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Abstract. Integration implies a primary task on component-based de-
velopment. From a system architecture, off-the-shelf components are se-
lected to satisfy functionality. A general integration process may include
component ‘qualification’, ‘adaptation’, and ‘composition’. We are cur-
rently interested on automation of the qualification phase. Our intent is
to ‘integrate’ into an infrastructure a ‘component evaluation process’.
Thus applications could be dynamically created from component as-
sembly and then integrated into the underlying infrastructure. In this
paper we also report other approaches that fulfil some of that general
phases, and we highlight methods, and techniques that were applied.
Since the quality of a product depends on the quality of a process, we
look for achieving a sound integration process to achieve reliability on
component-based systems.

1 Introduction

Component-based software development (CBSD) involves a mixed process of
both top-down decomposition and bottom-up composition, where the major
effort is focused on composition techniques rather than component develop-
ment [4, 13]. Hence an integration process is the primary task performed by
designers as opposite to usually be the tail-end of an implementation effort.
A strong basis on reusability is clearly stated as components are ready “off-
the-shelf”, whether from a commercial source (COTS) or reused from another
system. They must be integrated with other components to achieve the required
system functionality, though they are used “as they are found” instead of being
modified [3].

Component integration is vital to a component selection process, and a ma-
jor consideration in the decision to acquire or build the components. A gen-
eral integration process (or reference model) could be conceptualised by certain
phases which may be identified as qualification, adaptation and composition of
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components [3]. Some approaches have focused on such activities mainly at a
development stage by applying manual or semi-automatic techniques [4].

We are interested on automating such phases, and we are currently working
upon the qualification phase. Our intent is to ‘integrate’ into an infrastructure a
component evaluation process from where components could be analysed based
on system requirements and a given software architecture. Basically such pro-
cess implies to analyse compatibility between a component and certain expected
aspects. Not only services’ signatures should match properly, but also the com-
ponent assertions. Further, an important factor that may certify a degree of
compatibility is to analyse whether there is a matching on the components un-
derlying contexts. Thus concepts on different aspects of a component are anal-
ysed considering the actual meaning which may change from one domain to
another [11].

In this paper we report different approaches that afford some of the phases
on the general integration process, and highlight methods and techniques that
were applied. The purpose is to describe the range of different possibilities which
may address the same goals, and identify commonalities which may finally stand
as standard practices due to their promising benefits.

Thus our approach as well as others will be confronted against the reference
model which is introduced on the following section. On each phase we describe
the variety of techniques to be used. Section 3 then presents our approach as well
as the others in order to distil both uncovered activities and applied methods or
techniques. Finally conclusions are presented in section 4.

2 Reference Model for Integration Process

The engineering of CBSD could be considered to be primarily an assembly and
integration process. This suggests a reference model as is presented in [3] for
describing the engineering practices involved in assembling component-based
systems (CBS). The vertical partitions on the reference model, depicted in Fig-
ure 1, describe the central artefact of CBSD - the components - in various states
or phases. An overview of the shapes adopted by components across the phases
is following presented. Then the phases on the reference model will be discussed
by describing the main arising issues as well as useful techniques to be applied.

– Off-the-shelf (OTS): have hidden interfaces (by a definition that cover all
potential interactions among components and not just an API).

– Qualified: have discovered interfaces so that conflicts and overlaps could be
identified. This implies a partial discovery: only interfaces relevant to effec-
tive component assembly are identified.

– Adapted: have been amended to address potential sources of conflict. This
may imply a kind of component “wrapping”.

– Assembled: have been integrated into an architectural infrastructure. This
infrastructure will support component assembly and coordination.
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Fig. 1. Reference Model for Architectural Component Integration

2.1 Qualification

Typically, a component is described in terms of an interface that reflects the
component functionality. However, in a much broader interpretation the interface
to a component includes far more than the functionality it provides. We need to
understand aspects like performance, reliability, usability, and so on [3].

Hence, for most components there are many unknowns, which despite of an
attempt to do a discovery through a usual manual evaluation, a number of gaps
will remain [10]. Although some work has been done about the qualification
of software components, it mostly implies manual or semi-automatic tasks. As
there is little agreement on which attributes of a component could be critical,
to think on this process being dynamically performed is quite difficult.

