
A New Design Procedure for a Real-Time Hybrid
System Model

Manuel I. Capel, Juan A. Holgado

 Departamento de Lenguajes y Sistemas Informáticos.
ETSII Ingeniería Informática. Universidad de Granada,

18071 Granada, Spain
{mcapel, jholgado}@ugr.es

http://lsi.ugr.es/~sc

Abstract. A correct system design is systematically obtained from the SA/RT
requirements specification model of a real-time system. The aim of the system-
atic procedure is to obtain a complete model in the Matlab/Simulink/Stateflow
framework for solving a realistic industrial problem, namely, to control an AC
motor that must be able to maintain a constant air flow through a filter. The ar-
ticle also discusses a practical application for implementing a closed loop con-
trol system to show how the proposed procedure can be applied to derive a
complete system design.

Keywords: Hybrid systems, formal analysis tools, modular design, process al-
gebras, CSP+T, real-time systems , embedded control systems.

1 Introduction

Structured Analysis methods applied to the specification of Real-Time systems
(SA/RT) are intended to integrate the requirements specification, based on Tom De
Marco [1] SA/SD methods, with finite state machine theory, needed to tackle the
complex control structures that real-time embedded systems present. These methods
consist of a set of techniques and modelling tools that are useful to clarify the user
requirements of a system and to produce a requirements specification model (RSM)
that views the system from two aspects: (1) the functional view; (2) the control reac-
tive behaviour, i.e., how the system state changes over time in response to external
stimuli and internal signals.

Different real-time system types require different designs of formal description
languages, programming languages and software tools. In the case of continuous
dynamic systems, we can distinguish [2] three major classes of software tools:

(1) Block-based, being based on a library of primitive blocks with discrete, con-
tinuous or hybrid behaviour, are usually easy to use for building small and medium-
size models of target systems, but, for complex ones, yield systems models difficult to
understand and modify. The most often-used among these tools are: Simu-
link/Stateflow, Easy5, and VisSim, the latter used in iLogix Statemate Magnum.

(2) Physical oriented tools which use a system of differential equations to describe
the continuous behaviour of a system; discrete components are difficult to model and

to change at run time simulations. These tools are mainly academic projects, such as
20-Sim from Controllab Products, Dynasim Dimola and Modelica, Smile from Berlin
Technical University.

(3) Hybrid state machines in which the continuous behaviour is described by a sys-
tem of differential equations associated with the discrete state of a state-transition
machine; there are very few tools that support hybrid state machines at the moment,
but this line is gaining momentum now. Some examples of this type of tools are Path
from Berkeley University, and Model Vision from Object technologies.

There are other models and software tools based on Petri nets [3] aimed to repre-
sent and to verify embedded systems, but not continuous components.

Hybrid real-time
system

specification
model
(target)

SA/RT user’s
requeriments
specification

model

Simulink library
of continuous

blocksHigh order
differential
equations

CSP+T
processes

model

Stateflow
charts

Simulation

system

executive

Fig. 1. Software architecture of the proposed model of a real-time system.

Our method is intended to help with the specification of complex hybrid systems by
starting bottom-up from an SA/RT specification model and allows integrating blocks
describing continuous behaviour within a common methodological infrastructure,
since it allows the integration of Simulink/Stateflow blocks at the lower level of a
target RSM without affecting the behaviour of the other components. The proposed
procedure is intended as a new derivation method for obtaining the complete design
of real-time systems in Simulink/Stateflow by giving an operational semantics in
terms of CSP+T process algebra to the semi-formal SA/RT analysis entities, Fig.1.
CSP+T formal notation is capable of unambiguously describing the different model-
ling entities of SA/RT notation, which can afterwards be converted into a hierarchy of
Stateflow diagrams, according to our method, since a semantic equivalence between
CSP+T process terms and a subset of Stateflow can be shown. The transformation of
SA entities into process terms is carried out by a system of rules, introduced in a pre-
vious work [4].

The validation of the final system model is carried out by simulation, since Simu-
link blocks are very accurate and can be tested in a realistic environment by
downloading the target software in an embedded controller, with which the environ-
ment can directly communicate through different A/D, D/A interfaces. The latter
application of the method opens up the possibility of deploying it to carry out auto-
matic code generation for different target platforms.

