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Abstract. A correct system design is systematically obtained from the SA/RT 
requirements specification model of a real-time system. The aim of the system-
atic procedure is to obtain a complete model in the Matlab/Simulink/Stateflow 
framework for solving a realistic industrial problem, namely, to control an AC 
motor that must be able to maintain a constant air flow through a filter. The ar-
ticle also discusses a practical application for implementing a closed loop con-
trol system to show how the proposed procedure can be applied to derive a 
complete system design. 

Keywords: Hybrid systems, formal analysis tools, modular design, process al-
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1   Introduction 

Structured Analysis methods applied to the specification of Real-Time systems 
(SA/RT) are intended to integrate the requirements specification, based on Tom De 
Marco [1] SA/SD methods, with finite state machine theory, needed to tackle the 
complex control structures that real-time embedded systems present. These methods 
consist of a set of techniques and modelling tools that are useful to clarify the user 
requirements of a system and to produce a requirements specification model (RSM) 
that views the system from two aspects: (1) the functional view; (2) the control reac-
tive behaviour, i.e., how the system state changes over time in response to external 
stimuli and internal signals. 

Different real-time system types require different designs of formal description 
languages, programming languages and software tools. In the case of continuous 
dynamic systems, we can distinguish [2] three major classes of software tools:  

(1) Block-based, being based on a library of primitive blocks with discrete, con-
tinuous or hybrid behaviour, are usually easy to use for building small and medium-
size models of target systems, but, for complex ones, yield systems models difficult to 
understand and modify. The most often-used among these tools are: Simu-
link/Stateflow, Easy5, and VisSim, the latter used in iLogix Statemate Magnum. 

(2) Physical oriented tools which use a system of differential equations to describe 
the continuous behaviour of a system; discrete components are difficult to model and 



to change at run time simulations. These tools are mainly academic projects, such as 
20-Sim from Controllab Products, Dynasim Dimola and Modelica, Smile from Berlin 
Technical University.  

(3) Hybrid state machines in which the continuous behaviour is described by a sys-
tem of differential equations associated with the discrete state of a state-transition 
machine; there are very few tools that support hybrid state machines at the moment, 
but this line is gaining momentum now. Some examples of this type of tools are Path 
from Berkeley University, and Model Vision from Object technologies.  

There are other models and software tools based on Petri nets [3] aimed to repre-
sent and to verify embedded systems, but not continuous components.  
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Fig. 1. Software architecture of the proposed model of a real-time system. 

Our method is intended to help with the specification of complex hybrid systems by 
starting bottom-up from an SA/RT specification model and allows integrating blocks 
describing continuous behaviour within a common methodological infrastructure, 
since it allows the integration of Simulink/Stateflow blocks at the lower level of a 
target RSM without affecting the behaviour of the other components. The proposed 
procedure is intended as a new derivation method for obtaining the complete design 
of real-time systems in Simulink/Stateflow by giving an operational semantics in 
terms of CSP+T process algebra to the semi-formal SA/RT analysis entities, Fig.1. 
CSP+T formal notation is capable of unambiguously describing the different model-
ling entities of SA/RT notation, which can afterwards be converted into a hierarchy of 
Stateflow diagrams, according to our method, since a semantic equivalence between 
CSP+T process terms and a subset of Stateflow can be shown. The transformation of 
SA entities into process terms is carried out by a system of rules, introduced in a pre-
vious work [4]. 

The validation of the final system model is carried out by simulation, since Simu-
link blocks are very accurate and can be tested in a realistic environment by 
downloading the target software in an embedded controller, with which the environ-
ment can directly communicate through different A/D, D/A interfaces. The latter 
application of the method opens up the possibility of deploying it to carry out auto-
matic code generation for different target platforms. 

The remainder of the paper is structured as follows. We first give some back-
ground on SA/RT modelling methods and CSP+T process algebra. The top-down 
derivation procedure proposed in this paper is discussed in detail in the next section, 
specifying the steps to be performed. Then, the method proposed is applied to solve 
an industrial problem of a real-time feedback closed loop used to maintain a constant 



rotor speed of an induction motor driven by a TriaC device such that a constant air 
flow through a filter in HVAC systems is achieved. The case study shows how the 
proposed method can be applied to derive a hybrid system that also contains discrete 
components. The next section describes how the system can be validated by simula-
tion, adds some components to the model, and discusses results obtained until now. 
Finally, the conclusions and the ongoing lines of work are presented. 

