
An Investigation of the Open Source
Development Process

Elisa Yumi Nakagawa

Dept. of Administrative Science and Technology
Uniara - Araraquara University Center, Araraquara/SP, Brazil

elisa@icmc.usp.br??

Abstract. Recently, the open source process has sparked interest of
researchers in the universities and in the software industry. So, our ob-
jective is to investigate if the open source process works effectively when
developers do not have good knowledge about the functionalities of the
software that will be developed. Thus, two studies have been performed;
one to compare the “traditional” process and the open source process
aiming to observe if analysis and design models are relevant to the soft-
ware development; and other, to observe if a requirements specification
gives benefits to the open source processes when developing a software
with unknown or unclear functionalities. Both studies were formulated
and documented according to experimentation process; and, the lessons
learned can be considered as the first step to adjusting, establishing and
transferring the best practices of the OS process to the software industry.

1 Introduction

The success of several OS (Open Source) projects has sparked interest of re-
searchers over the past years. Naturally, in the face of this success, OSS (Open
Source Software) and its development process have become interesting in the
universities and commercial software organizations. Particularly, these organi-
zations are interested in investigating if the practices behind OSS development
process, or simply OS process, can be migrated into their practices.

The OS process has not been captured definitively in writings. However,
Raymond has written the single best description called “The Cathedral and
the Bazaar” [6]. Cathedral represents conventional commercial practices, where
developers work using a relatively closed and centralized methodology to develop
software. In contrast, Bazaar represents the openly cooperative effort of the
OSS development, where the software is developed while requirements have been
appearing. OS developers have usually good experience in coding and capability
of cooperative distributed work. They frequently use version control systems and
internet resources, e.g., Web sites and mailing lists. Furthermore, OSS developers
are generally end-users of the software systems that they have developed; then,
they have good knowledge about the functionalities required in the software.
?? She is also professor and PhD student in Department of Computer Science and

Statistics at University of São Paulo/USP.



Accordingly, these characteristics of OSS process have pointed out it as an agile
process, together XP (eXtreme Programming) [1], Scrum [7], and others. Agile
processes are generally lightweight and faster to develop software systems; thus,
researchers have seen them like improvements in the way software is developed.

Recently, a significant amount of works related to successful OSS has been
published, mainly those that have functionality similar to other softwares, e.g.,
web servers, browsers and text editors. Because of these successful OSS, interest-
ing points can be investigated. For example, how OS development process works
if the developers do not have enough knowledge about the software that they will
develop. Another point is how OS process works if there is a limited number of
developers or when the developers are “random”, i.e., when they are employers
of traditional commercial organizations or when they do not have characteristics
of OS developers.

In this context, recent works have been investigating the OS development
process, such as [5][10][13]. Besides, some researchers, e.g., [4][9], have motivated
our work. In the same vein of Scacchi’s work [9] that describes different ways to
communicate software requirements in OS projects, the objective of this work
is to investigate the role of a detailed document in text format describing re-
quirements — the requirements specification — in the OSS development process.
Thus, we have performed two studies that aim at investigating the followed ques-
tions: (i) How much are the analysis and design software models (as those build
in “traditional” processes) relevant in the software development? (ii) How does
the OS process work if developers do not have enough knowledge of require-
ments or if developers are not end-users? (iii) How does the OS process work
if software requirements are not similar to other known systems? (iv) Is a re-
quirements specification sufficient or important in the OS process? (v) Does OS
process work with “random” developers? Are special characteristics required in
developers?

The term “OS process” is usually used for referring to a set of processes
with similar characteristics; development processes of the Mozilla and Apache
are two good examples [4]; this is also valid to “traditional” processes. Thus,
this paper aims at reporting our experience in simulating a process of these sets
in a controlled environment, as well as describing knowledge acquired about the
behavior of these processes.

According to [12], experimentation has commonly been applied with the pur-
pose of evaluating methods, techniques, and tools in SE (Software Engineering).
In this way, this work also aims at investigating the viability of using experimen-
tation to evaluate software processes, specially the open source process. These
studies were formulated and documented according to experimentation process
proposed by [12] aiming to repeat these studies in next opportunities and achieve
results with statistical significance.