The remainder of the paper is structured as follows. We first give some back-
ground on SA/RT modelling methods and CSP+T process algebra. The top-down
derivation procedure proposed in this paper is discussed in detail in the next section,
specifying the steps to be performed. Then, the method proposed is applied to solve
an industrial problem of a real-time feedback closed loop used to maintain a constant

rotor speed of an induction motor driven by a TriaC device such that a constant air
flow through a filter in HVAC systems is achieved. The case study shows how the
proposed method can be applied to derive a hybrid system that also contains discrete
components. The next section describes how the system can be validated by simula-
tion, adds some components to the model, and discusses results obtained until now.
Finally, the conclusions and the ongoing lines of work are presented.

2 Modeling Methods

This section describes the modelling methods used in the proposed method to design
a real-time hybrid system with continuous and discrete components.

2.1 Requirements Specification Model (RSM)

An RSM can be obtained by applying a set of SA/RT methods using an informal
graphical notation also provided by SA/RT. This model consists of a hierarchy of
transformation schemes rooted on the System Context Diagram (SCD). Each scheme
“explodes” into a State Transition Diagram (STD) or into a Data Flow Diagram
(DFD). The scheme denoted as SCD defines the border between the system, and the
environment, comprising the external entities (or terminators) to the system.

A transformation scheme in SA/RT notation is represented by an SCD or by a
DFD. DFDs are composed of several copies of the above analysis entities and must
include at least one DTP. DTPs are schemes of the lower level in a DFD, i.e. those
that do not “explode” into other schemes, which change the input flows into output
flows with no relation between the number of inputs and outputs. The same output
can be sent to several analysis entities. A DTP must have at least one output flow.
The bubbles that represent DFDs may explode into new, more detailed. DFDs. CTPs
are schemes of the lower level that serve to transform input into output event flows.
They cannot accept or generate any type of data flow, since a fundamental strategy of
SA/RT is to separate the control and the data process descriptions within the system.
A CTP is formally specified by means of a state transition diagram (STD), which
should be a deterministic Moore or Mealy automaton. Each transition comprises a
condition (represented by an input control flow in the DFD) and an action that in-
cludes the activities to be carried out before the system reaches a new state. Data
stores (DS) loosely represent data of a certain type that cannot be considered struc-
tured. Control Stores (CS) can only store events of the same type, which are queued
in FIFO order. Unlike the DS semantics, reading an event of a CS is a destructive
operation.

2.2 Flaws of SA/RT as a Specification Notation for Real-Time Systems

Some ambiguities appear in current SA/RT notations [5, 6], causing imprecision in the
specification, and therefore non-predictability, when they are used in real-time sys-
tems at a later development stage [7]. Consequently, many proposals have been made
to overcome the problem of SA imprecision by complementing a system specification
with formal methods in the past years. The use of extensions of algebraic process

description languages [8], such as CSP [9], CSP+T [10], or the standard specification
language LOTOS, can give a precise and flexible interpretation to SA entities. In this
respect, it has been shown [4] that CSP+T process algebra formalizes the semantics
of an SA/RT specification model and also allows for the specification of timing con-
straints between the occurrences of actions during any execution of the system by
using a defined set of rules.

2.3 Real-Time System Specification with CSP+T

The group of CSP derivatives to describe time intervals includes Timed CSP [9] and
CSP+T [10], the latter being a simpler approach. Providing less descriptive power,
although still powerful enough to formally describe a set of primitive processes with
time constrained behaviour, CSP+T is an adequate formal specification language for
the majority of real-time systems. The syntax of CSP+T adapted to our method,
which is detailed in [11], is as follows:
− Every process P defines its own set of communication symbols, named communica-

tion alphabet α(P). These communications represent the events that the process P
receives or internally occurs, such as the event τ that is not visible in the environ-
ment of the system.

− The communication interface comm_act(P) of a given process P contains all the
CSP-like communications ({?, !}) in which P can engage and the alphabet α(P).

− An operator, (star) denotes process instantiation. Given P', the timed version of
P, which is instantiated at time 1, the specification of P' becomes

P'= 1. →s.a→STOP, where s∈[1,∞)

This event is unique in the system since it represents the origin of time at which the
processes can start their execution.
− An event operator >< to be used jointly with a variable to record the time instant at

which the event occurs ev>< v means that the time at which ev is observed is in v.

P= 1. →a>< var→STOP

For each execution of P, the time at which a occurred will always satisfy var ≥ 1.
− Each event is associated with a time interval, called the event-enabling interval.

