
A Software Architectural View of Usability Patterns

Xavier Ferre(1), Natalia Juristo(1), Ana M. Moreno(1) & M. Isabel Sánchez(2)

(1) Facultad de Informática, Universidad Politécnica de Madrid,
Boadilla del Monte, Spain

{xavier, natalia, ammoreno}@fi.upm.es

(2) Facultad de Informática, Universidad Carlos III de Madrid, Leganés, Spain
misanche@inf.uc3m.es

Abstract: Usability is one of the key quality attributes in software development. The content of this paper is
part of the research conducted within the European Union IST STATUS project, related to the development of
techniques and procedures for improving usability of software architecture designs. In this paper, we will focus
on the possible improvement of usability at software design time. For this purpose, we have identified, from
both the literature and the project’s industrial partners’ experience, what we have called usability patterns. The
usability patterns represent twenty usability mechanisms, for example, undo, cancel, multiple-languages, etc.,
which improve final system usability and have an effect upon the design of the software system in which they
are implemented. We also present possible design solutions for incorporating the respective usability
mechanisms into a software system design. The design solutions have been obtained by means of an inductive
process that guarantees that these solutions are possible, albeit not necessarily the only solutions.

Keywords: Software architecture, software design, software usability

1 Introduction
One reason why software architecture research is
attracting growing interest is the direct relationship
between architectural decisions and the fulfilment of
certain quality requirements (Bosch, 2000). The
idea underlying this relationship is that a software
architecture needs to be explicitly designed so that
the final system satisfies specific quality attributes.
The most widespread studies on this subject refer to
quality attributes like performance or
maintainability (Bengtsson et al., 2000).
Usability is not usually considered in software
architecture, due to the widespread assumption
between software developers that usability has to do
only with the visible part of the user interface. This
assumption is not true, since usability is strongly
related to the interaction part of the system and it
must be considered when designing the rest of the
system, not just the user interface (Ferre et al.,
2001). Decisions in software architecture can
severely compromise the usability of the final
system, for example if an “undo” mechanism is not

devised when the software architecture is
established, it will be very costly to incorporate
afterwards. Therefore, it would be interesting to
relate final system usability with the kind of
decisions taken in the design of the software
architecture. It is in this context that the STATUS
(SofTware Architecture That supports USability)i
project emerged, whose objective is to develop
techniques and procedures to be incorporated during
the design of a software system to achieve
improvements in the usability of the system under
construction. Traditionally, usability evaluation
before implementation is directed towards user
interface prototypes, and not to design
specifications. Our approach aims to incorporate
well-known usability heuristics into the design of
the system before it is implemented, shaped in the
form of patterns.
When no usability expertise is available in the
software architecture team, usability requirements
may not be considered as being related to software

i STATUS project: EU funded project IST–2001–32298.

architecture. This situation leads to designs with
usability problems that would be much easier to
correct if discovered in the software architecture
design stage. Figure 1 shows how the usability
evaluation can be handled in the software
architecture design process, following the same
process proposed in the software architecture field
for other quality attributes, such as performance or
maintainability.

Usability

. . .

Usability
no

Usa
not OK

Requirements
specification design

. . .

Usability

Architectural

Software
architecture

improvement
in architecture

Usability
evaluation

Usability OK

Construction

Figure 1: Architectural design method for usability
proposed in STATUS

The design process starts with the construction of a
model of the software architecture from a set of
functional requirements. Some usability
requirements that can be evaluated in design time
must have already been established as well.
Although software engineers will not design this
preliminary model to be unreliable or under perform
on purpose, most non-functional requirements are
generally studied later on. Accordingly, the
preliminary design derived is evaluated with respect
to some quality attributes, usability in this particular
case.
The evaluation of usability of an architectural
design is far from being easy, since software
architecture is represented by means of a set of
design models, which cannot be tested directly with
a user. One possibility is to dynamically simulate
the architecture, and such approach is being
pursued as one of the lines of research in the
STATUS project. The techniques for this kind of
evaluation are described in (Uchitel et al., 2003).
Another possibility is based on a static perspective
where usability properties are searched for in the
design specifications. Techniques to evaluate a
software architecture from a static perspective are
described in (Folmer and Bosch, 2003).