Qualification of a component can also extend to a qualification of the devel-
opment process used to create and maintain a component. Contractors nowa-
days should perform their practice according to the Capability Maturity Model
(CMM) and the current ad-hoc standards [3, 21]. This ensures that the software
components they produce have been developed using well-defined practices and
procedures.

2.2 Adaptation

Building a system from stand-alone components creates serious conflicts since
components must cooperate and architectural mismatch may often occur. The
reason is the wide variety of conflicting operating assumptions made by each
component [3]. Hence components must be adapted by understanding their pur-
pose and services under the basis of their original context of use. A component
that presents similar properties could not fit on the ongoing project due to a con-
text mismatch. The component context provides the means to clear the sense or
scope of its information, that is, the actual meaning behind every aspect.

Component adaptation usually involves some form of “wrapping” - locally
developed code that provides an encapsulation of the component to mask un-
wanted and incompatible behaviour. An insulation is a special wrapper which



provides a unique point of access (a single API) for multiple interfaces (like
ODBC for example). Another kind of wrapper is called instrumentation, and its
purpose is to instrument, debug, or add assertions. They can assist with testing
and exploration for side effects [19].

Wrapping is not the only approach to overcoming component incompatibil-
ities. Another approach is through the use of mediators, which informally can
be seen as an active agent that coordinates between different interpretations of
the same system property. For example, a mediator may contain filters or other
agents to convert (translate) between data formats, establish common events, or
define common administrative policies (e.g., for security and access control) [3].

2.3 Assembly

Assembled components are integrated through some well-defined infrastructure,
which provides the binding that forms a system from disparate components. At
the highest abstract level the infrastructure embodies a coordination model that
defines how components will interact to perform the required end-user function-
ality. That is to allow this coordination model to be readily described, validated,
and enacted. At a lower level it provides services that will be used by compo-
nents to interact and to carry out common tasks. The interface to these services
must be complete and consistent. At the most practical level the infrastructure
is itself a software component that implements the required coordination ser-
vices. It must be well-written to be easily understood, perform effectively, and
be readily updated to new modes of component interaction.

Currently, most active research makes use of messaging systems as infras-
tructure providers, particularly using object request brokers conforming to those
architectures which has been well accepted such as CORBA, DCOM and SUN
J2EE. Another important and highly relevant research subject addresses Web
Services, where the core of communication - the infrastructures - are developed
upon the Internet. The standard architecture is SOA from where some industry
approaches have been developed (IBM WebSphere, Microsoft .Net, SUN ONE,
etc) [22]. The contribution to CBSD is particularly on distributed systems. In
general, reports cite a number of advantages to their use in building CBS as can
be seen in section 3 where current approaches will be presented.

3 Current Approaches

This section presents different approaches which implement the general phases
from the reference model (Figure 1) presented on section 2. Most of them ex-
pose methods that deal with specific mechanisms to uncover particular phases.
Following our approach as well as a set of other current approaches are briefly
described. For each of them, methods and techniques will be distilled according
to the reference model. Thus we may appreciate available implemented possibil-
ities to carry out the same mechanisms and consider their application when a
component-based architecture is being developed.



3.1 Our Approach

Based on our interest on Pervasive Computing Environments (PvCEnv) we are
currently developing mechanisms to carry out applications assembly at run-
time. Most approaches on this particular area are based on externally created
applications, which are developed ad-hoc for such environments (as can be seen
in [20]). This could make a user feel limited to a constrained range of applications.
Users working on PvCEnv expect not only efficacy but also availability and
usability on their location independent tasks [8, 12]. Using a wider range of OTS
components may help to build a wider range of applications as well [13].

To such intent we are currently focused on supplying a procedure to be able
to evaluate components which will be used for assembly of an application. Since
a user changes quite often from one operational context to another, require-
ments must be updated and properly satisfied by selected components. Such
components may not be previously evaluated, e.g when they are embedded into
a chosen disparate device, so evaluation must be thoroughly done [11, 13].