P= 0. →[1,2] a >< v→ STOP

The value of the marker variable v will satisfy the inequality 1≤ v ≤ 2. Only during
this continuous time interval is the event available to the process and its environment.
A process is considered to be the STOP process if it cannot engage in any communi-
cation or synchronize in any event within the interval that precedes the event.
− If the preceding event occurs at time t0, then rel(x, v)= [x+v-t0, v-t0], since the

times for events are absolute and for intervals are relative to the preceding event.

P = ... E.P’ . E = {s | s = rel(x, v)}

2.4 Generation of a System Specification from the RSM

In order to obtain a model of the system, it is necessary to represent every analysis
entity of the RSM by a class of CSP+T processes. Following this approach, we write
a CSP+T process prototype for every DTP, CTP, DS, CS, etc. A series of transforma-
tion rules [4] allow us to create a process term of the algebra for every transformation
scheme that appears in any diagram of the RSM.

Thanks to the compositional nature and the capability of Stateflow charts to repre-
sent the reactive behaviour of processes, a semantic equivalence between valid
CSP+T process terms and a subset of the modelling elements of Stateflow diagrams
can be established, and we make use of this equivalence to model reactive processes
at the lowest level of a system specification. The system specification model is com-
plemented with Simulink blocks that are the basic bricks needed to represent primi-
tive functions, as well as continuous components in many hybrid real-time systems
simulations.

To carry out a simulation in the Simulink/Stateflow framework, additional blocks
must be added to the final model. These blocks represent the external entities of RSM
and must be modelled according to the specific physical devices (actuator or sensor)
that supply signals (data or events) to/from the system.

The interactions that a DTP or a CTP can provoke within their environments by
discrete flows are modelled as occurrences of events by means of CSP synchronous
communications. However, continuous flows need to be modelled by an extra inter-
mediate process, SYNC, that provides a non-blocking continuous reading/writing
from/to a continuous flow as follows,

SYNC= flow ? x→ S; S=flow ? x → S | flow ! x → S;
In general, to derive a Simulink/Stateflow model from an RSM one, we will adopt

a bottom-up process that consists of the following steps:
1) Prepare the analysis schemes for carrying out the transformation. Some flows in

the RSM may need to be renamed to prevent unwanted synchronizations in the
CSP+T semantic equivalent model.

2) Transform the process terms representing control transformation (CTP) and data
transformation (DTP) schemes that present reactive behaviour of the lower level
into Stateflow diagrams.

3) Add Simulink blocks to represent external devices or continuous components.

4) Select the other modelling entities, such as DS, CS, DTP, CTP schemes, or Con-
tinuous Data Flows, that appear in the scheme, in ascending order; and build a
CSP+T process for each entity in the scheme.

5) Once the CSP+T model has been obtained for all the entities in an SA/RT scheme,
one CSP+T process will be defined to model the complete scheme. If this scheme is
already included in a CTP or a DTP of a higher level, repeat from step (4), thus pro-
gressively integrating the CSP+T model of the system in ascending order.

The iterative process finishes when a unique process with the communication in-
terface of the system context diagram of the initial RSM is obtained.

3 Regulation of Rotor Speed with an Induction Motor

An informal description of the user requirements specification of a closed loop con-
trol system is presented for controlling an AC (or induction) motor, Fig.2(a). The
open loop control of the engine is obtained by feeding it with a controlled voltage of
220 volts and 50 Hz. This control is carried out by cutting the sinus wave, which
represents the input voltage, using an electronic device named TriaC, which operates
as a very fast switch. The control line of the TriaC is driven by a synchronization
signal (synch), which informs when the input voltage passes through a zero value,
and at this moment the TriaC automatically stops conducting electricity. If after
switching the TriaC off, it is excited a number of milliseconds later, it will be driven
to saturation by the signal texct and will start to conduct until the input voltage again
passes through a zero value. The closed loop of control is obtained in this case by
calculating the precise time at which the TriaC must be excited, so the excitation time
must be calculated in real-time and in every cycle of the input voltage.

220 v
50 Hz

Triac
Excitation

AC output
time controlable

220 v
50 Hz

Triac
Excitation

AC output
time controlable

System

Sync

Generator

TriacTriac
Flow

sensor
Flow

sensor

air flow
ºC

sensor
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

Fig. 2. (a) Operation of TriaC device controlling an AC motor. (b) System Context Diagram

The system should address its own safety if the synchronization signal fails or if
TriaC overheats. If synch is missed after passing a complete cycle of the input volt-
age, then syncf is raised. Another possible failure could occur if the TriaC over-
heated; in this case, the electronic device might short-circuit and cause the engine to
start working at the maximum number of revolutions, which would lead to the loss of
the engine in approximately 1 second.

