-code

MeasurePressure()

(from Logical V iew)

Ro lle r Coa st er

NumMaxSeats
(from Lo gical Vi ew)

Operative-device

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()

(from Log ic a l View)

Breakdown-m anager

Look-for-operat ive-free()
Status(free)()
BreakdownRepaired(data, name)()

(fr om Lo gic a l View)

Entry-turnst ile

NumberO fPersons

Pe opleC oun te r()
Re dColo r()
G reenColor()
AmberColor()

(from Logical V iew)

Exit-turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Logical V iew)

Start-device

StartMechanism()

(from Logical V iew)

Stop-device

StopMechanism()

(from Logical V iew)

Breakdown

Date
Mech anism
name

Not eBr eac kd own()

(from Logical V iew)

Loudspeaker

(from Logical V iew)VigilanceCamera

(from Logical V iew)

Visitor

Name
Age

Load(data)()
Store("name, ident if icat ion-number, hair-color, stature")()

(fr om Lo gic a l Vie w)

F airground-mechanism

Numb erBre akd ownsNotRepaired
Add re ss

NoteNewBreakdown()
NoteBreakdownRepaired()

(fr om Lo gic a l View)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Hel p()()
G e t- Help(he lp)()
G e t- Help(to ur)()

(from Logical V iew)

Figure D.27 Class diagram for the second application without Form or Field Validation mechanism

STEP 2. Design models with Form or Field Validation

Requirement: the visitor who wants to register correctly enters the data requested so that he can be
later located in the park if he gets lost.

IST – 2001 – 32298 Page 137 of 137
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Ve h ic le -c o d e

Me a s u re U n ity ()

(from Logical V iew)

W heel

N u mMa x Se a ts

Er ro r ()

(from Logical V iew)

Car

C a r - c o d e

Me a s u re Pre s s u re ()

(fr om L og ica l V ie w)

R o lle r C o a s te r

N u mMa x Se a ts

(from Logical V iew)

O p e ra tiv e -d e v ic e

O p e ra ti ve - na me
O p e ra tiv e -c o d e
O p e ra tiv e -s ta tu s
N u mb e r -O f-Me c h a n is ms - re p a ire d

In d ic a te -O p e ra tiv e -b u s y ()
I n di ca te -Mec h a ni sm- re p a ire d ()
C h e c ks ta tu s ()

(from Logical V iew)

Help-point-interface

N e w Vis ito r ()
Vis ito rD a ta (n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re) ()

(fro m L o g ic a l Vie w)

Validat ion-manager

Va lid a te (s e a rc h e r , "n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re ") ()

(fro m L o g ic a l Vie w)

Searcher-validator

Va lid a te ("n a me , id e n tific a tio n - n u mb e r , h a ir - c o lo r , s ta tu r e ") ()

(fro m L o g ic a l Vie w)

Bre a k d o w n - ma n a g e r

L o o k - fo r -o p e ra tiv e - fr e e ()
Sta tu s (fre e) ()
Bre a k d ow n R e p a ire d (d a ta , n a me) ()

(from Logical V iew)

En tr y - tu rn s tile

N u mb e rO fPe rs o n s

Pe o p le C o u n te r ()
R e d C o lo r ()
G re e n C o lo r ()
Amb e rC o lo r ()

(from Logical V iew)

Exit -turnst ile

N u mb e rO fPe o p le

Pe o p le C o u n te r ()
O p e n ()
C lo s e ()
C h e c k -p e o p le -d is a p p e a re d ()

(from Logical V iew)

Sta r t-d e v ic e

Sta r tMe c h a n is m()

(fr om L og ical V iew)

Sto p -d e v ic e

Sto p Me c h a n is m()

(fr om L og ical V iew)

Bre a k d o w n

D a te
Me c h a n is m
n a me

N o te Bre a c k d o w n ()

(fr om Logical V iew)

L o u d s p e a k e r
(from Logical V iew)

Vig ila n c e C a me ra
(from Logical V iew)

Visitor

N a me
Ag e

L o a d (d a ta) ()
Sto re ("n a me , id e n tific a tio n -n u mb e r , h a ir - c o lo r , s ta tu re ") ()

(fro m L o g ic a l Vie w)

Vis ito rs -Ma n a g e r

D a ta - to -b e -L oa d e d(d at a) ()
C o py (d at a) ()
H e lp () ()
G e t- H e lp (h el p) ()
G e t- H e lp (to u r) ()

(from Logical V iew)

Fa irg ro u n d -me c h a n is m

N u mb e rBre a k d o w n s N o tR e p a ire d
Ad d r e s s

N o te N e w Bre a k d o w n ()
N o te Bre a k d o w n R e p a ire d ()

(from Logical V iew)

Figure D.28 Class diagram for the second application with Form or Field Validation mechanism

IST – 2001 – 32298 Page 138 of 138
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : U ser
 :

H elp-point-interf ace
 :

Validat ion-m anager
 :

Searcher-v alidator
 : V isi to r

NewVisi to r()

Introduce(nam e, identif icat ion-num ber, hair color, s tature)

Vis itorD ata(nam e, ident if icat ion-num ber, hair-color, s tature)

Validate(searcher, "nam e, ident if icat ion-num ber, hair-color, s tature")

Valida te("n am e, id ent if icat ion-numb er, hair- color, s tatur e")

Store("n am e, iden t if ic at io n-n um ber, h air- col or, s tatur e")

Figure D.29 Sequence diagram for the second application with Form or Field Validation mechanism

STEP 3. Abstraction of the design solution for Form or Field Validation

There are no modifications to the above generalisation presented in the first iteration.

D.11 Provision of Views Second Iteration
In the case of the amusement park design, as it is essentially a control application where there is not
much human intervention, it makes not sense to apply the Provision of Views pattern, which explains
why no second iteration appears for this pattern.

D.12 Workflow Model Second Iteration

STEP 1.1. Design models without Workflow Model

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 139 of 139
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Vehic le-c ode

Meas ureU nity ()

(fr om L og ical V iew)

Wh eel

N umMax Seats

Er ro r()

(from Logica l V ie w)

Car

C ar-c ode

Meas urePres s ure()

(from Logical V iew)

R o ll er C oast er

N umMax Seats

(from Logical V iew)

Operativ e-dev ic e

Operativ e-name
Operativ e-c ode
Operativ e-s tatus
N umber-Of-Mec han is ms - repaired

Indic a te -Opera tiv e-bus y ()
Indic a te -Mec han is m-repa ired()
C hec k s tatus ()
N umberOfBreak dow s U ns ettled() ()
Get(data) ()
C onnec tingSy s tem(opera tiv e)()
Enable(Break dow n Mended) ()

(fr om L og ica l V ie w)

Break dow n-manager

Look - fo r-operativ e- free()
Status (free) ()
Break dow nR epaired(data, name)()

(from Logical V iew)

Entry - tu rns tile

N umberOfPers ons

PeopleC ounter ()
R edC olor()
GreenC olor()
AmberC o lor()

(from Logical V iew)

Exit -turnst ile

N umberOfPeople

PeopleC ounter ()
Open()
C l os e()
C hec k-p eople-d is appeared()

(from Logical V iew)

Star t-dev ic e

Star tMec hanis m()

(from Logical V iew)

Stop-dev ic e

StopMec hanis m()

(from Logical V iew)

Bre akdown

D ate
Mec hanis m
name

N oteBreac k dow n()
Break dow nD ata(data) ()

(from Logical V iew)

Louds peak er
(from Logical V iew)

Vig ilanc eC amera
(from Logical V iew)

Visitor

N ame
Age

Load(data) ()
Store("name, identific ation-number, hair -c o lo r , s tature") ()

(from Log ic al View)

Fa irground-mec han is m

N umberBreak dow ns N otR epaired
Addres s

N oteN ew Break dow n()
N oteBreak dow nR epaired()

(from Logical V iew)

Vis itors -Manager

D ata- to-be-Loaded(data) ()
C opy (da ta)()
H elp()()
Get-H elp(help) ()
Get-H elp(tour) ()

(from Logical V iew)

Figure D.30 Class diagram for the second application without Workflow model mechanism

STEP 1.2. Design models with Workflow Model

Requirement: when the operator connects to the system only the pending faults and the option of
indicating repair completed appear.

IST – 2001 – 32298 Page 140 of 140
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Vehicle-code

MeasureUnity()

(from Logic a l View)

W heel

NumMaxSeats

Error()

(from Logic a l View)

Car

Car-code

MeasurePressure()

(f rom Lo gic a l Vi ew)

Roller Coaster

NumMaxSeats
(f rom Lo gic a l Vi ew)

Breakdown-m anager

Lo ok -for-ope rat iv e- free()
St at us(f ree)()
BreakdownR epaired(data, name)()

(f rom Logical V iew)

Entry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(from Logic a l View)

Exit -turn st ile

N umberO fPe op le

PeopleCounter()
O p en ()
C lo se ()
C hec k- pe op le -d isa ppe ar ed ()

(from Logic a l View)

Start-device

StartMechanism()

(from Logic a l View)

Stop-device

StopMechanism()

(from Logic a l View)

Breakdown

Date
Mech an ism
name

NoteBreackdown()
BreakdownData(data)()

(from Logic a l View)

Loudspeaker

(from Logic a l View)

VigilanceCamera

(from Logic a l View)

Visitor

Name
Age

Load(data)()
Store("name, ident if icat ion-num ber, hair-color, stature")()

(f rom Logic al View)

F airground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(f rom Logical V iew)

Visitors-Manager

Data-to-be-Loaded(data)()
C op y (d at a) ()
Help()()
G et-Help(help)()
G et-Help(tour)()

(from Logic a l View)

Operative-device

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f -Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()
NumberO fBreakdowsUnsett led()()
G et(data)()
Connect ingSystem(operat ive)()
Enable(Breakdown Mended)()

(f rom Logical V iew)

F ilt er

UserConnected(operat ive)()
G etListF unct ions(Breakdown Mended)()

(f rom Logical V iew)

user-ty pe

F un ct io ns For(operat iv e) ()
G etF unct ion(Br eakdown Mended)()

(f rom Logical V iew)

sy s t em -f unc t ion

Dow nloa dF u nc tion s(func tio n) ()

(f ro m Log ical View)

Figure D.31 Class diagram for the second application with Workflow model mechanism

IST – 2001 – 32298 Page 141 of 141
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Operative
 :

Operative-device
 : Filter : us er-t ype :

system-function

ConnectingSys tem (operative)

Us erConnected(operative)

Functions For(operative)

DownloadFunctions (function)

GetFunction(Breakdown Mended)

GetLis tFunctions (Breakdown Mended)

Enable(Breakdown Mended)

Figure D.32 Sequence diagram for the second application with Workflow model mechanism

STEP 3. Abstraction of the design solution for Workflow Model

There are no modifications to the above generalisation presented in the first iteration.

D.13 User Profile Second Iteration

STEP 1. Design models without User Profile

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 142 of 142
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehic le

Vehicle-code

Meas ureUnity()

(f ro m L ogic a l V ie w)

W heel

Num MaxSeats

Error()

(f rom Logic al View)

C ar

Car-code

Meas urePres s ure()

(from L og i ca l V iew)

Rolle r Coa ster

Num MaxSeats
(f rom Logic al View)

Operative-device

Operat ive-na me
O perative-code
Operative-s tatus
N um ber-Of-Mecha nis m s -repai red

Indicate-Ope rative-bus y()
Indicate-Mechanis m -repaired()
Chec ks tatu s ()
Num berOfBreakdows Uns ett led () ()
Get(data)()
C onn ectingSys te m (operative) ()
Ena ble(Bre akdow n Mended) ()
SetPreferences (prefe renc es)()

(from Log ica l V iew)

Breakdown-manager

Look-for-operative-free()
Status (free)()
BreakdownRepaired(data, nam e)()

(from Log ica l V iew)

Entry-turnsti le

Num berOfPers ons

PeopleCounter()
RedColor()
GreenColor()
Am berColor()

(from Log ica l V iew)

Exit -t urnstile

Num berOfPeople

PeopleCounter()
Open()
C los e()
Check-people-dis appeared()

(from Log ica l V iew)

Start-device

StartMechanis m ()

(from Log ica l V iew)

Stop-device

StopMechanis m ()

(from Log ica l V iew)

Breakdown

Date
Mechanis m
nam e

NoteBreackdown()
BreakdownData(data)()

(from Log i ca l V iew)

Loudspeaker
(f rom Logic al View)

V igilanceCamera
(f rom Logic al View)

V is itor

Nam e
Age

Load(data)()
Store("nam e, identification-num ber, hair-color, s tature")()

(from Log ica l V iew)

Fairground-mechanism

Num berBreakdowns No tRepai re d
Addres s

NoteNewBreakd own()
NoteBreakdownRepaired()

(from Log ica l V iew)

Vis it ors -Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help() ()
Get-Help(help)()
Get-Help(tour)()

(from Log i ca l V iew)

Figure D.33 Class diagram for the second application without User Profile mechanism

STEP 1.2. Design models with User Profile

Requirement: the operator connects to the system and his preferences are established in the operator
device.

IST – 2001 – 32298 Page 143 of 143
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Veh ic le -c ode

Meas ureU nity ()

(from Logical V iew)

W heel

N umMax Sea ts

Error ()

(from Logical V iew)

C ar

C ar-c ode

Meas urePres s ure ()

(from Logical V iew)

R o lle r C oas ter

NumM axSea t s

(from Logical V iew)

Break dow n-manager

Look - fo r -operativ e - free ()
Sta tus (free)()
Break dow nR epaired(da ta , name)()

(from Logical V iew)

Entry - tu rns t ile

N umberOfPers ons

Peop leC oun te r()
R edC o lo r ()
GreenC o lo r ()
AmberC o lo r ()

(from L ogical V iew)

Exit-turnst ile

Number OfPeop le

Peop l eC oun te r()
Open()
Clos e ()
C hec k -peo p le - d is a ppeared()

(from Logical V iew)

Sta r t-dev ic e

Sta r tMe c han is m()

(from Logical V iew)

Stop-dev ic e

StopMec han is m()

(from Logical V iew)

Breakdown

D ate
Mec han is m
name

N oteBreac k dow n()
Break dow nD ata (da ta) ()

(from Logical V iew)

Louds peak er
(from Logical V iew)

Vig ilanc eC amera
(from Logical V iew)

Visitor

N ame
Age

Load(da ta) ()
Sto re ("name, identific a tion -number , ha ir -c o lo r , s ta tu re") ()

(from Log ic a l View)

Fai rg round-mec han is m

N umberBreak dow ns N otR epa ired
Addres s

Not eN ew Break dow n()
N o teBreak dow nR epa ired ()

(from Logical V iew)

Vis ito rs -Manager

D a ta - to -be -Loaded(data) ()
C opy (da ta) ()
H e lp () ()
Ge t-H e lp (he lp) ()
Ge t-H e lp (tou r) ()

(from Logical V iew)

Operativ e-dev ic e

Operat iv e-nam e
Operat iv e - c ode
Opera tiv e-s tatus
N umber-Of-Mec hani s ms - repaired

Ind ic ate -Opera tiv e -bus y ()
Ind ic a te - Mec han is m- repa ired ()
Che c k s ta tus ()
N umberOfBreak dow s U ns e ttled () ()
Ge t(da ta) ()
C onnec tingSy s tem(opera tiv e) ()
Enab le (Break dow n Mended)()
SetPref erenc es (prefer enc es)()

(from L ogical V iew)

profiler

SetPreferenc es (c od-opera tiv e) ()
SetPreferenc es (pre fe renc es) ()

(from Logical V iew)

preferences

D ow nloadPreferenc es (pre ferenc es) ()

(from Logical V iew)

BreakdownsO per ative

C odOpera tiv e

GetPre fe renc es (c os -opera tiv e) ()
SetPreferenc es (pe r fe renc es) ()

(from Logical V iew)

Figure D.34 Class diagram for the second application with User Profile mechanism

IST – 2001 – 32298 Page 144 of 144
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Operat ive
 :

Ope rative-device
 : profiler :

preferences
 :

BreakdownsOperative

C onnectingSystem(cod-opera tive)

SetPreferences(cod-operative)

GetPreferences(cod-operative)

DownloadPreferences(preferences)

SetPr eferences(perferen ces)

SetPreferences(preferences)

SetPreferences(preferences)

Figure D.35 Sequence diagram for the second application with User Profile mechanism

STEP 3. Abstraction of the design solution for User Profile

There are no modifications to the above generalisation presented in the first iteration.

