
Experiences with Software Architecture Analysis of Usability

Eelke Folmer, Jan Bosch
Department of Mathematics and Computing Science

University of Groningen, PO Box 800, 9700 AV the Netherlands

mail@eelke.com, Jan.Bosch@cs.rug.nl

Abstract
Studies of software engineering projects show that a significant large part of the maintenance costs of
software systems is spent on dealing with usability issues. Fixing usability problems during the later
stages of development has proven to be costly since many changes cannot be easily accommodated
by the software architecture. These high costs prevent developers from meeting all the usability
requirements, resulting in systems with less than optimal usability. Explicit evaluation of a software
architecture for its support of usability is a tool to cost effectively develop usable systems. It allows
for more “usability tuning” on the detailed design level, hence, preventing part of the high costs
incurred by adaptive maintenance activities once the system has been implemented. Based on our
investigations into the relationship between usability and software architecture, we developed a
Scenario based Architecture Level UsabiliTy Analysis technique (SALUTA). The contribution of this
paper is that it provides experiences and problems we encountered when conducting architecture
analysis of usability at three industrial case studies performed in the domain of web based enterprise
systems (e.g. e-commerce-, content management- and enterprise resource planning systems). We
make some general observations and some architecture assessment related observations. For each
experience, a problem description, examples, causes, solutions and research issues are identified.

Keywords
Software architecture, usability, architecture analysis.

1. Introduction
One of the key problems with most of today’s software is that it does not meet its quality
requirements very well. In addition, it often proves hard to make the necessary changes to a system
to improve its quality. A reason for this is that many of the necessary changes require changes to the
system that cannot be easily accommodated by its software architecture [1]. The software
architecture, i.e. the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its design and evolution
[2] does not support the required level of quality.

The work in this paper is motivated by the fact that this shortcoming also applies to usability.
Usability is increasingly recognized as an important consideration during software development;
however, many well-known software products suffer from usability problems that cannot be repaired
without major changes to the software architecture of these products.

This is a problem for software development because it is very expensive to ensure a particular level of
usability after the system has been implemented. Studies [3,4] confirm that a significant large part of
the maintenance costs of software systems is spent on dealing with usability issues. A reason for
these high costs is that most usability issues are only detected during testing and deployment rather
than during design and implementation. This is caused by the following:

 Usability requirements are often weakly specified.

 Usability requirements engineering techniques often fail to capture all requirements.

 Usability requirements frequently change during development and product evolution.

As a result, a large number of change requests to improve usability are made after these phases.
Discovering requirements late is a problem inherent to all software development and is something
that cannot be fully solved or avoided. The real problem is that it often proves to be hard and
expensive to make the necessary changes to a system to improve its usability. Many of the necessary
usability changes to a system cannot be easily be accommodated by the software architecture.
Certain usability improving solutions such as undo, user profiles and visual consistency have for
particular application domains proven [5,6] to be extremely hard to retrofit during late stage
development because they require architectural support. Restructuring the system during the later
stages of development has proven to be an order of magnitude higher than the costs of an initial
development [1].

Usability is to a large extent restricted by the software architecture. However, software engineers and
human computer interaction engineers are often not aware of this important constraint and as a

mailto:mail@eelke.com
mailto:Jan.Bosch@cs.rug.nl

result avoidable rework is frequently necessary. This rework leads to high costs and because during
design different tradeoffs have to be made, for example between cost and quality, this leads to
systems with less than optimal usability.

The challenge is therefore to cost effectively develop usable software e.g. avoid the high costs of
reworking the system. Assessing a software architecture for its support of usability is first step in this
direction. Software architecture assessment is a technique to come up with a more “usable” software
architecture that allows for more “usability tuning” on the detailed design level, hence, preventing
part of the high costs incurred by adaptive [7] maintenance activities once the system has been
implemented.

Most engineering disciplines provide techniques and methods that allow one to assess and test quality
attributes of the system under design. In [8] an overview is provided of usability evaluation
techniques that can be used during software development. Unfortunately, no usability assessment
techniques exist that focus on the assessment of software architectures. Based upon successful
experiences [9] with architectural assessment of maintainability, we developed architectural analysis
of usability as an important tool to cost effectively develop usable software. To be able to analyze a
software architecture for its support of usability, we first investigated the relationship between
usability and software architecture in [6]. The result of that research is captured in the software-
architecture-usability (SAU) framework, which consists of an integrated set of design solutions that in
most cases have a positive effect on usability but are difficult to retrofit into applications because they
have architectural impact.

In [10] we developed a Scenario based Architecture Level UsabiliTy Assessment technique (SALUTA)
which is based on the Software Architecture Analysis Method (SAAM) [11]. SALUTA uses the SAU
framework to analyze a software architecture for its support of usability. Our technique has been
applied at three different case studies in the domain of web based enterprise systems (e.g. e-
commerce-, content management- and enterprise resource planning systems). During these case
studies we collected several experiences.

We consider SALUTA to be a prototypical example of an architecture assessment technique. The
contribution of this paper is as follows: it provides experiences and problems that we encountered
when conducting architecture analysis of usability. Suggestions are provided for solving or avoiding
these problems so organizations that want to conduct architecture analysis facing similar problems
may learn from our experiences.

The remainder of this paper is organized as follows. In the next section, the framework that we use
for analysis is presented. Our method for software architecture analysis is described in section 3.
Section 4 introduces the three cases. Our experiences are described in section 5. Finally, related work
is discussed in section 6 and the paper is concluded in section 7.

2. The SAU Framework
A software architecture description such as a decomposition of the system into components and
relations with its environment may provide information on the support for particular quality attributes.
Specific relationships between software architecture (such as - styles, -patterns etc) and quality
attributes (maintainability, reliability and efficiency) have been described by several authors
[12,13,1]. For example, [12] describes the architectural pattern Layers and the positive effect this
pattern may have on exchangeability and the negative effect it may have on efficiency.

Until recently [5,6] such relationships between usability and software architecture had not been
described nor investigated. In [6] we defined a framework that expresses relationships between
Software Architecture and Usability (SAU) based on our comprehensive survey [8]. The framework
consists of an integrated set of design solutions that have been identified in various cases in industry,
modern day software, and literature surveys. These solutions are typically considered to have a
positive effect on the level of usability but are difficult to retro-fit into applications because these
solutions require architectural support. The requirement of architectural support has two aspects:

 Retrofit problem: Adding a certain solution has a structural impact. E.g. it requires the
architecture to be organized in a particular structure with relationships between those
structures. If some parts of the system have already been implemented at the time that
changes are made, modification will likely affect many parts of the existing source code,
which is very expensive to modify.

 Structural support: Some solutions such as providing visual consistency do not necessarily
require a particular architecture structure. In practice it is noticed that such ‘architecturally
sensitive’ design solutions are implemented, but business constraints cause such changes to
be implemented in an ad-hoc fashion, rather than structurally. For example, it is possible to
make all screens consistent without any architectural modification. Such modifications then
may erode original architectural design [14] making it harder to modify a particular screen.

Such solutions can be much easier provided, enforced and much easier maintained when a
structural solution is chosen. Visual consistency, for example, may be easily facilitated by the
use of a separation-of-data-from-presentation mechanism such as the use of XML and XSLT
(a style sheet language for transforming XML documents).

For each of these design solutions we analyzed the usability effect and the potential architectural
implications. The SAU framework consists of the following concepts:

2.1 Usability attributes
Usability attributes: A number of usability attributes have been selected from literature that appear to
form the most common denominator of existing notions of usability [15,16,17,18,19,20,21]:

 Learnability - how quickly and easily users can begin to do productive work with a system that is
new to them, combined with the ease of remembering the way a system must be operated.

 Efficiency of use - the number of tasks per unit time that the user can perform using the system.

 Reliability in use - the error rate in using the system and the time it takes to recover from errors.

