
Clarifying the Relationship between Software Architecture and Usability

Natalia Juristo, Ana M. Moreno
School of Computing - Universidad

Politécnica de Madrid, Spain
natalia@fi.upm.es, ammoreno@fi.upm.es

Maria Isabel Sánchez
School of Computing - Universidad Carlos III

de Madrid, Spain
misanche@inf.uc3m.es

Abstract

This paper examines in a problem posed recently
concerning the relationship between software system
usability and architecture. Here, we try to empirically
clarify this relationship, focusing on the concept of
architecture-sensitive usability mechanism. This concept
represents specific usability issues that can improve
software usability and that have demonstrated
architectural implications. Accordingly, this paper
outlines how usability needs to be decomposed to be dealt
with from an architectural point of view and how the
architecture-sensitive usability mechanism emerges. A list
of architecture-sensitive usability mechanisms is
presented and the procedure for outputting their
respective architectural implications is discussed.

1. Introduction

Usability is an important component of software

quality. Although there is no established set of critical
software quality attributes, several classifications agree
on the importance of considering usability as a quality
attribute [1][2][3]. Additionally, usability is increasingly
recognized as a quality attribute that has a big impact on
software development [4].

To understand the depth and scope of the usability of
a system, it is useful to make a distinction between the
visible part of the user interface (buttons, pull-down
menus, check-boxes, background color, etc.) and the
interaction part of the system. By interaction we mean the
coordination of information exchange between the user
and the system. A system’s usability deals not only with
the user interface, but mainly with the user-system
interaction. This interaction must be carefully designed
and should be considered when designing not just the
visible part of the user interface, but also the rest of the
system. For example, the provision of continuous
feedback for users is a primary usability feature, and its
implementation needs to be considered when designing
the system. System operations have to be designed so as
to allow information to be frequently sent to the user
interface to keep users informed about the current status

of the operation. So, although this information could be
displayed by different means (percentage-completed bar,
a clock, etc.) and these means are interface or
presentation issues, the feedback feature is not just an
interface aspect. It is a functionality that affects system
usability and should be considered during design, as the
design is affected by the decision on whether or not to
include this usability feature.

However, seminal interactive system architectures,
such as Model-View-Controller (MVC) and Presentation
Abstraction Control (PAC) [5] seem to assume that
usability only affects the presentation and dialogue
components of an interactive application. Based on this
assumption, these architectures decouple the application
features from the user interface, such that each can be
designed and modified more or less independently of the
other. This assumption does not consider the fact that
functionalities buried in the application logic can
sometimes affect the usability of the whole system.

Recently, some groups have been working on
identifying specific usability aspects with connections in
the software architecture to try to clarify this relationship
[6] [7]. These papers show how even if the presentation
of a system is well designed, system usability can be
greatly compromised if the underlying architecture and
designs do not make the proper provisions for user
concerns.

In this paper, our aim is to contribute to this
clarification by empirically studying the relationship
between software usability and software architecture 1.
Note that it is important to clarify this relationship,
because, as mentioned above, if any such relationship
exists, developers should bear usability issues in mind
when defining the overall system and not just when
working on the user interface.

To deal with this relationship, we have decomposed
usability into lower level concepts more related to the
software solution. As we will see in section 2, these
concepts are usability attributes and usability properties.

1 The content of this paper is part of the research done in the
STATUS project: European Union funded project IST–2001–
32298.

Then the concept of architecture-sensitive usability
mechanism is introduced in section 3, identifying specific
usability features that will address a particular usability
property and whose inclusion in a software system will
have a specific effect on its architecture. Section 4 shows
an example of the architectural implications for one such
architecture-sensitive usability mechanism (Undo). It also
describes the empirical process followed to identify these
implications, and refers to the site where the implications
of the other architecture-sensitive usability patterns
identified can be found. From our research, we conclude
that there is a relationship between usability and software
architecture and that it is, therefore, dangerous to assume
that usability will only affect the presentation component
of our software systems. Usability also needs to be dealt
with when designing the logic of applications.