D.14 Shortcuts Second Iteration

STEP 1. Design models without Shortcuts

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 145 of 145
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehi cl e

Vehicle-code

MeasureUnity()

(from Logic al View)

W heel

NumMaxSe at s

Err or()

(from Logic al View)

Ca r

Car-code

MeasurePressure()

(from Logic al View)

Roller Coaster

Nu mMax Seats
(from Logic al View)

Operative-device

O perat iv e-na me
O p er at ive-c ode
O p er at ive-sta tu s
Nu mbe r- Of -Me ch anis ms- re pa ire d

I nd icat e- Op erat ive- bu sy ()
Indicate-Mechanism-repaired()
Checkstatus()
N umberO fB reakd ow sUn sett led()()
G et(data)()
Co nnect i ng Sys tem(operat iv e) ()
En ab le (Bre ak do wn Men de d) ()
SetPreferences(preferences)()

(f rom Logical View)

Breakdown-m anager

Lo ok-for-operat iv e-f ree()
Status(f ree)()
B reakdow nRe pair ed(dat a, name)()

(f rom Logical View)

Entry-turnst ile

Nu mbe rO fPe rs on s

PeopleCounter()
Re dCol or ()
G r ee nCo lor ()
A mberCo lor()

(from Logic al View)

Exit-turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Logic al View)

Start-device

StartMechanism()

(from Logic al View)

Stop-device

StopMechanism()

(from Logic al View)

Breakdown

Date
Mechanism
name

NoteBreackdown()
BreakdownData(data)()

(from Logic al View)

Loudspeaker

(from Logic al View)

VigilanceCamera

(from Logic al View)

Vi si to r

Na me
Ag e

Lo ad (d at a) ()
Store("name, ident if icat ion-number, ha ir-color, statur e")()

(f rom Logical View)

F airground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(f rom Logical View)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help () ()
G et -H el p(he lp) ()
G et -H el p(tou r) ()
ShowSp ec ifi cH elp(he lp)()

(from Logic al View)

Figure D.36 Class diagram for the second application without Shortcuts mechanism

STEP 2. Design models with Shortcuts

Requirement: the operator creates a rapid access with F1 to indicate that an ongoing fault has just been
repaired.

IST – 2001 – 32298 Page 146 of 146
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Vehic le-c ode

Meas ureU nity ()

(from Logical V iew)

W heel

N umMax Seats

Error ()

(from Logical V iew)

Car

C ar-c ode

Meas urePres s ure()

(from Logical V iew)

R oller C oas te r

N umMax Seats

(from Logical V iew)

En try - tu rns tile

N umberOfPers ons

PeopleC ounter ()
R edC olor ()
GreenC olor ()
AmberC olor ()

(from Logical V iew)

Exit -turnstile

N umberOfPeople

PeopleC ounter ()
Open()
C los e()
C hec k -peop le-d is appeared()

(from Logical V iew)

Star t-dev ic e

Star tMec hanis m()

(from Logical V iew)

Stop-dev ic e

StopMec hanis m()

(from Logical V iew)

Louds peak er
(from Logical V iew)

Vig ilanc eC amera
(from Logical V iew)

Visit or

N ame
Age

Load(data) ()
Store("name, identific a tion-number, ha ir -c o lor , s ta tu re ")()

(from Logi ca l Vi ew)

Fa irgr ound -mec hanis m

N umberBreak dow ns N otR epa ired
Addres s

N oteN ew Break dow n()
N oteBreak dow nR epa ired()

(from Logical V iew)

Vis itors -Manager

D ata - to-be -Loaded(data) ()
C opy (data) ()
H elp ()()
Get-H elp(help) ()
Get-H elp(tou r)()
Show Spec ific H elp(help) ()

(from Logical V iew)

Break dow n-manager

Look - fo r-operativ e - free()
Status (free)()
Break dow nR epaired(data, name)()

(from Logical V iew)

Breakdown

D ate
Mec hanis m
na me

N ot eB rea c k do w n()
Break dow nD ata(da ta) ()

(from Logical V iew)

Operativ e-dev ic e

Operativ e -name
Operativ e -c ode
Operativ e -s ta tus
N umber-Of-Mec hanis ms -repaired

Indic ate -Operativ e-bus y ()
Ind ic ate -Mec han is m-repaired()
C hec k s ta tus ()
N umberOfBreak dow s U ns ettled() ()
Get(data) ()
C onnec tingSy s tem(operativ e) ()
Enable(Break dow n Mended)()
Se tPreferenc es (pre ferenc es) ()

(from Logical V iew)

system-function

D ow nloadFunc tions (func tion) ()

(from Logical V iew)

O perat ive-device-interface

N umberOfBreak dow s U ns ettled()
Vo ic e (data) ()
C reateShortc ut(F1, Break dow nMended)()
C reated() ()

(from Logic a l View)S hortCut

C reateShortc ut(F1, Break dow nMended)()
C reated() ()

(from Logic a l View)

Key

C ode
Order

C rea te (F1, Br eak d ow n mend ed) ()

(from Logical V iew)

Figure D.37 Class diagram for the second application with Shortcuts mechanism

 : Operat iv e

 :
Operat iv e-dev ice-interf ace

 : ShortCut : Key

C reateShortcut(F1, BreakdownMended)

C reateShortcut(F1, BreakdownMended)

C reate (F1, Breakdown m ended)

Created ()
Created ()

Figure D.38 Sequence diagram for the second application with Shortcuts mechanism

IST – 2001 – 32298 Page 147 of 147
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Shortcut

There are no modifications to the above generalisation presented in the first iteration.

D.15 Context Sensitive Help Second Iteration

STEP 1. Design models without Context Sensitive Help

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

W heel

N umMax Seats

Er ror ()

(from Logical V iew)

Vehicle

Veh ic le -c ode

Meas ureU nity ()

(from Logical V iew)

Car

C ar-c ode

Meas urePres s ure()

(from Logical V iew)

R oller C oas ter

N umMax Seats

(from Logical V iew)

Operativ e-dev ic e

Operativ e-name
Operativ e-c ode
Operativ e-s tatus
N umber-Of-Mec hanis ms - repaired

Indic ate-Operativ e-bus y ()
Indic ate-Mec hanis m-repa ired()
C hec k s tatus ()
N umberOfBreak dow s U ns ettled()()
Get(data)()
C onnec tingSy s tem(opera tiv e)()
Enable(Break dow n Mended) ()
SetPreferenc es (preferenc es)()

(from Logical V iew)

Break dow n-manager

Look -for -operativ e- free()
Status (free)()
Break dow nR epaired(data, name)()

(from Logical V iew)

Entry - turns tile

N umberOfPers ons

Pe opleC ou nt er()
R ed C ol or()
GreenC olor ()
AmberC olor ()

(from Logical V iew)

Exit-turnst ile

N umberOfPeople

PeopleC ounter()
Open()
C los e()
C hec k -people-dis appeared()

(from Logical V iew)

Star t- dev ic e

Star tMec han is m()

(from Logical V iew)

Stop- dev ic e

StopMec han is m()

(from Logical V iew)

Breakdown

D ate
Mec hanis m
name

N oteBreac k dow n()
Break dow nD ata(data) ()

(from Logical V iew)

Loud s pea k er
(fr om L og ica l V ie w)

Vig ilanc eC amera
(from Logical V iew)

Visitor

N ame
Age

Lo ad(dat a) ()
Stor e("na me, ide ntifi cati on- numbe r, ha ir -c olor , s ta tu re") ()

(from Logic a l View)

Fairground-mec hanis m

N umberBreak dow ns N otR epaired
Addres s

N oteN ew Break dow n()
N oteBreak dow nR epaired()

(from Logical V iew)

Vis itors -Manager

D ata- t o-b e-L oade d(d at a) ()
C opy (data) ()
H elp()()
Get- H el p(h el p)()
Get- H elp(tou r) ()
Show Spec ific H elp(help) ()

(from Logical V iew)

Figure D.39 Class diagram for the second application without Context Sensitive Help mechanism

STEP 2. Design models with Context Sensitive Help

Requirement: the user can get sensitive help when the cursor is placed over specific elements located
in the interface.

IST – 2001 – 32298 Page 148 of 148
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Operativ e-dev ic e

Operativ e-name
Operativ e-c ode
Operativ e-s ta tus
N umber -Of-Mec hanis ms -repa ired

Ind ic a te-Operativ e-bus y ()
Ind ic a te-Mec hanis m-repa ired()
C hec k s ta tus ()
N umberOfBreak dow s U ns ettled() ()
Get(data) ()
C onnec tingSy s tem(operativ e)()
Enab le(Break dow n Mended)()
SetPreferenc es (pre ferenc es)()

(from Logical V iew)

Vehicle

Vehi c le-c ode

Meas u reU nity ()

(from L ogica l V i ew)

W heel

N umMax Seats

Err or()

(from Logical V iew)

Car

C ar-c ode

Meas urePres s ure()

(from Logical V iew)

R o lle r C oas te r

N umMax Seats

(from Logical V iew)

Break dow n- manag er

Look - for -opera tiv e- free()
Sta t us (free)()
Break dow nR epaired(data , name)()

(fr om L ogi ca l Vi ew)

Entry - turns tile

N umberOfPers ons

PeopleC ounter ()
R edC olor()
GreenC olor ()
AmberC olor ()

(from Logical V iew)

Exit -t urnst ile

N umberOfPeople

PeopleC ounter ()
Open()
C los e()
C hec k -peop le-d is appeared()

(from L ogical V iew)

Sta r t-dev i c e

Star tMec hanis m()

(from Logical V iew)

Sto p-dev i c e

StopMec hanis m()

(from Logical V iew)

Breakdown

D ate
Mec hanis m
name

N oteBreac k dow n()
Break dow nD ata(data)()

(from Logical V iew)

Louds peak er
(from Logical V iew)

Vig ilanc eC amera
(from Logical V iew)

Visitor

N ame
Age

Load(data)()
Store("name, identific a tion-number, ha ir - c o lor , s ta ture") ()

(from Log ic a l View)

Fa irground-mec hanis m

N umberBreak dow ns N otR epaired
Addres s

N oteN ew Break dow n()
N oteBreak dow nR epaired()

(fr om Logica l V iew)

Vis ito rs -Manager

D ata- to-be-Loaded(data) ()
C opy (data) ()
H e lp() ()
Get-H elp(he lp) ()
Get-H elp(tour) ()
Show Spec ific H elp(he lp) ()

(from Logical V iew)

Sensit ive-help

GetH elp(top ic) ()

(from Logical V iew)

Figure D.40 Class diagram for the second application with Context Sensitive Help mechanism

 : Us er
 : V is itors-Manager :

S ensi ti ve -help

Help(topic)
GetHelp(topic)

ShowSpecificHelp(help)

Figure D.41 Sequence diagram for the second application with Context Sensitive Help mechanism

IST – 2001 – 32298 Page 149 of 149
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

STEP 3. Abstraction of the design solution for Context Sensitive Help

There are no modifications to the above generalisation presented in the first iteration.

D.16 Wizard Second Iteration

STEP 1. Design models without Wizard

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

Vehicle

Vehic le -c ode

Meas ureU nity ()

(from Logical V iew)

W heel

N umMax Seats

Er ror ()

(from Logical V iew)

Car

C ar-c ode

Meas urePres s ure()

(from Logical V iew)

R o lle r C oas ter

N umMax Seats

(from Logical V iew)

Entry - turns tile

N umberOfPers ons

Peop leC ounter ()
R edC olor()
GreenC olor()
AmberC olor()

(from Logical V iew)

Exit-turnstile

N umberOfPeop le

Peop leC ounter ()
Open()
C los e()
C hec k -peop le-dis appeared()

(from Logical V iew)

Sta r t-dev ic e

St ar tMec ha nis m()

(from Logical V iew)

Stop-dev ic e

StopMec hanis m()

(from Logical V iew)

Louds peak er
(from Logical V iew)

Vig ilanc eC amera
(from Logical V iew)

Visitor

N ame
Ag e

Load(data) ()
Sto re("name, iden tific a tion-number , hair -c o lor , s ta ture")()

(f rom Lo gi cal Vi ew)

Fa irg round-mec hanis m

N umberBreak dow ns N otR epa ired
Addres s

N ot eN e w Bre ak do w n()
N oteBreak dow nR epa ired()

(from Logical V iew)

Vis ito rs -Manager

D ata- to -be-Loaded(data) ()
C opy (data)()
H e lp () ()
Get-H e lp (help) ()
Get-H e lp (tour) ()
Show Spec ific H elp(he lp)()

(from Logical V iew)

Break dow n-manager

Look -for -opera tiv e- free()
Sta tus (free)()
Break dow nR epa ired(data, name)()

(from Logical V iew)

Breakdown

D ate
Mec hanis m
na me

N ot eB rea c k do w n()
Break dow nD ata(da ta)()

(from Logical V iew)

Oper at iv e-d ev ic e

Operativ e-name
Operativ e-c ode
Operativ e-s tatus
N umber-Of-Mec hanis ms - repaired

Ind ic ate-Opera tiv e-bus y ()
Ind ic ate-Mec hanis m-repa ired()
C hec k s tatus ()
N umberOfBreak dow s U ns ettled()()
Get(da ta)()
C onnec tingSy s tem(opera tiv e) ()
Enab le (Break dow n Mended)()
SetPreferenc es (pre fe renc es) ()

(from Logical V iew)

system-funct ion

D ow nloadFunc tions (func tion) ()

(from Logical V iew)

O perative-device-interface

N umberOfBreak dow s U ns ettled()
Vo ic e (data)()
C rea teShortc ut(F1, Break dow nMended) ()
C rea ted()()
C rea teShortc utW iz ard()()
GetFunc tion(IntroFunc tionN ame)()

(from Logic al View)

S hort Cut

C reateShortc ut(F1, Break dow nMended) ()
C rea ted()()

(f rom Logi ca l Vi ew)

Key

C ode
Order

C reate (F1 , Break dow n mended)()

(from Logical V iew)

Figure D.42 Class diagram for the second application without Wizard mechanism

STEP 2. Design models with Wizard

Requirement: the operator creates a rapid access with F1 for the functionality “Fault repaired” using
the Wizard

IST – 2001 – 32298 Page 150 of 150
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Veh ic le - c ode

Meas u reU n ity ()

(from Logical V iew)

W heel

N umMax Sea ts

Er r o r ()

(from Logical V iew)

Car

C ar -c od e

Meas u rePres s u re ()

(from Logical V iew)

R o lle r C oas te r

N umMax Sea ts

(from Logical V iew)

En t ry - tu r ns til e

N umberO fPe rs ons

Peop leC oun te r ()
R edC o lo r ()
G reenC o lo r ()
AmberC o lo r ()

(fro m L ogica l V i ew)

Exit -turnstile

Num berOf Peop le

Peop leC oun te r ()
O pen ()
Cl os e ()
C hec k -peop le -d is appea red ()

(from Logical V iew)

Sta r t-dev ic e

Sta r tMec han is m()

(from Logical V iew)

Stop -dev ic e

StopMec han is m()

(from Logical V iew)

Louds peak e r
(from Logical V iew)

Vig ilanc eC amera
(fro m L ogi ca l V i ew)

Visitor

N ame
Age

Load (da ta) ()
Sto re ("name , iden tific a tion -number , ha ir -c o lo r , s ta tu re ") ()

(from Log ic a l View)

Fa irg rou nd -mec han is m

N umberBreak dow ns N o tR epa ired
Add res s

N o teN ew Break dow n()
N o teBr eak dow nR epa ire d ()

(from Logical V iew)

Vis ito rs -Manage r

D a ta - to -be -Loaded (da ta) ()
C opy (da ta) ()
H e lp () ()
G e t- H e lp (he lp) ()
G e t- H e lp (tou r) ()
Show Spec ific H e lp (he lp) ()

(fro m Logical V iew)

Break do w n-manage r

Look - fo r -ope ra tiv e - free ()
Sta tus (fr ee) ()
Break do w nR epa ired (da ta , name) ()

(from Logical V iew)

Breakdown

D ate
Mec han is m
name

N o teBr eac k dow n()
Break do w nD a ta (da ta) ()

(from Logical V iew)

O pe ra tiv e -dev ic e

O pera tiv e -name
O pera tiv e -c ode
O per a tiv e -s ta tus
N umber -O f-Mec han is ms - repa i red

Ind ic a t e-Ope ra tiv e -bus y ()
Ind ic a te -Mec han is m-rep a ir ed ()
C hec k s ta tus ()
N umberO fBr eak dow s U ns e ttled () ()
G e t(da ta) ()
C onnec tingSy s tem(ope ra tiv e) ()
E nab le (Br eak dow n M ended) ()
Se tPre fe renc es (p re fe renc es) ()

(from Logical V iew)

syste m-f unction

D ow n loadFunc tions (func tion) ()

(from Logical V iew)

Key

C ode
O rde r

C rea te (F1 , Br eak dow n mended) ()

(from Logical V iew)

O perative-device-interface

N umberO fBr eak dow s U ns e ttled ()
Vo ic e (da ta) ()
C rea teSho r tc u t(F1 , Br eak dow nMended) ()
C rea ted () ()
C rea teSho r tc u tW iz a rd () ()
G e tFunc tion (In troFunc tio nN ame)()

(from Log ic a l View)

W izar d-mana ger

C rea teSho r tc u t() ()

(fr om L ogi ca l V iew)

wizard-system-function

N ex tFun c tion () ()
un titled ()

(from Logical V iew)

ShortCut

C rea teSho r tc u t(F1 , Br eak dow nMended) ()
C rea ted () ()

(from Log ic a l View)

w izard

As s is t (C rea teSho r tc u t) ()
G e t Func tion (In tr oFunc tio nN am e)()
Func tion Name(Break dow nMended) ()
G e t Func tion (In tr oKey s)()
Key N ame(F1) ()
End ()()
O K() ()

(from Logical V iew)

Figure D.43 Class diagram for the second application with Wizard mechanism

IST – 2001 – 32298 Page 151 of 151
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Operative
 :

Operat ive-device -in ter fac e
 :

W izard-m anager
 : wizard :

w i zard -system -function
 : ShortCut : Key

CreateShortcutW izard()
C reateShortcut()

Assist(CreateShortcut)
N extFunction()

GetFunction(IntroFunctionNam e)

GetFunction(IntroF unct ionN am e)

F unct ionN am e(BreakdownMended)
N extFunction()

GetFunction(IntroKeys)
G etF unction(Intr oKey s)

Key N am e(F1)
N extFunction()

End()

CreateShortcut(F1, BreakdownM ended)

Create (F1, Breakdown m ended)

C reated()

OK()

C reated()

Figure D.44 Sequence diagram for the second application with Wizard mechanism

STEP 3. Abstraction of the design solution for Wizard

There are no modifications to the above generalisation presented in the first iteration.