This paper is organized as follows: Section 2 presents an overview of Ex-
perimentation in SE. Sections 3 and 4 describe the two studies (experiments)
conducted. Section 5 provides learned lessons from the conducted experiments,
and Section 6 gives conclusions remarks.



2 An Overview of Experimentation in SE

An empirical study is an act or operation for the purpose of discovering some-
thing unknown or of testing a hypothesis, involving an investigator gathering
data and performing analysis to determine what the data mean. According to
[12], there are three major different types of investigations that may be carried
out: survey, case study, and experiment. A survey is often an investigation per-
formed in retrospect. Case studies are used for monitoring projects, activities or
assignments. The level of control is lower in a case study than in an experiment.
A case study is an observational study while the experiment is a controlled study.
In the experiment, the researcher has control over some of the conditions where
the experiment takes place. It is normally conducted in a laboratory environ-
ment, which provides a high level of control. Thus, an experiment is a formal,
rigorous and controlled investigation.

The experiment process aims at manipulating one or more variables and fix
all the others. The effect of the manipulation is measured, and based on this
a statistical analysis can be performed. There are two kinds of variables in an
experimentation: independent and dependent variables. All variables in a pro-
cess that are manipulated and controlled are called independent variables.
Those variables that we want to study to see the effect of the changes in the
independent variables are called dependent variables. Thus, an experiment
studies the effect of changing one or more independent variables; these variables
are called factors. The other independent variables are controlled at a fixed level
during the experiment, or else we cannot say if the factor or another variable
causes the effect. A treatment is one particular value of a factor. The treatment
is applied to the combination of objects (elements to be manipulated in experi-
ment, for example, programs or document that shall be reviewed) and subjects
(people that participate of the experiment). Generally, the experiment process
involves several activities [12]: (i) Definition: it determines the foundation for the
experiment or why the experiment is conducted; (ii) Planning: the design of the
experiment is determined, the instrumentation is considered and the threats to
the experiment are evaluated; (iii) Operation: the treatments are applied to the
subjects and data that will be analyzed are collected; (iv) Analysis and Interpre-
tation: after collecting experimental data in the operation step, this one draws
conclusions based on this data; (v) Presentation and Packaging: This includes
primarily documentation of the results, which can be made either through the
research papers for publication, lab packages for replication purposes or as part
of a company’s experience base.

The experiment process is iterative; it is not assumed that an activity is
necessarily finished prior to that the next activity is started. In other words, it
may be necessary to go back and refine a previous activity before continuing
with the experiment. The exception is when the operation of the experiment has
started, then it is not possible to go back to the definition and planning of the
experiment [12]. According to [11], an important requirement for any experiment
is repeatability, i.e. an experiment should be repeated several times to obtain
statistical significance in the results.



3 Experiment I

This experiment compares the “traditional” process and the open source process
to observe if analysis and design models are relevant to the software development
process. In the next subsections, we will describe this experiment and document
it according to steps proposed by [12].

3.1 Definition

Object of Study: The objects studied are the OS process and the “traditional”
process to develop software.

Purpose: The purpose of the experiment is to observe if requirements specifi-
cation and software models influence in the software development processes,
i.e. if they are relevant.

Quality Focus: The quality focus is the productivity improvement in the soft-
ware development. In the context of this paper, productivity is related to
the quantity of functionalities of the software coded by developers.

Perspective: The perspective is from researchers, i.e. the researchers would
like to know if there is a significant difference in the productivity using OS
process or “traditional” process.

Context: The experiment was performed during the second semester of 2002
in the Department of Computer Science and Statistics, at University of São
Paulo (USP/SCE). It involved 35 students divided in two teams.

3.2 Planning

Context Selection: The experiment was independently conducted by two teams:
one based on OS process and other based on “traditional” process. Each team
had a document to guide its activities. All subjects were students, then most
of them had not worked in the software industry before. The experiment
occurred outside of classroom and subjects annotated all tasks, respective
dates and times consumed in the tasks. The problem used in this experiment
was a real system, but simple, called Sapes. Then, we believe it would be a
good system to our experiments.
Sapes is a Web application that manages references (bibliography) and its re-
quirements specification is based on IEEE Standard1. This specification has
been used for some years in other SE courses. SE researchers still verified
this specification before initiating this experiment. This task had consider-
able relevance to identify contradiction and omission, as well as ambiguity
in requirements. This specification totalizes 10 printed pages and 24 require-
ments. It is divided in: (i) preparation and management of references; (ii)
general search and reports; and (iii) use of references in the preparation of
scientific text.

