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Abstract. Empirical work supporting the hypothesis that simple size metrics and
complexity metrics are good predictors of fault-prone modules have been pub-
lished in the past. Some studies have also shown that contrary to common belief
complexity measures are not always better predictors than simple size metrics.
All of these studies share one characteristic – they measure size, complexity and
number of faults at the granularity of at least modules. In this work we compare
the relative ability to predict the number of faults and fault-proneness of simple
size metrics, such as Lines of Code (LOC), and complexity metrics. The caveat of
our empirical investigation is that we seek evidences to compare the metrics on a
level of granularity smaller than modules; we do it for segments of code that im-
plement a particular software testing requirement. Our data show that complexity
measures are better predictors of the number of faults than simple size metrics at
that granularity level.
Keywords: Size and Complexity Metric Comparison, Software Testing, Faults
Predictor, Fault-Proneness.

1 Introduction

Predicting the number of faults hidden in a software is a difficult problem. Nevertheless,
research results in this area are very appealing to industry, since information about
undiscovered faults are used to support part of software development decision making.
A fault or likewise a defect is commonly defined as a single item in a software artifact
that is incorrect 4; when executed it can generate an inconsistent execution state, an
error, that may propagate to outside of the system resulting in software behavior that
deviates from the software specification – a failure.

The relationship between faults and failures in deployed software is not completely
understood. It is a fact that pre-deployment undiscovered faults affect overall software
reliability; but other factors such as operational profile, the “size” of the fault and fault

4 A software artifact is either a design document, a data structure definition or even source code.
We are assuming that faults in earlier stages of software development, if not discovered and
removed, eventually make their way into incorrect code.



density also play a part [3]. Collected evidence indicates that a small subset of the
software faults is responsible for most of the operational failures [1].

Research efforts in this area have concentrated on the following directions [9]: � )
predicting the number of faults of the system; �	� ) estimating the reliability of the sys-
tem; and �	�	� ) understanding the impact of design and testing processes on fault counts
and failure densities. Many researchers have attempted to put forth prediction models.
Size and complexity measures are used to predict the number of faults revealed during
software testing and operation. Reliability models considering operational profile, test-
ing coverage and software metrics have been proposed to predict the failure rate. We do
not attempt to discuss all of these research paths; we concentrate on a comparison of the
relative ability of size and complexity metrics in terms of number of faults estimation.
For a discussion of most of these research endeavors see Fenton and Neil [9].

We intend to investigate the relative strength of simple size metrics and complexity
metrics as the number of faults predictors. The hypothesis is that complexity metrics
are better predictors of the number of faults than simple size metrics. The basis for this
hypothesis is that the complexity of the software apparently has a more direct influ-
ence on the mental burden to the software developer, which in turn leads to a greater
number of mistakes and, consequently, more faults. To test this hypothesis we planned
and conducted an experiment. Most empirical work on prediction models perform data
collection and analysis at the level of at least modules [2, 12, 14, 11, 3, 16, 8]. In our em-
pirical investigation we seek evidences to support the hypothesis at a level of granularity
smaller than modules; we do it for segments of code that satisfy a specific property –
they implement a particular software testing requirement. This approach has two advan-
tages: � ) it reduces threats to external validity of the investigation since small segments
of code used in our experiment are representative of small segments of code present in
other programs; �
� ) one application of the types of metrics studied is to help estimate
testing effort, segments of code have a direct relationship to testing effort since the tester
will have to come up with test cases that cover those testing requirements;

In Section 2 we describe the experiment, defining the method to collect the data
and present each of the complexity and simple size metrics used. Section 3 contains
the results of our experiment including the data analysis and graphics. In Section 4
we present a discussion of the results presented in Section 3. Finally, in Section 5 we
present our conclusions and future work remarks.