D.17 Cancel Second Iteration
In the case of the amusement park design, as it is essentially a control application where there is not
much human intervention, it makes not sense to apply the Cancel pattern, which explains why no
second iteration appears for this pattern.

D.18 Multi tasking Second Iteration

STEP 1. Design models without Multi tasking

In this case, the interaction diagram does not exist in the original version of the system without the
corresponding usability pattern.

IST – 2001 – 32298 Page 152 of 152
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

R olle r C oa s te r

N umMax Se a ts

(from Logical V iew)

Vehicle

Ve h ic le -c o de

Mea s ure U n ity ()

(from Logical V iew)

W heel

N umMax Se a ts

Er ro r ()
C he c k Veh ic les (p res u re) ()

(from Logical V iew)

Car

C ar -c o de

Mea s ure Pres s u re ()

(from Logical V iew)

O p era ti v e -dev ic e

O pe ra tiv e -name
O pe ra tiv e -c od e
O pe ra tiv e -s ta tu s
N umbe r -O f-Mec han is ms - rep a ire d

In d ic a te -O p era tiv e -bu s y ()
In d ic a te -Me c ha n is m- repa ire d ()
C he c k s ta tu s ()
N umbe rO fBre ak dow s U n s e ttled () ()
G e t(da ta) ()
C on nec ting Sy s te m(o pera tiv e) ()
En ab le (Break do w n Me nde d) ()
Se tPre fe ren c es (p re fe ren c e s) ()

(from Logical V iew)

Bre ak d ow n -ma nag er

Lo ok - fo r -o pera tiv e - free ()
Sta tus (free) ()
Bre ak d ow n R e pa ired (da ta , n ame) ()

(from Logical V iew)

En try - tu r ns t ile

N umbe rO fPers o ns

Pe op leC o un te r ()
R ed C o lo r ()
G ree nC o lo r ()
Amb erC o lo r ()

(from L ogica l V iew)

Exit-turnst ile

Nu mber OfPeo p le

Pe opl eC o un te r ()
O pe n()
Clos e ()
C he c k -pe op le - d is a p pea re d()

(from Logical V iew)

Sta r t-dev ic e

Sta r tMe c h an is m()

(from Logical V iew)

Stop -dev ic e

Stop Me c h an is m()

(from Logical V iew)

Breakdow n

D ate
Mec han is m
na me

N oteBre ac k do w n()
Bre akdo w n D a ta (dat a)()

(from Logical V iew)

Lo ud s pe ak er
(from Logical V iew)

Vig ila nc e C amera
(from Logical V iew)

Visitor

N ame
Ag e

Lo ad (d a ta) ()
Sto re ("n ame, ide n tific a tion -n umbe r , ha ir - c o lo r , s ta tu re ") ()

(fro m Lo g ic a l Vie w)

Fa i rg r ou nd -mec han is m

N umbe rBre ak d ow ns N otR e pa ired
Ad dres s

N oteN ew Break dow n ()
N o teBre ak dow n R e pa ired ()

(from Logical V iew)

Vis ito rs -Mana ge r

D a ta - to -be -Loa ded (da ta) ()
C op y (d a ta) ()
H e lp () ()
G e t-H e lp (he lp) ()
G e t-H e lp (to u r) ()
Sh ow Sp ec ific H e lp (h e lp) ()

(from L ogical V iew)

Figure D.45 Class diagram for the second application without Multi-Tasking mechanism

STEP 2. Design models with Multi Tasking

Requirement: the clock advises the dispatcher every three seconds to check all the rides.

IST – 2001 – 32298 Page 153 of 153
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Vehicle

Vehicle-code

MeasureUnity()

(from Log ic a l View)

Car

Car-code

MeasurePressure()

(from Log ic a l View)

Operative-device

O perat ive-name
O perat ive-code
O perat ive-status
Number-O f-Mechanisms-repaired

Indicate-O perat ive-busy()
Indicate-Mechanism-repaired()
Checkstatus()
NumberO fBreakdowsUnset t led()()
G et(data)()
Connect ingSystem(operat ive)()
Enable(Breakdown Mended)()
SetPreferences(preferences)()

(f rom Logical View)

Breakdown -m anage r

Look-for-operat ive-free()
Status(f ree)()
BreakdownRepaired(data, name)()

(f rom Logical View)

Ent ry-turnst ile

NumberO fPersons

PeopleCounter()
RedColor()
G reenColor()
AmberColor()

(f rom L og ic a l Vi ew)

Exit-turnstile

NumberO fPeople

PeopleCounter()
O pen()
Close()
Check-people-disappeared()

(from Log ic a l View)

Start-device

StartMechanism()

(from Log ic a l View)

Stop-device

StopMechanism()

(from Log ic a l View)

B reakdown

Date
Mechanism
name

NoteBreackdown()
BreakdownData(data)()

(f ro m L og ic a l Vi ew)

Loudspeaker

(from Log ic a l View)

Vigi lance Camer a

(f ro m L og ic a l Vi ew)

Visitor

Name
Age

Load(data)()
Store("name, ident if icat ion-number, hair-color, stature")()

(f rom Logical View)

Visitors-Manager

Data-to-be-Loaded(data)()
Copy (data)()
Help()()
G et-Help(help)()
G et-Help(tour)()
ShowSpecif icHelp(help)()

(f ro m L og ic a l Vi ew)

F airground-mechanism

NumberBreakdownsNotRepaired
Address

NoteNewBreakdown()
NoteBreakdownRepaired()

(f rom Logic al View)

W heel

NumMaxSeats

Error()
CheckVehicles(presure)()

(from Log ic a l View)

Roller Coaster

NumMaxSeats
(from Log ic a l View)

F air gro und -m an age r

Check(presure)()

(from Log ic a l View)

D ispatcher

Check()()

(from Log ic a l View)

Figure D.46 Class diagram for the second application with Multi-Tasking mechanism

 : Clock

 : D ispatcher :
Fai rground-m anager

 : Whee l : Vehicle

Check()

Check(presure)

CheckVehicles(presure)

MeasureUnity()

For each
V ehicle

Figure D.47 Sequence diagram for the second application with Multi-Tasking mechanism

STEP 3. Abstraction of the design solution for Multi tasking

There are no modifications to the above generalisation presented in the first iteration.

IST – 2001 – 32298 Page 154 of 154
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

D.19 Command Aggregation Second Iteration
In the case of the amusement park design, as it is essentially a real-time control application where no
variables must be changed during the execution of the system, it makes no sense to apply the
Command Aggregation pattern, which explains why no second iteration appears for this pattern.

D.20 Actions for Multiple Objects Second Iteration
In the case of the amusement park design, as it is essentially a real-time control application where
nothing is batch processed, it makes no sense to apply the Actions for Multiple Objects pattern, which
explains why no second iteration appears for this pattern.

IST – 2001 – 32298 Page 155 of 155
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX E: PHASE 2 VALIDATION WITH PRACTITIONERS IN A REAL PROJECT

Because of its size, this annex has been stored in another file.

IST – 2001 – 32298 Page 156 of 156
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

ANNEX F: CATALOGUE OF USABILITY PATTERNS

F.1 Reusing Information Architectural Usability Pattern
 Pattern Name: Reusing Information.

 Usability Mechanism: This pattern enables the user to move data from one part of a system to
another. So users should be provided with automatic (e.g., data propagation) or manual (e.g., cut
and paste) data transports between different parts of a system.

 Solution:

o Diagram:

Interface

Reuser

Interface System

1 2

3 4 5

o Participants:

 Interface: collects the data to be processed by the reuser pattern and finally
displays the operation results (if the user needs to see the result). Interface sends
the data to be processed (1) and the function requested by the interface (2), i.e.
copy, paste, move, etc., to Reuser. Also, once the reuser pattern has been applied
the results of the requested function will be displayed on the interface (5), unless
the requested function was “copy”.

 Reuser: is the module that gathers the information provided by the interface and
manipulates these data according to the requested function (copy, paste, move,
etc.). Reuser receives the data to be manipulated as well as the function to be
executed (1) (2). If Reuser does not store the data to be manipulated internally, it
has to send these data to the system (3), as happens, for instance, with the Copy
function. Also if Reuser does not store the data internally, it has to ask for these
data from the part of the system where they are stored (4) as happens with the
paste or move functions.

 System: this component is optional and is only necessary when the Reuser module
does not store the data internally.

 Usability benefits: The reuse of data in an application as well as across different applications
minimises users’ cognitive load and also inputs fewer errors into the process. It also improves the
adaptability of the application or applications that enable data reuse.

 Usability rationale: By preventing the error input by users, the application of this pattern
improves system reliability. User efficiency is also improved. Additionally, by building a more
adaptable system, the satisfaction of the end user is improved too.

 Consequences:

IST – 2001 – 32298 Page 157 of 157
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Related patterns:

o System performance will be better if the information to be reused is stored in the Reuser
module rather than in another part of the system, because this reduces the system
interaction level.

 Pattern Implementation in OO: Interface generates some classes. Reuser generates one or more
“Reuser” classes, furnished with the manipulation methods (copy, paste, move, etc.) and “Data-to-
be-reused” classes, which store the data to be manipulated in the class or through a link to another
one. In this case, it was decided to store the data outside the reuser class to respect the
encapsulation principle.

 Example: Suppose the waiter inputs the foodstuff code and, as the next consumption ordered is
the same, the waiter uses the “duplicate last foodstuff” function.

Re stau rant

Nam e : String
Address : String

GetNam e(Nam e)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

ClientNam e(client)()
Check(date, hour)()
Get(tim es-in-week)()

(from CLASSES)

R eques t

Hour
Date
St at us

Init-request()
Input-CodConsum ption()
OK()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestConsum tions()()
Bill()()
New-price(price)()
GetPrice(pr ice)()

(from CLASSES)

C onsum pt ion

Cod-consum ption
Description
Price

Check-Stock()
OK()
Consum tionNam e(nam e)()
LastCodeConsum ption()()

(from CLASSES)

R eques t- line

Crea te Line(co de) ()
Read (co nsu m pt io n)()
Consum ti on Pri ce (pr ice) ()
LineNa me (n am e) ()
GetPri ce (pr ice) ()

(from CLASSES)

Alert -Manager

Check-Ingredient()
OK()

(f rom CLASSES)Ingredient

Nam e
M inim un-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(from CLASSES)

Recipe

Am ount
N am e

(from CLASSES)

Books m anager

GetRestaurants(list)()
Get(restaurant, date, hour, kind)()

(from CLASSES)

Table

Status : String
Num ber-person : Integer
Sm oker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CLASSES)

Interface

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsum ption(code)()
D isplay(list of consum ptions)()
DuplicateConsum ption()()
Help()()
Get-help(help)()
Get-help(tour)()
NewBook()()
ShowList(list)()
Get(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem ()()
Enable(RequestCooked)()
Pressed(F1)()
OK()()
SpecificHelp(tppic)()
ShowSpecificHelp(help)()
Cancel(request)()

(from CLASSES)

dat a-to -be-reused
(from CLASSES)

reus er

Du pl ic at eCon sum pti on()()
Ge tCo de(cod e) ()

(from CLASSES)

Figure F.1 Class diagram for restaurant management with Reusing Information mechanism

IST – 2001 – 32298 Page 158 of 158
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Reques t

 : Wai ter

 : Tabl e : Cons um ption : Reques t-line : Alert-Manager : Ingred ien t : reus er : Interface

Init-reques t()

Input-CodCons um ption(code)

ChangeSta te()

Check-Stock(code)

O K()

CreateLine(code)

Check-Ing re dien t()

OK()

Check()

OK()

DuplicateCons um ption()

DuplicateCons um ption() Las tCodeCons um ption()

GetCo de(code)

Input-CodCons um ption(code)

Figure F.2 Sequence diagram for restaurant management with Reusing Information mechanism

IST – 2001 – 32298 Page 159 of 159
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.2 . Standard Help Architectural Usability Pattern
 Pattern Name: Standard help.

 Usability Mechanism: The system must allow the user to ask for information and help about the
tasks performed by the system.

 Solution:

o Diagram:

Interface

Standard-helper

Interface

System

1

2
3

o Participants:

 Interface: gathers the information from the help application and sends this
information to the module which manages the help (1). Also it will show the help
information sent by the Standard-helper (2)

 Standard-helper: will show a general help (that is, not specialised) for the
application. This help is usually identified as an html, doc, etc., document. This
component receives the application from the interface (1) and sends the respective
data to the interface (2). If the help is not stored in this component, the help will
be provided for another component using the data flow from System (3).

 System: this component is optional and represents the part of the system where
the help is stored if the Standard-helper does not store the help internally. It will
be the system that provides the Standard-helper with the help (3).

 Usability benefits: The provision of help will give the user guidance, and will improve error
management, both error detection and error correction.

 Usability rationale: Help is essential in any system because it improves learnability by providing
the user with guidance about system functions. Efficiency also improves, because this is one of the
spaces used for error management. However, this help must be well organised and displayed in the
user language, otherwise user efficiency may fall.

 Consequences: System performance will be better if the help files are stored in the same
Standard-helper module rather than in any other part of the system.

 Related patterns: Guided-helper and Sensitive-helper, because both helps can be stored in the
same “Help” class, furnished with special methods to manage each kind of help provided by either
Standard-helper or Guided-helper.

 Pattern implementation in OO: The interface generates some classes. The Standard-helper
component will be implemented using a class with an attribute that stores the help or a link to
another class (represented by System) that contains the help.

IST – 2001 – 32298 Page 160 of 160
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Example: The user can push the Help button

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fro m C LASSES)

Consum ption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(from CLASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CL ASSE S)

B ooks man ager

G etRe staurants(li st)()
G et(re staurant, date, hour, kin d)()

(from CLASSES)

Request-line

Crea teLi ne (cod e) ()
Read(cons umptio n)()
Cons umtion Price (price)()
Li ne Name (nam e) ()
Ge tPri ce (pric e)()

(from CLASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(from CLASSES)

In terface

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
Connect ingSystem()()
Enable(RequestCooked)()
Pressed(F1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(from CLASSES)Standard-helper

St-Help()()

(fro m C LASSES)

Figure F.3 Class diagram for restaurant management with Standard Help mechanism

 : User
 : Interface : Sta ndard-helper

Help()
St-Help()

Get-help(help)

Figure F.4 Sequence diagram for restaurant management with Standard Help mechanism

IST – 2001 – 32298 Page 161 of 161
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.3 Tour Architectural Usability Pattern
 Pattern Name: Tour.

 Usability Mechanism: A tour presents users with information explaining how to do routine
system tasks, providing step-by-step guidance.

 Solution:

o Diagram:

Interface

Guided-helper

Interface

System

1

2
3

o Participants:

 Interface: collects the guided help request and sends it to the Guided-helper (1).
Additionally, it will display the help information it receives from the Guided-
helper (2).