1 IEEE Std 830. IEEE recommended practice for software requirements specifications,
June 1998.



Hypothesis: Analysis and design models are not necessary in the software
development process.

Variables Selection: (i) Independent Variables: The independent variable
is the process applied to develop software. Team 1 applied a “traditional”
process; this team used an analysis and design object-oriented method to
model the software; after that, the software was coded based on developed
models. Team 2 applied the practices behind OS process to develop the
software. (ii) Dependent Variables: The dependent variable is the time
and effort required to build the software using OS process and “traditional”
process. Another dependent variable is the relevance of the requirements
specification and software models in the software development processes.

Selection of Subjects: The sampling technique to selection of subjects was
the convenience sampling. The subjects were Computer Science students,
during a SE course. From Background Experience Questionnaire that con-
tained questions related to background experience of the subjects, we identi-
fied their experience level in software development (Table 1). This question-
naire asked about experience with requirements, analysis and design, object-
orientation, UML [8], coding and knowledge of programming language.
It is important to observe that researchers writing papers would be users
of the Sapes; on the other hand, undergraduate students that are not still
used to write papers were developers (subject of the experiment). Therefore,
requirements of this application were unknown or unclear for developers.

Table 1. Experience Level of the Subjects in Experiment I

Experience Level Percentage

Never developed software 16.6

Software development on own. 22.2

Software development as part of a team, as part of a course. 55.6

Software development as part of a team, in industry. 5.6

Experiment Design: This experiment was designed applying general design
principles: randomization and balancing. Subjects were randomly assigned
to two teams; thus two similar teams in regard to experience were used for
conducting the experiment. The experiment used an almost balanced design,
which means that there is a similar number of subjects in each team.
In this experiment, the factor is the software development process, and the
treatments are the “traditional” process and the OS process. Table 2 presents
the quantity of subjects and the treatment applied to each team. As showed
in Table 3, Team 1 was still divided in three groups that had a great func-
tionality of the Sapes to model and to code.

Instrumentation: The materials supplied to subjects were: Task to Do Doc-
ument (that describes the subjects behavior and tasks to do depending on
which team they would participate) and Tasks and Times Form (where sub-
jects would annotate tasks and time to every task). Furthermore, in the



Table 2. Assigning Team to the Treatments in Experiment I

Team Quantity of Subjects Traditional Process OS Process

1 20 X

2 15 X

Table 3. Division of Team 1

Group Quantity of Subjects Functionality

1 6 Preparation and management of references

2 7 General search and reports

3 7 Use of references in the scientific text preparation

beginning of the experiment, we provided the requirements specification of
the Sapes and its E-R model for both teams. We believe that providing E-R
model would not influence in our observations, since we have been interested
in observing the modelling and coding of the Sapes’ functionalities, and not
specifically the database.

Validity Evaluation: (i) Conclusion validity: The experiment was elab-
orated in the way that results prove or do not prove the hypothesis. A
threat to the conclusion validity is the quality of the data collected during
the experiment. There is the risk that the data will be faked or incorrect.
(ii) Construct validity: This experiment was conducted as part of a course
and subjects were the students. Then, a threat regarding to the construct
validity is that students may bias their data. Thus, in the beginning of the
experiment, the students have been informed that results or data registered
would not influence in their grade. (iii) External validity: It is probable
that similar results could be obtained when running the experiment with
other students as subjects. However, the results of this experiment cannot
be directly generalized to the population, since most of the subjects were
not representative of the software industry.