2   Modeling Methods 

This section describes the modelling methods used in the proposed method to design 
a real-time hybrid system with continuous and discrete components. 

2.1   Requirements Specification Model (RSM) 

An RSM can be obtained by applying a set of SA/RT methods using an informal 
graphical notation also provided by SA/RT. This model consists of a hierarchy of 
transformation schemes rooted on the System Context Diagram (SCD). Each scheme 
“explodes” into a State Transition Diagram (STD) or into a Data Flow Diagram 
(DFD). The scheme denoted as SCD defines the border between the system, and the 
environment, comprising the external entities (or terminators) to the system. 

A transformation scheme in SA/RT notation is represented by an SCD or by a 
DFD. DFDs are composed of several copies of the above analysis entities and must 
include at least one DTP. DTPs are schemes of the lower level in a DFD, i.e. those 
that do not “explode” into other schemes, which change the input flows into output 
flows with no relation between the number of inputs and outputs. The same output 
can be sent to several analysis entities. A DTP must have at least one output flow. 
The bubbles that represent DFDs may explode into new, more detailed. DFDs. CTPs 
are schemes of the lower level that serve to transform input into output event flows. 
They cannot accept or generate any type of data flow, since a fundamental strategy of 
SA/RT is to separate the control and the data process descriptions within the system. 
A CTP is formally specified by means of a state transition diagram (STD), which 
should be a deterministic Moore or Mealy automaton. Each transition comprises a 
condition (represented by an input control flow in the DFD) and an action that in-
cludes the activities to be carried out before the system reaches a new state. Data 
stores (DS) loosely represent data of a certain type that cannot be considered struc-
tured. Control Stores (CS) can only store events of the same type, which are queued 
in FIFO order. Unlike the DS semantics, reading an event of a CS is a destructive 
operation. 

2.2   Flaws of SA/RT as a Specification Notation for Real-Time Systems 

Some ambiguities appear in current SA/RT notations [5, 6], causing imprecision in the 
specification, and therefore non-predictability, when they are used in real-time sys-
tems at a later development stage [7]. Consequently, many proposals have been made 
to overcome the problem of SA imprecision by complementing a system specification 
with formal methods in the past years. The use of extensions of algebraic process 



description languages [8], such as CSP [9], CSP+T [10], or the standard specification 
language LOTOS, can give a precise and flexible interpretation to SA entities. In this 
respect, it has been shown [4] that CSP+T process algebra formalizes the semantics 
of an SA/RT specification model and also allows for the specification of timing con-
straints between the occurrences of actions during any execution of the system by 
using a defined set of rules. 

2.3 Real-Time System Specification with CSP+T 

The group of CSP derivatives to describe time intervals includes Timed CSP [9] and 
CSP+T [10], the latter being a simpler approach. Providing less descriptive power, 
although still powerful enough to formally describe a set of primitive processes with 
time constrained behaviour, CSP+T is an adequate formal specification language for 
the majority of real-time systems. The syntax of CSP+T adapted to our method, 
which is detailed in [11], is as follows: 
− Every process P defines its own set of communication symbols, named communica-

tion alphabet α(P). These communications represent the events that the process P  
receives or internally occurs, such as the event τ that is not visible in the environ-
ment of the system. 

− The communication interface comm_act(P) of a given process P contains all the 
CSP-like communications ({?, !}) in which P can engage and the alphabet α(P). 

− An operator,  (star) denotes process instantiation. Given P', the timed version of 
P, which is instantiated at time 1, the specification of P' becomes 

P'= 1. →s.a→STOP, where s∈[1,∞)  

This event is unique in the system since it represents the origin of time at which the 
processes can start their execution. 
− An event operator >< to be used jointly with a variable to record the time instant at 

which the event occurs ev>< v means that the time at which ev is observed is in v. 

P= 1. →a>< var→STOP  

For each execution of P, the time at which a occurred will always satisfy var ≥ 1. 
− Each event is associated with a time interval, called the event-enabling interval.  

P= 0. →[1,2] a >< v→ STOP  

The value of the marker variable v will satisfy the inequality 1≤ v ≤ 2. Only during 
this continuous time interval is the event available to the process and its environment. 
A process is considered to be the STOP process if it cannot engage in any communi-
cation or synchronize in any event within the interval that precedes the event. 
− If the preceding event occurs at time t0, then rel(x, v)= [x+v-t0, v-t0 ], since the 

times for events are absolute and for intervals are relative to the preceding event.  