2 Description of The Experiment

One fundamental research question is whether software size and complexity are related
to the number of faults, specially whether the number of faults is a direct consequence
of software size and complexity. This issue is somewhat controvert, specially because
even if there is a correlation it is difficult to adequately measure it. One of the hard to
prove effects is the tendency to pay more attention to something that is indeed more
complex. Human beings – programmers – are usually more careful when dealing with
something complex. A complex algorithm will be more carefully implemented, a com-
plex data structure will be more carefully documented and used with greater care. Thus
inherent structural complexity affects cognitive complexity, which in turn influences



the individual’s attitude leading to the greater-care behavior in some individuals and,
consequently, smaller number of faults. An individual response to the structural com-
plexity is a factor of his/her own personality and technical knowledge. The purpose of
our research is neither to pursue a proof for that effect nor to establish a relationship
between metrics and number of faults. Our intention is to compare the metrics among
themselves, and the experiment was crafted for that purpose.

2.1 Experiment Design

We first selected a few complexity and size metrics and measured each metric for a
number of segments of code from a single program. To evaluate the comparative be-
havior of each metric with respect to the occurrence of faults we used a program with
a controlled number of faults of selected types. A more complex program would not
suit our specific needs in this experiment, since the number of documented faults would
usually not correspond to the actual number of faults in the program. We needed a pro-
gram with all faults already known. The selected program was Cal, a UNIX program
that prints a calendar for a specified year or month. This program has been thoroughly
used and debugged; thus, it is reasonable to consider it as correct.

Cal has been used in another experiment conducted by Wong, et al. [20, 19]. The
preparation for the reported experiment included a systematic injection of a number of
faults in it. That setup gave us the appropriate ground to conduct our investigation. The
methodology used by the authors to inject faults was intended to guarantee indepen-
dence from any method to reveal the presence of such faults and to make sure common
types of faults were present. A graduate student with at least three years of C program-
ming experience was instructed to use experience and judgment to inject one or more
faults of each types: missing path, incorrect predicate, incorrect computation statement,
missing computation statement, incorrect number of loop iterations, missing clause in
predicate; reflecting the types of faults from software faults taxonomies [4, 7, 13].

That procedure resulted in twenty injected faults. We then associate each segment
of the code with the corresponding number of faults it contained. Each segment of code
represents the part of code that executes a particular def-use association [18]. With that
data we are able to calculate the correlation coefficient of metric to number of faults for
each of the selected metrics. The correlation coefficient is subsequently used to compare
the metrics and establish a partial ordering.

2.2 Subjects

The subjects of our investigation are segments of code that implement def-use asso-
ciations. Other studies worked on modules to both compute metrics values and count
number of faults or measure fault density. Our intention was to repeat this kind of in-
vestigation at a level of granularity that is closer to the unit testing activity. During tool
supported unit testing a tester runs its unit through a software testing tool, which ana-
lyzes the code and derives a list of required elements that should be covered. The nature
of the required elements vary with the selected testing criterion; in data flow based test-
ing it is in general a data flow association. Rapps and Weyuker [18] defined a family of



such data flow criteria; one of them is the All-Uses criterion, which requires exercizing
every association between a variable definition and a use in a program.

  scanf("%d %d %d %d",&a,&b,&c,&d);

main(){
  int a,b,c,d;

  if(a>0){
    if(b>0){
      printf("%d",c);
    }else{
      printf("%d",d);
    }
  }else{
    printf("%d",c);
  }
}
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1) <1,(1,2), a>
2) <1,(1,6), a>
3) <1,(2,3), b>
4) <1,(2,4), b>
5) <1,3, c>
6) <1,6, c>
7) <1,4, d>

(c) List of Def−Use
Associations

  scanf("%d %d %d",&a,&b,&c);

main(){
  int a,b,c;

  if(a>0){
    if(b>0){
      printf("%d",c);
    }
}

(d) Segment of code for <1,3, c>

(a) Source Program

(b) Control Flow Graph

Fig. 1. Def-Use Associations Example

To be able to measure the size and complexity metrics for all the associations in our
selected program (Cal.c) we had to isolate each segment of code that implemented
each of the 215 def-use associations in the program. Figure 1 illustrates this process.
The software testing tool used constructs the control flow graph (Figure 1(b)) from
the program source code (Figure 1(a)); then it incorporates data flow information to
it and computes the list of required def-use associations (Figure 1(c)). We manually
extracted from the original source code each segment of the code whose execution
covers the corresponding association, Figure 1(d) exemplifies the process for one of
the associations in the example. That gives us a total of 215 programs representing the
segments of code that implement the associations in Cal.c.