3.3 Operation

Preparation: Since OS developers and developers of the software industry have
frequently good knowledge of the technologies applied to develop software,
all subjects had an intense training in PHP2, MySQL3, and object-oriented
concepts. The subjects would use these open source technologies to model
and to code the software in this experiment. We believe that this training
is very relevant and a way to prepare students to use these technologies in
the future. Moreover, students had a constant support in PHP and MySQL
during the experiment execution.
Members of the Team 1 had a training in an object-oriented software devel-
opment method called Prodes [2]. This method employs the UML notation

2 http://www.php.net
3 http://www.mysql.com



[8] and presents diagrams and guidelines for the phase of the software life cy-
cle. It combines concepts used in some existing object-oriented methods, e.g.,
Fusion [3] and RUP (Rational Unified Process)4. Activities and techniques
of the Prodes are presented in Table 4.

Table 4. Activities and Techniques of the Prodes

Activity Techniques

Requirement Engineering Use Case Diagram
Use Case Specification
Domain Class Diagram

Analysis Scenario
Analysis Class Diagram
Operation Model
Life Cycle Model

Design Collaboration Diagram
Visibility Diagram
Detailed Analysis Class Diagram
Class Description
Class State Diagram

In order to initiate the experiment execution, the Tasks to Do Document was
distributed to subjects of both teams. For Team 1, this document contained
guidelines about tasks to be done like in a traditional commercial organi-
zation producing software and using Prodes. For Team 2, this document
described the behavior of OS developers; moreover, discussions about OSS,
its characteristics and its development process were conducted in classroom.

Execution: Subjects of both teams played their tasks as “real” developers.
During the experiment execution, they reported their tasks and the times
dedicated to each task (in Tasks and Times Form).
All groups of the Team 1 worked simultaneously; each group had a coordi-
nator that attributed tasks and annotated tasks developed and times. Team
2 had a coordinator (an unique person) that had a good knowledge about
the software to be implemented. Then, he centralized the process, answered
electronic mails, motivated the participation of the developers, selected the
best new source codes, and managed information in the Web site. However,
each subject of the Team 2 registered the tasks and times (in Tasks and
Times Form).
Since Internet-based services support widely OSS projects, Team 2 used two
main services used in most of the OSS projects: Web site and electronic
mailing list. Web site was used for centralizing information and versions,
and communicating about last versions. Communications among members
were realized using only electronic mailing list. This list was mainly used
for reporting bugs and suggestions, and communicating about new source

4 http://www-136.ibm.com/developerworks/rational/products/rup/



codes. Although we did not used a control version system in this experiment;
we controlled new versions and availed it through the Web site. Each new
version corresponded to skeleton of a class, a method, a page, and others.
Members of the Team 1 executed several activities to develop the Sapes. To
begin with, they studied the requirements specification. Secondly, they built
software analysis models using techniques of the Prodes. Next, they validated
the analysis models and built software design models using also techniques
of the Prodes. Finally, they validated the design models and coded the soft-
ware. On the other hand, members of the Team 2 studied the requirements
specification and next, they coded the software using practices of the OS
process: cooperative distributed work, communication using mailing list, use
of Web site to centralize the source code and freedom to choose tasks.
Both teams had approximately five weeks to the experiment. Subjects dedi-
cated to this project while they were involved in tasks of other courses.

Data Validation: In the end of the experiment execution, we applied the Feed-
back Questionnaire; questions referred to mainly suggestions, difficulties,
time and relevance of the requirements specification. In this way, this ques-
tionnaire contained seven questions to Team 1 and 14 to Team 2. To avoid
erroneous data, we guaranteed that answers to this questionnaire would not
influence in the grade of the subjects. The Feedback Questionnaire contained
questions whose answers were not multiple choice, i.e. we did not force sub-
jects to choose answers into a set of predefined answers. Thus, they were
free to register their opinion. We also conducted a final interview with all
subjects. During the interview, the material elaborated — software models
and software implementation — was presented and discussed.

3.4 Analysis and Interpretation

Results collected in Feedback Questionnaires pointed out that all students re-
garded this experiment very positive. Team 1 acquired a good experience in
developing software using an object-oriented method; Team 2 experimented a
new and interesting way to develop software.

