
Integrating Verification and Validation Techniques
Knowledge into Software Engineering Environments

Ana Candida C. Natali, Ana Regina C. da Rocha, Guilherme H. Travassos, and
Paula G. Mian

COPPE / UFRJ – Computer Science Department
Caixa Postal: 68511 - CEP 21945-970 - Rio de Janeiro – RJ, Brasil

{anatali, darocha, ght, pgmian}@cos.ufrj.br

Abstract. Accomplishing software verification and validation (V&V) activities
is not a simple task. It involves a great number of techniques to choose and
there is no sufficient organized information to support the selection regarding
the V&V technique to be used. This paper describes an ongoing research work
concerned with the definition of an approach to plan verification and validation
processes. Its objective is to define how V&V activities can be supported
throughout software development processes accomplished by a Software
Engineering Environment (SEE). Besides V&V knowledge integrated into the
SEE, this approach will also organize some practical recommendations
generated by experimental studies regarding V&V techniques to support their
use.

1 Introduction

The accomplishing of software verification and validation (V&V) activities is not
simple. For many software development projects, half of the planed schedule is spent
on software verification and validation activities [1]. Additionally, in most cases the
software developers make use of technologies for which we have not enough
evidence to confirm their suitability, limits, qualities, costs, and inherent risks [2].

A variety of methods and techniques for software V&V do exist. Several of them

aim at detecting software defects, but there is no evidence about what defects types
are better found by which technique.

Despite all the important works regarding software V&V, there is no enough

grouped information about V&V methods and techniques that could allow software
developers to properly decide which techniques they should use in a given context.
For instance, Anderson [3] focuses on exploring the state of practice of the
verification and validation process in Swedish software development organizations.
Berling [4] presents an industrial case study of software verification and validation
activities. Several works regarding software verification and validation techniques are
described as follow:
• Study about software inspection [5];

• Study about software tests, comparing different test techniques [6];
• Study comparing different software inspections techniques [7];
• Studies characterizing V&V activities [3, 4];
• Study characterizing the use of software inspection [8].

All these works search a better understanding of V&V activities. However, they do
not define direct ways to support these activities. Therefore, there is a need to help
developers planning such activities for software development processes.

When we consider the software verification and validation processes, we should

take into account the international standard ISO/IEC 12207[9] and the related process
areas in the CMMI [10]. The purpose of ISO/IEC 12207 is to establish a common
structure for defining software processes. This standard describes the V&V processes
as support processes. CMMI was developed to allow the evaluation of the
organizational processes, determining their capability and the maturity of the
organization according to its software processes. This model defines V&V as two
engineering process area belonging to maturity level 3 (if we consider the staged
representation). Despite the existence of this standard and CMMI, the definition of the
software processes is an activity requiring experience and it needs software
engineering knowledge. Besides, ISO 12207 and CMMI describe V&V activities and
practices using different denominations and detail levels, which make hard their
combined use for the software process definition. We argue that knowledge
management can easy their use.

So, to be able to explore knowledge regarding V&V techniques and the
requirements for software processes definition presented in ISO/IEC 12207 standard
and CMMI model, the developers need some sort of knowledge management support.
However, there is no correlated work defining knowledge management facilities
concerned with V&V activities and software processes. Some examples concerned
with experimental software engineering knowledge can be represented by CeBASE
(http://www.cebase.org), a center whose goal is the collection and dissemination of
empirically-based software engineering knowledge, and ESERNET
(http://www.esernet.org) repository, containing empirical results about the software
engineering technologies effectiveness in certain organizational contexts. Despite the
fact that these knowledge bases have information applicable to V&V activities, such
knowledge is not described in a direct way to provide practical guidelines of its use
and also, the knowledge is not integrated into the software development process,
making its use workload higher.

Considering these scenarios, this work proposes an approach that intends to
directly integrate V&V knowledge and knowledge management activities (like
search, dissemination, use support) into a software engineering environment (SEE).
Software processes definition and planning, and, the choice of the suitable V&V
techniques to a specific software product should be supported by the knowledge
management (KM) of a body of practical recommendations built through systematic
reviews of experimental studies.

This paper is organized in five sections. The first section comprises this
motivation. In section 2 we present the approach based on knowledge to support
V&V activities into a SEE. In section 3 we discuss how to collect knowledge
regarding V&V techniques. In section 4 we points out future work. Finally, section 5
presents final considerations.