P = ... E.P’ .    E = {s  | s = rel(x, v)} 



2.4   Generation of a System Specification from the RSM 

In order to obtain a model of the system, it is necessary to represent every analysis 
entity of the RSM by a class of CSP+T processes. Following this approach, we write 
a CSP+T process prototype for every DTP, CTP, DS, CS, etc. A series of transforma-
tion rules [4] allow us to create a process term of the algebra for every transformation 
scheme that appears in any diagram of the RSM. 

Thanks to the compositional nature and the capability of Stateflow charts to repre-
sent the reactive behaviour of processes, a semantic equivalence between valid 
CSP+T process terms and a subset of the modelling elements of Stateflow diagrams 
can be established, and we make use of this equivalence to model reactive processes 
at the lowest level of a system specification. The system specification model is com-
plemented with Simulink blocks that are the basic bricks needed to represent primi-
tive functions, as well as continuous components in many hybrid real-time systems 
simulations. 

To carry out a simulation in the Simulink/Stateflow framework, additional blocks 
must be added to the final model. These blocks represent the external entities of RSM 
and must be modelled according to the specific physical devices (actuator or sensor) 
that supply signals (data or events) to/from the system. 

The interactions that a DTP or a CTP can provoke within their environments by 
discrete flows are modelled as occurrences of events by means of CSP synchronous 
communications. However, continuous flows need to be modelled by an extra inter-
mediate process, SYNC, that provides a non-blocking continuous reading/writing 
from/to a continuous flow as follows, 

SYNC= flow ? x→ S; S=flow ? x → S | flow ! x → S;  
In general, to derive a Simulink/Stateflow model from an RSM one, we will adopt 

a bottom-up process that consists of the following steps: 
1) Prepare the analysis schemes for carrying out the transformation. Some flows in 

the RSM may need to be renamed to prevent unwanted synchronizations in the 
CSP+T semantic equivalent model. 

2) Transform the process terms representing control transformation (CTP) and data 
transformation (DTP) schemes that present reactive behaviour of the lower level 
into Stateflow diagrams. 

3) Add Simulink blocks to represent external devices or continuous components. 

4) Select the other modelling entities, such as DS, CS, DTP, CTP schemes, or Con-
tinuous Data Flows, that appear in the scheme, in ascending order; and build a 
CSP+T process for each entity in the scheme. 

5) Once the CSP+T model has been obtained for all the entities in an SA/RT scheme, 
one CSP+T process will be defined to model the complete scheme. If this scheme is 
already included in a CTP or a DTP of a higher level, repeat from step (4), thus pro-
gressively integrating the CSP+T model of the system in ascending order. 

The iterative process finishes when a unique process with the communication in-
terface of the system context diagram of the initial RSM is obtained. 



3   Regulation of Rotor Speed with an Induction Motor 

An informal description of the user requirements specification of a closed loop con-
trol system is presented for controlling an AC (or induction) motor, Fig.2(a). The 
open loop control of the engine is obtained by feeding it with a controlled voltage of 
220 volts and 50 Hz. This control is carried out by cutting the sinus wave, which 
represents the input voltage, using an electronic device named TriaC, which operates 
as a very fast switch. The control line of the TriaC is driven by a synchronization 
signal (synch), which informs when the input voltage passes through a zero value, 
and at this moment the TriaC automatically stops conducting electricity. If after 
switching the TriaC off, it is excited a number of milliseconds later, it will be driven 
to saturation by the signal texct and will start to conduct until the input voltage again 
passes through a zero value. The closed loop of control is obtained in this case by 
calculating the precise time at which the TriaC must be excited, so the excitation time 
must be calculated in real-time and in every cycle of the input voltage.  
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Fig. 2. (a) Operation of TriaC device controlling an AC motor. (b) System Context Diagram 

The system should address its own safety if the synchronization signal fails or if 
TriaC overheats. If synch is missed after passing a complete cycle of the input volt-
age, then syncf is raised. Another possible failure could occur if the TriaC over-
heated; in this case, the electronic device might short-circuit and cause the engine to 
start working at the maximum number of revolutions, which would lead to the loss of 
the engine in approximately 1 second. 

The combination of an induction motor with the TriaC device can be used to con-
trol or maintain a constant velocity, such as in the centrifuge of a washing machine, 
the air flow through a filter, the movement of a vehicle, etc. We apply the method to 
obtain a system to maintain the air flow velocity constant through a filter. 