In this paper, we will focus on the latter, the static
perspective, studying possible usability
improvements that can be made at design time. Our
approach is based on identifying the usability
properties (such as guidance, explicit user control,
and so on), that are needed for the software product
being developed, and providing software developers
with design solutions that address such usability
properties. The design solutions proposed are
shaped in the form of patterns, which express
common usability heuristics of the HCI field. In this
way we express usability knowledge by using the
terms and concepts which are employed at the
software architecture design stage. For this purpose,
section 2 shows the approach taken to decompose
usability into several levels of abstraction that are
progressively closer to software architecture. These
progressive levels are represented by the concepts of
usability attributes, usability properties and usability
patterns.
Then, section 3 shows how to incorporate the
usability characteristics represented by the usability
patterns into a generic software architecture. For
this purpose, we will use the concept of architectural
pattern, which specifies, in terms of components
and their interrelationships, possible solutions for
incorporating aspects that will improve final system
usability into the design.
Finally, section 4 briefly discusses the use of the
approach taken in this paper.

2 Usability Attributes, Properties
and Patterns
Software systems usability is usually evaluated on
the finished system, trying to assign values to the
classical usability attributes (Constantine and
Lockwood, 1999; Nielsen, 1993; Shackel, 1991):

• Learnability – how quickly and easily users
can begin to do productive work with a
system that is new to them, combined with
the ease of remembering the way a system
must be operated.

• Efficiency of use – the number of tasks per
unit time that the user can perform using
the system.

• Reliability – sometimes called “reliability
in use”, this refers to the error rate in using
the system and the time it takes to recover
from errors.

• Satisfaction – the subjective opinions that

users form in using the system.

However, the level of these usability attributes is too
high for us to be able to examine what mechanisms
should be applied to a software architecture to
improve them. Therefore, the philosophy followed
in STATUS was to decompose these attributes into
two intermediate levels of concepts closer to the
software solution: usability properties and usability
patterns.

The first level involves relating the above-
mentioned usability attributes to specific usability
properties that determine the usability
characteristics to be improved in a system. Usability
properties can also be seen as the requirements to be
satisfied by a software system for it to be usable (for
example, provide feedback to the user, provide
explicit user control, provide guidance to the user,
etc). The second level was envisaged to identify
specific mechanisms that might be incorporated into
a software architecture to improve the usability of
the final system. These mechanisms have been
called usability patterns and they address some need
specified by a usability property. Note that usability
patterns do not provide any specific software
solution to be incorporated into a software
architecture; they just suggest some abstract
mechanism that might be used to improve usability
(for example, provide undos, alerts, command
aggregations, wizards, etc.).

The procedure followed to identify the relationship
between usability attributes, properties and patterns
is detailed in (Andrés et al., 2002). We took a top-
down approach from usability attributes (defined in
the literature), through usability properties (derived,
on the one hand, from heuristics and guidelines
given in the literature for improving usability and,
on the other, from the experience of the project’s
industrial partners), to finally identify usability
patterns.

A subset of the above-mentioned relationship is
outlined in Table 1, showing how usability
properties relate patterns to usability attributes in a
qualitative sense (an arrow indicates that a property
positively affects an attribute, that is, improves that
attribute). For example, the “wizard” pattern
improves learnability: the wizard pattern uses the
concept of “guidance” to take the user through a
complex task one step at a time; “guidance”
improves the learnability usability attribute.
Usability patterns may address one or more of the

usability properties and usability properties may
improve one or more usability attributes.

Table 1: Attribute, Property & Pattern Relationships

satisfaction

learnability

effic iency

reliability

guidance

explicit user control

feedback

error prevention
… .

wizard

undo

alert

progress indication
… .

Usability attributes Usability properties Usability patterns

Problem dom ain Application dom ain

satisfaction

learnability

effic iency

reliability

guidance

explicit user control

feedback

error prevention
… .

wizard

undo

alert

progress indication
… .

Usability attributes Usability properties Usability patterns

Problem dom ain

The concept of usability pattern has already been
used in the literature. This concept can be generally
defined as “a description of solutions that improve
usability attributes” (Perzel and Kane, 1999). The
usability aspects dealt with by these patterns refer
basically to user interfaces, which is why these
patterns are also called user interface patterns
(Cascade, 1997) or interaction design patterns
(Tidwell, 1998). As indicated by authors like Welie
and Troetteberg (Welie and Troetteberg, 2000),
although several pattern collections exist, an
accepted set of such patterns has not emerged.
There appears to be a lack of consensus about the
format and focus of user interface patterns.