The metrics considered in this work are: Lines of Code (LOC, also called Source
Lines of Code – SLOC), Halstead’s Theory of Software Science metrics [12], and Mc-
Cabe’s Cyclomatic Complexity [15].

To compute LOC we counted every line of the program that was not blank or
completely included in a comment. Everything else was counted, multiple lines were
counted individually even if they were actually part of a single statement.

Halstead’s Software Science comprehends several metrics, all based on measures
that can be automatically computed from a program, basically the number of operands
and operators. Halstead’s initial motivation was to prove the hypothesis that the number
of operands and operators is strongly correlated to the number of faults discovered in
a program. Initial tests of the theory have shown a very high correlation between the
software science metrics and measures such as the number of faults in a program [10].
The operands of a program are the variables and constants, while operators (arithmetic
operators, boolean operators, keywords and delimiters) affect the value or ordering of
operands; both are easily tabulated by a compiler, for example. Four basic measures can
be determined from those tabulations: � � : Number of distinct operators, � � : Number



of distinct operands, � � : Number of occurrences of operators, and � � : Number of
occurrences of operands.

The size of the Vocabulary is ���� ��� � � , and the Length is ����� ��� � � . Vocabu-
lary and Length are based exclusively on operators and operands counts. We considered
these two metrics plus LOC as the set of simple size metrics we use in our experiment.
The next Software Science metric is Volume: ������������ � �� , the intuition underlying
this metric is that for each of the � elements in a program ���� �  bits must be specified
to choose one of the operators or operands for that element. Thus � measures the total
number of decisions a programmer has to make in order to choose the operators and
operands in the program. Program Difficulty  !�"�$#&%� �'�'(*)# ) � is directly associated to
Volume, but is inversely proportional to the level of abstraction. The Level of Abstrac-
tion, �,+ , increases with the number of distinct operands ( � � ) and decreases with the
number of distinct operators ( � � ) and total number of operands ( � � ); thus, �,+-� �. .
Effort is the metric that captures the idea that the difficulty of programming increases as
the volume of the program increases, and decreases as the program level of abstraction
increases, /0�213 � .

McCabe’s Cyclomatic Complexity may be used to determine the structural com-
plexity of a coded module. This measure is designed to establish a limit to the complex-
ity of a module, intending to improve its readability and reduce its fault-proneness. The
primitives are: � , number of nodes (groups of sequential statements that are always
executed together); / , number of edges (flow of control between nodes); 45� number
of decision nodes (nodes with more than one exiting edge); and 687 , number of regions
(areas bounded by edges with no edges crossings). The complexity of a particular pro-
gram graph, representing a module, is given by any of the three formulas: �-��79�:�;687 ,
�-��79�<�;/>=?� �A@ or �B��79�:�C45� � + .

We consider Volume, Difficulty, Effort and Cyclomatic Complexity as complexity
metrics since they capture some sense of the programmers mental burden to cope with
a particular part of the code.

2.3 Method

The four steps used to collect the data are described below.

1. Generate the list of required elements.
To generate the list of required elements we utilized the tool called Poke-Tool [5]
that implements the All-Uses Criterion [17, 18]. The total number of required el-
ements (def-use associations) is 215. The program has 4 modules: main with 77
def-use associations, pstr with 39, cal with 88 and jan1 with 11.

2. For each required element:
(a) Isolate the corresponding part of the source code.

To compute the size and complexity at the granularity level of required ele-
ments, we had to isolate the part of the code that actually implemented each
particular required element. Since a def-use association comprehends the code
between a point where a variable is defined and the subsequent point where
that variable is used (without an intervening redefinition), we had to separate
that part of the code from the rest, and add preceding code to declare and define
anything needed to make the new program compile with no problems.



(b) Compute LOC.
(c) Count the Halstead’s science of software primitives.
(d) Extract the control flow graph, count arcs and nodes to compute the cyclomatic

complexity.
(e) Count the number of faults.