3.1   Top-Down Derivation of the System Model 

The System Context Diagram (SCD), Fig. 2(b), includes 5 control flows: the syn-
chronization signal (synch), which informs us when the input voltage passes through 
a value zero; the TriaC overheating warning; two signals, the first one warning of the 



missing of synch and the second one of TriaC overheating; and the excitation (texct) 
signal to make the TriaC return to allow current to pass again. It also includes 2 data 
flows: the first one gives the present air flow through the filter (flow) and the second 
one, the air reference value (ref). 

The automatic system modeled interacts with external devices that supply data 
flows to the system –sensors-, or interacts with external devices sending control 
events –actuators-. The AC motor is not directly interacted by the system, but through 
the TriaC device, and consequently it is not considered an external entity. The system 
computes a timeval value; once this time is elapsed, the system activates the excita-
tion signal texct that immediately changes the current value of the induction motor 
speed. A new value of the speed can be read again by the system through sensors as 
tachometers; in the present example, the system obtains the updated speed value from 
one air velocity flow sensor. 

The SCD “explodes” into two main DTP processes on 1st level DFD: Proportional-
Integral-Derivative control (PID) and open loop control (OLC), Fig.3(a). The OLC 
process triggers signals to actuators, i.e., texct from an input timeval value, oheat 
from a positive overheat value. The air flow reference value (ref), together with the 
present air flow value (flow), serves as input data to a Proportional Integral Deriva-
tive (PID) control algorithm to determine the correct time (timeval) at which the 
TriaC must be excited within the present voltage cycle. 
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Fig. 3. (a) The closed loop control  model. (b) The open loop control  model 

3.2   The Open Loop Control Subsystem 

The Open Loop Control process “explodes” into two new processes, a data transfor-
mation process, named excitation generation (EG), which generates the control flow 
textc needed to excite the TriaC at a given time, Fig. 3(b). The EG process actually 
carries out control, not data processing, but it must be represented in the flow diagram 
by a DTP, since, according to the SA/RT rules, it cannot be considered a pure control 
transforming process because it receives a continuous data flow (timeval) from the 
PID process. The continuous flow timeval  must be modelled by a SYNC process. The 
overheat watchdog (OWD) monitors the temperature of the TriaC and disables the 
TriaC excitation signal if the temperature becomes too high.  
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Fig. 4. State-Transition Diagram representing the OLC and the equivalent CSP+T process. 

The OWD and EG processes are both primitive transformation schemes, which must 
be specified by a state transition diagram (STD) that can then be converted into a 
unique Stateflow chart. The EG control process cyclically repeats the states shown in 
Fig.4. When in the state represented by Q2, if the EG process does not receive the 
synchronization signal within 11 ms, a failure condition must be signalled by raising 
the exception syncf. This period of time amounts to one half cycle of a 50 Hz input 
voltage function –i.e.,10 ms + 1 ms of error margin-. In the control state represented 
by Q3, EG waits for x milliseconds before sending the next excitation signal to the 
TriaC; the maximum allowed error in the waiting interval before sending the signal is 
0.1 milliseconds. In the case of the OWD process, a STD is defined with only one 
state to monitor the temperature of the TriaC. If the overheat  event occurs, the ex-
ception oheatf is raised and the excitation signal must be disabled, which is denoted 
by the event disable. 

3.3 Closed Loop Control Subsystem 

By means of closed loop control (CLC) it is possible to maintain a constant angular 
speed of the rotor, which can be used to control the centrifuge velocity of a washing 
machine, the air flow through a filter, the speed of a vehicle, etc. As shown in Fig. 
3(a), two processes are included in the CLC: Proportional-Integral-Derivative control 
(PID) and open loop control (OLC). The AC motor is regulated by the PID control 
through the speed error signal between the set speed (set-point) and the actual meas-
ured speed. Depending on the speed error signal value, the PID controller adjusts the 
timeval value to determine the next excitation time of the TriaC. The adjustment of 
timeval is achieved by increasing or decreasing its value, depending on whether the 
current rotor speed is over or under the reference speed, respectively. Exactly when 
timeval elapses the OLC process enables the signal texct that causes the changing in 
the motor speed. A static analysis of the system reveals that the shorter the timeval, 
the higher the speed that is achieved by the rotor with a non-linear relationship. If the 



timeval is outside the interval [0,1/freq*2], its value is saturated by the maximum or 
minimum value.  
 