All groups of the Team 1 pointed out that requirements specification was
very relevant and sufficient to develop the software models. As a result, Team
1 produced a documentation with approximately 70 printed pages containing
analysis and design models. Table 5 presents the required times for each group
of the Team 1 to model and to code the software, as well as the quantity of
prepared documentation. They pointed out that requirements specification and
system models are also relevant for new developers that have not followed the
project from beginning. The members said that discussions during the model
development can minimize errors and help to understand the software require-
ments. Thus, software models of the Sapes have been a faithful representation of
requirements. After finishing the modelling, software coding became a mechani-
cal activity to translate models in source code. Besides this fact, learning Prodes
was the main difficulty of all groups because they had had little experience in



object-oriented methods before. Furthermore, learning the Web technology to
code the software was other difficulty.

Table 5. Time Required to Model and to Code

Group Analysis and Design (hr) Coding (hr) Documents (pages)

1 42 39 46

2 19 16 14

3 16 32 13

Total 77 87 73

Related to Team 2, we observed that many members of this team had a good
participation in the project; on the other hand, some members did not have a so
good participation (Table 6). This fact has showed the self organization of the
developers in real OS projects. Like in real OS projects, developers dedicated to
this project while they were involved in other tasks.

Table 6. Participation Level

Level Percentage

Good (more than 10 hours) 60.0

Medium (5 to 10 hours) 26.7

Low (less than 5 hours) 13.3

Despite the preview discussion about requirements with the subjects, the soft-
ware implemented by Team 2 is not exactly a faithful translation of requirements.
Some original requirements were changed and some new requirements have been
implemented, but in agreement with the original requirements. This fact shows
a very interesting characteristic: the tendency of changes in the requirements.
Nevertheless, most of the members have confirmed that requirements specifica-
tion had a very important role to guide their tasks, because they did not know
the software requirements; 79% of members pointed out that requirements spec-
ification was sufficient to implement the software. Members of Team 2 pointed
out several advantages of process applied, such as the rapid implementation (due
to parallel tasks realized by developers) and the possibility to work anywhere
in their free time. A lot of members emphasized the freedom of choosing tasks
as the most relevant advantage. Regarding to difficulties, although training had
been given to developers, the main difficulty of almost all members was to use
the tools to code the software.

Concluding, the requirements specification is an important mechanism to
communicate the software functionalities in software processes, specially when
the developers do not have good knowledge about the software to be build. Even
in OS process that usually does not use formal specification, when developers
are not end-users and consequently, do not have knowledge of the functionali-
ties, the specification has an important role. How this experiment was part of



a course and it had a date to end, both teams finished this experiment in the
similar time. However, we can observe from Feedback Questionnaire and final
interview that members of the OS process had less work to complete the experi-
ment than members of the “traditional” process, i.e., in general, the effort to do
the same work is lesser in the OS process. So, a detailed software models cannot
be necessary; the exception is when software documentation is required.

4 Experiment II

Results achieved in the first experiment motivated us to continue our study.
Subsequently that, we conducted Experiment II that aims at investigating the
relevance of a requirements specification in OS processes. Next subsections de-
scribe this study and document it according to [12].

4.1 Definition

Object of Study: The objects studied are OS processes.
Purpose: The purpose is to investigate if a requirements specification is relevant

in the OS processes.
Quality Focus: The quality focus is the productivity improvement of OS pro-

cesses using developers that do not have special characteristics of OSS de-
velopers, mainly knowledge of the software requirements.

Perspective: The perspective is from researchers, i.e. they are interested in
knowing if there is a significant difference in an OS process using a require-
ments specification and other OS process without a requirements specifica-
tion.

Context: The experiment was performed at USP/SCE and involved 35 students
divided in two teams. It was realized during the first semester of 2003 and
involved students that had not participated in the experiment before.

4.2 Planning

Context Selection: Both teams performed independently the experiment. Each
team had a document to guide its activities. The experiment occurred out-
side of classroom and subjects annotated all tasks, respective dates and times
consumed in the tasks. The problem (object) used in this experiment, a Web
application to references management, was the same of the Experiment I.

Hypothesis: Developing a software from a requirements specification using
practices of the OS process is easier than using a OS process without a re-
quirements specification, when developers do not have special characteristics
of the OS developers.

Variables Selection: (i) Independent Variables: The independent variable
is the process applied to develop software. This experiment observes the be-
havior of two OS processes: one developing software from a requirements
specification and other, from a brief description of the software. (ii) Depen-
dent Variables: The dependent variable is the difficulty to develop software
using OS process.