The combination of an induction motor with the TriaC device can be used to con-
trol or maintain a constant velocity, such as in the centrifuge of a washing machine,
the air flow through a filter, the movement of a vehicle, etc. We apply the method to
obtain a system to maintain the air flow velocity constant through a filter.

3.1 Top-Down Derivation of the System Model

The System Context Diagram (SCD), Fig. 2(b), includes 5 control flows: the syn-
chronization signal (synch), which informs us when the input voltage passes through
a value zero; the TriaC overheating warning; two signals, the first one warning of the

missing of synch and the second one of TriaC overheating; and the excitation (texct)
signal to make the TriaC return to allow current to pass again. It also includes 2 data
flows: the first one gives the present air flow through the filter (flow) and the second
one, the air reference value (ref).

The automatic system modeled interacts with external devices that supply data
flows to the system –sensors-, or interacts with external devices sending control
events –actuators-. The AC motor is not directly interacted by the system, but through
the TriaC device, and consequently it is not considered an external entity. The system
computes a timeval value; once this time is elapsed, the system activates the excita-
tion signal texct that immediately changes the current value of the induction motor
speed. A new value of the speed can be read again by the system through sensors as
tachometers; in the present example, the system obtains the updated speed value from
one air velocity flow sensor.

The SCD “explodes” into two main DTP processes on 1st level DFD: Proportional-
Integral-Derivative control (PID) and open loop control (OLC), Fig.3(a). The OLC
process triggers signals to actuators, i.e., texct from an input timeval value, oheat
from a positive overheat value. The air flow reference value (ref), together with the
present air flow value (flow), serves as input data to a Proportional Integral Deriva-
tive (PID) control algorithm to determine the correct time (timeval) at which the
TriaC must be excited within the present voltage cycle.

Overheat
watchdog

texct

timeval

disable

overheat

oheatf

generation
2.1

2.2

syncf

sync

Excitation

Fig. 3. (a) The closed loop control model. (b) The open loop control model

3.2 The Open Loop Control Subsystem

The Open Loop Control process “explodes” into two new processes, a data transfor-
mation process, named excitation generation (EG), which generates the control flow
textc needed to excite the TriaC at a given time, Fig. 3(b). The EG process actually
carries out control, not data processing, but it must be represented in the flow diagram
by a DTP, since, according to the SA/RT rules, it cannot be considered a pure control
transforming process because it receives a continuous data flow (timeval) from the
PID process. The continuous flow timeval must be modelled by a SYNC process. The
overheat watchdog (OWD) monitors the temperature of the TriaC and disables the
TriaC excitation signal if the temperature becomes too high.

texct

x:= timeval

sync 11 ms.
syncf

x ms.

Waiting_sync

Waiting_texct_time

Resume

x:= timeval

sync 11 ms.
syncf

x ms.

Waiting_sync

Waiting_texct_time

Resume

Q1

Q2

Q3

Q
1
= timeval ? x → Q

2

Q
2
= [t, t+11].sync><t → Q

3

 ⎢]t+11, ∝].syncf → Q
1

Q
3
=]t+x-0.1, t+x+0.1].texct → Q

1

DIS= disable → STOP

EG= (init><t → Q
1
)⏐⏐DIS

Fig. 4. State-Transition Diagram representing the OLC and the equivalent CSP+T process.

The OWD and EG processes are both primitive transformation schemes, which must
be specified by a state transition diagram (STD) that can then be converted into a
unique Stateflow chart. The EG control process cyclically repeats the states shown in
Fig.4. When in the state represented by Q2, if the EG process does not receive the
synchronization signal within 11 ms, a failure condition must be signalled by raising
the exception syncf. This period of time amounts to one half cycle of a 50 Hz input
voltage function –i.e.,10 ms + 1 ms of error margin-. In the control state represented
by Q3, EG waits for x milliseconds before sending the next excitation signal to the
TriaC; the maximum allowed error in the waiting interval before sending the signal is
0.1 milliseconds. In the case of the OWD process, a STD is defined with only one
state to monitor the temperature of the TriaC. If the overheat event occurs, the ex-
ception oheatf is raised and the excitation signal must be disabled, which is denoted
by the event disable.