 Satisfaction - the subjective opinions that users form when using the system.

2.2 Usability properties
A number of usability properties have been selected from literature [20,15,16,22,17,23,24,25,26,27]
that embody the heuristics and design principles that researchers in the usability field consider to
have a direct positive influence on system usability. These should be considered as high-level design
primitives that have a known effect on usability and typically have architectural implications. An
example can be found in Table 1:

Table 1: Consistency

Intent: Users should not have to wonder whether different words, situations, or actions mean the
same thing. An essential design principle is that consistency should be used within
applications. Consistency might be provided in different ways:

 Visual consistency: user interface elements should be consistent in aspect and structure.

 Functional consistency: the way to perform different tasks across the system should be
consistent, also with other similar systems, and even between different kinds of
applications in the same system.

 Evolutionary consistency: in the case of a software product family, consistency over the
products in the family is an important aspect.

Usability
attributes
affected:

+ Learnability: consistency makes learning easier because concepts and actions have to be
learned only once, because next time the same concept or action is faced in another part of
the application, it is familiar.

+ Reliability: visual consistency increases perceived stability, which increases user
confidence in different new environments.

Example: Most applications for MS Windows conform to standards and conventions with respect to e.g.
menu layout (file, edit, view, …, help) and key-bindings.

2.3 Architecturally sensitive usability patterns:
A number of usability patterns have been identified that should be applied during the design of a
system’s software architecture, rather than during the detailed design stage. A set of architecturally
sensitive usability patterns have been identified from various cases in industry, modern software,
literature surveys [15,16,17,18,19,20,21] as well as from existing usability pattern collections
[28,29,30,31]. The purpose of identifying and defining architecturally sensitive usability patterns is to
capture design experience to inform architectural design and hence avoid the retrofit problem. With
our set of patterns, we have concentrated on capturing the architectural considerations that must be
taken into account when deciding to implement a usability pattern. Unlike the design patterns [13],
architecturally sensitive patterns do not specify a specific design solution in terms of objects and
classes. Instead, potential architectural implications that face developers aiming to solve the problem
the architecturally sensitive pattern represents are outlined. An example is shown in table 2:

Table 2: Multiple views

Usability
context:

The same data and commands must be potentially presented using different human-computer
interface styles for different user preferences, needs or disabilities. [29]

Intent: Provide multiple views for different users and uses.

Architectural
implications:

The architecture must be constructed so that components that hold the model of the data that
is currently being processed are separated from components that are responsible for
representing this data to the user (view) and those that handle input events (controller). The
model component needs to notify the view component when the model is updated, so that the
display can be redrawn. Multiple views is often facilitated through the use of the MVC pattern
[12]

Usability
properties
affected:

+ Consistency: separating the model of the data from the view aids consistency across
multiple views when these are employed.

+ Accessibility: separating out the view and controller allows different types of input and
output devices to be used by different users, which may be useful for disabled users.

+ Error management: having data-specific views available at any time will contribute to
error prevention.

Example: Microsoft Word has a number of views that the user can select (normal view, outline view,
print layout view…) and switch between these at will, which all represent the same data.

Figure 1: Relationships between attributes, properties and patterns.

2.4 Relationships in the SAU framework
Relationships, typically positive, have been defined between the elements of the framework that link
architecturally sensitive usability patterns to usability properties and attributes. These relationships
have been derived from our literature survey [6], and industrial experiences. Defining relationships
between the elements serves two purposes:

 Inform design: The usability properties in the framework may be used as requirements during
design. For example, if a requirement specifies, "the system must provide feedback”, we use
the framework to identify which usability patterns may be implemented during architecture
design to fulfill these properties by following the arrows in Figure 1. The choice of which
design solution to apply may be made based on cost and trade-off between different usability
attributes or between usability and other quality attributes such as security or performance.

 Software architecture analysis: Our framework tries to capture essential design solutions so
these can be taken into account during architectural design and evaluation. The relationships
are then used to identify how particular patterns and properties, that have been implemented
in an architecture, may support usability. For example, if undo has been implemented we can
analyze how undo improves efficiency and reliability.

Our assessment technique uses this framework to analyze the architecture’s support for usability. A
complete overview and description of all patterns and properties and the relationships between them
can be found in [6].

3. Method overview
In [10] we developed a method for architecture analysis of usability. This method is based on
scenario based assessment i.e. in order to assess a particular architecture, a set of scenarios is
developed that concretizes the actual meaning of a requirement [1]. For that purpose usage scenarios
are defined. By analyzing the architecture for its support of each of these usage scenarios we
determine the architecture’s support for usability. SALUTA consists of the following five steps:

1. Create usage profile; describe required usability.

2. Analyze the software architecture: describe provided usability.

3. Scenario evaluation: determine the architecture's support for the usage scenarios.

4. Interpret the results: draw conclusions from the analysis results.

A brief overview of the steps is given in the next subsections, a more detailed elaboration of and
motivation for these steps can be found in [10].

3.1 Usage profile creation
One of the most important steps in SALUTA is the creation of a usage profile. Because we found that
traditional usability specification techniques [15,18,17] are poorly suited for architectural assessment,
we decided to use scenario profiles [32,9] for this purpose. The aim of this step is to come up with a
set of usage scenarios that accurately expresses the required usability of the system.

Usability is not an intrinsic quality of the system. According to the ISO definition [25], usability
depends on: the users (e.g. system administrators, novice users), the tasks (e.g. insert order, search
for item X) and the contexts of use (e.g. helpdesk, training environment). Usability may also depend
on other variables, such as goals of use, etc. However in a usage scenario only the variables stated
above are included. A usage scenario describes a particular interaction (task) of a user with the
system in a particular context. A usage scenario specified in such a way does not yet specify anything
about the required usability of the system. In order to do that, the usage scenario is related to the
four usability attributes defined in our framework. For each usage scenario, numeric values are
determined for each of these usability attributes. The numeric values are used to determine a
prioritization between the usability attributes. For some usability attributes, such as efficiency and
learnability, tradeoffs have to be made during design. It is often impossible to design a system that
has high scores on all attributes. A purpose of usability requirements is therefore to specify a
necessary level for each attribute [33]. For example, if for a particular usage scenario learnability is
considered to be of more importance than other usability attributes (maybe because of a
requirement), then the usage scenario must reflect this difference in the priorities for the usability
attributes. The analyst interprets the priority values during the analysis phase to determine the level
of support in the software architecture for that particular usage scenario. An example usage scenario
is displayed in Figure 2.

Figure 2: Example usage scenario

Usage profile creation is not intended to replace existing requirements engineering techniques. Rather
it is intended to transform (existing) usability requirements into something that can be used for
architecture assessment. Existing techniques such as interviews, group discussions or observations
[15,17,20,34] typically already provide information such as representative tasks, users and contexts
of use that are needed to create a usage profile. The steps that need to be taken for usage profile
creation are the following:

1. Identify the users: rather than listing individual users, users that are representative for the
use of the system should be categorized in types or groups (for example system
administrators, end-users etc).

2. Identify the tasks: Instead of converting the complete functionality of the system into tasks,
representative tasks are selected that highlight the important features of the system. An
accurate description of what is understood for a particular task and of which subtasks this
task is composed, is an essential part of this step. For example, a task may be “search for
specific compressor model” consisting of subtasks “go to performance part” and “select
specific compressor model”.

3. Identify the contexts of use: In this step, representative contexts of use are identified. (For
example, helpdesk context or disability context.)

4. Determine attribute values: For each valid combination of user, task and context of use,
usability attributes are quantified to express the required usability of the system, based on
the usability requirements specification. Defining specific indicators for attributes may assist
the analyst in interpreting usability requirements. To reflect the difference in priority, numeric
values between one and four have been assigned to the attributes for each scenario. Other
techniques such as pair wise comparison may also be used to determine a prioritization
between attributes.