 Guided-helper: displays a guided help for the application for which the help has
been described (2). This help can range from a pre-recorded tour of the
application, to an interactive tour, which involves the development of a separate
application. If the help is not stored internally in this component, this help will be
provided by any other part of the system through the information flow from
system (3).

 System: this is an optional component and represents part of the system in which
the help will be stored if the Guided-helper does not store the information
internally. System will, therefore, be responsible for providing the Guided-helper
with the help through (3).

 Usability benefits: The provision of a tour will give the user guidance and will improve error
management, both error detection and error correction.

 Usability rationale: System learnablity and memorability may be improved, but it may have a
negative impact on efficiency, as users might be induced to follow a specific task order, passing up
the use of possible shortcuts.

 Consequences: System performance will be better if the help files are stored in the Standard-
helper module rather than in any other part of the system, as this requires fewer interactions.

 Related patterns: Standard-helper and sensitive-helper, because both helps can be stored in the
same “Help” class, furnished with special methods to properly handle the two types of help
provided by Standard-helper and Sensitive-helper.

 Pattern implementation in OO: The Interface component will generate one or more classes. The
Guided-helper component will generate a class that will have an attribute that contains the help or

IST – 2001 – 32298 Page 162 of 162
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

a pointer to another place (another class or another system) that is capable of providing this help.
In this example, the Guided-helper class stores the help internally and does not need to ask another
part of the system for the help.

 Example: the user can push the Guided Help button.

Interf ace

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(f rom CLASSES)

Guided-helper

G uided-help()()

(from C LASSES)

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)
Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from C LASSES)

Consumption

Cod-consumpt ion
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Table

Status : String
Number-person : I nt eger
Smoker/Non Smoker : Boolean
Place : XY
Code : I nt eger

ChangeS tate()
ChangeS tate()
Chang eSt at e() ()
Chang eSt at e() ()
LookForAvailable(kind, data, hour)()

(f rom CLASSES)

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Request -l ine

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(f ro m CLAS SES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Figure F.5 Class diagram for restaurant management with Tour mechanism

IST – 2001 – 32298 Page 163 of 163
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : User
 : Interface : Guided-helper

Help()
Guided-help()

Get-help(tour)

Figure F.6 Sequence diagram for restaurant management with Tour mechanism

IST – 2001 – 32298 Page 164 of 164
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.4 Different Languages Architectural Usability Pattern
 Pattern Name: Different Languages.

 Usability Mechanism: Internationalisation refers to the capability of the software to interact with
users in different languages.

 Solution:

o Diagram:

Interface

Language
recognitor

Interface

Language
Translator 1

System

Interface

Language
Translator n

.

1 2

3
4

5
6

7

8

o Participants:

 Interface: collects the operation to be performed and any associated data, which it
sends to the Language-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Language-translator in the language that originated the request
(8).

 Language-recogniser is a recogniser, not a translator, which determines the
language in which a the respective functionality is requested and sends the data
and the functionality request to the respective Language-translator (3) (4).

 Language-translator (i): there may be one for each language that the system is
capable of recognising. If there is one for each language, which would be
advisable for reasons of system modularity, each Language-translator translates
the functionality and any data it receives from the Language-recogniser (3) (4) to
a common language understood by the system. Once they have been translated to
the common language, it sends them to the system (5) (6). Once the functionality
has been processed in the system, it again receives the response data for the
executed functionality (7), and again translates them from the common language
to the specific language in which the user requested the functionality. After
translating, it sends the data to the user (8) through the interface.

IST – 2001 – 32298 Page 165 of 165
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 System: it performs the functionality requested by the Language-translator (i), in
the common language (5) (6), and returns the respective response to the language-
translator in the common language (7).

 Usability benefits: This pattern improves system accessibility by users using different languages.
It also improves error prevention by giving a better understanding of the options and tasks to be
performed by the system.

 Usability rationale: The use of this pattern improves reliability and user efficiency, as it
eliminates possible sources of error in system use. User satisfaction may be increased by allowing
the use of the system in different languages. However, system performance falls because of it
having to manage these languages, which may also have a negative impact on satisfaction.
Learnability also increases by enabling the user to use the system in the language with which he
feels most at home.

 Consequences:

o Decreased system performance, as it involves a longer translation time from one language
to another.

o Increased portability, as the system will be able to operate on the same platform in
different locations.

o If different Language-translator modules are used, increased maintainability of the system,
as if a new language included, all that has to be done is to add a new module.
Additionally, system maintainability is improved if the Function-Dispatcher class that
appears in the implementation section is used.

 Related patterns: The diagram is similar to the Device-recogniser, but the functionality is
different even though they share the Function-dispatcher.

 Pattern implementation in OO: This pattern generates a language recognition class (recogniser),
a class for each language to be translated (translator) and another Function-dispatcher class,
which, once a request has been translated to the generic language, is responsible for conveying this
request to the respective class for processing.

 Example: When the user is booking a table from the terminal, the system should be able to
understand the date, time and table time irrespective of the language used by the user. The
interaction diagram does not show the full booking for reasons of visibility on the model.

IST – 2001 – 32298 Page 166 of 166
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Translator

C hoos eLangModele r (date , hour , k ind)()

(from C LASSES)

Language-modeler

Trans la teD ata (da te, hour , k ind)()

(from C LASSES)

Book

C lien tN ame(c lien t) ()
C hec k (date, hour) ()
Get(times - in-w eek)()

(from C LA S S E S)

Request-line

C rea teL ine (c ode)()
R ead(c ons umption) ()
C ons umtionPr ic e (pr ic e)()
L ineN ame(name) ()
GetPr ic e (p r ic e) ()

(from C LA S S E S)

Restaurant

N ame : Str ing
Addres s : Str ing

GetN ame(N ame) ()
Av ailab leTables (date , hour , k ind) ()

(from C LASSES)

T able

Status : Str ing
N umber -pers on : In teger
Smok er /N on Smok er : Boolean
Plac e : XY
C ode : In teger

C hangeSta te()
C hangeSta te()
C hangeSta te() ()
C hangeSta te() ()
Look ForAv ailab le (k ind, da ta, hour) ()

(from C LASSES)

Request

H our
D ate
Status

In it- reques t()
Input-C odC ons umpti on ()
OK()
in it- reques t()
In it -r equest () ()
In it -r equest () ()
In it -r equest () ()
In it C odC ons umpti on(c ode)()
Reque s tC ons umt ions () ()
Bill() ()
N ew -pri c e(pr ic e) ()
Ge tPr ic e (pr ic e) ()

(from C LA S S E S)

Consumpt ion

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption () ()

(from C LA S S E S)

Restaurants-manager

GetR es tauran ts (lis t) ()
Av ailab leTables (res tauran t, date , hour , k ind)()

(from C LASSES)

Int erfa ce

In it- reques t()
Ini t- reques t() ()
Undo () ()
Ini t- reques t() ()
Input-C odC ons umption (c ode)()
D is p lay (lis t o f c ons umptions)()
D uplic a teC ons umption() ()
H elp () ()
Get-he lp (he lp) ()
Ge t -h e lp(tou r) ()
Ne w Book () ()
Show Lis t(lis t) ()
Get(res tauran t, da ta, hour ,k ind)()
Show Lis t(lis t) ()
C onnec tingSy s tem() ()
Enab le(R eques tC ook ed)()
Pres s ed(F1)()
OK () ()
Spec ific H e lp(tpp ic) ()
Show Spec ific H elp (help) ()
Canc el (reques t)()

(f rom CLASS ES)

Books manager

GetR es tauran ts (lis t) ()
Get(res tauran t, da te, hour , k ind)()

(from C LASSES)

Figure F.7 Class diagram for restaurant management with Different Languages mechanism

IST – 2001 – 32298 Page 167 of 167
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : User
 : Interface : Books

manager
 :

Res tau ran ts-manager
 : Restaurant : Table : Book :

Language-modeler
 : T ranslator

NewBook()

G etRestaurants(list)
GetRestaurants(list)

G etName(Name)

ShowList(list)

G et(restaurant, data, hour,kind)

G et(restaurant, date, hour, kind)

AvailableT ables(date, hour, kind)

LookF orAvailable(kind, data, hour)

Che ck(dat e, hour)

ShowList(list)

ChooseLangModeler(restaurant, date, hour, kind)

T ranslateData(restaurant, date, hour, kind)

Av ailab le T ables(re sta ura nt, d ate , hour , kind)

 Figure F.8 Sequence diagram for restaurant management with Different Languages mechanism

IST – 2001 – 32298 Page 168 of 168
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.5 Different Access Methods Architectural Usability Pattern
 Pattern Name: Different Access Methods.

 Usability Mechanism: Access method means the capability of the software of being accessed
from different types of physical devices. So, this attribute will make the system easier to access
not only from the desktop or laptop, but also using devices like WAP, Web, and interactive TV,
for example.

 Solution:

o Diagram:

Interface

Device
recognitor

Interface

Device
Transformer 1

System

Interface

Device
Transformer n

.

1 2

3
4

5
6

7

8

o Participants:

 Interface: collects the operation to be performed and any associated data, which it
sends to the Device-recogniser (1) (2). Additionally, once the respective
functionality has been processed, the interface receives the data to be displayed to
the user from the Device-transformer in the format in which the user placed the
request (8).

 Device-recogniser: is a signal format recogniser, which sends the signal to one
device or another for interpretation, depending on the type of signal it receives.
Additionally, it sends the data and the functionality request to the respective
device-transformer (5) (6).

 Device-transformer: (i) there may be one for each device that the system is able to
recognise. If there is one for each device, which would be advisable for reasons of
system modularity, each Device-transformer is responsible for converting both the
functionality and any data it receives from the Device-recogniser (3) (4) to a
general functionality understood by the system. Once the signal has been
converted to a functionality and/or data that can be understood by the system, it is
all sent to the system for it to perform the respective operation (5) (6).
Additionally, once the functionality has been processed in the system, it again

IST – 2001 – 32298 Page 169 of 169
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

receives the response data for the executed functionality (7), which it again
translates to the specific signal format in which the user requested the
functionality. After translation, it sends the data to the user (8) through the
interface.

 System: it performs the functionality requested by the Device-transformer (i) in
the common functionality format (5) (6) and returns the response to the respective
device-transformer in the aforesaid common format (7).

 Usability benefits: This pattern improves system accessibility for users who use different devices.

 Usability rationale: User satisfaction may be increased by enabling access to the system through
different devices. However, system performance falls because of having to manage these devices,
which may also have a negative impact on satisfaction.

 Consequences:

o Decreased system performance, as it involves a longer conversion time for signals
interpreted by different devices.

o If different Device-transformer modules are used, increased maintainability of the system,
as if it is decided to include a new device, all that has to be done is to add a new module.
Additionally, system maintainability is improved if the Function-Dispatcher class that
appears in the Implementation section is used.

 Related patterns: The diagram is similar to the Language-translator, but the functionality is
different even though they share the Function-dispatcher.

 Pattern implementation in OO: This pattern generates a device recognition class (device-
recogniser), a class for each signal type to be interpreted (device-transformer) and another
Function-dispatcher class, which, once a request has been translated to the generic language, is
responsible for conveying this request to the respective class for processing.

 Example: The waiter can ask the waiter device what foodstuffs a table has ordered by simply
saying “I want to know what foodstuffs table x has ordered”. Additionally, the waiter’s device is
capable of verbally reproducing all the foodstuffs.

IST – 2001 – 32298 Page 170 of 170
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request- line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(from C LASSES)

R eci pe

Amount
Name

(from CLA S S E S)

Alert-M anager

Check-Ingredient()
O K()

(fro m CL AS S ES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from CLA S S E S)

Re stau rant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(from C LASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from CLA S S E S)

Consum ption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(from C LAS SES)

Books m anager

G etRestaurants(list)()
G et(restaurant , date, hour, kind)()

(from C LASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init -request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()
LastRequestConsumt ions()()

(from C LASSES)

W aiter-dev ice

Co nsu mpt io n- In -T a ble- x()
SendO utVoice(listconsumptions)()

(from C LASSES)

D ev ice-recognitor

Voice(Consumtions in table x)()

(from C LASSES)

Dev i ce-tr ansf ormer

T ranslateVoice(Consumpt ions in table x)()
ModeleVoice(listconsumpt ions)()

(from C LASSES)

Function-dispatcher

G etConsumptions(T ablex)()
ListConsumpt ions()()

(from C LASSES)

Table

Status : St ring
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()
LastRequestConsumpt ions()()

(from C LASSES)

Figure F.9 Sequence diagram for restaurant management with Different Access Methods mechanism

 : Request

 : W aiter

 : Consumption : Table :
Device-recognitor

 :
Device-transform er

 :
Function-dispatcher

 :
W aiter-device

 : R equest-line

Cons um ption -In-Tabl e-x()

Voice (Cons um ti ons i n ta ble x)

TranslateVoice(Consumptions in table x)

GetConsumptions(Tablex)

La stRe ques tC on sumptions()

LastRequestConsum tio ns()
LineName(name)

ConsumtionNam e(nam e)

ListConsumptions(list)

ModeleVoice(listconsum ptions)

SendOutVoice(listconsum ptions)

Figure F.10 Sequence diagram for restaurant management with Different Access Methods mechanism

IST – 2001 – 32298 Page 171 of 171
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.6 Alerts Architectural Usability Pattern
 Pattern Name: Alerts

 Usability Mechanism: An alert is a message from the system to the user that a change of state has
occurred that the user ought to know about. It can be used, for example, for e-mail arrival, stock
control alerts, etc.

 Solution:

o Diagram:

 System

Alert - manager

Interface System

1

2 3

o Participants:

• System: represents the element of the system to be checked in order to
identify anything of importance for this element. It is responsible for
notifying the Alert-manager to check the state of the element to be
checked within the system. (1). Depending on what is to be checked, it
also sends the request to the part of the system responsible for running the
check (3) and, when the check has been run, sends the respective results
(if required) to the interface (2).

• Alert-manager: represents a component of the system that is capable of
receiving a checking order and forwarding this order to the part of the
system that is capable of processing it. It receives the checking order from
one part of the system (1) and forwards this request to the part of the
system concerned (3). Finally, if applicable, it displays any alert
information that is of interest to the user (2) to check that one or more
system components are working correctly.

 Usability benefits: Alerts help to keep the user informed about the state of the system with
respect to given actions so it provides feedback about the system state.

 Usability rationale: Informing the user about given effects of actions that occur in the system
raises user satisfaction, as users know what is going on. On the other hand, satisfaction may also
be affected by the decreased system performance due to alert processing. User efficiency may also
increase, as they are alerted about given situations and do not have to waste time checking the
system state under these circumstances.

 Consequences:

o System performance may be affected when processing the respective checking.

 Related patterns:

IST – 2001 – 32298 Page 172 of 172
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Implementation in OO: This pattern generates an Alert-manager class responsible for managing
all the alert checking requests in the system. Each class that represents one of the components
affected by the alert will have methods for controlling these alerts at the Alert-manager’s request.

 Example: the foodstuff code cannot be entered until a check has been run of whether there is a
stock of all the ingredients for the selected foodstuff.

Recipe

Am ount
Nam e

(from CLASSES)

Ingredient

Nam e
Minim un-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(from CLASSES)

A lert-M anager

Chec k-Ingred ient()
OK()

(from CL AS SE S)

Restauran t

Na m e : String
Addr ess : String

GetN am e(Nam e)()
Av ailableTables(date, hour, k ind)()

(from CLASSES)
Book

C lie ntNam e(c lient)()
C he ck(d ate , hou r)()
G et(t i me s-in -wee k)()

(from CLASSES)

T able

Sta tus : Strin g
Num ber-pers on : Integ er
Sm oker/N on Sm oker : Boolean
Pl ace : XY
Co de : In teg er

Ch ang eSta te()
Ch ang eSta te()
Cha ng eState ()()
Cha ng eState ()()
L ook ForAv a ila bl e(k i nd, data , hour)()

(from CLASSE S)

Request

Hour
Date
Status

Init-request()
Input-CodConsum pt ion()
OK()
init-reques t()
Init-request()()
Init-request()()
Init-request()()
InitCodConsum ption(code)()
RequestC onsum tions()()
Bill()()
New-price(price)()
GetPrice(price)()

(from CLASSES)

Books m anager

G etR es tau rants (lis t)()
G et(re sta uran t, da te, h our, k in d)()

(from CLASSES)

Request-l i ne

CreateLine(code)()
Read(cons um ptio n)()
Consu mtio nPri ce(p ric e)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)

Consum ption

Cod-consum ption
Descript ion
Price

Check-Stock()
OK()
Consum tionNam e(nam e)()
LastCodeC onsum ption()()

(from CLASSES)

Figure F.11 Class diagram for restaurant management with Alerts mechanism

 : Reques t

 : Wai te r

 : Table : Cons um ption : Reques t-line : Alert-Manager : Ingred ient

Init-reques t()

Input-CodConsum ption(code)

ChangeState()

Ch eck-S to ck(code)

OK()

CreateLine(code)

Check-Ingredient()

OK()

Check()

OK()

Figure F.12 Sequence diagram for restaurant management with Alerts mechanism

IST – 2001 – 32298 Page 173 of 173
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.7 Status Indication Architectural Usability Pattern
 Pattern Name: Status Indication

 Usability Mechanism: The user should be provided with information pertaining to the current
state of the system.