The count of faults was made from the initial count of 20 injected faults in
Cal.c. Each fault counted once for each program that included the segment
of code with the fault; thus, a fault could potentially count for a number of
programs.

3. Compute the Relative Complexity Index (RCI) for each required element, for each
metric.
This was calculated to normalize the metric values. 6ED8F�GC�H���IGJ=LKM�	�NGL�POQ�
K>R&STGU=
KM�	�NG�� , where �IG is the calculated metric, K>R&SVG and KM�
��G are the maximum
and minimum observed values for a particular metric.

4. Order the required elements by RCI.

3 Results

From the collected data we calculated the linear dependency between each metric and
the number of faults. The coefficient of correlation is given by Equation 1, where � is
the number of points in the sample, each point is a pair ( W , X ), where W is the metric
value and X the number of faults, SNYPZ	[ and \ YPZ	[ are the averages of the observed values
for W and X .

]_^a` b �
c #dfe � �gS d = S YPZ
[ �'�g\ d = \ YPZ
[ �h i c #j e � ��S j = S YPZ
[ � �lk i c #j e � �g\ d = \ YPZ
[ � �mk (1)

Table 1. Correlation: Metrics x Faults

Metric Raw Median Mean
LOC 0.8895 0.9776 0.9855
Vocabulary 0.7756 0.8571 0.8900
Length 0.8718 0.9459 0.9426
Volume 0.8579 0.9175 0.9556
Difficulty 0.9101 0.9764 0.9830
Effort 0.8329 0.8350 0.8806
Cyclomatic 0.7990 0.9585 0.9786

Table 1 lists all the correlation coefficients calculated for each metric. The first col-
umn is the name of the metric, the second column is the correlation calculated from
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Fig. 2. Metrics versus Correlation

the RAW data, including every data point in the sample. In columns three and four we
present the correlation coefficients calculated from filtering the number of faults for
each metric interval by the MEDIAN and MEAN, respectively. This filtering was done
to measure the ability of a particular metric as a software fault predictor. Figure 2(b)
graphically represents the change in the order of better correlation coefficient to worst
correlation coefficient. The changes are not very drastic, LOC goes from second to first
and Program Difficult goes to second. It is interesting to notice three well defined sub-
sets – the top performers are Program Difficulty and LOC, followed by Length and
Volume. The worst performers are Effort, Cyclomatic and Vocabulary. Figure 2(a) de-
picts the performance of each metric in the three data sets.

The next data analysis was the calculation of the distribution of metric values by
number of faults in the data set. Figure 3(a) shows the number of segments of code for
each number of faults; for example, there are 57 segments of code with 1 fault, and
48 with 3 faults. Selecting, for example, the 57 segments of code with 1 fault and cal-
culating the Program Difficult metric for each of them we collected a set of measures
with the distribution represented in Figure 3(b); the distribution is approximately nor-
mal with Mean 14.36 and Standard Deviation 4.15. Figure 3(c) shows the distribution of
LOC corresponding to a normal distribution with Mean 11.44 and Standard Deviation
3.83. Both graphics are mean centered and with a unit as a standard deviation.

4 Discussion

Analyzing the correlation coefficients presented by the calculations with the whole set
of points (RAW data column in Table 1), we can see that the complexity metric Program
Difficulty presented the highest correlation coefficient, around 0.91, closely followed
by the simple size metrics LOC and Length.

For the median and mean number of faults in each interval of the metric (columns 2
and 3 of Table 1) we see that LOC and Difficulty have their positions inverted; LOC has
a better correlation coefficient to the number of faults. Analyzing Figures 4(a) and 4(b)
we see that LOC presents dispersion of data points greater than Difficulty when the



(b) Program Difficulty Frequency Distribution for 1 Fault (c) LOC Frequency Distribution for 1 Fault

(a) Distribution of Segments of Code per Number of Faults

Fig. 3. Distributions

RAW data is considered; when the median is considered the effect of the dispersion is
eliminated leading to better results in terms of correlation. Figure 4 also shows the line
connecting the points of median value of the metric and its corresponding correlation
coefficient.