2. Decomposing Usability from the Architectural

Viewpoint

One of the problems of working with usability from a
design perspective is that it is a broad and abstract
concept that is hard to grasp. Therefore, the best way of
addressing the concept of usability is to decompose it.
The first level of the usability decomposition is what is
called usability attributes in the (Human Computer
Interaction) HCI field. Usability attributes are precise and
measurable components of the abstract concept that is
usability. Usability has been decomposed into attributes
in the HCI field mainly for evaluation purposes. Although
different authors have proposed different usability
attribute classifications, the view that appears to be shared
by most of the prominent authors in the field is that the
main usability attributes are [11] [12] [14]:
− Learnability, which is composed of two

complementary aspects: how quickly users can learn
to use the system for the first time and how easy it is
to remember how to operate the system after not
having used it for some time.

− Efficiency of use, which refers to how efficiently the
user performs a task using the system, that is, this
attribute measures the efficiency of the software
system used by the user. Note that this attribute is not
the same as the classical quality attribute of
efficiency, understood as system efficiency.

− Reliability of use. Again, this parameter is not to be
confused with system reliability. It refers to the
reliability of the user performing a task using the
system. Therefore, this attribute refers to the errors
made by the user when using the system, not the
system errors.

− Satisfaction is the most subjective attribute and
refers precisely to the user’s subjective view of the
system.

However, these usability attributes are very far removed
from software design, that is, the effect that these
attributes have on software architecture cannot be
determined directly. Therefore, the approach that we have
followed has been to decompose these attributes into
intermediate levels of concepts that are increasingly
closer to the software solution. The first one of these
concepts is usability property.

We have identified usability properties from the HCI
field. HCI researchers have defined some concrete aspects
to help developers to build usable systems. Each author
has named these tips differently: design heuristics [8],
rules of usability [9], principles of usability [10][11],
ergonomic principles [12], etc. We have compiled these
design heuristics and principles that different authors
suggest for developing more usable systems
[8][9][10][11][12][13][14] and have arrived at the
following usability properties for a software system:
− Keeping the user informed. The system should

inform users at all times so that they know what is
going on.

− Error management. The system should provide a
way to manage errors. This can be done by error
correction or error prevention.

− Consistency. The system should be consistent in all
aspects of interaction, that is, in the interface and in
the way we provide functionality.

− Guidance. We should provide informative, easy-to-
use and relevant guidance and support both in the
application and in the user manual to help the user
understand and use the system.

− Minimize cognitive load. Systems should minimize
the cognitive load, e.g., humans have cognitive
limitations, and systems should bear these limitations
in mind.

− Explicit user control. Users should feel that they are
in control of the interaction.

− Natural mapping. The system should provide a
clear relationship between what the user wants to do
and the mechanism for doing it.

− Ease of navigation. Systems should be easy to
navigate.

− Accessibility. Systems should be accessible in every
way that is required. This property includes
internationalization, multi-channeling and
accessibility for disabled people.

Although this classification could contribute to

somehow structuring the field of design heuristics, an
important problem still remains to be addressed.

Usability properties may be useful as possible sources of
requirements to be satisfied by a usable software system.
However, developers have no systematic way of
incorporating them into their developments. In other
words, they need to know what particular elements a
software system has to include to satisfy a usability
property. Therefore, usability properties need to be
further elaborated if we want developers use them to
incorporate specific functionalities to improve the
usability of the software systems.

3. Architecture-Sensitive Usability

Mechanisms
Very recently, the HCI community has developed the

concept of usability pattern. There are several a few lists
of usability patterns, the most commonly referenced being
the Amsterdam Collection [15] and Common Ground
[16]. HCI usability patterns provide usability solutions
(allow the user to undo at least the last couple of actions,
provide feedback to the user every two seconds of
command processing, in forms to be filled by users
arrange the blanks in an order that makes sense
semantically, use different colors to identify the major
sections of the screen, etc.) to common problems.