Fig. 5. Block diagram of a PID controlled constant air flow system 

The timeval value must be specified as being a continuous data flow, rather than a 
discrete flow, in order to allow the two processes to act asynchronously. Two com-
munications and one synchronization process –SYNC- are needed in order to imple-
ment an asynchronous communication in CSP.  

Fig. 6. Simulink model of the final system 

4 Simulation of The Hybrid System 

To obtain a simulation of the hybrid system proposed in this paper, more components 
must be added to the model. As shown in Fig. 5, we need to construct a model of the 
TriaC device, the AC motor, the flow sensor (or another sensor to measure the rotor 
speed), the temperature sensor and the sync generator. This model can be imple-
mented in the Simulink/Stateflow framework as shown in Fig. 6. The most difficult 
component to model is the AC motor. 

4.1 Physical Modelling of an Induction Motor 

The functioning of an induction motor is based on the principle of mutual induction 
between electrical circuits traversed by a variable magnetic flux Φ. According to 
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Faraday’s law, which is given by the following equation, )( BNdtd Φ⋅−=ε , the magnetic 
flux traversing a motor winding only depends on the current conducted by the circuit. 
A self-induction constant L can be assigned to any circuit affected by magnetic induc-
tion, according to the equation 

reelB iLN ⋅=Φ⋅ . 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+++= ds

ls

ml
dr

lr

ml

ls

s
qs

b

e
dsb

ds FFRFv
dt

dF 1
**

χ
χ

χ
χ

χω
ωω  

 

Vds 

+ - +-
ωe⋅Φqs

 

Rs 
Ids Idr 

Rr

Lls= Ls-Lm Llr= Lr-Lm 

(ωe-ωr)⋅Φqr Lm 

Φds= Fds/ωb Φdr= Fqr/ωb Vdr 

 
Fig. 7. Dynamic equivalent circuit of the stator linkage Fds 

Table I. Constants and variables of the physical variables of an induction motor 

d: direct axis of the rotating reference 
system 

χ*
lm= 1/(1/χls+1/χlr+1/χm): total reactance with 

the loses for magnetizing (χm) 
q: quadrature axis  iqs, ids: currents of the q and d stator axis 
s: subindex for the stator variable iqr, idr: currents of the q and d rotor axis 
r: subindex for the rotor variable p: number of poles of the motor 
Fij=Φij, where i=q or d and j=s or r, 
magnetic linkage 

J: inertia momentum 

vqs, vds: stator voltage Me: motor electrical torque (output variable) 
vqr, vdr: rotor voltage Ml: load torque (input variable) 
Rr, Rs: rotor and stator resistors ωe: stator synchronous speed (input variable) 
χls: stator reactance (ωeLls) ωb=2⋅π⋅fb: angular speed corresponding to the 

electric frequency of the motor voltage. 
χlr: rotor reactance (ωeLlr) ωr: rotor angular speed (output variable) 
d: direct axis of the rotating reference 
system 

χ*
lm= 1/(1/χls+1/χlr+1/χm): total reactance with 

the loses for magnetizing (χm) 
 
Nowadays, the winding of induction motors is carried out by three windings, each 

one bearing a voltage phase separated by 2π/3 rad. from the next one, which yields a 
rotating magnetic field in the stator. The velocity of rotation is called the synchronous 
speed we. Only if there is a small difference between the two rotation velocities we 
and wr will an electrical torque be produced by the motor. This difference, named 
slip, is also given as a parameter of induction motors.  

We can assume a reference system that rotates at the synchronous speed ωe to ease 
the representation of the rotating magnetic field 

→

B  and inductance linkages by a 
system of coupled differential equations that describe the physical induction and 
motor dynamics. This rotating reference system is known in the literature [12] as dq 



reference system. The induction motor is therefore modeled by two reels, the first 
one, situated on the d-axis –direct-, is aimed at conducting the current in the stator 
and it also generates the rotating magnetic field. The second one, on the q-axis –
quadrature-, generates the induced magnetic field in the rotor. The differential equa-
tions that represent the magnetic linkage Fij (=Φij⋅ωe) between the stator and the rotor 
windings can be derived by applying fundamental electromagnetic laws to the equiva-
lent electrical circuits. For instance, according to the physical model of the induction 
motor, the variation of the d-component of the stator magnetic linkage, Fds, can be 
expressed in terms of the other linkage components that have an effect on it, as shown 
in Fig.7. The other components, 1 of these for the stator (Fqs) and another 2 for the 
rotor (Fdr, Fqr) expressed according to the dq reference system, are similarly obtained. 
Thus, there are five differential equations: 4 of them describing the change of the 
magnetic linkages and the fifth connecting the synchronous acceleration of the rotor 
with the electrical torque Tl generated by the motor. 