 Solution:

o Diagram:

Active Process

Feedbacker

Interface System

Active Process 1

Feedbacker

Interface System

Active Process Active Process n

1

3 4

2

o Participants:

 Active-process i: this module has been represented more than once, because there
may be several processes running simultaneously that request feedback (1) so that
it will be each active process that sends the information that it wants to be fed
back to Feedbacker (1).

 Feedbacker: this module receives the request and data (1) (2), which indicates the
desired type of feedback and the data to be fed back from each active process.
Additionally, it needs to know the recipient of this feedback and will send this
feedback either to another part of the system (4) and/or to the interface (3) to
inform the user. For some guidelines on how to display this feedback on the
interface, for example, how often it should be refreshed or where to place specific
information, see [Welie, 00]. These details should be taken into account in low-
level design.

 Interface: it receives the feedback and displays it to user (3).

 System: this component is optional and represents other parts of the system that
must be informed of the feedback (4).

 Usability benefits: giving an indication of the system’s status provides users with feedback about
what the system is doing and what will the result of any action they carry out will be.

 Usability rationale: providing feedback gives the user information about what the system is
working on and whether the application is still processing or has died. Accordingly, the pattern
raises satisfaction.

 Consequences:

o This pattern averts additional system load by discouraging retries from users [Welie, 00].

o This pattern increases system maintainability, because it channels the feedback better than
any existing feedback that is issued indiscriminately by any other system module.

 Related patterns:

IST – 2001 – 32298 Page 174 of 174
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Implementation in OO: This architectural pattern will generate a Feedbacker class specialised in
notifying the user and system about what is happening. This means that all the classes that want to
report anything must inform the feedback manager, Feedbacker, so that this then properly
distributes this information either within or outside the limits of the system.

 Example: the user must be informed about what is happening in the system.

F eedbac ker

F eedback(checking-resource)()
F eedback(request-acepted)()

(fr o m C L ASSES)

R ec ipe

Amount
Name

(from CLA S S E S)

Restaurant

Name : String
Address : St ring

G et Name (Na me)()
AvailableT ables(date, hour, kind)()

(fr o m C L ASSES)

Book

ClientName(client)()
Check(date, hour)()
G et (t imes- in-week)()

(from CLA S S E S)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()

(fr o m C L ASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(fr o m C L ASSES)

Request-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(fr o m C L ASSES)

Req uest

Hour
Date
Status

In it -r eq ues t()
In put -C odCo nsu mpt ion()
O K()
in it -reque st()
Init -r eq ues t()()
Init -r eq ues t()()
Init -r eq ues t()()
In it Cod Con sump tion (c ode)()
Requ es tCo nsu mtion s()()
Bill()()
New-price(price)()
G etP rice (p rice)()

(fr o m C L ASSES)

Consum ption

Co d-consumption
Descript ion
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(fr o m C L ASSES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from CLA S S E S)

Alert-M anager

Check-Ingredient ()
O K()

(from CLA S S E S)

Figure F.13 Class diagram for restaurant management with Status Indication mechanism

IST – 2001 – 32298 Page 175 of 175
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Feedbacker : Request

 : W aiter

 : Table : Consumption : Reques t-line : Alert -Manager : Ingredient

Init -r eques t ()

Input-CodCon sump tion(code)

ChangeState()

C heck-Stock(code)

OK()

C reateLine(code)

Check-Ingredient()

OK()
F eedback(checking-resource)

Answer ("W ait Please C heki ng Re source s")

Feedback(request-acepted)

Answer("Introduce Next Input")

C heck()

OK()

Figure F.14 Sequence diagram for restaurant management with Status Indication mechanism

IST – 2001 – 32298 Page 176 of 176
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.8 History Logging Architectural Usability Pattern
 Pattern Name: History Logging

 Problem: Record a log of the actions that the user (and possibly the system) has performed in
order to allow the user (or system) to look back over what was done previously.

 Solution:

o Diagram:

Interface

Logger System

1 2
5

6

System

3 4

o Participants:

 Interface: it receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

 Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed in the respective
part of the system.

 System: this module sends the functions and data that are executed in the system
to the logger (3) (4), and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

 Usability benefits: Providing a log helps users to see what went wrong if an error occurs and may
help them to correct that error. Being able to refer to actions that were carried out previously may
help with “recognition rather than recall”.

 Usability rationale: The provision of this pattern improves reliability in use, as it provides users
with information on how to correct errors. It also has a positive effect on learnability, as the user
learns how to work the system.

 Consequences:

o System performance will be better if the logged actions are stored in the Logger module
rather than another part of the system, as fewer interactions are required.

 Related patterns:

 Pattern implementation in OO: This pattern will generate a logger class that will send all the
actions requested by users through the interface to the action-logged class, as we have
implemented the case in which the logger does not store the logged actions internally but in
another class.

 Example: When an order request is started, the system records that the user has opened an order.

IST – 2001 – 32298 Page 177 of 177
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Interface

Init -reque st()
Init -request()()
Undo()()
Init -request()()
Input-CodConsumption(code)()
D is pla y(lis t of co nsu mpti on s) ()
DuplicateConsumption()()
Help()()
G et-h el p(he lp) ()
G et-h el p(tour) ()
NewBook()()
ShowList(list)()
G e t(restaurant, data, hour,kind)()
ShowList(list)()
C on nec tin gSy st em() ()
Enable(Reque st Cooked)()
Pressed(F1)()
O K()()
S pe ci f ic Help (t pp ic) ()
ShowSpecif icHelp(help)()
Cancel(re qu est) ()

(f rom CLASSES)

log g er

Logg (init-request)()

(fr om C LASSES)

action-logg ed

CreateAction(init-request)()

(f rom CLASSES)R ec ipe

Amou nt
Nam e

(fr om C LASSES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(fr om C LASSES)

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, hour, kind)()

(f rom CLASSES)
Book

ClientName (client)()
Chec k(date , hour)()
G et(time s- in -wee k) ()

(fr om C LASSES)

Consumptio n

Co d-consumption
De script ion
Price

Ch eck -Sto ck ()
O K()
ConsumtionName(name)()
Last CodeConsumption()()

(f rom CLASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(f rom CLASSES)

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Req uest-line

Cr ea te Line (c od e) ()
Re ad(c ons ump tio n) ()
Consu mtio nPrice (pric e) ()
LineNa me(na me) ()
Ge tPr ice (p ric e) ()

(f ro m C LAS SES)

Req uest

Hour
Date
Status

Init -request()
Input-CodConsumption()
O K()
init-request()
Init -request()()
Init -request()()
Init -request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Figure F.16 Class diagram for restaurant management with History Logging mechanism

IST – 2001 – 32298 Page 178 of 178
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : logger : ac t ion-logged : Req uest

 : Wai te r

 : Interface

Init-req uest()
in it -r eq ue st()

Logg (init -reques t)
CreateAction(init-req uest)

Figure F.17 Sequence diagram for restaurant management with History Logging mechanism

IST – 2001 – 32298 Page 179 of 179
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.9 Undo Architectural Usability Pattern
 Pattern Name: Undo.

 Usability Mechanism The ability to undo an action and return to the previous state.

 Solution:

o Diagram:

 A

Interface A

System A

Logger
Undoer

System B
B

Interface B

1

2

3

4

5

6
10

9

7
8

11

System B

12
13

14
15

o Participants: This pattern has two clearly separate parts. These parts have been labelled in
the illustration as A and B, respectively. Part A collects the actions performed in the
system (the number of actions to be stored will have to be specified when the system is
developed) so that they can be later undone. Part B manages the respective undo.

 InterfaceA: receives the request to execute an operation in the system, which may
contain both the operation and data (1) (2). As we will see later, this execution
request can also come from the actual system (3) (4).

 SystemA: this module sends the functions and data executed in the system to the
logger (3) (4) and also, optionally, if the logger does not store the actions
internally, will send the information to the part of the system that manages these
actions (5) (6).

 Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged action and
data either internally or in another part of the system, in which case it will have to
send this action and data to the system (5) (6) to be processed by the respective
part of the system. Logger receives the undo request from Undoer (9) and, if the
logged actions are stored in the logger, it then sends them one by one to Undoer
(8). If they are not stored in the logger, it will receive both the data and the
operation to be undone from another part of the system that we have named
System B through (11) and (10), respectively.

 Interface B: receives the undo request and sends it to Undoer through (7).

 Undoer: sends the undo request to logger (9) and also sends each of the actions to
be undone that it receives from logger to System B (13), as well as receiving the
opposite operation to the one performed from System B (12). When it knows
which opposite operation is to be performed, it sends the operation to System B
along with the data associated with the operation in question through (14) and
(15).

 System B: it will search the system for both the action performed and the data
associated with this operation (10) (11) if the data are not stored internally in the

IST – 2001 – 32298 Page 180 of 180
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

logger. It receives the actions to be undone (13) and provides the opposite
operation (12) (for which purpose it will have to store what the opposite is for
each action, see implementation section, for example). The opposite action and
the respective data will be sent to the respective part of the system (15) and (14).

 Usability benefits: Providing the ability to undo an action helps the user to correct errors if they
make a mistake. It helps the user to feel that they are in control of the interaction.

 Usability rationale: This patter improves reliability, as it makes it possible to correct any errors
made by the system and also improves user efficiency.

 Consequences:

 Related patterns: History Logging is equivalent to part A of this pattern. Therefore, if undo is
provided, it would also be advisable to provide History Logging without any additional cost.

 Pattern implementation in OO: This pattern will generate an “undoer” class responsible for
triggering the entire undo process. Additionally, the listener and action-done classes appear, which
are used to store the actions that are performed as the system operates. It is also necessary to
include a “system-action” class to establish what the opposite is for each action that can be undone
through the “is-the-opposite” relationship.

 Example: the user can push the undo button.

Undo er

Undo()()
Act ionDounloaded(act ion)()
T akeCO ntrary(contrary-act ion)()

(f rom CLASSES)

R ec ipe

Amount
Name

(from C LASSES)

Restaurant

Name : String
Address : St ring

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CLASSES)
Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fr om C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(f rom CLASSES)

Books manager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Req uest- line

CreateLine(code)()
Read(consumpt ion)()
ConsumtionPrice(price)()
LineName(name)()
G etPrice(price)()

(from CLAS SES)

Consumption

Cod-consumption
Descript ion
Price

Check-Sto ck ()
O K()
Con su mtio nNa me(na me) ()
LastCodeConsumption()()

(f rom CLASSES)

Feedbacker

F eedback(checking-resource)()
F eedback(request -acepted)()

(f ro m CLAS SES)

Ingredient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(fro m CLA SS ES)

Alert-M anag er

Ch ec k- In gr edie nt ()
O K()

(from C LASSES)

sy s tem -act ion

SearchContrary(act ion)()
Execute(contrary-act ion, act ion)()
T akeContrary(contrary-act ion)()

(f ro m CLAS SES)

is- the -opossite -of

Req uest

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

ac t ion-done

Add("CreateLine(code)")()
Dounload(act ion)()
RequestCreated(request)()

(f rom CLASSES)

Interf ace

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList(list)()
G et(restaurant, data, hour,kind)()
ShowList(list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F 1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(f rom CLASSES)

lis terer

Init -request ()()
A dd (" Cr eate Line (c ode)") ()
Undo()()
Act ionDounloaded(act ion)()
C an cel(re qu es t) ()
RequestCreated(request)()

(f rom CLASSES)

Figure F.18 Class diagram for restaurant management with Undo mechanism

IST – 2001 – 32298 Page 181 of 181
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

IST – 2001 – 32298 Page 182 of 182
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Figure F.19 Sequence diagram for restaurant management with Undo mechanism

IST – 2001 – 32298 Page 183 of 183
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.10 Form or Field Validation Architectural Usability Pattern
 Pattern Name: Form or Field Validation.

 Usability Mechanism: If a user is entering multiple items of data on one screen, it is possible to
check that each field contains valid data either all at once when the “submit” or “ok” button is
pressed (form validation), or individually each time a data item is entered (field validation). With
form validation, one invalid entry may lead to the whole form having to be filled in again.

 Solution:

o Diagram:

Interface

Checker

2

Interface System

1

3
4

5 6

o Participants:

 Interface: it sends a data set (1) and the function requested by the user (2) to
Checker for validation. Additionally, after data validation, it will receive error
data or OK from the Checker to be displayed to the user if the system is to be
designed this way (6).

 Checker: it collects an operation requested by the user through the interface (2) as
well as a data set (1). This module can be designed to validate the data or to send
the data to another system component for validation (3) (4). In the latter case, it
also receives the result of the validation (OK or error) (5) and, in any case, will
send the result of the validation to the user if so required (6).

 System: this component will be optional and will only exist if the Checker is not
capable of validating the data. If necessary, it receives both the function and the
associated data for validation from Checker (3) (4) and, after validation, returns
the result of the validation to Checker.

 Usability benefits: This pattern relates to a provision for error prevention.

 Usability rationale: The application of this pattern reduces the number of errors, increasing
reliability and user efficiency.

 Consequences:

o System performance might be affected depending on when the validation is done. In
client/server applications, in particular, validation should be done whenever possible at the
client site in order to avoid interactions between both parts. Additionally, better
performance might be achieved if validation is done inside the Checker component,
which, however, violates the encapsulation principle in the object-oriented paradigm.

 Related patterns:

 Pattern implementation in OO: This pattern will generate a “validation manager” responsible
for asking the specific validator to validate the sent data depending on the operation received.

IST – 2001 – 32298 Page 184 of 184
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

There will be as many specific validators (e.g., foodstuff-validator) as different data sets to be
validated. All this applies if the implementation takes into account that the checker does not run
the validations internally.

 Example: The system should validate the foodstuff code when it has been entered by the waiter
and before it is copied to the order.

Ingredient

Name
M inimun-Stock
Real-Stock

Check()()
AskFor(ing redient)()

(from CLASSES)

Recipe

Am ount
N am e

(from CLASSES)

Alert-Manager

Che ck-I ng r edient()
OK()

(f rom CLASSES)

Re s tau rant

Name : Str ing
Address : Str ing

GetName(Name)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

Cl ie ntName(cli ent)()
Check(date, hour)()
Get(times -i n- week)()

(from CLASSES)

Co nsum pt ion

Cod-consumption
Description
Price

Check-Stock()
OK()
ConsumtionName(name)()
LastCodeConsumption()()

(from CLASSES)

Table

Status : String
Number-person : Integ er
Smoker/Non Smoker : Boolean
Place : XY
Code : Integ er

Chang eState()
Chang eState()
Chang eState()()
Chang eState()()
LookForAvailable(kind, data, hour)()

(from CLASSES)

Books m anager

GetRestaurants(list)()
Get(restauran t, date, hou r, kind) ()

(from CLASSES)

R equest-line

CreateLine(code)()
Read(consumption)()
ConsumtionPrice(pr ice)()
LineName(name)()
GetPrice(pr ice)()

(from CLASSES)

R equest

Hour
Date
Status

Init-req uest()
Input-CodConsumption()
OK()
init-req uest()
Init-req uest()()
Init-req uest()()
Init-req uest()()
InitCodConsumption(code)()
Req uestConsumtions()()
Bill()()
New-price(price)()
GetPrice(pr ice)()

(from CLASSES)

Consum ption-Val idator

Validate(code)()

(from CLASSES)

Validation-m anager

VM a nag e r(Cons umpti on, cod e) ()
OK()

(from CLASSES)

Figure F.21 Class diagram for restaurant management with Form or Field Validation mechanism

IST – 2001 – 32298 Page 185 of 185
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 :
Validation-manag er

 : Consumption-Validator : Req uest

 : Waiter

 : Table : Consumption : Reques t-line : Alert-Manager : Ing redient

Init -reques t()

Input-CodConsum ption(code)

Chang eState()

C heck-Stock(code)

OK()

Cr eateLine(cod e)

Check-Ing redient()

OK()

C heck()

OK()

VManager(C onsum ption, code)

Validate(code)

OK()

OK()

Figure F.22 Sequence diagram for restaurant management with Form or Field Validation mechanism

IST – 2001 – 32298 Page 186 of 186
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.11 Provision of Views Architectural Usability Pattern
 Pattern Name: Provision of Views

 Usability Mechanism: The system must provide users with different views so that they can see
what data they are working on at any time.