2 Knowledge to Support V&V into a SEE

The proposed approach to support software verification and validation rely on: (1)
process definition, which is the starting point to support V&V activities and tasks; (2)
a software engineering environment, which aims at providing support to the whole
software process, including the verification and validation processes; and, (3)
experimental knowledge, which can indicate factual recommendations that can be
applied to accomplish software development activities.

In the following subsections we describe the importance of which item in our
approach.

 2.1 Software engineering environments

An important way of getting benefits of productivity and quality in software
engineering is by the use of software engineering environments. SEEs can be defined
as integrated collections of tools that facilitate software engineering activities across
the software lifecycle [11], providing mechanisms to integrate people in a software
development organization with the software processes and with the supporting
technology. A SEE provides support for the construction, management, quality
assurance and maintenance of a software product, and comprises a repository that
stores all information related to the software project throughout its life-cycle and a set
of tools that supports technical, support and management activities.

In this work context, it has already been built a SEE, to which the support for

software verification and validation will be provided. This specific SEE is categorized
as an Enterprise-Oriented Software Development Environment. Enterprise-oriented
SE [12] supports the activity of Software Engineering, making possible to manage
knowledge that can be useful to software developers and managers when
accomplishing software projects in an organization. The enterprise oriented SEE have
the following goals: (i) to provide software developers with all relevant knowledge
for software development held by the company, and, (ii) to support organizational
learning about software development, maintenance, management and support
processes.

The creation of an enterprise oriented SEE involves the definition of the software

processes and the identification of the methods and tools to be provided for a specific
organization. This task is accomplished by means of a meta-environment already
implemented [12]. Although all these benefits, software verification and validation

are not yet properly supported in the enterprise oriented SEEs. There is no software
verification and validation processes formally and completely defined in SEE and
also, specific CASE tool support for the V&Vactivities is not available yet. That is,
software verification and validation activities are defined and planed in the SEE based
on guidelines for peer-reviews and templates for documents (peer review reports, test
plans and test reports) lacking a more effective support based on experimental
knowledge about the adequacy of the V&V techniques and CASE tool support.

It is necessary to formally define the V&V processes and to identify needs for tools

supporting it.

2.2 Software process definition

Software process definition is not a simple task but it is a fundamental requirement
to guarantee the quality of software products and to allow the definition and
construction of tools. Nevertheless, the effectiveness of such processes depends on
their adequacy to the characteristics of the organization, the product to be developed,
and the project. In an organization, various processes can coexist to support projects
with different characteristics. To guarantee the desirable discipline it is important to
determine the fundamental activities that should be present in any defined process
Eman [13] defines this group of fundamental elements as the standard process, or in
other words, the basic process which guides the establishment of a common process
in the organization. In this way, a standard process defines a single structure to be
followed by all the teams involved in a software project [14] independently from the
characteristics of the software product to be developed. Consequently, the definition
of a standard process establishes a common structure to be used by the organization in
its software projects, as it institutes the basis for the definition of all specific
processes.

In the Enterprise Oriented SEE there are facilities to software process definition,

specialization to a specific paradigm or software type and to process instantiation for
specific projects. However, there is no standard software verification process neither
standard software validation process already defined to be specialized and
instantiated. These standard V&V processes need to be defined.

Therefore, we have defined these two standard processes: a verification process

[15] and a validation process, both based on ISO/IEC 12207 [9] standard and CMMI
[10] model. With the definition of these processes, the V&V activities were described,
specifying its purpose, pre-conditions, sub activities, responsibilities and work
products. The effective practice of V&V tasks requires its integration with the
software development and maintenance processes. So, V&V activities are positioned
into software development process.

However, the definition of a software process is not enough. As several activities

of V&V processes are knowledge-intensive, only the process definition does not

provide necessary support for its accomplishment. In this context, knowledge and
experience can be very useful.

2.3 Knowledge to Support V&V Activities

Software development is knowledge-intensive. Several knowledge representations
and transformations are required along the software development process. Planning
the software verification and validation activities involve several decisions regarding
techniques and methods to select.

Vegas [16] stresses the importance of proper selection, claiming that different

software systems have different aspects or characteristics to be verified or validated
depending on how and for what purpose they were developed. On this basis, the
selection of an unsuitable technique or method can lead to an inappropriate procedure
which will bring with it an inaccurate (if not erroneous) evaluation of the software
aspect being tested.