Selection of Subjects: It was used convenience sampling as sampling tech-
nique to selection of the subjects, since they were students of a SE course.
From Background Experience Questionnaire, we collected information from
subjects about their experience in software development. Subjects of the
Experiment I (Table 1) and Experiment II (Table 7) had similar experience
level; most subjects did not have a good experience in software development.

Table 7. Experience Level of the Subjects in Experiment II

Experience Level Percentage

Never developed software 13.6

Software development on own. 31.8

Software development as part of a team, as part of a course. 45.5

Software development as part of a team, in industry. 9.1

Experiment Design: Randomization and balancing were used as general de-
sign principles. Subjects were divided in two teams and the assignment to
each team was random. In this experiment, the factor is the software process
and the treatments are the OS process using a requirements specification and
the OS process without the utilization of a requirements specification. The
treatments applied and the quantity of subjects of each team are shown in
Table 8.

Table 8. Assigning Team to the Treatments in Experiment II

Team Quantity
of Subjects

With Requirements
Specification

Without Require-
ments Specification

1 18 X

2 17 X

Instrumentation: The materials supplied to subjects were: a Task to Do Doc-
ument and a Tasks and Times Form. For both teams, we provided a overview
of the Sapes — description of the software in one printed page — and its E-R
model. Furthermore, we provided also the requirements specification of the
Sapes in 10 printed pages only to Team 1. This specification was the same
used in the Experiment I. We instructed Team 1 to not make this specifica-
tion available to members of the other team; Team 2’s members would have
gradually the requirements through the electronic mail.

Validity Evaluation: (i) Conclusion validity: The experiment was also
elaborated in the way that results prove or not prove the hypothesis. Con-
clusion validity has as threat the quality of the data collected, then we asked
subjects to be as precise as possible. (ii) Construct validity: How the
experiment was conducted as part of a SE course, the students were sub-
jects. The main threat to this validity is the students manipulate the data.
(iii) External validity: The results reached in this experiment cannot be
directly generalized to the population, because most of the subjects in this



experiment were students that did not probably have good experience in the
software industry.

4.3 Operation

Preparation: All subjects had a training in PHP, MySQL and CVS (Concur-
rent Version System)5. Like in the Experiment I, these courses were con-
ducted in the weekends for approximately two or three weeks each one. Be-
sides, support in these technologies was provided to the subjects during the
experiment execution. Task to Do Document was distributed to all subjects;
furthermore, a discussion related to OS process and its characteristics was
conducted with all subjects in classroom.

Execution: Each team worked separately, and each subjects executed inde-
pendently their tasks. We asked them that all communication was achieved
through the electronic mail. It was a way to register the progress of the
experiment and the relationship among members.
Both teams used repositories of OS code and applications available on the
Internet: Team 1 used the CodigoLivre6 and Team 2, the SourceForge7.
These repositories provide free hosting to OS software development projects,
and provide free services for OS developers, e.g., electronic mail, mailing lists,
discussion forums, project web server, and version control system. Certainly,
the use of these repositories become the experiment more realist.
Like in a real OS project, each team had a coordinator. In this experiment,
the coordinator had a good knowledge of the Sapes. The role of the coordi-
nator were to manage the project repository, to read and answer electronic
mail, and to manage tasks. The coordinator and one or two developers se-
lected the best source codes implemented by developers to add in the stable
source code. The main tasks of the developers were to read and to understand
the requirements specification, to write code, to read code of other subjects,
and to test the software. Beyond these tasks, they studied the technologies
used in the coding (PHP and MySQL) and the tools to management of the
project (CVS and repository).
During the experiment execution, we observed the behavior of both teams.
We reviewed implemented source codes and participated in mailing list.

Data Validation: We applied the Feedback Questionnaire to all subjects. Both
teams answered 14 questions related to mainly difficulties, advantages, and
suggestions about the process used, dedication in the project, and relevance
of the requirements specification. This questionnaire did not have multiple
choice questions, so as the questionnaire in Experiment I.
It is important to observe that during the experimentation execution, we
also annotated the behavior and opinion of the subjects through interviews.