 Solution:

o Diagram:

Interface

Viewer Dispatcher

1

Specific Viewer
1

SpecificViewer
n

Interface Interface

.........

2

3
4

5

o Participants:

 Interface: it sends the data received (1) and the specific function requested by the
user (2) to viewer-dispatcher. Additionally, when the data have been transferred to
the specific viewer that knows how to interpret them, they are displayed by the
interface (5). For information about how to present some views in the interface,
see [Welie, 00]

 Viewer Dispatcher: it receives the data (1) and the requested function (2) and,
depending on this information, decides which viewer should interpret the
operation and data. These (3) and (4) are sent to the respective Specific Viewer.

 Specific Viewer i: it receives a request (4) and data to be viewed (3), which it
interprets as befits the viewer in question, sending them to the interface (5).

 Usability benefits: Having data-specific views available at any time provides the user with
guidance and will contribute to error prevention.

 Usability rationale: Error prevention improves user efficiency, in which case satisfaction will
also be increased. Additionally, specific viewers usually consume fewer resources than the
original action, for which reason users will also work with the system more efficiently.

 Consequences:

o Having different specific viewers increases system maintainability, as adding or
modifying a view has less impact on the system.

 Related patterns:

 Pattern implementation in OO: This pattern generates a “viewer-manager” class that is
responsible for selecting the specific viewer to be used in each case. Additionally, a specific class
appears for each viewer.

IST – 2001 – 32298 Page 187 of 187
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Example: The system should be able to provide the customer with the list of things ordered so far
at any time while the order is being placed.

R ec ipe

Amount
N ame

(from C LA S S E S)

Alert-M anager

C hec k -Ingredien t()
OK()

(from C LA S S E S)

Ingredient

N ame
Minimun-Stoc k
R eal-Stoc k

C hec k () ()
As k For (ingredien t) ()

(from C LA S S E S)

Restaurant

N ame : Str ing
Addres s : Str ing

GetN ame(N ame)()
Av ailab leTab les (da te, hour, k ind) ()

(from C LASSES)

Book

C lien tN ame(c lien t)()
C hec k (date, hour)()
Get(times - in-w eek) ()

(from C LA S S E S)

Consumption

C od-c ons umption
D es c r iption
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption()()

(from C LAS SES)

Table

Sta tus : Str ing
N umber-pers on : In teger
Smok er/N on Smok er : Boo lean
Plac e : XY
C ode : Integer

C hangeSta te ()
C hangeSta te ()
C hangeSta te () ()
C hangeSta te () ()
Look ForAv ailable (k ind, da ta , hour) ()

(from C LASSES)

Bo oks ma nag er

G etR es ta urants (l is t) ()
G et (res taur an t, da te , h ou r, kind)()

(from C LASSES)

Request-line

C reateLine(c ode)()
R ead(c ons umption)()
C ons umtionPr ic e(pr ic e) ()
L ineN ame(name)()
GetPr ic e(pr ic e) ()

(from C LASSES)

views- man ager

Prev iew (reques t) ()

(from C LA S S E S)

Request

H ou r
D ate
Sta tus

In it- reques t()
Input-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e) ()
GetPr ic e(pr ic e) ()

(from C LASSES)

reques t-v iewer

R eque st Pr ev ie w (req ues t)()
C ons umtionN ame(name)()

(from C LASSES)

Figure F.23 Class diagram for restaurant management with Provision of Views mechanism

IST – 2001 – 32298 Page 188 of 188
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Request

 : W aiter

 : Tab le : Consumption : Request- line : Alert -Manager : Ingredient :
request-viewer

 :
views-m anager

Init-request()

Input-CodConsumption(code)

C hangeState()

C heck-Stock(code)

OK()

C reateLine(code)

Check-Ingredient()

OK()

C heck()

OK()

Prev iew(request)
RequestPreview(request)

RequestContent(list of consumptions)

R equestC onsum tions ()

C onsum tionN am e(nam e)

ConsumtionName(nam e)

Figure F.24 Sequence diagram for restaurant management with Provision of Views mechanism

IST – 2001 – 32298 Page 189 of 189
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.12 Workflow Model Architectural Usability Pattern
 Pattern name: Workflow Model

 Usability Mechanism: Modelling workflow provides different users with only the tools or actions
that they need to perform their particular tasks.

 Solution:

o Diagram:

Interface

Filter

1

Interface System

2
3

4
5 6

o Participants:

 Interface: it sends the data related to the user who is trying to access the system
(1) to the system. Additionally, the interface receives the data and operations (5)
(6) that make up the interface for the user in question from Filter.

 Filter: it receives the type of user who wants to connect to the system (1) from the
interface. Additionally, if it does not store all the functionality that should be
associated with each user internally, it sends the data about the user in question to
another system component (2) and receives both the data (3) and the operations
(4) to which this user should have access from this component. When it has this
information, it then passes it on to the interface for proper display (5) (6).

 System: this component is optional and will only exist if the Filter is not capable
of storing the functionalities associated with each system user internally.
Accordingly, this component receives the data on the user type who has connected
from Filter (2) and returns both the data and operations that this user type can
access from the interface (5) (6) to Filter.

 Usability benefits: Targeting the user interface specifically to each user, depending on the tasks
that they need to perform in the workflow, minimises the user’s cognitive load and prevents errors.

 Usability rationale: This pattern improves user efficiency and reliability, as the user will only see
the information and tasks corresponding to the operations to be done.

 Consequences:

 Related patterns:

 Pattern implementation in OO: If the Filter stores only the relationship between users and the
functionality which each one can access, this pattern generates the filter class, which is responsible
for building the interface suited for the user type that has connected to the system. Additionally, it
will generate a “user” class, where all the possible system user types are stored, and a “system-
function” class, where the different functionalities provided by the system are stored. These two
classes will have to be linked by an association that determines what function each user can

IST – 2001 – 32298 Page 190 of 190
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

perform. For example, supposing that user 1 can only access F1 and F3, then the “user” and
“system-function” relationship would contain the following information:

 SYSTEM FUNCTIONALITY

USER TYPE F1 F2 F3

USER 1 X X

USER 2 X

USER 3 ….. …… ……

 Example: when the cook connects to the system, the only enabled function will be enter as
cooked when he has finished cooking an order.

Restaurant

N ame : St ring
Addres s : Str ing

GetN ame(N ame)()
Av ailab leTables (date, hour , k ind)()

(from C LASSES)
Book

C li en tN ame (c li ent) ()
C h eck (date , hou r) ()
Get(times - in -w eek)()

(from C LA S S E S)

Request-line

C rea teL ine(c ode) ()
R ead(c ons umption)()
C ons umtionPr ic e(pr ic e)()
L ineN ame(name)()
GetPr ic e (pr ic e) ()

(from C LA S S E S)

T able

Status : Str ing
N umber -pers on : In teger
Smok er /N on Smok er : Boolean
Plac e : XY
C ode : In teger

C hangeState()
C hangeState()
C hangeState() ()
C hangeState() ()
Look ForAv a ilab le(k ind, data , hour) ()

(fr om C LAS SES)

Consumption

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption() ()

(from C LA S S E S)

Request

H our
D ate
Status

In it- reques t()
Input-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e)()
GetPr ic e (pr ic e) ()

(from C LA S S E S)

Books manager

GetR es taurants (lis t) ()
Get(res taurant, da te, hour , k ind) ()

(from C LASSES)

Interface

In it- reques t()
In it- reques t() ()
U ndo () ()
In it- reques t() ()
Input-C odC ons umption(c ode)()
D is p lay (lis t o f c ons umptions)()
D upli cateC o nsump tion () ()
H elp() ()
Get-he lp (he lp) ()
Get -h e lp (tou r) ()
N ew Book () ()
Show Lis t(lis t) ()
Get(r est au ran t, dat a, hou r ,k ind) ()
Show Lis t(lis t) ()
C onn ec tingSy s tem() ()
Enab le(R eques tC ook ed)()
Pres s ed(F1)()
OK() ()
Spe c ifi cH e lp (tppi c) ()
Sho w Spec if ic H el p(hel p) ()
C anc el(reques t) ()

(from C LASSES)

Filter

U s erC onnec ted(c ook)()
GetL is tFunc tions (lis t) ()

(from C LA S S E S)

system-func tion

D ow n loadFunc tions (func tion)()
Ex ec ute (Func tion) ()

(from C LA S S E S)

User-type

Func tions For(c ook)()
GetFunc tion (func tion) ()

(from C LA S S E S)

Figure F.25 Class diagram for restaurant management with Workflow Model mechanism

IST – 2001 – 32298 Page 191 of 191
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cook
 : Inte rface : Filter : User-type :

system-function

ConnectingSystem(cook)

UserConnected(cook)

FunctionsFor(cook)

D ownloadFunct ions (fu nct ion)

GetFunction(RequestCooked)

GetListFunctions(RequestCooked)

Enable(RequestCooked)

Figure F.26 Sequence diagram for restaurant management with Workflow Model mechanism

IST – 2001 – 32298 Page 192 of 192
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.13 User Profiler Architectural Usability Pattern
 Pattern Name: User Profiler

 Usability Mechanism: The software system builds and records a profile of each user so that
specific system attributes (concerning the layout of the user interface, the data or options to show,
etc.) can be set and reset each time that a different user accesses the system. Different users may
have different roles and require different things from the software.

 Solution:

o Diagram:

Interface

Profiler

Interface System

1 2

3 4 5 6

o Participants:

 Interface:

• For profile information creation, it sends both the data (1) and the
operation (2) that the user defines for his system to the profiler.

• For profile retrieval, the interface sends the profile data (1) to the profiler.
Additionally, profiler sends the data associated with this profile to the
interface.

 Profiler: .

• For profile information creation, it receives the data (1) and the operation
(2) that the user defines for his system from the interface. If it is not
capable of storing this profile information internally, it will send it to
another system component through (3) and (4).

• For profile retrieval, it receives the data of the profile to be retrieved (1)
from the interface. If it does not store the profile information internally, it
will ask another system component to process the requested information
and/or operation (3) (4) and will receive the information associated with
the required profile (5) from this system component. Then, if this
information is to be displayed by the interface, it will send it to the
interface through (6).

 System: this component is optional and will only exist if profiler is not capable of
storing the information associated with each system profile internally. It receives
the data and/or operations of the required profile type (3) (4) from profiler and
sends the data associated with this profile (5) to profiler.

 Usability benefits: Providing the facility to model different users allows a user to express
preferences , thereby increasing system adaptability.

IST – 2001 – 32298 Page 193 of 193
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Usability rationale: Expert users can tweak the application for their particular purposes, which
increases satisfaction and possible performance, but this solution decreases memorability and
learnability [Welie, 00].

 Consequences:

 Related patterns:

 Pattern implementation in OO: This pattern generates a “profiler” class that is responsible for
performing given operations depending on who the requested profile belongs to.

 Example: The system should be able to identify the customer who is making the order at a given
table so that he can be given personalised treatment depending what type of customer it is.

IST – 2001 – 32298 Page 194 of 194
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Request-line

C reateL ine(c ode)()
Rea d(c ons umpt ion)()
C ons umtionPr ic e(pr ic e) ()
L ineNa me(name)()
GetPr ic e(pr ic e) ()

(from CLA S S E S)

Recipe

Amount
N ame

(from CL A S S E S) Alert-Manager

C hec k - Ingredien t()
OK()

(from CLA S S E S)

Ingredient

N ame
Min imun-Stoc k
R ea l-Stoc k

C hec k () ()
As k For(ingred ient) ()

(from CLA S S E S)

Restaurant

N ame : St ring
Addres s : Str ing

Get N ame(N ame)()
Av a ilab l eTab l es (da te, hour , k ind)()

(from C LASSES)

Consum ption

C od-c ons umption
D es c r ip tion
Pr ic e

C hec k -Stoc k ()
OK()
C ons umtionN ame(name)()
Las tC odeC ons umption() ()

(from CLA S S E S)

T able

Status : Str ing
N umber -per s on : I nteg er
Smok er / Non Smok er : Boo lean
Plac e : XY
C ode : In teger

C hange Sta te ()
C hange Sta te ()
C hangeSta te () ()
C hangeSta te () ()
Look ForAv ailab le(k ind, data, hour) ()

(from C LASSES)

B ooks manag er

GetR es taurants (lis t) ()
Get(res taurant, da te , hour , k ind) ()

(from C LASSES)

Book

C lien tN ame(c lien t) ()
C hec k (da te , hour) ()
Get(times - in -w eek)()

(from CLA S S E S)

C lient

N ame
Times - in -w eek

C lien tD ata(times - in -w eek)()

(from CLA S S E S)

Request

H our
D ate
Status

In it- reques t()
Inpu t-C odC ons umption()
OK()
in it- reques t()
In it- reques t() ()
In it- reques t() ()
In it- reques t() ()
In itC odC ons umption(c ode)()
R eques tC ons umtions () ()
Bill() ()
N ew -pr ic e(pr ic e) ()
GetPr ic e(pr ic e) ()

(from CLA S S E S)

Profiler

C alc u la teSpec ia lPr ic e()
Get(times - in -w eek)()

(from CL A S S E S)

Figure F.27 Class diagram for restaurant management with User Profiler mechanism

IST – 2001 – 32298 Page 195 of 195
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cl ient : Pro fi le r
 : W aiter

 : Request :
R equest-line

 :
C onsum ption

 : Book

For eac h
request- line

Bill(c lient,book-code)

Bill(price, book-code, c lient)

C onsum tionPrice(price)

Price(price)

Calcu la teSpecia lPrice(to ta l -price,book-code, cl ient)

New-price(price)

GetPrice(price)

GetPrice(price)

Cl ientNam e(cl ient)

C lientD ata(t im es-in-week)

Get(t im es-in-week)

Get(tim es-in-week)

Figure F.28 Sequence diagram for restaurant management with User Profiler mechanism

IST – 2001 – 32298 Page 196 of 196
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.14 Shortcuts Architectural Usability Pattern
 Pattern Name: Shortcuts

 Usability Mechanism: A shortcut allows an experienced user to activate a feature that may be
hidden “under the surface” of the interface with one quick manoeuvre.

 Solution:

o Diagram:

Interface 1

System

Interface

Shortcut-Creator

Shortcut-Executer
3

4

2

5

o Participants:

 Interface: it sends a data set (1) corresponding to a given system function, as well
as the key combination that activates this function, to Shortcut-creator.
Additionally, if a shortcut is to be executed, it sends a key combination (3) to the
Shortcut-executor. When the shortcut has been executed, it will receive the result
of the requested functionality or error if it cannot be executed (5) from Shortcut-
executor.

 Shortcut creator: it fills in a sort of array in which the name of the shortcut, the
commands that activate it and the system function to be activated with these quick
commands are stored. For this purpose, it receives a data set and the function to be
executed when these keys are combined (1) from the interface, which it sends to
Shortcut-executor for storage (2).

 Shortcut executor: it receives a set of commands (3) from the interface and checks
whether they match a set of commands associated with a given function. If the
command set matches a system functionality, it requests the system to execute the
function associated with this shortcut (4). In any case, whether they match a
function or not, it sends the result of executing this function to the interface
through (5).

 System: it receives the order to execute the function associated with this key
combination (4) from shortcut-executor.

 Usability benefits: The provision of shortcuts allows the system to match the user’s level of
expertise. An experienced user will use the shortcut, whereas a novice will navigate a longer path
through the user interface, perhaps receiving more guidance. Shortcuts also provide the user with
explicit control of the system.

 Usability rationale: This pattern enables expert users to work with the system more efficiently.
Nevertheless, for non-expert users, this option might decrease learnability. Also shortcuts might
be inefficient for long-term memorability.

IST – 2001 – 32298 Page 197 of 197
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Consequences:

o This pattern improves system performance, users do not need to follow a specific
sequence of steps to perform an action.

o Performance is also better if Shortcut-creator stores the shortcut information internally
rather than in other system modules.

 Related patterns:

 Pattern implementation in OO: This pattern will generate a “shortcut”· class associated with
another “key” class responsible for recording the keys and the order in which they should be
pressed to activate a given system functionality. Additionally, there will be “system-function”
class associated with the key set defined for each shortcut. The “shortcut”, “key” and “system-
function” classes represent the shortcut-executor module, because this example shows a shortcut
that has already been created.

 Example: the waiter presses F1, which corresponds to the function that tells the waiter to go and
collect a given order that has now been cooked.