Instead of being based in mere intuition, good decisions regarding software

technology need to be based on factual knowledge. A body of knowledge can indicate
which are the available technologies to choose, their strengths and limitations, and
under which conditions such technologies work best. Experimentation is an important
way to produce this common body of knowledge regarding software technologies.

When developers use experimental knowledge they can be benefited from mature

recommendations that can be applied to predict software development results.
Therefore, it is necessary to organize knowledge and evidences generated by
experimental studies and support their use.

However, although several experimental studies have been accomplished, some

issues avoid the use of their results in practice. One problem is where developers can
find useful recommendations: studies are dispersed, distributed across different
sources of information. Besides, obtaining knowledge of a technology is more time
demanding. It requires the running of multiples studies under different contexts, to
abstract specific results into an objective body of knowledge to be used by
developers.

This work stands out the need for a knowledge management infrastructure to

gather, describe, store and support the use of experimental knowledge in software
development organizations. Specifically, knowledge will be regarding V&V
techniques.

Our goal is to directly integrate facilities for experimental knowledge management

into a SEE used by an organization. It will allow a more effective support to
developers when planning V&V tasks throughout the software process.

3 Capturing V&V Techniques Knowledge

We decided to capture relevant knowledge to V&V tasks and directly integrated this
knowledge into SEE. In our context, SEE being used has already facilities for
management the knowledge related to software processes. There are mechanisms [17]
defined to support the acquisition, filtering and packing of knowledge valuable to
organization, such as domain knowledge (domain theory), business knowledge (best
practices, knowledge about clients and technology), past experiences knowledge
(lessons learned, common problems), and organization members’ knowledge acquired
during process execution.

So, an infrastructure to store and retrieval knowledge is already available in SEE

and it can be used to store knowledge captured during the accomplishment of V&V
activities.

However the capture of relevant experimental knowledge regarding V&V tasks

still has to be done, since it is not well understood which techniques can be applied in
each V&V activity. And even when software developer knows which technique to
apply in a specific situation sometimes he/she doesn’t t know how to use this
technique.

Our approach is to collect experimental knowledge to describe techniques and its

evidence of use, indicating practical recommendations through techniques attributes,
such as its purpose, benefits, limitations, experience required to use and others.

These recommendations have the purpose of helping developers in the decision of

which V&V technique select to perform a particularly activity and how to use the
selected technique. To do this, firstly we need to revise literature to identify which
techniques can be used in each V&V activity. Secondly, we have to collect
information about the technique and, then describe this knowledge appropriately to
facilitate its use.

The first major step is deciding where to collect information about V&V

techniques. Practical recommendations about V&V techniques should be based on
experimental knowledge generated in studies, or, on evidence of its use related in
experimental studies. The great number of published studies in this area implies that it
may be possible to combine results to generate practical recommendations based on
experimental knowledge or evidence of use. These studies and experiments are stored
in public Web-based repositories like CeBASE and ESERNET, or described in
research registers (journal, technical reports, conference proceedings).

Second major step is defining how to collect knowledge, and our approach is

basing this collect on systematic reviews. A systematic literature review is a means of
identifying, evaluating and interpreting all available research relevant to a particular
research question, or topic area, or phenomenon of interest. Systematic reviews
require considerably more effort than traditional reviews. Their major advantage is

that they provide information about the effects of some phenomenon across a wide
range of settings and empirical methods. If studies give consistent results, systematic
reviews provide evidence that the phenomenon is robust and transferable. If the
studies give inconsistent results, sources of variation can be studied [18]. Kitchenham
[18] propose a guideline for systematic reviews appropriate for software engineering
researchers, including three main phases: Planning the Review, Conducting the
Review and Reporting the Review.

The third important step is how to describe collected information in a practical

manner. A characterization schema should be defined to transform information
obtained through systematic reviews in practical recommendations. Vegas [16]
defined a characterization schema to software testing techniques. Important attributes
were included on this schema such as [16]: experience required to use the technique,
how experimental or well validated the technique is, type of defects the technique
helps to discover, type of software to which the technique can be applied, earlier
projects in which the technique as been use and the personnel who work with it,
benefits and problems of its use, and so on.