Even though the median and mean are important tools for data analysis and useful
when using the metric values to predict the number of faults in a segment of code, we
considered that the analysis of the RAW data is more meaningful concerning the real
performance of the metrics.

One important analysis to support this discussion is the distribution of segments of
code with same number of faults by the corresponding metric measured. For example,
Figure 3(b) shows that segments of code with one fault formed a normal distribution of
program difficulty metric. That graphic tells us that most of the segments of code with
one fault have the program difficulty metric close to a certain mean value. LOC pre-
sented similar albeit worse results for this type of analysis, as illustrated by Figure 3(c).



(a)Program Difficulty versus Number of Faults

(b) LOC versus Number of Faults

(c) Effort versus Number of Faults

Fig. 4. Metrics versus Number of Faults



(c) Effort versus Fault−Proneness

(a) LOC versus Fault−Proneness (b) Difficulty versus Fault−Proneness

Fig. 5. Metrics versus Fault-proneness

Another interesting characteristic to analyze is the fault-proneness. Fault-proneness
of a part of a software is defined as the probability that it contains at least one fault 5.

For that kind of analysis LOC and Difficulty presented similar performance. Fig-
ure 5(a) indicates that the probability of at least 1 fault occurrence gradually increases
with LOC, reaching 100% around 20 to 25 LOC. Difficulty, Figure 5(b), also has a
gradual increase, reaching 100% after the second metric interval.

4.1 Internal Validity

We identify some threats to internal validity, one is the experimenter bias during the
fault injection procedure. To avoid that bias we used a program with faults indepen-
dently injected in a different experiment, conducted by a different research group.

Another is the distribution of faults. In a real program with real faults we cannot
control the distribution of faults or the fault types. To avoid this problem we decided to
use a program with injected faults. The fault injection was done by a student, intructed

5 The definition of fault-proneness is traditionally associated to modules; we generalized it to
incorporate the fault-proneness of any segment, or part of the software, even if it is not a
complete module.



to use his experience, common sense and judment to realisticly inject a number of faults
in the program from a list of common types of faults collected from the literature.

4.2 External Validity

Our concerns with external validity is centered around how representative our experi-
ment subjects are. It is always discussed whether to use real programs of faked programs
in software engineering experiments. In the level of granularity we are operating the as-
sumption is that segments of code in our program are representative of segments of
code in other programs regardless of program size.

5 Conclusions

Predicting the number of hidden faults in a software is a difficult problem; research
results in this area are very appealing to industry, since information about undiscovered
faults are used to support a number of software development decision, specially during
software testing.

In this work we seek empirical evidences for a hypothesis related to the use of size
and complexity measures as software fault predictors: Complexity metrics are better
predictors than size metrics. The special characteristic of our investigation is that we
seek evidences to support this hypothesis at a level of granularity smaller than modules;
we do it for segments of code that implement a data flow software testing requirement

In our experiment we selected the program Cal.c. It displays a calendar on the
console and accepts a few number of parameters that control which month and/or year
it should display plus a few other thing; it runs under UNIX. In addition to that, Cal.c
has a number of documented software faults. We selected a few complexity and size
metrics and measure each metric for a number of segments of code of Cal.c. We as-
sociated each segment of the code with the correspondent number of faults it contained.
With that data we calculated the correlation coefficient of metric to number of faults for
each of the selected metric.

Our results provide evidences that the hypothesis hold. Some interesting results
were also reached. LOC did perform very well; it was almost as good as Program Dif-
ficulty. Effort and Cyclomatic, both complexity measures, did not do so well. Effort,
for example, presented poor results in terms of correlation, Figure 4(c), and in terms of
fault-proneness indicator, Figure 5(c).

As future research and development endeavors we intend to investigate the corre-
lation of Mutation Analysis [6] and number of faults, by calculating the correlation
coefficient for the number of mutants generated for a particular segment of code and
the number of faults present in the segment. This is to try to come up with empirical
evidences to support the hypotheses that the number of mutants is a good estimator of
the number of faults and a good indicator of fault-proneness. We also intend to work
on automating the manual steps of our data collection methodology to allow some of
our ideas to form the basis for the definition of new software testing criteria based on
information about requirements complexity and size.
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