Restaurant

Nam e : S t ring
Address : S tring

G etName(Nam e)()
Availa bleT able s(date, ho ur, kin d)()

(f rom CLASSES)

Book

ClientNam e(client)()
Check(date, hour)()
G et (t imes-in-week)()

(from C LASSES)

Request- line

CreateLine(code)()
Read(consumpt ion)()
Consumt ionPrice(price)()
LineName(nam e)()
G etPrice(price)()

(f rom CLASSES)

Table

Status : S t ring
Num ber-person : Integer
Smoker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()

(f rom CLASSES)

Co nsum ption

Cod-consumpt ion
Descript ion
Price

Check-Stock()
O K()
Con sumti onNam e(name)()
LastCodeConsumpt ion()()

(f ro m CLAS SES)

Request

H our
D ate
St atu s

I ni t -r eq ue st ()
Input -Co dCons umpt ion()
O K()
i nit -req ue st ()
I ni t -r eq ues t () ()
I ni t -r eq ues t () ()
I ni t -r eq ues t () ()
InitCodConsum ption(code)()
RequestConsum tio ns ()()
B il l()()
New-price(price)()
G e tP ri ce (p ric e) ()

(f ro m CLAS SES)

Books m anager

G etRestaurants(list)()
G et (restaurant , date, hour, kind)()

(f rom CLASSES)

Interf ace

Init -reque st ()
Init -request ()()
Undo ()()
Init -request ()()
Input -CodConsumpt ion(code)()
Display(list of consum pt ions)()
DuplicateConsumpt i on ()()
Help()()
G et -help(help)()
G et -help(tour)()
NewBook ()()
Show List (lis t) ()
G e t(r es ta ur an t, d at a, hou r,kin d) ()
Show List (lis t) ()
Connect ingSystem()()
E nab le(Req ue st Coo ke d) ()
Pressed(F 1)()
O K () ()
Specif icHelp(tppic)()
ShowSpecif ic Help(help)()
C anc el(re qu es t) ()

(f rom CLASSES)

Shortcut

Validate(F 1)()
G etF unct ion(funct ion)()

(from C LASSES)

Key

Code
O rder

ReturnF unct ion(F 1)()
G etF unct ion(F unct ion()

(from C LASSES)

sy s tem -f unc tion

DownloadF unct ions(funct ion)()
Execute(F unct ion)()

(f rom CLASSES)

Figure F.29 Class diagram for restaurant management with Shortcuts mechanism

IST – 2001 – 32298 Page 198 of 198
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cook
 : Interface : Shortcut : Key :

system-function

Pressed(F1)
Validate(F1)

ReturnFunction(F1)

D ownloadFun ctions(function)

GetFunction(Function)
GetFunction(function)

Execute(Function)

OK()

Figure F.30 Sequence diagram for restaurant management with Shortcuts mechanism

IST – 2001 – 32298 Page 199 of 199
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.15 Context Sensitive Help Architectural Usability Pattern
 Pattern Name: Context Sensitive Help.

 Usability Mechanism: Context-sensitive help monitors what the user is currently doing and
supplies information relevant to the completion of the task in question.

 Solution:

o Diagram:

Interface

Sensitive-helper

Interface

System

1

3
4

2

o Participants:

 Interface: it warns the sensitive-helper through (1) that the cursor is on top of the
element specified in (2). Additionally, it will display the help information it
receives from Sensitive-helper (3).

 Sensitive-helper: it identifies the help associated with a given element. This
component receives the signal (1), which alerts it to the need to show help about
the specified element through (2), from the interface. If the help is not stored
internally in this component, this help will be provided by another part of the
system through the information flow from System (4). When it has the help data,
it informs the interface through (4).

 System: this component is optional and represents a part of the system in which
the help will be stored if the Sensitive-helper is not capable of storing it internally.
In this case, System will provide the help to the Sensitive-helper through (4).

 Usability benefits: The provision of context sensitive help can give the user guidance and will
prevent errors made by the user.

 Usability rationale: This pattern will improve reliability and efficiency, as well as learnability for
non-expert users.

 Consequences:

o Performance will improve if the help is stored in Sensitive-helper.

 Related patterns: Guided-helper and Standard-helper, because both helps can be stored in the
same “Help” class, furnished by special methods for properly handling each of the two help types
provided by Standard-helper and Guided-helper.

 Pattern implementation in OO: The Interface component will generate one or more classes. The
Sensitive-helper component will generate a class that will have an attribute containing the help, or
a pointer to another place (class) that contains this help if it is not stored in the class itself. The

IST – 2001 – 32298 Page 200 of 200
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

first option corresponds to the case in which the help is saved in the Sensitive-helper and the
second to the case in which it is saved in another system component.

 Example: the system must provide the user with sensitive help when the cursor is positioned over
certain elements in the interface.

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableTables(date, hour, kind)()

(from C LASSES)
Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(from CLA S S E S)

Table

Status : String
Numb er-pers on : I nt ege r
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kin d, data, ho ur)()

(from C LASSES)

Request- line

CreateLine(code)()
Read(consumpt ion)()
Consumt ionPrice(price)()
LineName(name)()
G etPrice(price)()

(from C LASSES)

C onsum ption

Cod-consumption
Descript ion
Price

Check-Stock()
O K()
Consumt ionName(name)()
LastCodeConsumption()()

(from C LASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumption()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(from C LASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(from C LASSES)

Sensitive-help

G etHelp(topic)()

(from CLA S S E S)

Interf ace

Init-request()
Init-request()()
Undo()()
Init-request()()
Input-CodConsumption(code)()
Display(list of consumptions)()
DuplicateConsumption()()
Help()()
G et-help(help)()
G et-help(tour)()
NewBook()()
ShowList (list)()
G et(restaurant, data, hour,kind)()
ShowList (list)()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()
O K()()
Specif icHelp(tppic)()
ShowSpecif icHelp(help)()
Cancel(request)()

(f rom C LAS SES)

Figure F.31 Class diagram for restaurant management with Context Sensitive Help mechanism

IST – 2001 – 32298 Page 201 of 201
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Interface :
Sensitive-help : User

SpecificHelp(topic)
GetHelp(topic)

ShowSpe cificHe lp(help)

Figure F.32 Sequence diagram for restaurant management with Context Sensitive Help mechanism

IST – 2001 – 32298 Page 202 of 202
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.16 Wizard Architectural Usability Pattern
 Pattern Name: Wizard

 Usability Mechanism: The wizard pattern presents users with a structured sequence of steps to
carry out an operation, which it guides them through one by one. The task as a whole is separated
into a series of more manageable subtasks. The user can go back and change earlier steps in the
process at any time.

 Solution:

o Diagram:

Interface
Wizard-Executor System A

Interface
System B

1 4

2
3

5 6

o Participants:

 Interface: it sends the functionality to be assisted (1) to Wizard-executor.
Additionally, for every step in wizard execution for which the user needs to enter
information or make a decision, System A sends this notification to the interface
through (5). Once the interface has the required information, it sends it to System
A through (6).

 Wizard-executor: it receives the request to execute a given wizard (1) from the
interface. The information related to the wizard can be stored in the Wizard-
executor or another system component. If Wizard-executor does not store the
different steps of the wizard internally, it consults System B through (2), and,
receives the information on the function to be executed to perform the different
steps of the wizard from System B through (3). For each step to be taken, Wizard-
executor asks the System to execute the functionality associated with each step
through (4).

 SystemA: it represents the part of the system that executes each step of the
wizard. It receives the different functions to be executed from the Wizard-
executor through (4) and, if user intervention is required, System A will inform
the interface through (5) and will receive the information entered by the user
through the interface by means of (6).

 SystemB: This module is optional and will only be necessary if the Wizard-
executor does not store the steps for each wizard that can be executed in the
system internally. It receives the request for the name of the next step in wizard
execution from the wizard-executor (2) and returns the information on the name
of the function to be executed through (3).

 Usability benefits: The wizard helps with guidance, showing the user what each consecutive step
in the process is.

 Usability rationale: The task sequence informs the user at once which steps will need to be taken
and where the user currently is. The learnability and memorability of the task are improved, but it
may have a negative impact on the efficiency of users forced to follow the sequence.

IST – 2001 – 32298 Page 203 of 203
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Consequences:

o Wizard execution might affect system performance of specific tasks.

o Storing the functions to be executed outside the Wizard may reduce system performance
but, in exchange, improve system modularity and the encapsulation principle.

 Related patterns:

 Pattern implementation in OO: This pattern will generate a “wizard-manager” class, which is
responsible for knowing what wizard it has to execute depending on the request received from the
interface. Additionally, the “wizard” class is responsible for ascertaining one by one the different
steps to be taken using the “wizard-system-function” for this purpose, which will have the name of
the system function to be executed and the order number by means of which it can identify the
order of the different wizard steps. In this case, the Wizard-manager and wizard correspond to the
Wizard-executor module, and the wizard-system-function class represents the System module, as
it stores the information outside the Wizard-executor module. Additionally, the Waiter-device,
represents the Interface module.

 Example: the waiter creates a rapid access for the functionality “Create new order” by pressing
F2.

W izard

Ass is t()
GetF unc t ion(IntroF unc t ionN am e)()
F unc t ionN am e(C reate R eques t)()
GetF unc t ion(IntroKey s)()
Key N am e(F 2)()
End()
OK()

(from CLAS SE S)

Restauran t

N am e : String
Addres s : S t ring

GetN am e(N am e)()
Av ailableTables (date, hour, k ind)()

(from CLASSES)

Book

C lientN am e(c lient)()
C hec k (date, hour)()
Get(t im es -in-week)()

(from CLASSES)

Request-l ine

C reateLine(c ode)()
R ead(c ons um pt ion)()
C ons um t ionPrice(price)()
LineN am e(nam e)()
GetPric e(pric e)()

(from CLASSES)

T able

Sta tus : St rin g
N um ber-pers on : Integer
S m ok er/N on Smo ker : Bool ea n
Pl ace : XY
C od e : In teg er

C ha ng eStat e()
C ha ng eStat e()
C ha ng eState()()
C ha ng eState()()
Look F orAv ailable(k ind, data, hour)()
L as tR e que stC on sum pt i ons ()()

(from CLASSES)

Consum ption

C o d-co ns ump t io n
D es cript io n
Pric e

C he ck -Stoc k()
OK()
C on su mt io nN am e(n am e)()
L as tCo de Co ns u mp t ion ()()

(from CLASSES)

Request

H o ur
D a te
Status

Init -reques t()
Input -C odC ons um pt ion()
OK()
init -reques t ()
Init -reques t()()
In it -reques t()()
In it -reques t()()
In itC odC ons um pt ion(c ode)()
R eques tC onsum tions ()()
B ill()()
N e w-pric e(price)()
GetPric e(pric e)()
Las tR eques tC onsum tions ()()

(from CLASSES)

Books m anager

GetR es taurants (lis t)()
Get(res taurant , date, hour, k ind)()

(fro m CLAS SES)

Key

C ode
Order

R eturnF unc t ion(F 1)()
GetF unc t ion(F unc t ion()
C reate(F 2, C reateR eques t)()

(from CLAS SE S)

system-function

D ownloadF unc t ions (f unc t ion)()
Exec ute(F unc t ion)()

(fro m CL AS SE S)

Shortcut

Validate(F 1)()
GetF unc t ion(f unc t ion)()
C reateS hortC u t(F2, C reateR eques t)()
C reated()

(from CLASSES)

In terface

Init -reques t()
Init -reques t()()
U ndo()()
Init -reques t()()
Input -C odC ons um pt ion(c ode)()
D is play (lis t of consum pt ions)()
D uplicateC ons um pt ion()()
H elp()()
Get-help(help)()
Get-help(tour)()
N ewBook ()()
ShowLis t (lis t)()
Get(res taurant , data, hour,k ind)()
ShowLis t (lis t)()
C onnec t ingSy s tem ()()
Enable(R eques tC ook ed)()
Press ed(F 1)()
OK()()
Spec if icH elp(tppic)()
ShowSpec if ic H elp(help)()
C anc el(reques t)()

(fro m CLAS SES)

w izard-s ys tem -function

NextFunction ()
NextFunction ()
NextFunction ()

(from CLASSES)

wiza rd-m anager

C reateShortC ut()

(from CLASSES)

W aiter-device

C ons um pt ion-In-Table-x ()
SendOutVoic e(lis tc ons um pt ions)()
C reateShortc utW izard()
GetF unc t ion(IntroF ucnt ionN am e)()
GetF U nc t ion(IntroKey s)()
C reated()

(from CLAS SE S)

Figure F.33 Class diagram for restaurant management with Wizard mechanism

IST – 2001 – 32298 Page 204 of 204
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : W aiter

 :
W aiter-device

 :
w iza rd-m ana ger

 : W izard :
w iza rd-s ys tem- function

 : Shortcut : Key

CreateShortcutWizard()

CreateShortCut() Assis t()
Next Function ()

GetFunction(IntroFunctionNam e)

GetFunction(IntroFucntionName)

F unct ionNam e(Create Request)
Next Function ()

GetFunction(IntroKeys)
GetFUnction(IntroKeys)

KeyName(F 2)

Next Function ()

End()

CreateShortCut(F2, CreateRequest)

Create(F2, CreateReques t)

Created()
OK()

Crea ted()

Figure F.34 Sequence diagram for restaurant management with Wizard mechanism

IST – 2001 – 32298 Page 205 of 205
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.17 Cancel Architectural Usability Pattern
 Pattern Name: Cancel.

 Usability Mechanism: Users should be allowed to cancel a command that has been issued if they
realise that they have done the wrong thing before an error state is reached. This is different from
being able to undo an action after it has finished to return to the previous state.

 Solution:

o Diagram:

 A

Interface A

System A

Logger
Cancel

System B
B

Interface B

1

2

3

4

5

6
10

9

7
8

11

System B

12
13

14
15

o Participants:

 InterfaceA: it receives the request to execute an operation in the system, which
may contain both the operation and the data (1) (2). As we will see later, this
execution request can also come from the system (3) (4).

 SystemA: this module sends the functions and data to be executed in the system
(3) (4) to the logger, and also, optionally, if the logger does not store the logged
actions internally, sends the information to the part of the system that manages
these actions (5) (6).

 Logger: this module receives the actions and the data requested by the user or
from another part of the system (1) (2) (3) (4) and stores the logged actions and
data either internally or in another part of the system, in which case it will have to
send this action and the data to be processed by the respective part of the system
to the system (5) (6). Logger receives the cancel request (9) from Canceler, then,
if the logged actions are stored internally, it sends them one by one to Canceler in
(8), provided that the all the operations stored by the logger have been performed.
If the operations have only be stored but not executed, then nothing is sent in (8)
and if they are stored externally, all the logger will have to do is receive them in
(10) and (11) and delete them. If they are not stored internally, it will receive both
the data and the operation to be cancelled from another part of the system, which
we have called System B, by means of (11) and (10), respectively.

 Interface B: it receives the cancel request and sends it to Canceler in (7).
Additionally, it will search the system for both the action performed and the data
associated with this operation (10) (11), provided that the logger does not store the
data internally (esto lo hace el sistema B?).

 System B: it searches the system for both the action performed and the data
associated with this operation (10) (11), unless the logger stores the data
internally. It receives the actions to be undone (or cancelled?). It receives the
actions to be undone (or cancelled?) (13) and provides the opposite action (12)

IST – 2001 – 32298 Page 206 of 206
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

(for which purpose, it will have to store the opposite for each action, see
implementation section for example). The opposite action and the respective data
will be sent to the respective part of the system (15) and (14) for execution.

 Canceler: it sends the cancel request (9) to logger and also sends each of the
actions to be undone (or cancelled?) that it receives from logger to System B (13)
and receives the opposite operation to the one performed (13 (12)) from system B.
When it knows what opposite operation to be performed is, it sends it to System B
along with the data associated with this operation through (14) and (15).
Alternatively, if all the operations are stored in the system and performed together
when the user presses accept, then Canceler will simply read through (10) and
(11) and delete the accumulated operations, in which case (14) and (15) will not
be used at all.

 Usability benefits: Being able to cancel commands helps with error management, as if users
realise that they have done the wrong thing then they can interrupt and cancel an action before the
error state is reached. It also gives users the feeling that they are in control of the interaction.

 Usability rationale: This pattern improves reliability, as it prevents users from making errors, at
the same time as it improves user efficiency, enabling them to go back when they have taken an
incorrect action.

 Consequences:

 Related patterns: History Logging, Undo.

 Pattern implementation in OO: This pattern generates a Canceler class responsible for
triggering the whole cancel process. Additionally, the listener and action-done classes appear,
which are used to store the actions that are either performed as the system operates or are stored
and then all executed together. The “system-action” class is used to establish what the opposite is
for any action that can be cancelled and has been executed by the system.

 Example: The waiter can cancel an order even if it has not be sent to the kitchen.