3.3 Closed Loop Control Subsystem

By means of closed loop control (CLC) it is possible to maintain a constant angular
speed of the rotor, which can be used to control the centrifuge velocity of a washing
machine, the air flow through a filter, the speed of a vehicle, etc. As shown in Fig.
3(a), two processes are included in the CLC: Proportional-Integral-Derivative control
(PID) and open loop control (OLC). The AC motor is regulated by the PID control
through the speed error signal between the set speed (set-point) and the actual meas-
ured speed. Depending on the speed error signal value, the PID controller adjusts the
timeval value to determine the next excitation time of the TriaC. The adjustment of
timeval is achieved by increasing or decreasing its value, depending on whether the
current rotor speed is over or under the reference speed, respectively. Exactly when
timeval elapses the OLC process enables the signal texct that causes the changing in
the motor speed. A static analysis of the system reveals that the shorter the timeval,
the higher the speed that is achieved by the rotor with a non-linear relationship. If the

timeval is outside the interval [0,1/freq*2], its value is saturated by the maximum or
minimum value.

Fig. 5. Block diagram of a PID controlled constant air flow system

The timeval value must be specified as being a continuous data flow, rather than a
discrete flow, in order to allow the two processes to act asynchronously. Two com-
munications and one synchronization process –SYNC- are needed in order to imple-
ment an asynchronous communication in CSP.

Fig. 6. Simulink model of the final system

4 Simulation of The Hybrid System

To obtain a simulation of the hybrid system proposed in this paper, more components
must be added to the model. As shown in Fig. 5, we need to construct a model of the
TriaC device, the AC motor, the flow sensor (or another sensor to measure the rotor
speed), the temperature sensor and the sync generator. This model can be imple-
mented in the Simulink/Stateflow framework as shown in Fig. 6. The most difficult
component to model is the AC motor.

4.1 Physical Modelling of an Induction Motor

The functioning of an induction motor is based on the principle of mutual induction
between electrical circuits traversed by a variable magnetic flux Φ. According to

PID
C t l

Open Loop
Control

AC Motor
texcttimeval e ref

ωr

Plant

TriaC

timeval textct

Sync loss failure

Overheat failure

Triac handler

Rotor angular
speed (wr)

Input voltages

Va0

Vb0 wr

Vc0

AC motor

0

Synchronization signal
failure0

TriaC overheated
failure

input

texct sync

output

Triac device

0.32

factor selection
(scale to 1.00)

400
Max rotor

angular speed

error timeval

PID Computation

Digital clock

12:34

sync

overheat
digital clock

0

1

Overheat

Normal

+
-

Input voltage

T/3 inbalance

T×(2/3) inbalance

PID Control

Temperature
Sensor

User

System

OLC

Motor AC

TriaC

Faraday’s law, which is given by the following equation,)(BNdtd Φ⋅−=ε , the magnetic
flux traversing a motor winding only depends on the current conducted by the circuit.
A self-induction constant L can be assigned to any circuit affected by magnetic induc-
tion, according to the equation

reelB iLN ⋅=Φ⋅ .

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+++= ds

ls

ml
dr

lr

ml

ls

s
qs

b

e
dsb

ds FFRFv
dt

dF 1
**

χ
χ

χ
χ

χω
ωω

Vds

+ - +-
ωe⋅Φqs

Rs
Ids Idr

Rr

Lls= Ls-Lm Llr= Lr-Lm

(ωe-ωr)⋅Φqr Lm

Φds= Fds/ωb Φdr= Fqr/ωb Vdr

Fig. 7. Dynamic equivalent circuit of the stator linkage Fds

Table I. Constants and variables of the physical variables of an induction motor

d: direct axis of the rotating reference
system

χ*
lm= 1/(1/χls+1/χlr+1/χm): total reactance with

the loses for magnetizing (χm)
q: quadrature axis iqs, ids: currents of the q and d stator axis
s: subindex for the stator variable iqr, idr: currents of the q and d rotor axis
r: subindex for the rotor variable p: number of poles of the motor
Fij=Φij, where i=q or d and j=s or r,
magnetic linkage