5. Scenario selection and weighing: Evaluating all identified scenarios may be a costly and time-
consuming process. Therefore, the goal of performing an assessment is not to evaluate all
scenarios but only a representative subset. Different profiles may be defined depending on
the goal of the analysis. For example, if the goal is to compare two different architectures,
scenarios may be selected that highlight the differences between those architectures. If the
goal is to analyze the level of usability support for an architecture, scenarios may be selected
that are important to the users. To express differences between usage scenarios in the profile,
properties may be assigned to scenarios, for example: priority or probability of use within a
certain time. The result of the assessment may be influenced by weighing scenarios, if some
scenarios are more important than others, weighing these scenarios reflect these differences.

This step results in a set of usage scenarios that accurately express the required usability of the
system.

3.2 Analyze the Software Architecture
In the second step of SALUTA, the information about the software architecture is collected. Usability
analysis requires architectural information that allows the analyst to determine the support for the
usage scenarios. The process of identifying the support is similar to scenario impact analysis for
maintainability assessment [9] but is different, because it focuses on identifying architectural
elements that may support the scenario. For architecture analysis, the SAU framework in section 2 is
used to analyze the architecture for its support of usability. Two types of analysis are performed:

 Analyze the support for patterns: Using the list of architecturally sensitive usability patterns
we analyze whether these have been implemented in the architecture.

 Analyze the support for properties: The software architecture can be seen as the result of a
series of design decisions [14]. Reconstructing this process and assessing the effect of such
individual decisions with regard to usability attributes may provide additional information
about the intended quality of the system. Using the list of usability properties, the
architecture and the design decisions that lead to this architecture are analyzed for these
properties.

The quality of the assessment very much depends on the amount of evidence for patterns and
property support that is extracted from the architecture. SALUTA does not dictate the use of any
specific way of documenting a software architecture. Initially the analysis is based on the information
that is available, such as architecture designs and documentation used with in the development team.
The software architecture of a system has several aspects (such as design decisions and their
rationale) that cannot easily be captured or expressed in a single model. Different views on the
system [35,36] or interviews with the software architect are needed to access such information.

3.3 Scenario Evaluation
The next step is to evaluate the support for each of the scenarios in the usage profile. For each
scenario, it is analyzed by which usability patterns and properties, that have been identified in the
previous step, it is affected. A technique we have used for identifying the provided usability in our
cases is the usability framework approach. The relations defined in the SAU framework are used to
analyze how a particular pattern or property affects a specific usability attribute. For example, if it has
been identified that error management affects a certain scenario, the relationship between error
management and usability are analyzed to determine the support for that particular scenario. Error
management may increase reliability and efficiency. These values are then compared to the required
attribute values to determine the support for this scenario.

Users Tasks Context of
use

Satisfaction Learnability Efficiency Reliability

Account
manager

Insert new
customer in
database

training User should
feel that
he/she is in
control

How easy this
task is to
understand

The time it takes
to perform this
task.

No errors should
occur performing
this task

USAGE PROFILE 1 4 2 3

Usability properties
-Consistency
-Provide feedback
-Guidance
-Error prevention

Usability patterns
-User Modes
-Undo
-Multiple views

framework

Usability properties
-Consistency
-Provide feedback
-Guidance
-Error prevention

Usability patterns
-User Modes
-Undo
-Multiple views

framework
Software architecture

Figure 3: Snapshot assessment example

For each scenario, the results of the support analysis are expressed qualitatively using quantitative
measures. For example, the support may be expressed on a five level scale (++, +, +/-,-,--). The
outcome of the overall analysis may be a simple binary answer (supported/unsupported) or a more
elaborate answer (70% supported) depending on how much information is available and how much
effort is being put in creating the usage profile.

3.4 Interpretation of the results
After scenario evaluation, the results need to be interpreted to draw conclusions concerning the
software architecture. If the analysis is sufficiently accurate the results may be quantified. However,
even without quantification the assessment can produce useful results. If the goal is to iteratively
design an architecture, then if the architecture proves to have sufficient support for usability, the
design process may be finalized. Otherwise, architecture transformations need to be applied to
improve the support for usability. Qualitative information such as which scenarios are poorly
supported and which usability properties or patterns have not been considered may guide the
architect in applying particular transformations. The SAU framework can then be used as an
informative source for design and improvement of the architecture’s support of usability.

4. Case descriptions
In this section we introduce the three systems used in the case studies. The goal of the case studies
was to conduct a software architecture analysis of usability on each of the three systems. As a
research method we used action research [37], i.e. we took upon our self the role of external analysts
and actively participated in the analysis process and reflected on the process and the results. One
case study has been performed at a software organization which is part of our university; the other
two case studies are performed at our industrial partners in the STATUS1 project. These case studies,
have been published as part of the STATUS deliverables and in [38] and in a pending article [39]

All case studies have been performed in the domain of web based enterprise systems, e.g. content
management- (CMS), e-commerce- and enterprise resource planning (ERP) – systems. Web based
systems have become an increasingly popular application format in recent years. Web based systems
have two main advantages: Centralization: the applications run on a (central / distributed) web
server, there is no need to install or maintain the application locally. Accessibility: The connectivity of
the web allows anyone to access the application from any internet connection on the world and from
any device that supports a web browser. From a usability point of view this is a very interesting
application domain: anyone with an internet connection is a potential user. A lot of different types of
users and different kinds of usages must therefore be supported. An overview of the differences
between the applications (See Table 3) illustrates the scope of applicability of our method. The
remainder of this section introduces the three systems that have been analyzed.

Table 3: Comparison of system characteristics

Aspect Webplatform Compressor eSuite

Type of system CMS E-commerce ERP

Number of users > 20.000 > 100 > 1000

Goal of the analysis Analyze architecture’s
support for usability /
Risk assessment:
analyze SA related
usability issues.

Selection: Compare old
versus new version of
Compressor.

Selection: Compare
old versus new
version of eSuite.

Different types of
users

3 3 2

Characterization of
interaction

Information browsing
and manipulation of
data objects (e.g.
create portals, course
descriptions)

Information browsing
(e.g.) Comparing and
analyzing data of different
types of compressors and
compressor parts.

Typical ERP
functionality. (e.g.
insert order, get client
balance sheet)

Usage contexts Mobile / desktop/
Helpdesk

Mobile/Desktop/Standalone Mobile/Desktop

System release
status

Fully deployed Completed not yet
deployed

In development

4.1 Webplatform
The Webplatform is a web based content management system (CMS) for the university of Groningen
(RuG) developed by ECCOO (Expertise Centrum Computer Ondersteunend Onderwijs). The
Webplatform enables a variety of (centralized) technical and (de-centralized) non technical staff to
create, edit, manage and publish a variety of content (such as text, graphics, video etc), whilst being
constrained by a centralized set of rules, process and workflows that ensure a coherent, validated
website appearance.

The Webplatform data structure is object based; all data from the definitions of the CMS itself to the
data of the faculty portals or the data of the personal details of a user are objects. The CMS makes
use of the internet file system (IFS) to provide an interface which realises the use of objects and

1 STATUS is an IST project (IST-2001-32298) financed by the European Commission in its Information

Society Technologies Program. This project studies the relationship between software architecture
and the usability of a software system. The partners are Information Highway Group (IHG),
Universidad Politecnica de Madrid (UPM), University of Groningen (RUG), Imperial College of
Science, Technology and Medicine (ICSTM), LOGICDIS S.A.

relations as defined in XML. The IFS uses an Oracle 9i database server implementation with a java
based front end as search and storage medium. The java based front-end allows for the translation of
an object oriented data structure into HTML. The oracle 9i database is a relational based database. On
top of the IFS interface, the Webplatform application has been build. Thus, the CMS consists of the
functionality provided by the IFS and the java based front-end. Integrated into the Webplatform is a
customised tool called Xopus, which enables a content-administrator to create, edit and delete XML
objects through a web browser.