Possible examples of some user interface patterns
are (Cascade, 1997; Tidwell, 1998; Welie and
Troetteberg, 2000): feedback, wizard, provide the
user with all information needed in the same
window, mark required fields when filling a form,
etc.
The differences between the usability patterns
proposed in this paper and the classic usability or
interface patterns existing in the literature lie
basically in that the classic patterns of usability are
based on the improvement of the application
interface, which means that these patterns are
implemented mainly during the interface design
phase and generally affect low-level components,
like pseudo-code. On the other hand, the usability
patterns outlined in this paper address the
mechanisms to be considered in a software
architecture, dealing with usability aspects in the
early stages of the development process. For
example, the solution proposed by Welie (Welie and
Troetteberg, 2000) for the feedback pattern is based
on “provide a valid indication of progress. Progress
is typically the time remaining until completion, the

number of units processed or the percentage of work
done. Progress can be shown using a widget such as
a progress bar. The progress bar must have a label
stating the relative progress or the unit in which is
measured”. From a different perspective, our
solution for this same pattern covers the
components to be added to a software architecture
and the relationships among these components.
The second column in Table 2 lists the usability
patterns proposed in the STATUS project. The first
column of the table shows the usability properties
related to each pattern.

Table 2: List of usability patterns
Usability Property Usability Pattern
NATURAL MAPPING
CONSISTENCY (functional, interface,
evolutionary)

ACCESSIBILITY (internationalisation) Different languages
CONSISTENCY, ACCESSIBILITY
(multichannel, disabilities)

Different access
methods

FEEDBACK Alert
ERROR MANAGEMENT,
FEEDBACK

 Status indication

EXPLICIT USER CONTROL,
ADAPTABILITY (user expertise)

Shortcuts (key and
tasks)

ERROR MANAGEMENT (error
prevention)

Form/field validation

ERROR MANAGEMENT (error
correction),

Undo

GUIDANCE, ERROR
MANAGEMENT

Context-sensitive help

GUIDANCE, ERROR
MANAGEMENT

Wizard

GUIDANCE, ERROR
MANAGEMENT

Standard help

GUIDANCE,
ERROR MANAGEMENT

Tour

MINIMISE COGNITIVE LOAD,
ADAPTABILITY, ERROR
MANAGEMENT (error prevention)

Workflow model

ERROR MANAGEMENT (error
correction)

History logging

GUIDANCE,
 ERROR MANAGEMENT (error
prevention)

Provision of views

ADAPTABILITY (user preferences) User profile
ERROR MANAGEMENT,
EXPLICIT USER CONTROL

Cancel

EXPLICIT USER CONTROL Multi-tasking
MINIMISE COGNITIVE LOAD
ERROR MANAGEMENT (error
prevention)

Commands aggregation

EXPLICIT USER CONTROL Action f or multiple
objects

MINIMISE COGNITIVE LOAD,
ERROR MANAGEMENT (error
prevention)

Reuse information

It should be noted that the properties of Natural
Mapping and Consistency cannot be arranged
around specific usability patterns. The reason is that
these properties require the performance of different

tasks and activities throughout the entire
development process rather than the application of
particular solutions at the architectural level. For
example, the provision of natural mapping between
the user tasks and the tasks to be implemented in
the system calls for software requirements to be
elicited during the analysis process bearing in mind
this objective, and the system must be designed
according to these requirements. The same goes for
consistency, which involves different activities
throughout the lengthy development process of the
original system or new versions.

3 Architectural Usability Patterns

The most widely used concept of pattern in software
development is the design pattern, and it is used
particularly in the object-oriented paradigm. In this
context, a design pattern is a description of classes
and objects that work together to solve a particular
problem (Gamma et al., 1995). These patterns show
a solution to a problem, which has been obtained
from its use in different applications. Note,
nevertheless, that a design pattern should not be
seen as a unique or original solution, but as a
possible solution.

Besides the idea of usability pattern, we also use the
concept of architectural pattern in the STATUS
project. Given that we have defined a usability
pattern as a mechanism to be applied to the design
of a system architecture in order to address a
particular usability property, an architectural pattern
will determine how this usability pattern is
converted into software architecture. In other words,
what effect the consideration of a usability pattern
will have on the components of the system
architecture. Abstracting the definition of design
pattern, an architectural pattern can be defined as a
description of the components of a design and the
communication between these components to
provide a solution for a usability pattern. Like
design patterns, architectural patterns will reflect a
possible solution to a problem, the implementation
of a usability pattern.