Note that, on the one hand, the inclusion of some of
these usability solutions in a software system will help to
address specific usability properties. On the other, the
inclusion of some of these solutions in a software system
could have an effect on its software architecture and not
only on its user interface.

So, we have developed the concept of architecture-
sensitive usability mechanism, to refer to specific
usability features that have an impact on the software
architecture (as we will see in the next section) and
address particular usability properties. In other words, we
have descended another level in our approximation of
usability to architectural design, defining the concept of
architecture-sensitive usability mechanisms. An
architecture-sensitive usability mechanism addresses a
need identified by a usability property at the requirements
stage and that has a specific effect on the design of the
software system.

Note that we avoid to use the concept of usability
pattern, as from a software engineering perspective,
patterns should provide validated design solutions to
repetitive problems [17], while, architecture-sensitive
usability mechanisms represent usability features that
affect software architecture. As noted at the end of this
paper, we intend to pursue this work in the future by
approximating these mechanisms to architectural sensitive
usability patterns, adding to the usability solutions
proposed by the HCI community particular design
solutions.

Table 1 shows the relationship between usability
properties (rows) and architecture-sensitive usability
mechanisms (columns) that we have considered. A
detailed description of this relationship is given in [18].

Table 1. Relationship between Usability Properties and Architecture-sensitive Usability Mechanisms
 Architecture-sensitive Usability Mechanisms

Usability
Properties

Different
languages

Feedback Undo Form/Field
validation

Wizard User
Profile

Cancel History
Logging

Command
Aggregation

Action
for
multiple
objects

Workflow
Model

Provision
of Views

Keeping the
user informed

 X

Error
management

 Error
prevention

 X X X X X X

 Error
correction

 X X X

Consistency
Guidance X X
Minimize
cognitive load

 X X

Explicit user
control

 X X X X

Natural
mapping

Ease of
navigation

 X

Accessibility X
Adaptability X X X

It should be noted that the properties of Natural

Mapping and Consistency cannot be arranged around
specific architectural usability mechanisms. The reason is
that these properties require the performance of different
tasks and activities throughout the entire development
process rather than the application of particular solutions
at the architectural level. For example, the provision of
natural mapping between the user tasks and the tasks to
be implemented in the system calls for software
requirements to be elicited during the analysis process
bearing in mind this objective, and the whole system must
be designed according to these requirements. The same
goes for consistency, which involves different activities
throughout the lengthy development process of the
original or new versions of the system and among
different functionalities of the same version.

4. Studying the Implications of Usability

Mechanisms into Software Architecture

To analyze the architectural implications of the

architecture-sensitive usability mechanisms presented in
Table 1, we worked with different practitioners asking
them to incorporate these mechanisms into their
developments, once they had made the design for the
system considering none of such mechanisms.
Specifically, we worked on two small real applications
developed by final-year Computing students, one real
application developed by one of our Master students, and
another real application developed by one of the
industrial partners of the STATUS project. If the
practitioners modified their designs to incorporate a
specific mechanism, then the respective mechanism can
be considered to be architecture sensitive.

The exact process followed to study the relationship
between the usability mechanisms and the software
architecture was:

- We worked with a list of usability mechanisms
longer than the one that appears in Table 1, and
compiled from HCI literature about specific
software elements that improve system usability.

- We asked designers to build the design models
for the systems without including usability
mechanisms.

- We asked designers to modify their original
developments to include the functionality for each
of the mechanisms under consideration.

- If the modifications made affected the design
models, for example, involved the inclusion of
new components or different interactions between
existing components, we considered that the
mechanism was architecture sensitive and

generalized the design solutions provided by the
different practitioners for these mechanisms.

- If the modification did not affect the design
models (typically they affected in this case to
lower level functions or pseudocode) then the
mechanisms was considered non architectural
sensitive.