As an input to the analysis of the Webplatform, we interviewed the software architect, the usability
engineer and several other individuals involved in the development of the system. In addition we
examined the design documentation and experimented with the newly deployed RuG site.

4.2 Compressor
The Compressor catalogue application is a product developed by the Imperial Highway Group (IHG)
for a client in the refrigeration industry. It is an e-commerce application, which makes it possible for
potential customers to search for detailed technical information about a range of compressors; for
example, comparing two compressors.

There was an existing implementation as a Visual Basic application, but the application has been
redeveloped in the form of a web application. The system employs a 3-tiered architecture and is built
upon an in-house developed application framework. The application is being designed to be able to
work with several different web servers or without any. The independence of the database is
developed through Java Database Connectivity (JDBC). The data sources (either input or output) can
also be XML files. The application server has a modular structure, it is composed by a messaging
system and the rest of the system is based on several connectable modules (services) that
communicate between them. This potential structure offers a pool of connections for those
applications that are running, providing more efficiency on the access to databases.

As an input to the analysis of Compressor, we interviewed the software architect. We analyzed the
results from usability tests with the old system and examined the design documentation such as
architectural designs and requirements specifications.

4.3 eSuite
The eSuite product developed by LogicDIS is a system that allows access to various ERP (Enterprise
Resource Planning) systems, through a web interface. ERP systems generally run on large mainframe
computers and only provide users with a terminal interface. eSuite is built as an web interface on top
of different ERP systems. Users can access the system from a desktop computer but also from a
mobile phone. The system employs a tiered architecture commonly found in web applications. The
user interfaces with the system through a web browser. A web server runs a Java servlet and some
business logic components, which communicate with the ERP.

As an input to the analysis of ESuite, we interviewed the software architect and several other
individuals involved in the development of the system. We analyzed the results from usability tests
with the old system and examined the design documentation such as architectural designs and
usability requirements specifications.

5. Experiences
This section gives a description of the experiences that we acquired during the definition and use of
our method. We consider SALUTA to be a prototypical example of an architecture assessment
technique. Our experiences are relevant in a wider context than just architecture assessment of
usability. Our experiences are therefore categorized as follows:

 General experiences

 Architectural assessment experiences

For each experience, a problem description, examples, possible causes, available solutions and
research issues are identified. The experiences are illustrated using examples from the three case
studies introduced before.

5.1 General Experiences
(E1) Impact of software architecture design on usability

Problem: One of the reasons to develop SALUTA was that usability may unknowingly impact software
architecture design e.g. the retrofit problem discussed in section 2. However, we also identified that it
worked the other way around; architecture design sometimes leads to usability problems in the
interface and the interaction.

Example: In the ECCOO case study we identified that the layout of a page (users had to fill in a
form) was determined by the XML definition of a specific object. When users had to insert data, the
order in which particular fields had to be filled in turned out to be very confusing.

Causes: HCI and SE processes are not fully integrated (E2). As a result interface design is often
postponed until the later stages of design. Hence we run the risk that many assumptions may be built
into the design of the architecture that unknowingly may affect interface/interaction design and vice
versa. This leads to avoidable rework of the system.

Solution: Closer integration of HCI and SE processes (E2): Interfaces/interaction should not be
designed as last but as early as possible to identify what should be supported by the software
architecture and how the architecture may affect interface/interaction design. In addition we should
not only analyze whether the architecture design can support usability solutions but also how the
architecture design may restrict usability.

Research issues: Our framework only captures the relationships between usability improving design
solutions and software architecture, therefore SALUTA can only assess an architecture for its support
of these solutions. However there are cases where architecture design leads to usability problems.
Usability is determined by many factors, issues such as: Information architecture: how is information
presented to the user? Interaction architecture: how is functionality presented to the user? System
quality attributes: such as efficiency and reliability. Architecture design does affect all these issues.
Considerable more research is required to be able to analyze whether a particular architecture design
may lead to these kinds of usability problems.

(E2) SE and HCI processes are not fully integrated

Problem: Processes for software engineering and HCI are not fully integrated. There is no integration
of SE and HCI techniques during architectural design. Because interface design is often postponed to
the later stages of development we run the risk that many assumptions may be built into the design
of the architecture that unknowingly may affect interface design and vice versa (E1). This leads often
to avoidable rework of the system.

Example: In all case studies we studied, before we started the assessment, no attention was paid to
making sure the software architecture supported all usability requirements. Only in one case
(Webplatform) it was made sure that the software architecture facilitated visual consistency. Interface
design was in all cases at the later stages of design, when it was already too late to fix architecture
related usability problems.

Causes: Awareness and Attitude (E3). Software architects fail to associate usability with software
architecture design. In addition there is a lack of early assessment techniques [8] that can specifically
assess software architectures for their support of usability.

Solutions: Raising awareness and changing attitudes: stressing out the importance of the
relationship between usability and software architecture.

(E3) Awareness and Attitudes

Problem: Software architects fail to associate usability with software architecture design. As a result
HCI and SE processes are not fully integrated (E2). Functional requirements are very important
however non functional requirements are all so very important. Architectural design should not be
dominated by the functional requirements.

Example: The software architects we interviewed in the case studies were not aware of the important
role the software architecture plays in fulfilling and restricting usability requirements. When designing
their systems the software architects had already selected technologies (read features) and had
already developed a first version of the system before they decided to include the user in the loop.

Causes: there are two main causes for this problem: First, developers tend to concentrate on the
functional features of their architectures and seldom address the ways in which their architectures
support quality concerns [11]. The software engineering community often considers usability to be
primarily a property of the presentation of information; the user interface [40]. This is a false
assumption. The most reliable and performing system architecture is not usable if the user can’t
figure out how to use the system. But on the other hand a slow and buggy system architecture with a
usable interface is not usable either. Software architects should be aware that the software
architecture also plays an important role in fulfilling and limiting the level of quality. Second, software
architects tend to optimize technological considerations over usability considerations. A software
product is often seen as a set of features rather then a set of “user experiences”. When design is
dominated by a technological view, it’s natural for decision makers (including software architects) to
make decisions that optimize technological considerations over all others [40]. As a result, software
architecture analysis is an ad-hoc activity (E4).

Solutions: Raising awareness of the importance of the relationship between usability and software
architecture but raising the importance of usability as the most import quality attribute and software
architecture as an important instrument to fulfill this attribute. By raising the awareness of this
relationship eventually software engineers and usability engineers must recognize the need for a
closer integration of practices and techniques. Changing attitudes: the technological view of a product
is only one of many views; usability is an important design objective which should be fulfilled and
facilitated by software architecture design. The best software comes from teams, or from team
leaders, that are able to see the work from multiple perspectives, balancing them in accordance with
the project goals, and the state of the project at any given time [40].

Research issues: architectural assessment saves maintenance costs spent on dealing with usability
issues. However at the moment we lack figures that acknowledge this claim. To raise awareness and
change attitudes (especially those of the decision makers) we should clearly define and measure the
business and competitive advantages of architectural assessment of usability.

(E4) Software architecture analysis is an ad hoc activity

Problem: Generally, three arguments for defining an architecture are used [41]. First, it provides an
artifact that allows discussion by the stakeholders very early in the design process. Second, it allows
for early assessment of quality attributes [42,1]. Finally, the design decisions captured in the software
architecture can be transferred to other systems. As identified by [9] early assessment is least applied
in practice.

Example: In all organizations where we conducted case studies, architecture assessment was not an
explicitly defined process and there was no integration and cooperation with existing (usability)
requirements collection techniques. We were called in as an external assessment team mostly at the
end of the software architecture design phase and in one case (Webplatform) even after that phase to
assess whether any architecture-usability problems were to be expected.