Therefore, the architectural pattern is the last chain
in the usability attribute, property and pattern chain
that connects software system usability with
software system architecture. Accordingly, another
column can be added to Table 1, as Table 3 shows.

3.1 Procedure for outputting
architectural patterns for usability

In the following, we describe the procedure followed
to identify the architectural patterns that design the
proposed usability patterns. This procedure is
composed of two parts:

1. Application of a process of induction to
abstract the architectural patterns from
particular designs for several projects
developed by both researchers and
practitioners. For this purpose, we took the
following steps:

1.1. We asked designers to build design
models for several systems without
including usability patterns.

1.2. For each usability pattern, we asked
designers to modify their earlier
designs to include the functionality
corresponding to the pattern under
consideration.

1.3. For each usability pattern, we
abstracted the respective architectural
pattern from the modifications made
by the developers to the design.

2. The application of the resulting
architectural patterns from step 1 to several
developments to validate their feasibility.

To illustrate this process, we show below how the
reusing information pattern was abstracted from a
restaurant orders and tables management
application.

The sequence diagram shown in Figure 2 and the
class diagram shown in Figure 3 show part of the
design of this application, specifically the part
related to the entry of the menu requested by the
restaurant customer. Figure 4 and Figure 5 show the
sequence and class diagrams, respectively, now
considering the inclusion of the reusing information
usability pattern for this same functionality. We can
see how the inclusion of the reuser class provides
the possibility of repeating a previous operation.

Table 3 - Usability attributes/properties/pattern and architectural pattern relationships

D e s i g n d o m a i n

s a t i s f a c t i o n

l e a r n a b i l i t y

e f f i c i e n c y

r e l i a b i l i t y

g u i d a n c e

e x p l i c i t u s e r c o n t r o l

f e e d b a c k

e r r o r p r e v e n t i o n
… .

w i z a r d

u n d o

a l e r t

p r o g r e s s i n d i c a t i o n
… .

U s a b i l i t y a t t r i b u t e s U s a b i l i t y p r o p e r t i e s U s a b i l i t y p a t t e r n s

P r o b l e m d o m a i n

A p p l i c a t i o n d o m a i n

s a t i s f a c t i o n

l e a r n a b i l i t y

e f f i c i e n c y

r e l i a b i l i t y

g u i d a n c e

e x p l i c i t u s e r c o n t r o l

f e e d b a c k

e r r o r p r e v e n t i o n
… .

 w i z a r d

 … .

U s a b i l i t y a t t r i b u t e s U s a b i l i t y p r o p e r t i e s U s a b i l i t y p a t t e r n s

P r o b l e m d o m a i n

A r c h i t e c t u r a l p a t t e r n

a l e r t e r

f e e d b a c k e r

u n d o e r

 : Reques t

 : W aiter

 : Table : Consum ption : Reques t-line : Alert-M anager : Ing red ie nt

Init -request()

Inp ut- CodCo nsumpt io n(cod e)

ChangeS tate()

Check- Stock(code)

OK()

C reateLine(code)

Check-Ingredient()

OK()

Check()

OK()

Figure 2: Interaction diagram without the reusing information pattern

R ec ipe

A mount
Nam e

(fr om CL ASSES)

R estaur ant

Nam e : St ring
A ddress : Str ing

G etNam e(Nam e)()
A vailableTables(date, hour, k ind)()

(f ro m C LAS S ES)
Book

ClientName(client)()
Check(date, hour)()
G et(t im es- in-week)()

(fr om CL ASSES)

Table

S tatus : S tring
Num ber-person : Integer
S moker/Non S m oker : Boolean
P lace : XY
Code : I nteger

ChangeS tate()
ChangeS tate()
ChangeS tate()()
ChangeS tate()()
LookForAvailable(kind, dat a, hour)()

(f rom CLA SS ES)

R equest

H our
D at e
S ta tu s

Init -req ue st ()
Input -CodConsum pt ion()
O K()
init -request ()
Init -req ues t ()()
Init -req ues t ()()
Init -req ues t ()()
In it Co dCo ns umpt i on (c od e) ()
Request Consumt ions()()
B ill()()
New-price(price)()
G e tP rice(pric e) ()