5 http://www.cvshome.org
6 http://codigolivre.org.br
7 http://sourceforge.net



4.4 Analysis and Interpretation

Most of subjects in both teams pointed out this experiment as a good expe-
rience in software development. The differences between the processes experi-
mented and other “traditional” processes in SE courses showed them that there
is alternative ways to develop software.

From Feedback Questionnaire applied to subjects of the Team 1 and Team
2, we identified the main difficulties, advantages and suggestions about the pro-
cesses. In this way, the main difficulties pointed out by subjects were:

– Even though training in the technologies to code the software — PHP and
MySQL — had been provided to subjects, they pointed out the use of these
technologies as a difficulty. So much time was required to learn and use
them in practice. Certainly, if the subjects had good knowledge in these
technologies, they had not taken time in this activity and concentrated in
the activities directly related on software development; and

– The use of services provided in OS projects repositories, mainly the version
control system, was another difficulty, although a training in this system had
been also provided before experiment execution.

Subjects of both teams identified advantages in the processes:

– The decentralized process did not make pressure over the developers. They
could work anywhere and anytime. Besides they had freedom to choose the
tasks they want to do.

– Although face-to-face discussions could be more effective than using mailing
list, the last one was an important way of communication among developers.
They read constantly electronic mail, so as many “real” developers used to
do; then, they could follow the project course, send and answer questions,
discuss about source code and understand the requirements and the team
organization;

– The use of a version control system had an important role to concentrate
the source code, since often there were more than one subject developing
the same Sapes’ functionality at the same time. Besides, this version control
system was provided by repository of OS software over the Web. Thus, it was
possible to access the source code from any computer connected to Internet;
and

– Exchange of experience was other advantage of the processes applied, con-
firming that learning is one of the motivational forces for developers as pro-
posed by [13]. Reading source code developed by others, subjects could learn
about how to use the technologies to code the software beyond tutorials and
manuals. Another point very interesting in OS processes is that each devel-
oper shared spontaneously his knowledge.

Both teams noticed some suggestions about the process applied:

– Although we provided the E-R model, subjects of both teams suggested
availing some high level model of the software; for example, using use case



diagram (identify the software interface) or class diagram (identify class
and relationship). These models present a software overview and it can help
the modularization and the developers organization. These models can also
contribute to minimize the time of software development, since discussion
about modularization can be minimized or avoided;

– The OS process works only if the developers are interested and motivated. So,
when developers do not understand the requirements or when the objective of
the software is not clear, it is difficulty for developers to have motivation and
enthusiasm. Mechanisms, such as requirements documents, software models,
interaction through the electronic mail, and dynamism in the mailing list,
can be adopted to motivate the developers; and

– The coordinator, one person or a group of person, is extremely important to
the OS processes work adequately. Her main tasks are to keep the dynamism
in mailing lists, to bring up to date the information in Web site, to collect and
to select the best codes to be inserted in the stable version. Moreover, he also
must participate as developer in the project. Even having the requirements
specification, the coordinator is still essential to developers organization.

So as Team 2 in Experiment I, the organization of the subjects in both
teams was very similar to real OS projects. There were subjects that had good
participation and others with low dedication (Table 9). We can observe that the
participation levels in both teams are very similar.

Table 9. Participation Level of Team 1 and Team 2

Level Team 1 (%) Team 2 (%)

Good (more than 10 hours) 55.6 58.8

Medium (5 to 10 hours) 27.7 29.4

Low (less than 5 hours) 16.7 11.8

Subjects of the Team 2 pointed out that a brief description of the software
to be developed is not sufficient to understand the software requirements, even
discussing requirements in mailing list.We can observe that, even having a de-
tailed document describing the software requirements, it was necessary for Team
1 to discuss the understanding of the requirements with other subjects through
mailing list during the experiment execution. So, only the use of a requirements
specification to communicate the requirements in OS process is not sufficient.
Concluding, it is possible to develop a software using OS process without a
requirements specification, but we recommend the development of a detailed
requirements specification and discussions about the requirements through the
mailing list, when developers are not end-users of the software to be developed.