Causes: Attitude and Awareness (E3). HCI and SE processes are not fully integrated (E2). There is no
need to assess a software architecture for quality concerns if developers are not aware that the
software architecture plays a major role in fulfilling them. The software architecture is often seen as
an intermediate product in the development process but its potential with respect to quality
assessment still needs to be exploited [9]. In addition for some quality attributes developers have few
or no techniques available for predicting them before the system itself is available.

Solution: Raising the importance of software architecture as an important instrument for quality
assessment. If a software architecture analysis technique such as SALUTA was an integral part of the
development process earlier phases or activities would result in the necessary information for creating
usage profiles and provide for the necessary architectural descriptions. For example existing usability
engineering techniques such as interviews, group discussions, rapid prototyping or observations
[15,17,20,34] typically already provide information such as representative tasks, users and contexts
of use and requirements for these scenarios that are needed to create a usage profile. The results of
an architecture assessment should influence the architecture design process.

Research issues: The usage profile and usage scenarios are used to evaluate a software
architecture, once it is there. However a much better approach would be to design the architecture
based on the usage profile e.g. an attribute-based architectural design, where the SAU framework is
used to suggest patterns that should be used rather than identify their absence post-hoc.

(E5) Accuracy of the analysis is unclear

Problem: Our cases studies show that it is possible to use SALUTA to assess software architectures
for their support of usability, whether we have accurately predicted the architecture’s support for
usability can only be answered after the results of this analysis are compared to the results of final
user testing results when the system has been finished. In the case of the Webplatform, several user
tests have been performed recently. The results from the assessment seem reasonable and do not
conflict with the user tests. The results of the user tests of the other two cases are scheduled for
summer 2004. We are not sure that our assessment gives an accurate indication of the architecture’s
support for usability. On the other hand it is doubtful whether this kind of accuracy is at all
achievable.

Causes: The validity of our approach has several threats: Usability is often not an explicit design
objective; SALUTA focuses on the assessment of usability during architecture design. Any
improvement in usability of the final system should not be solely accounted to our method. More
focus on usability during development in general is the main cause for an increase in usability of
systems. Accuracy of usage profile: Deciding what users, tasks and contexts of use to include in the
usage profile requires making tradeoffs between all sorts of factors. The representativeness of the
usage profile for describing the required usability of the system is open to dispute. Questions whether
we have accurately described the systems usage can only be answered by observing users when the

system has been deployed. In addition usability requirements are often weakly specified (E6) and
change (E7) which makes it hard to predict the right usability requirements.

Solution: To validate SALUTA we should not only focus on measuring an increase in the usability of
the resulting product but we should also measure the decrease in costs spent on usability during
maintenance. If any usability issues come up at that time that require architectural modifications then
these should have been predicted during the assessment. In general, our assessment approach was
overall well received by the software architects. In some cases the software architect had not
considered the use of some of our patterns or properties but they considered to implement them in
the system based on the result of the assessment.

5.2 Architecture assessment experiences
Software architects should design their architectures in such a way that it will support all functional
and all quality requirements. In order to do so they need to be able to extract requirements from all
stakeholders, they need to have techniques to realize these requirements and they need to be able to
assess whether the resulting product actually meets the requirements. Three types of architecture
assessment have been identified [1]:

 Scenario based assessment: In order to assess a particular architecture, a set of scenarios is
developed that concretizes the actual meaning of a requirement. For each scenario the
architecture is assessed for its impact or support of this scenario.

 Simulation: Simulation of the architecture uses an executable model of the application
architecture. It is possible to check various properties of such a model in a formal way and to
animate it to allow the user or designer to interact with the model as they might with the
finished system.

 Mathematical modeling: By using mathematical models developed by various research
communities such as high performance computing, operational quality attributes can be
assessed. Mathematical modeling is closely related to, or an alternative to simulation.

In our industrial and academic experience with scenario based analysis we have come to understand
that scenario based analysis is a good technique to analyze software architectures. The use of
scenarios allows us to make a very concrete and detailed analysis and statements about their impact
or support they require, even for quality attributes that are hard to predict and assess from a forward
engineering perspective such as maintainability, security and usability. In the context of architecture
analysis we collected the following experiences:

(E6) Requirements are often poorly not formally specified

Problem: Requirements are often poorly or weakly specified during initial design. This is especially
true for usability. Our usage profile technique depends on specified usability requirements. Usage
profile creation does not replace existing requirements engineering techniques. Rather it transforms
existing usability requirements into something that allows for architectural assessment.

Example: In all cases, apart from the web platform case (some general usability guidelines based on
Nielsen’s heuristics [15] had been stated in the functional requirements) no clearly defined and
verifiable usability requirements had been collected or specified. Often usability requirements are
specified as: the system shall be usable. However this statement does not define for which tasks,
users or contexts of use this requirement should be interpreted.

Causes:

 Most software developing companies still underestimate the importance of usability
engineering and postpone the activity of usability engineering collection until there is a
running system. Usability is often not defined as an explicit project goal. Decision makers do
not see the tradeoffs and are more concerned with time to market issues rather than software
quality.

 Traditionally, usability requirements are specified such that these can be verified for an
implemented system. For example: “new users should require no more than 30 minutes
instruction”. However, assessing an architecture for such a requirement is difficult because
such requirements can only be measured when the system has been completed.

Solutions: Existing usability engineering techniques such as interviews, group discussions, rapid
prototyping or observations [15,17,20,34] typically already provide information such as
representative tasks, users and contexts of use and requirements for these scenarios that are needed
to create a usage profile. For more accurate usage profiles and more accurate assessment results we
advocate the use and adaptation of such existing usability requirements engineering techniques. In
addition close cooperation between the analyst and the person responsible for the usability

requirements (such as a usability engineer) is required during the analysis. The usability engineer
may fill in the missing information on the usability requirements.

(E7) Requirements change

Problem: During or after the development usability requirements change.

Cause: The context in which the user and the software operate is continually changing and evolving.
Sometimes users may find new uses for a product, for which the product was not originally intended.
During development, the uses of the system are often not fully documented nor is a definition made
of exactly who the users are. Users themselves often lack understanding of their own requirements,
only when they work with a first version of the software they realize how they are going to use the
system. Usability experts miss about half of the problems that real users experience using traditional
techniques [43]. This makes it virtually impossible to capture all possible (future) usability
requirements during initial design (8).

Example: In all case studies we noticed that during development the usability requirements had
changed. For example, in the Webplatform case it had initially been specified that the Webplatform
should always show context sensitive help texts, however for more experienced users this turned out
to be annoying and led to a usability problem. It would be much better if a system had been created
where help texts could be turned off for more experienced users.

Solution: requirements that change is a problem inherent to software development and it is not
necessarily a problem that can be fully solved or avoided. Designing for change is considered a
challenge. By analyzing the software architecture for its support of the properties and patterns (even
those that may not be required from the usage profile) in our framework, unforeseen usability
requirements may still be facilitated by the software architecture.

(E8) Difficult to transform requirements

Problem: To be able to assess a software architecture for its support of usability we need to
transform requirements in a format that can be used for architectural assessment. For SALUTA we
have chosen to use usage scenarios. For each scenario, usability attributes are quantified to express
the required usability of the system, based on the requirements specification. A problem that is
encountered is that sometimes it is difficult to determine attribute values for a scenario because
requirements and attributes can be interpreted in different ways. In addition most usability
requirements are not formally / poorly specified (E6).

Example: What does efficiency or learnability mean for a particular task, user or user context?
Efficiency can be interpreted in different ways: does it mean the time that it takes to perform a task
or does it mean the number of errors that a user makes? It can also mean both. Usability
requirements are sometimes also difficult to interpret for example in the Webplatform case: “UR1:
every page should feature a quick search which searches the whole portal and comes up with
accurate search results” How should this requirement be translated to attribute values for a scenario?