(f rom CLA SS ES)

A lert -Manager

Ch eck-I n gr edie nt ()
O K()

(fr om CL ASSES)

Books m anager

G etRes taurants(list)()
G et(res taurant, dat e, hour, k ind)()

(f rom CLA SS ES)

R equest-line

CreateLine(code)()
Read(consum ption)()
Consum tionPr ice(pr ice)()
LineNam e(nam e)()
G etP rice(price)()

(f rom CLA SS ES)

Ingr edie nt

Nam e
M inim un-S tock
Real-Stock

Check()()
A skF or(ingredient)()

(fr om CL ASSES)

Consum pt ion

Cod-consumption
Descript ion
P rice

Check-S tock()
O K()
Consum tionName(nam e)()
LastCodeConsum pt ion()()

(f ro m C LAS S ES)

Figure 3: Class diagram without the reusing information pattern

 : Reques t

 : Wa ite r

 : Tab l e : Cons um ption : Reques t-l ine : Ale rt-Manager : Ing red i en t : reus er : In te rface

In it-reques t()

Inpu t-CodC ons um ption (code)

Chang eS ta te ()

C heck-Stock(code)

O K()

C rea teL ine (code)

C heck-Ing re d ien t()

OK()

C heck()

OK()

D up lica teCons um ption ()

D up lica teCons um ption () Las tCodeC ons um ption ()

Ge tC o de(code)

Inpu t-CodC ons um ption (code)

Figure 4: Interaction diagram with the reusing information pattern

Re s tau ra nt

Nam e : String
Address : Str ing

GetNam e(Nam e)()
AvailableTables(date, hour, kind)()

(from CLASSES)

Boo k

ClientN ame(client) ()
Check(date, hour)()
Get(tim es-in-w eek)()

(from CLASSES)

R eques t

Hour
Date
St at us

Init- request()
Input-C odC onsum ption()
OK()
init- request()
Init- request() ()
Init- request() ()
Init- request() ()
InitC odC onsum ption(code)()
RequestC onsum tions()()
Bi ll() ()
New -pr ice(price)()
GetPrice(pr ice)()

(from CLASSES)

C ons um pt ion

Cod-consum ption
Descr iption
Pr ice

Check-Stock()
OK()
Consum tionN am e(nam e)()
LastCodeC onsum ption()()

(from CLASSES)

R eques t- lin e

Crea teLine(code) ()
Read(co nsum pt ion)()
Consum ti onPri ce (pr ice) ()
LineName(nam e) ()
GetPri ce (pr ice) ()

(from CLASSES)

Alert-Manager

Check-Ingredient()
OK()

(f rom CLA S S E S)Ing red ien t

Nam e
M inim un-Stock
Real-Stock

Check()()
AskFor(ingredient)()

(from CLASSES)

R e cipe

Am oun t

N am e

(f rom CLA S S E S)

Boo k s m an ager

GetRestaurants(list) ()
Get(restaurant, date, hour, kind)()

(from CLASSES)

Table

Status : String
Num ber-person : Integer
Sm oker/Non Sm oker : Boolean
Place : XY
Code : Integer

ChangeState()
ChangeState()
ChangeState()()
ChangeState()()
LookForAvailable(kind, data, hour)()

(from CLASSES)

Interfa ce

Ini t- request()
Init- request() ()
Undo()()
Init- request() ()
Input-C odC onsum ption(code)()
Display(list of consumptions)()
DuplicateC onsum ption()()
Help()()
Get-help(help)()
Get-help(tour)()
New Book()()
ShowList(list) ()
Get(restaurant, data, hour,kind)()
ShowList(list) ()
ConnectingSystem()()
Enable(RequestCooked)()
Pressed(F1)()
OK()()
SpecificHelp(tppic)()
ShowSpecificH elp(help)()
Cancel(request)()

(from CLASSES)

da t a-to -be -reu sed

(from CLASSES)

reu s er

Dupl ic at eC on sum pti on()()
Ge tCode(code) ()

(from CLASSES)

Figure 5: Class diagram with the reusing information pattern

From this design and others created by other
developers, we have abstracted a general design
solution as shown in Figure 6.

Interface

Reuser

Interface System

1 2

3 4 5

Figure 6: Generic solution for the reusing information

pattern

Likewise, we have applied this inductive process to
the other usability patterns to develop the respective
architectural patterns. This process is detailed in
(Juristo et al., 2003).