J: inertia momentum

vqs, vds: stator voltage Me: motor electrical torque (output variable)
vqr, vdr: rotor voltage Ml: load torque (input variable)
Rr, Rs: rotor and stator resistors ωe: stator synchronous speed (input variable)
χls: stator reactance (ωeLls) ωb=2⋅π⋅fb: angular speed corresponding to the

electric frequency of the motor voltage.
χlr: rotor reactance (ωeLlr) ωr: rotor angular speed (output variable)
d: direct axis of the rotating reference
system

χ*
lm= 1/(1/χls+1/χlr+1/χm): total reactance with

the loses for magnetizing (χm)

Nowadays, the winding of induction motors is carried out by three windings, each

one bearing a voltage phase separated by 2π/3 rad. from the next one, which yields a
rotating magnetic field in the stator. The velocity of rotation is called the synchronous
speed we. Only if there is a small difference between the two rotation velocities we
and wr will an electrical torque be produced by the motor. This difference, named
slip, is also given as a parameter of induction motors.

We can assume a reference system that rotates at the synchronous speed ωe to ease
the representation of the rotating magnetic field

→

B and inductance linkages by a
system of coupled differential equations that describe the physical induction and
motor dynamics. This rotating reference system is known in the literature [12] as dq

reference system. The induction motor is therefore modeled by two reels, the first
one, situated on the d-axis –direct-, is aimed at conducting the current in the stator
and it also generates the rotating magnetic field. The second one, on the q-axis –
quadrature-, generates the induced magnetic field in the rotor. The differential equa-
tions that represent the magnetic linkage Fij (=Φij⋅ωe) between the stator and the rotor
windings can be derived by applying fundamental electromagnetic laws to the equiva-
lent electrical circuits. For instance, according to the physical model of the induction
motor, the variation of the d-component of the stator magnetic linkage, Fds, can be
expressed in terms of the other linkage components that have an effect on it, as shown
in Fig.7. The other components, 1 of these for the stator (Fqs) and another 2 for the
rotor (Fdr, Fqr) expressed according to the dq reference system, are similarly obtained.
Thus, there are five differential equations: 4 of them describing the change of the
magnetic linkages and the fifth connecting the synchronous acceleration of the rotor
with the electrical torque Tl generated by the motor.

Resync

Fig. 8. Transformation of the OLC specification into a Stateflow Diagram

This model allows us to describe the magnetic coupling between the stator and ro-
tor windings of an induction motor very accurately. The constants and system vari-
ables of the differential equations describing the induction motor are given in table I

4.2 Stateflow Model of the TriaC Controller

The imprecision regarding time specification in the RSM of any process has been
overcome by deploying CSP+T process terms as a meta-notation to assign time con-
straints to the state-transition diagrams (STD) of compulsory use in SA/RT. The trans-
formation of STDs to process terms is carried out by a system of rules. Then, the
information required to specify the dynamic behaviour of a system of processes rep-
resenting, for instance, the handler of a TriaC device, as in the example being dis-

cussed here, is systematically adapted to a functioning Stateflow diagram, as shown in
Fig.8. This diagram fully describes the logic needed to implement the intended con-
troller. The execution of the Stateflow diagram simulates the behaviour of the CSP+T
process specification in Fig.4.

4.3 Matlab /Simulink Model of an Induction Motor Drive

The model of the induction motor http://lsi.ugr.es/~sc/investiga/motor,

similarly to the one in [12], is structured in 3 main blocks: (1) transforms the three
stator voltages: va, vb, vc , with a phase of 2π/3 between each two, into the rotating
reference system dq (direct-quadrature-axes): vqs, vds; (2) the block representing the
induction motor itself (which inputs the three phase voltages, the synchronous angu-
lar speed ωe and the load torque Tl), yields the three phase stator currents, the electri-
cal torque Te and the rotor velocity ωr; (3) this block returns the expression of the
model variables in the dq reference system to the abc (three-phases) reference sys-
tem, since the latter gives us the standard graphical representation of currents in the
stator. Two specific blocks have been designed to calculate the electrical torque Me

given by the motor and another to calculate the rotor axis angular speed ωr. All the
physical model constants given in table 1 have been defined using IS physical units in
an m-file.

Fig. 9. Response of the rotor to changes in the stator speed

4.4 Results Obtained

The results obtained with the two models (OLP and CLP) were quite different. In the
first case, it was only considered an open control loop model; thus, only after a fixed
interval of time was the TriaC excited in every cycle. In this case the disturbances in
the system response (ωr) are remarkable, as shown in Fig.9. The rotor speed follows
the changes produced in the synchronous angular speed in the stator (ωe), but any
change in the value of ωe provokes rapid oscillations around the new value for the
rotor velocity.