Causes: Translating requirements to a format that is suitable for architecture assessment is an
activity that takes place on the boundary of both SE and HCI disciplines. Expertise is required; it is
difficult to do for a software architect since he or she may have no experience with usability
requirements.

Solution: In all of our cases we have let a usability engineer translate usability requirements to
attribute values for scenarios. To formalize this step we have let the usability engineer specify for
each scenario how to interpret a particular attribute. For example, for the web platform case the
following usage scenario has been defined: “end user performing quick search”. The usability engineer
formally specified what should be understood for each attribute of this task. Reliability has been
associated with the accuracy of search results; efficiency has been associated with response time of
the quick search, learnability with the time it takes to understand and use this function. Then the
usability requirements (UR1) were consulted. From this requirement we understand that reliability
(e.g. accuracy of search results is important). In the requirements however it has not been specified
that quick search should be performed quickly or that this function should be easy to understand.
Because most usability requirements are not formally specified we discussed these issues with the
usability engineer that assisted the analysis and the engineer found that this is the most important
aspect of usability for this task. Consequently, high values have been given to efficiency and reliability
and low values to the other attributes (see Figure 4) Defining and discussing specific indicators for
attributes (such as number or errors for reliability) may assist the interpretation of usability
requirements and may lead to a more accurate prioritization of usability attributes.

Research issues: The weakness in this process is that is inevitably some guesswork involved on the
part of the experts and that one must be careful not to add too much value to the numerical scores.
E.g. if learnability has value 4 and efficiency value 2 it does not necessarily mean that learnability is

twice as important as efficiency. The only reason for using numerical scores is to reflect the difference
in priority which is used for analyzing the architecture support for that scenario. Possibly techniques
such as pair wise comparison would be better suited to determine a prioritization.

Usability requirements

UR1- every page should feature a quick search which searches the whole portal and comes up
with accurate search results

Users Task E L R S

1 End user Quick search 4 2 3 1

Figure 4: Transforming requirements to a usage profile

(E9) Specification of certain quality attributes is sometimes difficult

Problem: A purpose of quality requirements is to specify a necessary level [33]. In section 2 four
different usability attributes have been presented which we use in our definition of usability and in
expressing the required usability for a system in a usage scenario. However, specifying a necessary
level of the satisfaction attribute of usability has proven to be difficult during initial design. It is very
hard to specify how this attribute should be interpreted during initial design. In addition we could not
identify specific usability requirements that specify a necessary level for this attribute during initial
design.

Example: In the compressor case we defined the following usage scenario: “Suppliers get the
performance data for a specific model”. What does satisfaction mean for this scenario? What is the
necessary level of the satisfaction for this scenario? Attributes such as learnability, efficiency and
reliability are much easier interpreted and it is therefore much easier to specify a necessary level for
them.

Cause: Satisfaction to a great extent depends on, or is influenced by the other three usability
attributes (efficiency, reliability and learnability) therefore satisfaction can often only be measured
when the system is deployed (for example, by interviewing users).

Solution: The importance of satisfaction in this context should be reevaluated.

Research issues: Satisfaction has been included in our usability decomposition because it expresses
the subjective view a user has on the system. We are uncertain if this subjective view is not already
reflected by the definition of usability. Which software systems are not usable but have high values
for their satisfaction attributes?

(E10) Non-explicit nature of architecture design

Problem: In order to be able to evaluate the usage scenarios, some representation of the software
architecture is needed. However, the software architecture has several aspects (such as design
decisions and their rationale) that cannot easily be captured or expressed in a single model or view.

Example: Initially the analysis is based on the information that is available. In the Compressor case
a conceptual architecture description had been created (see Figure 5). However to determine the
architectural support for usability we needed more information, such as which design decisions were
taken.

Cause: Due to the non-explicit nature of architecture design, the analysis strongly depends on having
access to both design documentation and software architects; the architect may fill in the missing
information on the architecture and design decisions that were taken.

Solution: Interviewing the architect provided us with a list if particular patterns and properties had
been implemented. We then got into more detail by analyzing the architecture designs and
documentation for evidence of how these patterns and properties had been implemented. Different
views on the system [35,36] may be needed to access such information. A conceptual view on the
system of the Compressor provided us with detailed information on how the patterns [6] system
feedback, multi channeling, multiple views and workflow modeling had been implemented.

? ? ? ?

Web Client Tier

Back-End

BOM

Web Server (Netscape, Apache,IIS…)

WebServer Driver

IIO
P

S
er

vl
et

A
P

I

SGBD

JD
B

C

Thin Client (IE,NS)
JVM JS

H
T

T
P

/
H

T
T

P
S

IIO
P

SGBD

JD
B

C

Message Services

Messaging Client

S
M

T
P

/P
O

P
/IM

A
P

Publication

WAP

MOBILE
 PHONE

Persistence

Database Connection Pool

Session control and management

Print-Manager

FTP-Manager

Services

Cron service

log service

awt service

Message-Mgr.
Email...

Authentification

Shopping
Basket

Search Engine Content
management

Content
Exchange

Web-Mail

Java-Mail

Directory and
 user Profile

LDAP

Authorization

Http Sess.Mgr

Template
directory

XSLEngine
Driver

XSLEngine XMLParser SmartScript

Scripting lang.
Driver

Templates
Engine

Multi-language

Multi-display

ACL

Components

Components

Components

Components

Workflow

XML-Loaderr

Forum
Management

Taxonomy

Channels: Fax,
Latex, etc.

Supplier

Operators

Figure 5: Compressor architecture

(E11) Validation and specialization of the SAU framework

Problem: Empirical validation is important when offering new techniques. The analysis technique for
determining the provided usability of the system relies on the framework we developed. When we
initially defined this framework it was based on discussions with our partners in the STATUS project
and did not focus on any particular application domain. The list of patterns and properties that we had
identified then was substantial but incomplete. Even the relation of some of the patterns and
properties with software architecture was open to dispute. For particular application domains the
framework and hence the assessment result may not be accurate.

Example: Our case studies have been performed in the domain of web based enterprise systems.
Initially our framework contained usability patterns such as multitasking and shortcuts. For these
patterns we could not find evidence that they were architecturally sensitive in this domain. Other
patterns such as undo and cancel have different meanings in web based interaction. Pressing the stop
button in a browser does not really cancel anything.

Causes: the architecture sensitivity of some of our usability patterns depends on its implementation
which depends on the application domain.

Solution: The applicability of our analysis method is not excluded to other application domains but
the framework that we use for the analysis may need to be specialized for different application
domains in the future.

Research issue: Our framework is a first step in illustrating the relationship between usability and
software architecture. The list of architecturally sensitive usability patterns and properties we
identified are substantial but incomplete, it does not yet provide a complete comprehensive coverage
of all potential architecturally sensitive usability issues for all domains. The case studies have allowed
us to refine and extend the framework for the domain of web based enterprise systems, and allowed
us to provide detailed architectural solutions for implementing these patterns and properties (based
on "best" practices).

(E12) Cost benefit tradeoffs

Problem: The number of usage scenarios in the usage profile easily becomes a large number.
Evaluating and quantifying all scenarios may be a costly and time-consuming process. How do we
keep the assessment at a reasonable size?

Example: For example for the web platform case we initially had identified 68 scenarios. For the
Compressor case we identified 58 different usage scenarios.

Multi channeling

Multiple views
Workflow

Modeling

System feedback

Cause: The number of scenarios that are identified during the usage profile creation stage can
become quite large since many variables are included; users, user contexts and tasks.