An example of the architectural implications of one
of the architecture-sensitive usability mechanisms (Undo)
is shown in Figure 1. The complete demonstration of the
architectural impact of the mechanisms shown in Table 1
appears in [19], including a detailed description of the
design solutions provided for the practitioners for each
mechanism, how they were derived, and an example of
the inclusion of these mechanisms in a specific
application. Note that the generalized architectural
solutions for each mechanism (like the one shown in
Figure 1) represents just one possible way of
incorporating such usability mechanisms into a software
design. Its goal is just show the architectural implication
of a mechanisms but not at all the only solution to design
such mechanisms.

5. Conclusions

Usability is a key issue in software development. This

paper has shown an approach for dealing with usability
from an architectural point of view. In particular, we have
shown how usability has a real impact on software
architecture, not only affecting the user interface as
usually thought. Therefore, it is important to bear in mind
the concept of usability when designing the overall
system functionality and not just when designing the user
interface.

The approach followed to illustrate the relationship
between usability and software architecture focused on
decomposing the concept of usability into lower levels
that are progressively closer to the solution domain:
usability attributes, properties and mechanisms. While
usability attributes come from traditional HCI attributes,
usability properties are taken from existing tips and
heuristics that can be found in HCI literature. Finally,
architecture-sensitive usability mechanisms represent
specific usability issues to be incorporated into a software
system and that have a demonstrated impact on software
architecture.

By the time being, developers can use this work to
consider usability mechanisms to incorporate into their
systems during software architecture design. However,
we are expanding this work to better serve developers.
Specifically, we are developing what we have referred to
as architecture-sensitive usability patterns which package
both usability solutions and design solutions to
mechanisms. In these patterns we customize architectural
implications of each mechanism for specific architectural

restrictions, for example, the use of MVC or PAC
architectures; also we make explicit the user interface
implications of these mechanisms to inform developers of
what effect these mechanisms have on both the software
architecture and the user interface.

So, although a lot of work still remains to be done to
elucidate the exact details of the relationship between

software usability and software architecture, we have
presented a first step that empirically demonstrate that
there is such a relationship, and we have explicitly
identified which usability issues involves such
relationship.

o Usability Mechanism: The ability to undo an action and return to the previous state.
o Example of design solution:

� Diagram:
 A

Interface A

System A

Logger
Undoer

System B
B

Interface B

1

2

3

4

5

6
10

9

7
8

11

System B

12
13

14
15

� Participants: This mechanisms design has two clearly separate parts. These parts have been labeled in the
illustration as A and B, respectively. Part A collects the actions performed in the system (the number of
actions to be stored will have to be specified when the system is developed) so that they can be later undone.
Part B manages the respective undo.
� Interface A: receives the request to execute an operation in the system, which may contain both the

operation and data (1) (2). As we will see later, this execution request can also come from the actual
system (3) (4).

� System A: this module sends the functions and data executed in the system to the logger (3) (4) and
also, optionally, if the logger does not store the actions internally, will send the information to the
part of the system that manages these actions (5) (6).

� Logger: this module receives the actions and the data requested by the user or from another part of
the system (1) (2) (3) (4) and stores the logged action and data either internally or in another part of
the system, in which case it will have to send this action and data to the system (5) (6) to be
processed by the respective part of the system. Logger receives the undo request from Undoer (9)
and, if the logged actions are stored in the logger, it then sends them one by one to Undoer (8). If
they are not stored in the logger, it will receive both the data and the operation to be undone from
another part of the system, which we have named System B, through (11) and (10), respectively.

� Interface B: receives the undo request and sends it to Undoer through (7).
� Undoer: sends the undo request to logger (9) and also sends each of the actions to be undone that it

receives from logger to System B (13), as well as receiving the opposite operation to the one
performed from System B (12). When it knows which opposite operation is to be performed, it sends
the operation to System B along with the data associated with the operation in question through (14)
and (15).