Resync

 
Fig. 8. Transformation of the OLC specification into a Stateflow Diagram 

This model allows us to describe the magnetic coupling between the stator and ro-
tor windings of an induction motor very accurately. The constants and system vari-
ables of the differential equations describing the induction motor are given in table I 

4.2 Stateflow Model of the TriaC Controller 

The imprecision regarding time specification in the RSM of any process has been 
overcome by deploying CSP+T process terms as a meta-notation to assign time con-
straints to the state-transition diagrams (STD) of compulsory use in SA/RT. The trans-
formation of STDs to process terms is carried out by a system of rules. Then, the 
information required to specify the dynamic behaviour of a system of processes rep-
resenting, for instance, the handler of a TriaC device, as in the example being dis-



cussed here, is systematically adapted to a functioning Stateflow diagram, as shown in 
Fig.8. This diagram fully describes the logic needed to implement the intended con-
troller. The execution of the Stateflow diagram simulates the behaviour of the CSP+T 
process specification in Fig.4. 

4.3 Matlab /Simulink Model of an Induction Motor Drive 

The model of the induction motor http://lsi.ugr.es/~sc/investiga/motor, 

similarly to the one in [12], is structured in 3 main blocks: (1) transforms the three 
stator voltages: va, vb, vc , with a phase of 2π/3 between each two, into the rotating  
reference system dq (direct-quadrature-axes): vqs, vds; (2) the block representing the 
induction motor itself  (which inputs the three phase voltages, the synchronous angu-
lar speed ωe and the load torque Tl), yields the three phase stator currents, the electri-
cal torque Te and the rotor velocity ωr; (3) this block returns the expression of the 
model variables in the dq reference system to the abc (three-phases) reference sys-
tem, since the latter gives us the standard graphical representation of currents in the 
stator. Two specific blocks have been designed to calculate the electrical torque Me 

given by the motor and another to calculate the rotor axis angular speed ωr. All the 
physical model constants given in table 1 have been defined using IS physical units in 
an m-file. 

 

Fig. 9. Response of the rotor to changes in the stator speed 

4.4 Results Obtained 

The results obtained with the two models (OLP and CLP) were quite different. In the 
first case, it was only considered an open control loop model; thus, only after a fixed 
interval of time was the TriaC excited in every cycle. In this case the disturbances in 
the system response (ωr) are remarkable, as shown in Fig.9. The rotor speed follows 
the changes produced in the synchronous angular speed in the stator (ωe), but any 
change in the value of ωe provokes rapid oscillations around the new value for the 
rotor velocity.  

By carrying out a simulation with the rotor velocity controlled by a PID, better re-
sults are obtained. Moreover, if we make a plot of the rotor angular speed output by 
the induction motor with respect to the reference speed, which is given by the input 



variable ωe, we only obtain important oscillations at the beginning, while the system 
is trying to reach a stabilisation point. The oscillations shown in Fig. 10 only repre-
sent about 2% of the target value for the velocity ωe, (320 rad/sec); these oscillations 
are caused by dynamic conditions during motor functioning, such as rotor axis fric-
tion.  

 

 
Fig. 10. Closed loop control model response to changes in the rotor speed 

5 Conclusions 

We have presented a derivation procedure to obtain a correct system specification 
from a semi-formal SA/RT system requirements specification of a given real-time 
system. The imprecisions and ambiguities intrinsic to SA/RT notations have been 
overcome in our method by using a formal description language based on CSP+T 
process algebra. Simulink/Stateflow and its library of blocks, which are of use for 
modelling continuous and discrete dynamic systems, have been used to integrate 
continuous components in a hybrid real/time system design. An application case is 
discussed in the article: the induction motor drive, and controlling an AC motor to 
maintain a constant air flow through a filter. The method is characterised by its easy 
integration within ASE environments and/or by formal tools based on SA notation. 
We are currently working on the development of a formal software tool based on 
JCSP [13] and Java, capable of automated specification, verification and code genera-
tion of real-time and embedded system software for several computing platforms. 
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