IST – 2001 – 32298 Page 207 of 207
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Recipe

Amo un t
N ame

(from C LA S S E S)

Restaurant

N ame : St ring
Ad dre s s : Str ing

G etN ame (N ame) ()
Av a ila b leTab le s (da te , ho u r , k in d) ()

(fro m C L ASSES)
Book

C lien tN a me(c lien t) ()
C he c k (da te , ho u r) ()
G e t(times - in -w ee k) ()

(from C LA S S E S)

Consumption

C od -c o ns ump tion
D es c r ip tio n
Pr ic e

C he c k -Stoc k ()
O K()
C on s u mtion N ame(n ame) ()
La s tC od eC o ns umptio n () ()

(from C LA S S E S)

Ingredient

N ame
Min imu n-Sto c k
R ea l-Sto c k

C he c k () ()
As k For (ing red ie n t) ()

(from C LA S S E S)

Alert-Manager

C he c k - In g re d ien t()
O K()

(from C LA S S E S)

system -action

Se arc hC o n tra ry (ac tio n) ()
Ex ec u te (c on tra ry -ac tion , ac tion) ()
Ta k e C on tra ry (c on tra ry -ac tion) ()

(fro m C L ASSES)

is-th e-o poss ite- of

Table

Sta tus : Str ing
N umb er -p e rs on : In te ge r
Smo k e r /N o n Smo k er : Bo o lea n
Plac e : XY
C od e : In te ge r

C ha ng eSta te ()
C ha ng eSta te ()
C ha ng eSta te () ()
C ha ng eSta te () ()
Lo ok Fo rAv a ila b le (k ind , da ta , ho u r) ()

(fr o m C L ASS ES)

Bo oks m anag er

G etR es ta u ra n ts (lis t) ()
G e t(res ta u ra n t, da te , h ou r , k ind) ()

(fro m C L ASSES)

Request-line

C rea te L ine (c o de)()
R ea d(c on s u mption) ()
C on s u mtion Pr ic e (p r ic e) ()
L ine N ame (na me) ()
G e tPr ic e (p r ic e) ()

(fro m CL A SS E S)

Feedbacker

F ee db ac k(c he c k ing- re s our c e) ()
F eed b ack (re que s t- ac e p te d) ()

(from C LA S S E S)

action-done

Ad d("C re a teL in e (c o de) ") ()
D ou n loa d(a c tio n) ()
R eq ue s tC rea te d (req ue s t) ()

(from C LA S S E S)

Int erface

In it- req ue s t()
In it- req ue s t() ()
U nd o() ()
In it- req ue s t() ()
In pu t-C o dC o ns umptio n (c od e) ()
D is p lay (lis t o f c o ns u mptio ns) ()
D up lic a te C on s u mp tion () ()
H e lp () ()
G e t-he lp (he lp) ()
G e t-he lp (to u r) ()
N ew Boo k () ()
Sh ow L is t(lis t) ()
G e t(res ta u ra n t, da ta , h ou r ,k in d) ()
Sh ow L is t(lis t) ()
C on ne c tin gSy s te m() ()
En ab le (R eq ue s tC o ok ed) ()
Pre s s ed (F1) ()
O K() ()
Sp ec ific H e lp (tpp ic) ()
Sh ow Spe c ific H e lp (h e lp) ()
C an c e l(re qu es t) ()

(fro m C L ASSES)Request

H ou r
D a te
Sta tus

In it- req ue s t()
In pu t-C o dC o ns umptio n ()
O K()
in it- req ue s t()
In it- req ue s t() ()
In it- req ue s t() ()
In it- req ue s t() ()
In itC od C on s u mption (c o de) ()
R eq ue s tC on s u mtio ns () ()
Bill() ()
N ew -p r ic e (p r ic e) ()
G e tPr ic e (p r ic e) ()

(from C LA S S E S)

listerer

In it- req ue s t() ()
Ad d("C re a teL in e (c o de) ") ()
U nd o() ()
Ac ti on D ou nl oa de d(act ion) ()
C an c e l(re qu es t) ()
R eq ue st C rea te d(re q ues t) ()

(from C LA S S E S)

canceler

C an c e l() ()

(from C LA S S E S)

Figure F.35 Class diagram for restaurant management with Cancel mechanism

IST – 2001 – 32298 Page 208 of 208
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

Figure F.36 Sequence diagram for restaurant management with Cancel mechanism

IST – 2001 – 32298 Page 209 of 209
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.18 Multi-tasking Architectural Usability Pattern
 Pattern Name: Multi-tasking

 Usability Mechanism : Multi-tasking describes the situation where the system (and the user) can
manage several tasks at the same time, allowing switching from one task to another as is most
conducive to efficiently and effectively doing the work..

 Solution:

o Diagram:

Interface

Dispatcher

1

Interface System

2 3 4

o Participants:

 Interface: it sends the function to be executed to dispatcher in (1). Additionally, if
the user is to be informed of anything that is happening, he receives information
from the dispatcher in (5).

 Dispatcher: this component knows what resources are needed for each function
that it has to execute in the system. It receives the function to be executed from
the interface in (1). It sends the function to be executed to the system component
in question in (2) after having checked that all the resources required to execute
this function exist. Additionally, it receives the result of performing this operation
from the system in (3). This result may specify either error or OK if everything
went according to plan. If user has to be informed of the result of the operation
performed, it sends this information to the interface (4).

 System: this component refers to the part of the system responsible for executing
the function specified by dispatcher in (3).

 Usability benefits: Providing a multi-tasking environment gives users the feeling that they are in
control of the system, as at any point they can switch to the task that is of most interest to them.

 Usability rationale: This pattern might improve efficiency in system use by expert users, but it
might also provoke more mistakes, thereby having a negative impact on reliability.

 Consequences:

o System performance might be negatively affected, as resources have to be shared by
different actions or applications.

 Related patterns:

 Pattern implementation in OO: The Dispatcher component generates a “dispatcher“ class
responsible for distributing the different user requests depending on the resources available at the
time.

IST – 2001 – 32298 Page 210 of 210
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Example: the clock advises that any reservations made should be cancelled 20 minutes after
reservation time if the diners have not arrived.

Recipe

Am ount
Name

(f rom C LASSES)

Restaurant

Nam e : String
Addres s : String

GetNam e(Nam e)()
AvailableTables (date, hour, kind)()

(from CLASSES)
Book

Date
Hour
Nam e

ClientNam e(client)()
Chec k(date, hour) ()
Get(tim es -in-week)()
CheckBook()
GetStatus (s tatus)()

(from CLASSES)

Consumption

Cod-cons um ption
Des cription
Price

Check-Stock()
OK()
Cons um tionNam e(nam e)()
Las tCodeCons um ption()()

(from CLASSES)

Table

Status : String
Numbe r-pers on : Integer
Sm oker/Non Sm oker : Boolean
Plac e : XY
Code : In teger

ChangeState()
ChangeState()
ChangeState() ()
ChangeState() ()
LookForAvailable(kind, data, hour)()
Las tReques tConsum ptions ()()
Status ()

(from CLASSES)

Request -l ine

CreateLine(code)()
Read(cons um ption)()
Cons um tionPrice(price)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)

Ingredient

Nam e
Minim un-Stock
Real-Stock

Check()()
As kFor(ingredient)()

(from CL ASSES)

Alert-Manager

Check-Ingredient()
OK()

(from CLASSES)

Request

Hour
Date
Status

Init- reques t()
Input-CodCons um ption()
OK()
i nit- reques t()
Init- reques t()()
Init- reques t()()
Init- reques t()()
InitCodCons um ptio n(cod e)()
Reques tCons um tions ()()
Bill()()
N ew -p rice(p ri ce) ()
GetPrice(price)()
Las tReques tC ons um tions () ()

(fro m CLA SSES)

Feedbacker

Feedback (ch ecking-res ource) ()
Feedback (reques t-a cepted)()

(from CLASSE S)

D ispatcher

Check(books)()

(from CLASSES)

Books manager

GetRes ta urants (lis t)()
Get(res tauran t, d ate, hour, ki nd)()
Chec k(boo ks)()

(from CLASSES)

Figure F.37 Class diagram for restaurant management with Multi-tasking mechanism

IST – 2001 – 32298 Page 211 of 211
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Clock

 : D ispatcher : Books
manager

 : Book : Table

Check(books)
Check(books)

CheckBook()
Status()

GetStatus(status)

Figure F.38 Sequence diagram for restaurant management with Multi-tasking mechanism

IST – 2001 – 32298 Page 212 of 212
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.19 Command Aggregation Architectural Usability Pattern
 Pattern Name: Command Aggregation

 Usability Mechanism: The system should provide the capability to allow users to perform
different actions by means of a single command. Macro creation would be an example of this
pattern.

 Solution:

STEP 3. Abstraction of the design solution for Command Aggregation

 Solution:

o Diagram:

Interface 1

System

Interface

Code-Editor

Code-Executer
3 4

2

5

o Participants:

 Interface: it sends a data set (1) corresponding to a given command, as well as the
program code associated with the command to be created, to Code-Editor.
Additionally, if a command is to be executed, it sends the name of the previously
created command (3) to the Code-executer. When the command has been
executed, it will receive the result of the command or error, if it cannot be
executed, (5) from Code-Executer.

 Code-Editor: it receives the name of the command to be created and the program
code to be associated with the command (1) from the interface, which it sends to
system for storage (2).

 Code-Executer: it receives a previously created command (3) from the interface. It
asks the system for the program code to be executed (4) and executes this code.
Also it sends the result of executing this command to the interface through (5).

 System: it receives the name of the command as well as the associated program
code (3). It also sends the program code associated with a command to the Code-
executer when it is requested for execution (4).

 Usability benefits: Providing the ability to group a set of commands into one higher level
command reduces the users’ cognitive load, as they do not need to remember how to execute the
individual steps of the process once they have created a macro, they just need to remember how to
trigger the command.

 Usability rationale: This pattern improves user efficiency and prevents any errors that may be
made during the individual actions grouped in the aggregate command, which means that it
improves reliability. On the other hand, it can have a negative impact on long-term learnability,
that is, on user memorability.

 Consequences:

o Increases system performance in executing the aggregated commands.

IST – 2001 – 32298 Page 213 of 213
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Related patterns: The wizard pattern should be used combined with commands aggregation to
facilitate and guide the process to create or execute a command.

 Pattern implementation in OO: In this case, the class editor includes the name of the command
to be created and the code lines of the created program. Code lines must be stored to be reloaded
in the future in the class command.

Example: the system must have the capability to create macros, for instance, to create a macro that
would permit a maître d’hôtel to change the permitted period for arrival at the restaurant before the
booking time, taking into account the number of bookings for each day.

R es taurant

Nam e : Str ing
Address : String

GetNam e(Nam e)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Book

Date
Hour
Nam e

ClientNam e(client)()
Check(date, hour)()
Get(times-in-week)()
CheckBook()
GetStatus(status)()

(from CLASSES)

Table

Status : Str ing
Num ber-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()()
LookForAvailable(kind, data, hour)()
LastRequestConsumptions()()
Status()

(from CLASSES)

R equest-line

CreateLine(code)()
Read(consumption)()
Consum tionPrice(price)()
LineNam e(nam e)()
GetPrice(price)()

(from CLASSES)

C onsum pt ion

Cod-consumption
Description
Price

Check-Stock()
OK()
Consum tionNam e(nam e)()
LastCodeConsumption()()

(from CLASSES)

R equest

Hour
Date
Status

Init-request()
Input-CodConsum ption()
OK()
InitCodConsum ption(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
GetPrice(price)()
LastRequestConsumtions()()

(from CLASSES)

Books m anager

GetRestaurants(list)()
Get(restaurant, date, hour, kind)()
Check(books)()

(from CLASSES)

Interface
(from CLASSES)

editor

CreateComm and(comm and-name, program -code)()
Com mand-created()

(from CLASSES)

com m and

StoreCom mand(com mand-nam e, program -code)()

(from CLASSES)

Figure F.39 Class diagram for the first application with Command Aggregation mechanism

IST – 2001 – 32298 Page 214 of 214
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Maitre

 : editor : command : Inte rface

NewCommand(command-name, program-code)

Cr eateCommand(command-name, program-code)

StoreCommand(command-name, program-code)

Command-created()
Command-created()

Figure F.40 Sequence diagram for the first application with Command Aggregation mechanism

IST – 2001 – 32298 Page 215 of 215
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

F.20 Actions for Multiple Objects Architectural Usability Pattern
 Pattern Name: Actions for Multiple Objects.

 Usability Mechanisms: The same action often needs to be applied to a number of different
objects. Providing the user with the possibility of grouping the objects and applying one action to
them all “in parallel” will be of help in completing such a task more quickly and accurately. Errors
are more likely to be made if each object has to be dealt with separately.

 Solution:

o Diagram:

4

Interface

Interface

Selector-Manager

Function-Manager

System

Interface

1

2

3

5

6

o Participants:

 Interface: it sends the set of objects selected by the user from the interface to
Selector-manager in (1). Additionally, it sends the function to be executed in (3).
If, after the requested operation has been executed, the user is to be informed of
the result of the operation, the respective data are sent to the interface in (6).

 Selector-manager: this component receives the set of elements on which to
operate in (1). Additionally, it sends the set of objects on which the system is to
operate to function-manager in (2).

 Function-manager: it receives the operation to be executed in (3) and receives the
set of objects on which the system is to operate in (2).

 System: it receives the function to be executed (4) and the list of objects on which
the specified function is to be executed in (5). Additionally, it sends the result of
the executed function to the interface in (6).

 Usability benefits: Providing the ability to perform the same action on a number of objects at
once reduces the time that it will take the user to complete a task, as the system should be much
faster in repeating actions than the human user. The number of clicks (or equivalent actions) that
the user has to make to complete the task is reduced.

 Usability rationale: This pattern improves user efficiency because users do not have to repeat the
same action several times on different objects, and it also improves reliability through error
prevention.

IST – 2001 – 32298 Page 216 of 216
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 Consequences:

 Related patterns:

 Pattern implementation in OO: This pattern generates a “selector-manager” class, responsible
for receiving any user requests referring to a set of resources, and a “function-manager” class,
which is responsible for collecting the list of elements to which the specified function is to be
applied and requests that this function be applied to each element in the list.

 Example: the cook selects several ingredients and requests restocking.

Re cipe

Amount
Nam e

(from C LASSES)

Restaurant

Name : String
Address : String

G etName(Name)()
AvailableT ables(date, hour, kind)()

(f rom CL ASSES)

Book

ClientName(client)()
Check(date, hour)()
G et(t imes-in-week)()

(fro m C LASSES)

Table

Status : String
Number-person : Integer
Smoker/Non Smoker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookF orAvailable(kind, data, hour)()

(f rom CLASSES)

Books m anager

G etRestaurants(list)()
G et(restaurant, date, hour, kind)()

(f rom CLASSES)

Request- line

CreateLine(code)()
Read(consumpt ion)()
Cons umti onPri ce(pric e)()
LineName(name)()
G etPrice(price)()

(f rom CL ASSES)

Request

Hour
Date
Status

Init-request()
Input-CodConsumpt ion()
O K()
init-request()
Init-request()()
Init-request()()
Init-request()()
InitCodConsumpt ion(code)()
RequestConsumtions()()
Bill()()
New-price(price)()
G etPrice(price)()

(f rom CLASSES)

Consum ption

Cod-consumpt ion
Description
Price

Check-Stock()
O K()
ConsumtionName(name)()
LastCodeConsumption()()

(f rom CLASSES)

Feedbacker

F eedback(checking-resource)()
F eedback(request-acepted)()

(f rom CLASSES)

Al ert- Man age r

Check-Ingredient()
O K()

(from C LASSES)

Ingred ient

Name
Minimun-Stock
Real-Stock

Check()()
AskF or(ingredient)()

(from C LAS SES)

Function-M anager

AskF or(list -of-ingredients)()

(f rom CLASSES)

Se lector-m anager

AskF or(ingre diente s)()
Ingredients(list -of-ingredients)()

(f rom CLASSES)

Figure F.39 Class diagram for restaurant management with Actions for Multiple Objects mechanism

IST – 2001 – 32298 Page 217 of 217
© STATUS Consortium 2002. CONFIDENTIAL

 STATUS D.3.4. v.1.0 Techniques, patterns and styles

 : Cook
 :

Selector-manager
 :

Function-Manager
 : Ingredient

AskFor(ingredientes)

SelectIngredients()

Ingr edients(l is t-of -ingre dients)

AskFor(list-of-ingredients)

AskFor(ingredient)

For each
ingredient in
the list

Figure F.40 Sequence diagram for restaurant management with Actions for Multiple Objects

mechanism

IST – 2001 – 32298 Page 218 of 218
© STATUS Consortium 2002. CONFIDENTIAL