Components cooperating with others to form another software entity - a new
application - outline an interoperability pattern. This implies a particularly com-
plex approach which involves many aspects to be concerned of [6]. Different levels
of interoperability have been distinguished [9, 13], e.g. syntactic aspects were un-
dertaken in [17]. Our approach is set on the semantic level since components to
be evaluated provide information which must be carefully analysed.

As OTS components are created to be placed on a given context of use, we
must assure such context is similar to the one where the component will be
inserted. Concepts recognized from component collected information (e.g. from
its interface and meta-data) need to be properly interpreted. Hence we propose
the use of an Ontology which may give the necessary compatibility under a
comparison of the contexts both from the component under evaluation, and the
user task and location. An ontology could be placed for each relevant context so
to easy the whole evaluation. We intend to add meta-methods to components
with detailed information concerning pre and post conditions of both required
and evaluated services, as well as invariants of the component. This implies a
wrapper mechanism (instrumentation).

Hence we are designing an abstract model of an infrastructure for semantic
interoperability, where we intend to ‘integrate’ a component evaluation process.
This is accomplished by the application of testing strategies based on contextual
information of components and users’ tasks. Figure 2 presents such an abstract
model of a PvCEnv as a generic view for our solution: an Infrastructure for
Semantic Interoperability [11]. In fact we are exploring other complementary
mechanisms which may enforce this proposal for certification of compatibility.

We also provide a formal basis to our framework by explicitly reflecting the
dynamism in the component interaction by a Propositional Linear Temporal
Logic [7] based specification. Thus different testing strategies can be more pre-
cisely defined and applied. The use of a formal layer as the basis for this work
facilitates the definition of a sound procedure to automate testing of semantic
interoperability.
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Fig. 2. Infrastructure for Semantic Interoperability

Indeed our intent may seem to be a solution on a regular CBS, though we
believe it mostly fits to a PvCEnv as a fair justification. As part of the cur-
rent project we plan to provide a complete automation of the whole integration
process according to the reference model.

3.2 CoCon

In [18] is presented CoCon (context-based constraint), an infrastructure that
we understand allows a dynamic stability management on a CBS. The approach
proposes to integrate into the system architecture a ‘Rule Manager to automat-
ically monitor the system’s compliance with requirements at runtime. Thus it
suits with the paradigm of Continuous Software Engineering discussed in [23].

When adapting a CBS to new, altered or deleted requirements, the existing
ones should not accidentally be violated. Validation of conformity with require-
ments is enforced externally. Hence, the system can be transparently adapted
via connector refinement without modifying components directly. Thus any OTS
or legacy component can be used.

Context is essential to use a component information properly. Meta-data,
called context properties, is attached to the components as ‘yellow sticky notes,
which can be seen as a wrapper (instrumentation). A constraint mechanism refers
to this meta-data to identify that part of the system where a constraint applies.
Only components whose meta-data fits the constraint’s ‘context condition must
satisfy it. Thus a requirement for a cluster of components that share a given
context can be automatically protected.

Communication between components is captured by points of interception
installed in the components communication paths. A proxy [14] mechanism is
used, which is rather common on middleware technologies. The proxy is extended
by a monitoring functionality – as shown in Figure 3 – and as such can be seen
as a connector which facilitates requirement protection.

It is clear that this approach fits the adaptation and assembly phases on the
reference model, which are achieved by means of active mechanisms incorporated
into an underlying middleware or infrastructure. However qualification seems
not being considered since component selection was omitted. The reason may be
their focus on dynamic verification of validity of requirements.



Fig. 3. Proxy Mechanism on CoCon approach

3.3 Hadas

The approach in [2] proposes the framework Hadas, which provides dynamic de-
ployment and adaptation of components. It is particularly helpful for distributed
applications which must be integrated at runtime as generally occurs with web
sites. Hadas provides an adaptability mechanism based on a Mutable Reflec-
tive Component Model, and thus components support introspection by means
of meta-methods which give information about both behaviour and structure of
a component. Another approach of such model is the Reflection API in Java
1.1 [15]. This facilitates external modification and self-adaptability.

This allows to wrapper remote sites in order to be treated as components,
and also to make easy updating a component as the remote site changes its
interface. Thus such wrapper component acts as an agent, which monitors the
conditions under which it may execute. Figure 4 depicts the way two remote sites
may be composed by the Hadas model. At the bottom lays the infrastructure
that makes possible all the mechanisms that can be applied on the integration
of distributed applications.