Solutions: Inevitably tradeoffs have to be made during usage scenario selection, an important
consideration is that the more scenarios are evaluated the more accurate the outcome of the
assessment is, but the more expensive and time consuming it is to determine attribute values for
these scenarios. We propose two solutions:

 Explicit goal setting allows the analyst to filter out those scenarios that do not contribute to
the goal of the analysis. Goal setting is important since it can influence which scenarios to
include in the profile. For example for the Web platform case we decided, based on the goal of
the analysis (analyze architecture’s support for usability), to only to select those scenarios
that were important to a particular user group; a group of content administrators that only
represented 5% of the users but the success of the Webplatform was largely dependent on
their acceptance of the system. This brought the number of scenarios down to a reasonable
size of 11 usage scenarios. In the compressor case we analyzed the frequency with which
tasks were executed. Particular tasks had very low task execution frequencies, leaving these
out reduced the number of scenarios from 58 to 14.

 Pair wise comparison: For most usage scenarios, concerning expressing required usability
there is an obvious conflict between efficiency and learnability attribute. To minimize the
number of attributes that need to be quantified techniques such as pair wise comparison
should be considered to only determine attribute values for the attributes that obviously
conflict.

Research issues: Tool support: It is possible to specify attribute values over a particular task or
context of use or for a user group. For example for the user type “expert users” it may be specified
that efficiency is the most important attribute for all scenarios that involve expert users. For a
particular complex task it may be specified that learnability should be the most important attribute for
all scenarios that have included that task. We consider developing tool support in the future which
should assist the analyst in specifying attribute values over contexts, users and tasks and that will
automatically determine a final prioritization of attribute values for a usage profile.

(E13) Evaluation is guided by tacit knowledge

Problem: The activity of scenario evaluation is concerned with determining the support the
architecture provides for that particular usage scenario. The number of patterns and properties that
support a particular usability attribute required by a scenario, for example learnability, may be an
indication of the architecture’s support for that scenario however the evaluation is often guided by
tacit knowledge.

Example: For example in the eSuite case the following scenario was affected by 4 usability patterns
and 6 usability properties. The scenario requires high values for learnability (4) and reliability (3).
Several patterns and properties positively contribute to the support of this scenario. For example, the
property consistency and the pattern context sensitive help increases learnability as can be analyzed
from Figure 1. By analyzing for each pattern and property, the effect on usability, the support for this
scenario was determined. However sometimes this has proven to be difficult. How much learnability
improving patterns and properties should the architecture have to decide whether this scenario is
supported?

Table 4: eSuite usage scenario

User User context Task S E L R

Novice Mobile Insert Order 1 2 4 3

Cause: Due to the lack of formalized knowledge at the architecture level, this step is very much
guided by tacit knowledge i.e. the undocumented knowledge of experienced software architects

Solution: Our framework has captured some of that knowledge (e.g. the relationships between
usability properties and patterns and usability attributes) but it is up to the analyst to interpret these
relationships and determine the support for the scenarios.

Research issues: Since evaluating all the scenarios by hand is time consuming, we consider
developing a tool that allows one to automatically determine for a set of identified patterns and
properties which attributes they support and to come up with some quantitative indication for the
support. But to do that we need to substantiate these relationships and to provide models and
assessment procedures for the precise way that the relationships operate.

(E14) Lacked a frame of reference

Problem: After scenario evaluation we have to associate conclusions with these results. However
initially we lacked a frame of reference to interpret the results.

Example: In our first case study (Webplatform) the result of the evaluation was that three scenarios
are accepted, six are weakly accepted and two scenarios are weakly rejected (mainly caused because
was low support for learnability as required by the content administrators’ usage scenarios). How
should this be interpreted and which actions need to be taken?

Cause: Interpretation is concerned with deciding whether the outcome of the assessment is
acceptable or not. The experiences that we have, is at initially we lacked a frame of reference for
interpreting the results of the evaluation of Webplatform. Were these numbers acceptable? Could we
design an architecture that has a better support for usability? The results of the assessment were
relative, but we had no means or techniques to relate it to other numbers or results yet.

Solution: The three case studies have provided us with a small frame of reference. We have seen
architectures with significant better support for particular aspects of usability, which allows us to
judge whether a particular architecture could be improved. However to refine our frame of reference
more case studies need to be done.

6. Related work
Many authors [16,17,44,15,18,19,20,21] have studied usability. Most of these authors focus on
finding and defining the optimal set of attributes that compose usability and on developing guidelines
and heuristics for improving and testing usability. Several techniques such as usability testing [15],
usability inspection [45] and usability inquiry [15] may be used to evaluate the usability of systems.
However, none of these techniques focuses on the essential relation with software architecture.

[46] discusses a relationship between usability and software architecture by presenting an
architectural model that can help a designer satisfy ergonomic properties. [5] gives several examples
of architectural patterns that may aid usability. Previous work has been done in the area of usability
patterns, by [28], [47], [30]. For defining the SAU framework we used as much as possible usability
patterns and design principles that where already defined and accepted in HCI literature and verified
the architectural-sensitivity with the industrial case studies we conducted.

The Software Architecture Analysis Method (SAAM) [11] was among the first to address the
assessment of software architectures. SAAM is stakeholder centric and does not focus on a specific
quality attribute. From SAAM, ATAM [48] has evolved. ATAM also uses scenarios for identifying
important quality attribute requirements for the system. Like SAAM, ATAM does not focus on a single
quality attribute but rather on identifying tradeoffs between quality attributes. Some specific quality-
attribute assessment techniques have been developed. In [49] an approach to assess the timing
properties of software architectures is discussed using a global rate-monotonic analysis model. In
[50] a scenario based technique for the assessment of the maintainability of software architectures is
proposed. SALUTA can be integrated into these existing techniques.

We use scenarios for specification of quality requirements. There are different ways to interpret the
concept of a scenario. In object oriented modeling techniques, a scenario generally refers to use case
scenarios: scenarios that describe system behavior. The 4+1 view [35] uses scenarios for binding the
four views together. In Human Computer Interaction, use cases are a recognized form of task
descriptions focusing on user-system interactions. We define scenarios with a similar purpose namely
to user-system interaction that reflect the usage of the system but we annotate it in such a way that
it describes the required usability of the system.

7. Conclusions
Software engineers in industry lack support for the early evaluation of quality requirements such as
usability. In [38] we have defined a generalized five-step method for Software Architecture Level
UsabiliTy Analysis (SALUTA). This paper reports on 14 experiences we acquired developing and using
SALUTA. These experiences are illustrated using three case studies we performed in the domain of
web based enterprise systems: Webplatform, a content management system developed by ECCOO,
Compressor, an e-commerce application developed by IHG and eSuite, an Enterprise resource
planning system developed by LogicDIS. Concerning development in general we made the following
five observations.

Not only does usability impact software architecture design but software architecture design may also
impact usability. Software architects are not aware of these constraints or they do not care because
they tend to concentrate on the functional features of their architectures. The software architecture is
seen as an intermediate product in the development process but its potential with respect to quality
assessment is not fully exploited; as a result architecture assessment is an ad-hoc activity that is not
explicitly planned for. The accuracy of the analysis can only be determined answered with results from

final usability tests and by analyzing whether costs that are spent on usability during maintenance
have decreased.

Concerning architecture analysis we made the following nine observations. First requirements are
often poorly or weakly specified during initial design. During or after development requirements may
change. Transforming requirements to a format that can be used for architectural assessment is
difficult because requirements and quality attributes can be interpreted in different ways. In addition
specifying a necessary level for certain quality attributes is difficult during initial design since they can
often only be measured when the system is deployed. Some representation of the software
architecture is needed for the analysis however some aspects such as design decisions can only be
retrieved by interviewing the software architect. The applicability of SALUTA is not excluded to other
application domains but the framework that we use for the architectural analysis may need to be
specialized for different application domains in order to produce more accurate results. To keep the
assessment at a reasonable size we need set an explicit goal for the analysis to filter out those
scenarios that do not contribute to this goal. In addition we should consider using other quantification
techniques to minimize the number of attributes that need to be quantified for each scenario.
Scenario evaluation is often guided by tacit knowledge; however, our framework however tries to
capture some of that knowledge. Finally we experienced that initially the lack of a frame of reference
made the interpretation less certain.