By carrying out a simulation with the rotor velocity controlled by a PID, better re-
sults are obtained. Moreover, if we make a plot of the rotor angular speed output by
the induction motor with respect to the reference speed, which is given by the input

variable ωe, we only obtain important oscillations at the beginning, while the system
is trying to reach a stabilisation point. The oscillations shown in Fig. 10 only repre-
sent about 2% of the target value for the velocity ωe, (320 rad/sec); these oscillations
are caused by dynamic conditions during motor functioning, such as rotor axis fric-
tion.

Fig. 10. Closed loop control model response to changes in the rotor speed

5 Conclusions

We have presented a derivation procedure to obtain a correct system specification
from a semi-formal SA/RT system requirements specification of a given real-time
system. The imprecisions and ambiguities intrinsic to SA/RT notations have been
overcome in our method by using a formal description language based on CSP+T
process algebra. Simulink/Stateflow and its library of blocks, which are of use for
modelling continuous and discrete dynamic systems, have been used to integrate
continuous components in a hybrid real/time system design. An application case is
discussed in the article: the induction motor drive, and controlling an AC motor to
maintain a constant air flow through a filter. The method is characterised by its easy
integration within ASE environments and/or by formal tools based on SA notation.
We are currently working on the development of a formal software tool based on
JCSP [13] and Java, capable of automated specification, verification and code genera-
tion of real-time and embedded system software for several computing platforms.

Acknowledgments

The authors thank Professor Jose R. Balsas (Computing Engineering Department,
University of Jaén) for his help with a first draft of this work.

References

1. DeMarco, T: System Analysis and Specification, Yourdon Press, 1971.
2. Borschev, A., Koleshov, Y., Senichenkov, Y.: Java Engine for UML based hybrid

state machines. Proceedings of the 2000 Winter Simulation Conference, pp.1888-
1894.

3. Cortés, L.A., Eles, P., Peng, Z.: Verification of Embedded Systems using a ri Net
based Representation. 13th Int. Symp. System Synthesis(ISSS), 2000, pp.149-155

4. Capel, M.I., Holgado, J.A., Balsas, J.R.: A Transformational Approach to the
Systematic Design of Real-time Systems. Manufacturing Engineering, vol 3, no. 2,
pp. 5-13, 2004.

5. Ward, P.T., Mellor, S.: Structured Development of Real-Time Systems. Prentice-
Hall, Englewood Cliffs (N.J.), 1985.

6. Hatley, D.J., Pirbhai, I.A.: Strategies for Real-Time Systems Specification, Dorset
House, New York, 1988.

7. Baresi, L., Pezzè, M.:Towards Formalising Structural Analysis. ACM Transac-
tions on Software Engineering and Methodology, 7, 1998, 1, pp.80-107.

8. Fencott, P.C., et al.: Formalising the Semantics of Ward-Mellor SA/RT Essential
Models Using Process Algebra. In: FME’94: Industrial Benefit of Formal Methods.
LNCS 873, Springer-Verlag, 1994, pp.681-702.ŽIC, J.J.: Time-Constrained Buffer
Specifications in CSP+T and Timed CSP. ACM Transactions on Programming Lan-
guages and Systems, 16, 1994, 6, pp.1661-1674.

9. Hoare, C.AR.: Communicating Sequential Processes, Prentice-Hall, Englewood
Cliffs (N.J.), 1985.

10. Žic, J.J.: Time-Constrained Buffer Specifications in CSP+T and Timed CSP.
ACM Transactions on Programming Languages and Systems, 16, 1994, 6, pp.1661-
1674.

11. Capel, M.I., Holgado, J.A.: A New Design Procedure for a Real-Time Continuous
System Model. LSI Internal Report, 2004, http://lsi.ugr.es/~sc/investiga/reports, 16
pages.

12. Tang, L. Raman, M.F. A new direct torque control strategy for flux and torque
ripple reduction for induction motor drive-a Matlab/Simulink model. IEEE Interna-
tional Electric Machines and Drives Conference, 2001, pp.884-890

13. Welch, P: Process Oriented Design for Java: Concurrency for All. In: Parallel and
Distributed Processing Techniques and Applications, PDPTA 2001, Las Vegas,
Nevada, USA, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