Fig. 4. Hadas Model

A mechanism called Ambassador, which is a representative of a component, is
used when components (other than sites) are needed on different remote points.
Its purpose is to serve as an adaptive remote reference (a Remote Proxy) [14] and
also as an interoperability handler to transform data from/to invoker/receiver
components (wrapper behaviour). As they possess the same characteristics as
components’, this allows easy application adaptability. A component and all its



representative Ambassadors are similar to the Observer pattern [14], whereby
the component fills the Subject role and the Ambassadors act as Observers.

Dynamic composition is based on a set of protocols that are issued between
components. The central concept in this model is the Ambassador which is dy-
namically deployed and can be dynamically tailored according to negotiations
and imported protocols. Thus applications can be dynamically composed and
reconfigured without affecting components as well as individual components can
evolve without affecting the application.

From the point of view of the reference model we can see that this approach
provides mechanisms for Adaptation, and Assembly phases. Whether indeed
every component can be used (by the wrappering technique), and these com-
ponents do not need to be modified to fit into the infrastructure, there is no
explanation of a technique to select appropriate sites or components.

3.4 BASE

An approach for a PvCEnv is presented in [1], where an infrastructure for adapt-
able applications is being developed. Currently the micro-broker based middle-
ware BASE has been deployed, and it provides abstractions for applications de-
ployment and communication. It was developed as a minimal platform suitable
for small-embedded systems but extensible to make use of abstractions avail-
able on resource-rich environments. Objectives are: to support device lookup,
service discovery, flexible protocol support and selection, decoupling of applica-
tion and interoperability communication models, uniform abstraction for device
capabilities and services, flexible integration of adaptation mechanisms.

A particular framework will be located on top of BASE, which provides addi-
tional mechanisms to enable an application to be dynamically adapted in order
to react to changes on availability of services or device capabilities according
to the current application execution policy. PCOM is the application model
which specifies the architectural building blocks (components) and their inter-
dependencies (contracts between components). At runtime, this specification is
mapped to a concrete set of component instances where all mandatory contracts
are fulfilled. A contract concept is used to specify required properties for com-
ponent interaction and also to indicate application configurations. Applications
are activated when all of their contracts are fulfilled. Contract enforcement and
mechanisms for adaptation are provided by BASE.

On top of PCOM applications can be modelled, and for this a special com-
ponent (called Anchor) is used to specify the set of necessary sub-components.
These components depend on each other according to the specified contracts,
and the Anchor component provides special contract specifications to complete
the sense or scope of such application. Figure 5 shows an example of a health
monitoring application which provides information and advices whenever a suit-
able display is in the vicinity.

An invocation object can be used for an application to choose different com-
munication models (RPC, deferred synchronous RPCs, or events via stub ob-
jects). This mechanism allows different interoperability protocols become possi-



ble. It can be created manually or through a proxy if a service provides a stub
object. BASE is responsible for synchronizing the caller and issue invocations,
and receives possible replies as well as an invocation.

Fig. 5. Application assembly by means of an Anchor - BASE micro-broker

It seems that no other than components developed under the PCOM model
can be used in the environment. Thus the qualification phase does not apply
here. Adaptation is achieved at the application level, instead of simpler com-
ponents, and assembly is performed both for an application definition and for
communication between different applications (through invocation objects).

3.5 KX Approach

An approach to autonomizing legacy systems is presented in [16], with the pur-
pose to assembling ‘autonomic’ systems-of-systems from components. The cur-
rent implementation is called Kinesthetics eXtreme, or KX (‘kicks’). KX is being
applied experimentally for load balancing and server replacement for Telecom
Italia’s heterogeneous instant messaging system, and for more complex contin-
gencies in a geographically-based open information (e.g., CNN, BBC) analysis
system and in use at the US Pacific Command (PACOM).

Inserting adaptation mechanisms into existing application code is difficult,
error-prone and hard to reuse or reason about, hence an external adaptation
solution was proposed. Upon the objective of automatic reconfiguration and
control of the running system was proposed a three-tiered infrastructure. Data
is collected from the running system by non-invasive probes that report raw data
to the higher levels via a Probe Bus. Then data is interpreted via a set of gauges
that maps the probe data into various models of the system. The gauges then
report their findings to the Gauge Bus.