3.2 Description of the Architectural
Patterns

Since the ultimate aim of this work is to provide a
set of architectural recommendations to improve the
usability of software systems, these
recommendations will be described in an
architectural pattern catalogue. Each pattern in this
catalogue has to be described according to the
following fields:

� Pattern Name - Patterns must have suggestive

names that give an idea of the problem they
address and the solution in a word or two.

� Problem – This describes when to apply the
pattern and in which context. In the case of
architectural patterns, the problem will refer to
a specific usability pattern to be materialised.

� Solution – This describes the elements that
make up the architecture, their relationships,
responsibilities, etc. The solution does not
describe a definite design, as a pattern can be
seen as a template that can be applied in many
different situations. Particularly, the solution
for a specific pattern will be specified by means
of the following elements:

o Diagram - A figure that represents the
components of the architecture and
their relations. Numbered arrows
between the different components will
represent the relations. The arrows
with solid lines specify the data flow,
while the dotted lines represent the
control flow between the components.

o Participants – A description of the
components that take part in the
proposed solution and the relations
(represented by arrows) to determine
how they are to assume their
responsibilities.

� Usability benefits - Description of which
usability aspects (usability properties) can be
improved by including the pattern.

� Usability rationale - A reasonable
argumentation for the impact of pattern
application on usability, that is, what usability
attributes have been improved, and which ones
may have got worse. Initially, this feature will
be completed with information coming from
other authors or from the experience of the
consortium members. However, once the
patterns have been applied to real applications,
this field will be filled in with the results of
empirical experience.

� Consequences - Impact of the pattern on other
quality attributes, like flexibility, portability,
maintainability, etc. As for the above feature,
this one will be filled in with the results of
empirical experience.

� Related patterns - Which architectural
patterns are closely related to this one, and
what differences there are.

� Implementation of the pattern in OO - The
architectural patterns provided are patterns that
can be applied in any development paradigm.
However, as these patterns have been obtained
and refined for OO applications, we will
provide guides tending to address pattern
application in this field. Basically, we will
describe the classes deriving from the pattern’s
main components. These guides are illustrated
in the example shown in the following section.

� Example of the application of the pattern in
question.

In Figure 7, we show how the architectural pattern
reusing information is described. The other
architectural patterns that provide design solutions
for the usability patterns proposed in the STATUS
project have been described similarly.

4 Discussion
After generating the architectural patterns we
propose to present a set of practical guides that
provide practitioners with information on:

• How to select an architectural pattern, for
example, from the usability attributes that
are to be enhanced in each design and how
to determine the impact on the other
quality attributes.

• How to use an architectural pattern for
inclusion in a given design.

The effort to improve software architecture with
regard to usability presented in this paper is related
to another important part of STATUS, which is the
assessment of this architecture with respect to
usability. This assessment is being conducted in two
ways in the project: a scenario-based architectural
assessment and a simulation-based architectural
assessment. This evaluation will yield the set of
shortcomings that a given software architecture has
with respect to certain usability attributes or
parameters. The architectural patterns could then be
used to implement usability improvement solutions
for the detected shortcomings.

� Pattern Name: Reusing Information.
� Usability Mechanism: This pattern enables the user to move data from one part of a system to another. So

users should be provided with automatic (e.g., data propagation) or manual (e.g., cut and paste) data transports
between different parts of a system.

� Solution:
o Diagram:

Interface

Reuser

Interface System

1 2

3 4 5

o Participants:
� Interface: collects the data to be processed by the reuser pattern and finally displays the operation

results (if the user needs to see the result). Interface sends the data to be processed (1) and the function
requested by the interface (2), i.e. copy, paste, move, etc., to Reuser. Also, once the reuser pattern has
been applied the results of the requested function will be displayed on the interface (5), unless the
requested function was “copy”.

� Reuser: is the module that gathers the information provided by the interface and manipulates these data
according to the requested function (copy, paste, move, etc.). Reuser receives the data to be
manipulated as well as the function to be executed (1) (2). If Reuser does not store the data to be
manipulated internally, it has to send these data to the system (3), as happens, for instance, with the
Copy function. Also if Reuser does not store the data internally, it has to ask for these data from the
part of the system where they are stored (4) as happens with the paste or move functions.