The case studies that have been conducted have provided valuable experiences that have contributed
to a better understanding of architecture analysis and scenario based assessment of usability.

8. Acknowledgements
This work is sponsored by the STATUS project under contract no IST-2001-32298. We would like to
thank the companies that enabled us to perform the case studies, i.e. ECCOO, IHG and LogicDIS. We
especially like to thank Lisette Bakalis, Roel Vandewall of ECCOO, Fernando Vaquerizo of IHG and
Dimitris Tsirikos of LogicDIS for their valuable time and input.

References

1. J. Bosch, Design and use of Software Architectures: Adopting and evolving a product line approach,
Pearson Education (Addison-Wesley and ACM Press), Harlow, 2000.

2. IEEE, IEEE Architecture Working Group. Recommended practice for architectural description. Draft
IEEE Standard P1471/D4.1, IEEE, (1998).

3. R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, NY, 1992.
4. T. K. Landauer, The Trouble with Computers: Usefulness, Usability and Productivity., MIT Press.,

Cambridge, 1995.
5. L. Bass, J. Kates, and B. E. John, Achieving Usability through software architecture, Technical

Report CMU/SEI-2001-TR-005, (2001).
6. E. Folmer, J. v. Gurp, and J. Bosch, 'Investigating the Relationship between Usability and Software

Architecture ', Software process improvement and practice 0-0.(2003)
7. E. B. Swanson, The dimensions of maintenance, proceedings of the 2nd international conference

on software engineering, 1976.
8. E. Folmer and J. Bosch, 'Architecting for usability; a survey', Journal of systems and software 61-

78.(2002)
9. N. Lassing, P. O. Bengtsson, H. van Vliet, and J. Bosch, 'Experiences with ALMA: Architecture-Level

Modifiability Analysis', Journal of systems and software 47-57.(2002)
10. E. Folmer, J. v. Gurp, and J. Bosch, 'Architecture level usability assessment', Journal of

information & software technology 0-0.(2004)
11. R. Kazman, G. Abowd, and M. Webb, SAAM: A Method for Analyzing the Properties of Software

Architectures, Proceedings of the 16th International Conference on Software Engineering, 1994.
12. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software

Architecture: A System of Patterns, John Wiley and Son Ltd, New York, 1996.
13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns elements of reusable object-

orientated software., Addison -Wesley, 1995.
14. J. v. Gurp and J. Bosch, 'Design Erosion: Problems and Causes', Journal of systems and software

105-119.(2002)
15. J. Nielsen, Usability Engineering, Academic Press, Inc, Boston, MA., 1993.
16. L. L. Constantine and L. A. D. Lockwood, Software for Use: A Practical Guide to the Models and

Methods of Usage-Centered Design, Addison-Wesley, New York NY, 1999.
17. D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability Through Product and

Process., John Wiley and Sons, 1993.
18. J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey, Human-Computer

Interaction, Addison Wesley, 1994.

19. B. Shackel, Usability - context, framework, design and evaluation, in Human Factors for
Informatics Usability, Shackel, B. and Richardson, S., Cambridge University Press, 1991.

20. B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Addison-Wesley, Reading, MA, 1998.

21. D. Wixon and C. Wilson, The usability Engineering Framework for Product Design and Evaluation.,
in In Handbook of Human-Computer Interaction, Helander, M. G., Elsevier North-Holland, 1997,
1997.

22. S. J. Ravden and G. I. Johnson, Evaluation usability of human-computer interfaces: A practical
method., Ellis Horwood Limited, New York, 1989.

23. D. A. Norman, The design of everyday things, Basic Books , 1988.
24. P. G. Polson and C. H. Lewis, Theory-based design for easily learned interfaces, 1990.
25. ISO, ISO 9241-11 Ergonomic requirements for office work with visual display terminals (VDTs) --

Part 11: Guidance on usability., (1994).
26. R. Holcomb and A. L. Tharp, What users say about software usability., International Journal of

Human-Computer Interaction, vol. 3 no. 1, 1991.
27. R. Rubinstein and Hersh.H., The Human Factor: Designing Computer Systems for People., Digital

Press, Bedford, MA, 1984.
28. J. Tidwell, Interaction Design Patterns, Conference on Pattern Languages of Programming 1998,

1998.
29. Brighton, The Brighton Usability Pattern Collection.

http://www.cmis.brighton.ac.uk/research/patterns/home.html
30. M. Welie and H. Trætteberg, Interaction Patterns in User Interfaces, Conference on Pattern

Languages of Programming (PloP) 7th, 2000.
31. Pointer, PoInter: Patterns of INTERaction collection,

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html
32. P. O. Bengtsson, Architecture-Level Modifiability Analysis, Department of Software Engineering

and Computer Science, Blekinge Institute of Technology, Sweden, 2002.
33. S. Lauesen and H. Younessi, Six styles for usability requirements, Proceedings of REFSQ'98, 1998.
34. J. T. Hackos and J. C. Redish, User and Task Analysis for Interface Design, John Wiley and Sons,

Inc. New York, 1998.
35. P. B. Kruchten, The 4+1 View Model of Architecture, IEEE Software, (1995).
36. C. Hofmeister, R. L. Nord, and D. Soni, Applied Software Architecture, Addison Wesley Longman,

Reading, MA, 1999.
37. C. Argyris, R. Putnam, and D. Smith, Action Science: Concepts, methods and skills for research

and intervention, Jossey-Bass, San Francisco, 1985.
38. E. Folmer, J. v. Gurp, and J. Bosch, Software architecture analysis of Usability , The 9th IFIP

Working Conference on Engineering for Human-Computer Interaction, 2004.
39. E. Folmer, J. v. Gurp, and J. Bosch, SALUTA: Scenario Based Architecture Level Usability

Analysis., in Human-Centered Software Engineering (Volume 1): Bridging HCI, Usability and
Software Engineering, Seffah, A., Desmarais, M., and Gulliksen, J., Unknown, Submitted to, 2004.

40. S. Berkun, The list of fourteen reasons ease of use doesn't happen on engineering projects,
http://www.uiweb.com/issues/issue22.htm

41. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Addison Wesley
Longman, Reading MA, 1998.

42. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, The Architecture
Tradeoff Analysis Method, Proceedings of ICECCS'98, 8-1-1998.

43. D. L. Cuomo and C. D. Bowen, 'Understanding usability issues addressed by three user-system
interface evaluation techniques', Interacting with Computers 86-108.(1994)

44. ISO 9126-1 Software engineering - Product quality - Part 1: Quality Model, (2000).
45. J. Nielsen, Heuristic Evaluation., in Usability Inspection Methods., Nielsen, J. and Mack, R. L., John

Wiley and Sons, New York, NY., 1994.
46. L. Nigay and J. Coutaz, Bridging Two Worlds using Ergonomics and Software properties., in

Formal Methods in Human-Computer Interaction, Palanque & Paterno', Springer-Verlag., London,
1997.

47. K. Perzel and D. Kane, Usability Patterns for Applications on the World Wide Web, 1999.
48. R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture Evaluation (CMU/SEI-2000-

TR-004), (2000).
49. A. Alonso, M. Garcia-Valls, and J. A. de la Puente, Assessment Timing Properties of Family

Products, Proceedings of Second International ESPRIT ARES Workshop , 1998.
50. P. O. Bengtsson and J. Bosch, Architecture Level Prediction of Software Maintaince, EuroMicro

Conference on Software Engineering, 1999.

http://www.cmis.brighton.ac.uk/research/patterns/home.html
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html
http://www.uiweb.com/issues/issue22.htm