Certainty, when characterizing other types of V&V techniques, such as inspection

techniques, there are common and different attributes. However, complete study
should be realized to determine the set of attributes that better describe a technique,
according to its type, providing support to the V&V activity that it is related.

This knowledge organized on practical recommendations will be stored in a

repository, as shown in Figure 1, which will be directly integrated into the software
engineering environment used by an organization.

Figure 1 – Systematic reviews resulting in practical recommendations about a V&V

technique’s use.

Research registers

Studies under
systematic
reviews

Repository of practical
recommendations
about V&V techniques

Knowledge about each
technique described
through a
characterization schema

Public repositories

4 Future Works

Enterprise oriented SEE has implemented mechanisms to knowledge management,
including acquisition, filtering, packaging, and publishing resulting package
knowledge in a community of practice repository through a Web-based system [17].

However, when compared to traditional KM infrastructures, the approach we

propose will deal with new challenges since knowledge to be managed will be also
experimental knowledge. According to [19], a traditional knowledge process involves
the following steps: creation, capture, retrieval, access and use of knowledge. Services
correspondents to these activities shall be arranged around an organizational memory,
providing useful information to users. However, since our approach to support V&V
activities will be supported by experimental knowledge, some new challenges to
attend these traditional steps must be observed:
• Knowledge Creation and Capture: Knowledge needs to be created or imported. An

important challenge regarding creation and capture of experimental knowledge is
how to generate knowledge and evidences through many individual studies.
Difficulties to combine results from multiples studies into a reliable body of
knowledge are discussed in [20, 21]. Another important challenge is how to
support an organization to create experimental knowledge, that is, to perform its
own software engineering experiments, and aggregate its results into organizational
memory.

• Knowledge Retrieval and Access: These steps satisfy the searches and queries for
knowledge. An important challenge is how to describe experimental knowledge
items to support retrieval and future accesses. A characterization schema of
knowledge items was developed by Vegas [16]. Its proposed schema describes
knowledge regarding testing techniques. However, extensions should be provided
to support the representation of different types of verification and validation
techniques.

• Knowledge Use: The developer will not only recall knowledge items, but will
process them for further use. A challenge such as integration with the user’s task
plays a crucial role for the effective use of experimental knowledge. We have to
associate such knowledge to the software process or even embed it into CASE
tools to support the execution of software activities.

• Knowledge Maintenance and Evolution Facilities: A challenge of these steps is to
define how organizational memory should aggregate results of new experimental
studies and, also, how to evaluate its repository to decide what knowledge item is
obsolete or which one had never been used.

6 Conclusions

This paper describes a research which aims at supporting the definition, specialization
and instantiation of the V&V processes and the choice of the suitable techniques for
the activities to be performed. This support is based on knowledge management of a

body of practical recommendations, built through systematic reviews of experimental
studies. Our approach intends to directly integrate V&V knowledge of experimental
studies into a software engineering environment.

Since the 2003, enterprise oriented SEEs are in use in 27 small and medium-size

Brazilian software companies [22]. For each software company, standard processes
are defined and the already available CASE tools are used to support some specific
activities especially those related to CMMI maturity level 2. The results of the
current use of such SEE encourage more research and the implementation of other
tools.

In this scenario, the current set of users already makes possible an evaluation of the

approach to support V&V activities. We intend to survey companies to characterize
its actual V&V efforts. Then, we intend to evaluate the support provided by SEE with
V&V processes defined. And finally, we will evaluate the benefits obtained with the
use of SEEs, with V&V processes implemented with knowledge support.

Acknowledgement

The authors would like to thank CAPES and CNPq for the financial support granted.
We also acknowledge the ESE (Experimental Software Engineering) group at
COPPE/UFRJ (www.cos.ufrj.br/~ese) and the TABA group (www.cos.ufrj.br/~taba)
for their contributions to this research.

References

1. Brooks, F. P., The Mythical Man-Month (Anniversary ed.), Addison-Wesley
Publishing Company, 1995.

2. Kitchenham, B. A., Dyba, T., Jorgensen, M., Evidence-based Software
Engineering, 26th International Conference on Software Engineering (ICSE 2004),
Scotland.

3. Andersson, C., 2003, “Exploring the Software Verification and Validation Process
with Focus on Efficient Fault Detection”, Licentiate Thesis, Lund Institute of
Technology (LTH), Lund University, Sweden.