� System: this component is optional and is only necessary when the Reuser module does not store the
data internally.

� Usability benefits: The reuse of data in an application as well as across different applications minimises users’
cognitive load and also inputs fewer errors into the process. It also improves the adaptability of the application
or applications that enable data reuse.

� Usability rationale: By preventing the error input by users, the application of this pattern improves system
reliability. User efficiency is also improved. Additionally, by building a more adaptable system, the satisfaction
of the end user is improved too.

� Related patterns:
o System performance will be better if the information to be reused is stored in the Reuser module rather

than in another part of the system, because this reduces the system interaction level.
� Pattern Implementation in OO: Interface generates some classes. Reuser generates one or more “Reuser”

classes, furnished with the manipulation methods (copy, paste, move, etc.) and “Data -to-be-reused” classes,
which store the data to be manipulated in the class or through a link to another one. In this case, it was decided
to store the data outside the reuser class to respect the encapsulation principle.

� Example: This section would detail one of the examples used to get this pattern, for example, the design shown
in Figure 4 and Figure 5 along with the corresponding explanations.

Figure 7: Example of architectural pattern: reusing information

However, the idea of architectural patterns can also
be used independently of the architecture
evaluation, as they provide design solutions for
certain usability requirements (any usability
properties included in the requirements
specification). The consideration of these usability
requirements at the start of development and later in
design, by means of architectural patterns, is
expected to provide improvements in final system
usability.
We have to take into account that the final software
system usability has to be validated and measured
when the system in question has been built and is
operational. Therefore, we will have to wait until
these results have been applied to real projects to get
empirical data to properly verify the as yet intuitive
benefits that the use of architectural patterns can
provide for software systems usability. At the time
of writing, one of the industrial partners was
applying the patterns in a real project. As soon as
the system has been developed, the classical
usability evaluations will be run to check the
improvements in the final usability of the system
constructed.

References

Andrés A., Bosch J., Charalampos A, Chatley R., Ferre
X., Folmer E., Juristo N., Magee J., Menegos S.,
Moreno A. Usability attributes affected by
software architecture. Deliverable 2. STATUS
project, June 2002. http://www.ls.fi.upm.es/status

Bengtsson P., Lassing N., Bosch J. and van Vliet H.
Analyzing software architecture for modifiability.
Journal of Systems and Software, 2000.

Bosch, J. Design and Use of Software Architectures:
Adopting and Evolving a Product Line Approach,
Pearson Education, Addison-Wesley, 2000.

Cascade G. Notes on a Pattern Language for Interactive
Usability, Proceedings of the Computer Human

Interface Conference of the ACM, Atlanta,
Georgia, 1997.

Constantine L. L., Lockwood L. A. D. Software for Use:
A Practical Guide to the Models and Methods of
Usage-Centered Design. Addison-Wesley, 1999.

Ferre X., Juristo N., Windl H., Constantine L. Usability
Basics for Software Developers. IEEE Software,
vol 18 (1), January/February 2001. pp. 22-29.

Folmer E., Bosch J. Usability patterns in Software
Architecture. Proc. of HCI-International’2003,
Crete, June 2003.

Gamma E., Helm R, Johnson R, Vlissides J. Design
Patterns. Elements of Reusable Object-Oriented
Software. Addison Wesley, 1995.

Juristo N., López M., Moreno A., Sánchez M.
Techniques and Patterns for Architecture-Level
Usability Improvements. Deliverable 3.4. STATUS
project, April 2003. http://www.ls.fi.upm.es/status.

Nielsen J. Usability Engineering. AP Professional, 1993.

Perzel D., Kane D. Usability Patterns for Applications of
the World Wide Web. Proc. of PloP’99.

Shackel B. Usability – context, framework, design and
evaluation in B. Shackel and S. Richardson (eds.)
Human Factors for Informatics Usability.
Cambridge University Press, 1991. pp. 21-38

Tidwell J.. Interaction Design Patterns. Pattern
Languages of Programming 1998, Washington
University Technical Report TR 98-25.

Uchitel S., Chatley R., Kramer J. and Magee J. LTSA-
MSC: Tool Support for Behaviour Model
Elaboration Using Implied Scenarios. Proceedings
of TACAS '03, Warsaw April 2003.

Welie M., Troetteberg H. Interaction Patterns in User
Interfaces. Proc. of PloP’00.