For both local adaptations and global reconfigurations in the running system,
the Workflakes decentralized workflow system has been proposed (see Figure 6).
Workflakes coordinates the actual reconfigurations workflow through deploy-
ment/activation of low-level software effectors attached to the target system.

Here are analysed the implications of the interpreted data on the overall
system performance and make decisions on whether to: (1) introduce or disable
gauges in the interpretation layer; (2) deploy new probes to provide more de-
tailed information to remaining gauges, or turn some off to reduce noise; and/or



(3) reconfigure the system itself, perhaps changing the system’s structure by
introducing new modules or modifying system or component parameters.

Any analysis is based on measurements in terms of available models, which
then leads to the feedback phase where runtime modifications to the system are
(automatically) carried out. Thus it may help automate most system manage-
ment functions with little or no human intervention, whereby the adaptation of
the running system can be carried out dynamically without incurring any sys-
tem downtime. Whether the infrastructure is largely independent of the running
system, probes and effectors must often be specialized to the implementation
technology. In addition, gauges and decision mechanisms must be specialized to
the contextual problem.

Probes output data has been structured by an XML Schema as a standard
format. A ‘Smart Event’ Schema includes points of extension with generic ap-
plication models so that arbitrary gauge technologies can use this information
to determine selection of probes. Thus probe descriptions do not need customi-
sation for a given application or its specific models. The initial probe might
emit simple Smart Events containing a raw data block, but later processing and
analysis stages augment it with additional or higher-level information blocks.

Fig. 6. Dynamic Monitoring of Legacy Systems - KX‘s implementation

Gauges are intended to gather, filter, aggregate, compute, and/or analyse
measurement information about software systems. Particularly, they interpret
probe data against various models, to produce higher-level outputs and emit
events just as probes. Such events are typically quite abstract, but the Smart
Event XML Schema has been defined to support both levels. As with probes, a
major concern has been developing standards for gauges to allow interoperability.

The proposed gauges work within a framework called XML-based Universal
Event Service (XUES) (Figure 6). XUES involves two major components: the
Event Packager transforms raw-data format of legacy probe output into Smart
Event compatible event streams. It also packages and logs these events for possi-
ble replaying. The Event Distiller can recognize complex temporal event patterns



from multiple probe sources, and constructs high-level measurements to reflect
the system state. It also produces events to interface with the decision layer
and gauge visualizers. It encloses a collection of condition/action rules, where
conditions specify the event pattern and actions specify what to do when that
pattern is recognized - typically generation of a higher-level event.

As we see in this approach both the adaptation and assembly phases are
thoroughly covered. Since the main intention is to apply this approach on exist-
ing legacy systems, no methods for assessment and selection of components are
provided. Hence, the approach does not cover the qualification phase.

4 Conclusions

Indeed CBSD is one of the most popular approaches in software production.
Moreover, component-based technologies simplify functional decomposition of
complex systems and support building of re-configurable compositions and tun-
ing of component compositions for the particular context they are used in [10].
However there are several aspects that must be considered on this paradigm.
Components may have different characteristics, which must be properly analysed
according to different pre-requisites: quality attributes, quality models, different
standards, and so on [4, 6].

Since quality of a product depends on quality of a process [21], there is a
need to distinguish some stages in the whole process of CBSD. Thus in section 2
was presented a reference model for integration of components. In addition some
issues were also discussed concerning their comprising phases, where not only
considerations about a component in isolation are relevant, but also the composi-
tion with other components or the integration with an underlying infrastructure.

In section 3 we have presented some of the current approaches - including our
own work - which reveal the successful application of different methods, mech-
anisms and techniques to uncover some of the phases of the reference model.
Indeed there are some approaches which are mainly focused on component clas-
sification and recovery [5], though there is a lack in dynamic evaluation or qual-
ification of components. We understand that this is not a trivial work, though
the need of a sound procedure is highly important. When systems must be dy-
namically adapted from available components an evaluation for functional and
non-functional compatibility should be accomplished at a reliable standard.
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