5 Lessons Learned

To obtain valid results using experimentation, the experiment should be repeated
several times to achieve statistical significance. From our first study (Experi-
ments I and II), we reported learned lessons that can contribute to the conduc-
tion of experiments involving software processes, and the use of OS processes
with “random” developers:

– We can stand out that simulation of software processes is not a trivial ac-
tivity, mainly simulation of OS processes. Thus, a good way to investigate
the practices related to software processes is to formalize the study using
experimentation process;

– It is possible to use OS process with “random” developers to build software;
however, some observations must be considered: (i) A requirements speci-
fication is relevant mechanism to provide a software overview. We believe
that this specification is also important for new developers that want to col-
laborate with the project; (ii) According to developers of these experiments,
documents in text format — a requirements specification, in this case — are
more difficult than graphical representations to interpret. Thus, it is inter-
esting to establish another way to communicate the requirements in addition
to text documents. Analysis and design models can be inserted to a better
communication of the requirements in OS processes. Known techniques can
be used for building these models, like that proposed by UML; and (iii) The
domain of the technologies used for coding and managing the project is ex-
tremely important to OS processes work effectively. In view of this, if OS
process will be applied with “random” developers, it is necessary a intense
training in these technologies; and

– To OS process works effectively, in real OS process or in OS process with
“random” developers, the coordinator has a very important role. He must
conduct his activities aiming to centralize the process, to create capability
of cooperative distributed work, and the more important, to motivate the
developers.

6 Conclusions

For SE students, introduction of the OS process in their curriculum was a valu-
able experience. This experience helped students to understand better agile pro-
cesses, since OS process presents many similarities with that, mainly regarding
to people coordination and tasks distribution. Several characteristics and ad-
vantages of OS processes discussed by OS researchers were confirmed with these
pilot studies.

The investigation of software processes is not a trivial activity. So, we be-
lieve that studies like this can contribute as the first steps to understand and to
formalize software process, specially OS process. Our experiments showed also
that the requirements elicitation — an important activity of the Requirement



Engineering to understand the problem to be automated — and consequently,
the requirements specification is a important vehicle to communicate the soft-
ware functionalities. So even in this recent software process (OS process, in this
case), the problem related to requirements elicitation persists and continues to
be extremely relevant.

For future works, these experiments must be performed several times to prove
the results achieved in these initial experiments. Furthermore, conducting these
experiments in industrial environment is certainly a good way to become the
experiment more realist. Moreover, we aim at collecting more precise and objec-
tive measures from feedback questionnaires using a multiple choice questionnaire,
and consequently, becoming easier the data collection and the calculus of results
with statistical significance.

Acknowledgments: Our thanks go to all students of SCE-186 and SCE-531 that
collected data during these experiments and to Thiago Bianchi that participated as
coordinator in Experiment II. Sincere thanks go to Prof. Dr. José Carlos Maldonado
for valuable suggestions.

References

1. K. Beck. Extreme Programming Explained. Addison-Wesley Publishing Company,
2000.

2. T. E. Colanzi. A UML-based integrated approach of software development and
testing. Master’s thesis, ICMC/USP, São Carlos, SP, Brazil, June 1999.

3. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilcheist, F. Hayes, and P. Jeremes.
Object-Oriented Development: The Fusion Method. Prentice-Hall, 1994.

4. A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software Engi-
neering and Methodology, 11(3), July 2002.

5. J.W. Paulson, G. Succi, and A. Eberlein. An empirical study of open-source
and closed-source software products. IEEE Transactions on Software Engineer-
ing, 30(4):246–256, April 2004.

6. E. S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates, February
2001.

7. L. Rising and N. S. Janoff. The scrum software development process for small
teams. IEEE Software, 17(4):26–32, July/August 2000.

8. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley Publishing Company, Massachusetts, 1999.

9. W. Scacchi. Understanding the requirements for developing open source software
systems. In IEE Proceedings – Software Engineering, volume 149, February 2002.

10. D. Spinellis and C. Szyperski. How is open source affecting software development?
IEEE Software, 21(1):28–33, January 2004.

11. W. F. Tichy. Should computer scientists experiment more? IEEE Computer,
31(5):32–40, May 1998.

12. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering. Kluwer Academic Publishers, 2000.

13. Y. Ye and K. Kishida. Toward an understanding of the motivation of open source
software developers. In Proc. of the 25th International Conference on Software
Engineering, Portland, Oregon, May 2003.