� System B: it will search the system for both the action performed and the data associated with this
operation (10) (11) if the data are not stored internally in the logger. It receives the actions to be
undone (13) and provides the opposite operation (12) (for which purpose it will have to store what
the opposite is for each action, see implementation section for example). The opposite action and the
respective data will be sent to the respective part of the system ((15) and (14)).

o Related mechanisms: History logging is equivalent to part A of this mechanism. Therefore, if undo is provided, history
logging could be provided at no extra cost.

o Mechanisms implementation in OO: This mechanism will generate an “undoer” class responsible for triggering the
entire undo process. Additionally, there are the “listener” and “action-done” classes, which are used to store the actions
that are performed as the system operates. A “system-action” class also has to be included to establish what the opposite
is for each action that can be undone through the “is-the-opposite” relationship.

o Example: See [19] for a full example, not included here for reasons of space.

Figure 1. Architectural implications of the "Undo" mechanism

References
[1] IEEE. IEEE Std 1061: Standard for a Software
Quality Metrics Methodology. IEEE, 1998.
[2] ISO. ISO 9126-1 Software Engineering – product
quality – part 1: Quality Model. ISO, 2000
[3] B. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J.
Macleod, M.J. Merritt. Characteristics of Software
Quality. North Holland, 1978.
[4] X. Ferré, N. Juristo, H. Windl, L. Constantine.
“Usability Basics for Software Developers”. IEEE
Software, vol 18 (11), p. 22-30.
[5] L. Bass, P. Clements, R. Kazman. Software
Architectures in Practice. Addison Wesley, Reading,
MA, 1998.
[6] L Bass, B. John, J Kates. Achieving Usability Through
Software Architecture. Technical Report. CMU/SEI-
2001-TR-005, March 2001.
[7] J. Bosch and N. Juristo. “Designing Software
Architectures for Usability”. ICSE Tutorial. Portland,
OR, May 2003.
[8] J. Nielsen. Usability Engineering. AP Professional,
1993.
[9] B. Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley, 1998.
[10] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S.
Holland, T. Carey. Human-Computer Interaction.
Addison Wesley, 1994.
[11] L. L. Constantine, L. A. D. Lockwood. Software for
Use: A Practical Guide to the Models and Methods of
Usage-Centered Design. Addison-Wesley, 1999.

[12] D.L.Scapin, J.M.C. Bastien, Ergonomic criteria for
evaluation the ergonomic quality of interactive systems,
Behaviour & Information Technology, vol 16, no 4/5, pp.
220-231
[13] B. Shackel. "Usability – context, framework, design
and evaluation". In Human Factors for Informatics
Usability. pp 21-38. Ed. by B. Shackel and S. Richardson.
Cambridge University Press, 1991.
[14] D. Hix, H.R. Hartson. Developing User Interfaces:
Ensuring Usability Through Product and Process. John
Wiley and Sons, 1993.
[15] M. Welie. The Amsterdam Collection
http://www.welie.com, visited September 2003.
[16] Tidwell. The Case for HCI Design Patterns.
http://www.mit.edu/jdidwell/common_ground_onefile.htm,
visited September 2003.
[17] E Gamma, R Helm, R Johnson, J Glissades. Design
Patterns. Elements of Reusable Object-Oriented
Software. Addison Wesley, 1998.
[18] A. Andrés, J. Bosch, A. Charalampos, R. Chatley, X.
Ferre, E. Folmer, N. Juristo, J. Magee, S. Menegos, A.
Moreno. “Usability attributes affected by software
architecture”. Deliverable. 2. STATUS project, June 2002.
Http://www.ls.fi.upm.es/status
 [19] N. Juristo, A. Moreno, M Sánchez. “Techniques and
Patterns for Architecture-Level Usability Improvements”.
Deliverable 3.4. STATUS project.
Http://www.ls.fi.upm.es/status May 2003.

http://www.welie.com/
http://www.mit.edu/jdidwell/common_ground_onefile.htm
http://www.ls.fi.upm.es/status