4. Berling, T., 2003, “Increasing Product Quality by Verification and Validation
Improvements in an Industrial Setting”, Doctoral Thesis, Lund University,
Sweden.

5. Aurum, A., Petersson, H., Wohlin, C., 2002, “State-of-the-Art: Software
Inspections after 25 Years”, Software Testing, Verification and Reliability,
12(3):133-154.

6. Juristo N., Moreno A. M., Vegas S., “A Survey on Testing Technique Empirical
Studies: How Limited is Our Knowledge”, Proceedings of the 1st International
Symposium on Empirical Software Engineering, pp. 161-172, 2002.

7. Thelin, T., 2002, “Empirical Evaluations of Usage-Based Reading and Fault
Content Estimation for Software Inspections”, Doctoral Thesis, Lund University,
Sweden.

8. Laitenberger, O., Vegas, S., Ciolkowoski, M., 2002, “The State of the Practice of
Review and Inspection Technologies in Germany”, Tech Report Number:
ViSEK/011/E.

9. ISO/IEC 12207, 1995, Information Technology – Software Life Cycle Processes.
10.SEI, 2002, “Capability Maturity Model Integration, Version 1.1 Staged

Representation”. URL: http://www.sei.cmu.edu.
11.Oliveira, K.M., Zlot, F., Rocha, A.R, Travassos, G.H., Silva, C.G.M.; Menezes,

Silva C., Domain Oriented Software Development Environment, Journal of
Systems and Software, v. 72, n. 2, p. 145-161, 2004.

12.Villela, K., Oliveira, K., Santos, G., Rocha, A. R., Travassos, G. H., Cordis-FBC:
an Enterprise Oriented Software Development Environment. In: Workshop
Learning Software Organization, Luzern, Switzerland, 2003.

13.Emam, K. E., Drouin, J. N., Melo, W., 1998, SPICE – The Theory and Practice of
Software Process Improvement and Capability Determination, IEEE Computer
Society, Edwards Brothers Inc., USA.

14.Maidantchik, C., Rocha, A. R. C., Xexeo, G. B., 1999, "Software Process
Standardization for Distributed Working Groups". In: Proceedings of the 4 th IEEE
International Software Engineering Standards Symposium, Curitiba, Paraná,
Brasil, Maio.

15.Barreto, A. S., Rocha, A. R. , Apoio ao Processo de Verificação em Ambientes de
Desenvolvimento de Software Orientados a Organização, WTDQS 2004, Brasília,
2004.

16.Vegas, S., Identifying the Relevant Information for Software Testing Technique
Selection. ACM/IEEE International Symposium on Empirical Software
Engineering (ISESE'04), Aug. 2004, CA, USA.

17.Montoni, M., Miranda, R., Rocha, A. R., Travassos, G. H. Knowledge Acquisition
and Communities of Practice: an Approach to Convert Individual Knowledge into
Multi-Organizational Knowledge. VI International Workshop on Learning
Software Organizations (LSO 2004), Banff, Canada, June, 2004.

18.Kitchenham, B., Procedures for Performing Systematic Reviews, Technical
Report, TR/SE-0401.

19.Staab, R. Studer, H. P. Schurr and Sure, Y. “Knowledge Processes and
Ontologies”, IEEE Intelligent Systems, January/February, Vol. 16, No. 1, 2001.

20. Shull, F., Carver, J., Travassos, G. H., Maldonado, J. C., Conradi, R., and Basili,
V. R.,"Replicated Studies: Building a Body of Knowledge about Software Reading
Techniques.," in Lecture Notes on Empirical Software Engineering, N. Juristo and
A. Moreno (eds.) ,Ed. River Edge, NJ, USA: World Scientific Publishing, October
2003, pp. 39-84.

21.Wohlin, C., Petersson, H., and Aurum, A., “Combining Data from Reading
Experiments in Software Inspections: A Feasibility Study”, Lecture Notes on
Empirical Software Engineering, edited by N. Juristo and A. Moreno, pp. 85-132,
World Scientific, 2003.

22.Santos, G., Villela, K., Shnaider, L., Rocha, A. R., Travassos, G. H. Building
ontology Based Tools for a Software Development Environment. VI International
Workshop on Learning Software Organizations (LSO 2004), Banff, Canada, June,
2004.

