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Abstract. The Real-Time Performers (RTP) is a Java framework to
design distributed soft real-time systems based on timed plans. Timed
plans - they define system workflow - contain actions to be executed
by distributed components at specified times. The execution of a plan,
however, has its costs, in terms of memory, power, bandwidth, etc. This
paper presents RTP extensions to keep track (and take control) of these
factors impacting on system Quality-of-Service. With these extensions
the system itself is able to control its own behaviour by analysing its
past history and by tuning the future part of its timed plan.
Keywords: quality of service, resource allocation, reflection, soft real-
time.

1 Introduction

A time-sensitive system needs an underlying software architecture capable of cap-
turing the temporal aspects belonging to the system itself. This kind of system
needs to execute different activities with different, dynamic, and inter-dependent
temporal requirements. Moreover it may happens that such kind of systems need
to dynamically change the activities temporal requirements. To the knowledge
of the authors, except for very recent efforts [7], current approaches to design
of time-sensitive systems are based on outgrowths of classic approaches to the
design and implementation of concurrent and real-time systems, and are not
adequate to deal with the whole class of temporal aspects of computations at
architectural level.

Real-Time Performers (RTP) is an architectural framework based on reflec-
tion that allows monitoring and control of the time related behavioural aspects
of the systems built upon it. RTP is based on the following concepts:

— the system runs temporally planned actions;

— actions are planned for execution by placing them in timelines (defining the
overall behaviour of the system);

— a timeline is “ticked” by a virtual clock;

* This work has been developed within the italian MURST-FIRB Project MAIS
(http://black.elet.polimi.it /mais/)



— a virtual clock may be speed-tuned to modify the execution rates of actions
on its timeline;

— a strategist may control the system by tuning virtual clocks an by changing
the content of timelines (i.e. adding/removing/modifying actions).

To make RTP more adaptive (for limited environments such as small/mobile
devices) and more self-aware, some extensions were required. There are applica-
tions for which the simple RTP time awareness is not enough and some degree of
control over resource consumption is badly needed. For example, think about bat-
tery powered and limited hardware (memory and computing power) field moni-
toring devices such as networked /distributed surveillance cameras. These devices
can be remote controlled, but they have far from infinite hardware resources and
they take some time to process data, this is an example field for which RTP had
to be adapted. New features to monitor and control “non-functional” parameters
had to be added. Non Functional Aspects management is also known as Quality-
of-Service (henceforth QoS) management. In RTP, QoS means self monitoring
and (if possible) control resource allocation and performance. In other words,
RTP QoS provides reflective mechanisms to let the system reason about its own
performance [2] and (optionally) apply corrections.

The structure of this paper is the following: Section 2 describes RTP concepts,
Section 3 describes extensions for time related QoS, and Section 4 describes
resource QoS.

2 RTP concrete architecture

An application program to explicitly deal with non-functional requirements needs
abstractions modeling these requirements so that they can be directly observed
and controlled [6]. In this view, a time-sensitive system must explicitly deal with
all the aspects concerning its temporal behaviour. RTP tries to capture and to
model temporal abstractions into a reference software architecture for the de-
sign of modular, distributed, and real-time systems. Within the architecture,
RTP comprises a substantial Java implementation work performed within the
architectural ideas. Since RTP may help in building dynamic and self-adaptive
systems, it is based upon reflective mechanisms. Computational reflection, in-
troduced by Smith, is defined as the activity performed by an agent when doing
computations about itself [9]. Whereas, architectural reflection [3] is the com-
putation performed by a system about its own internal architecture. We are
interested in the second kind of reflection: it reifies architectural features as
meta-objects which can be observed and controlled at runtime. The applica-
tion of architectural reflection helps bringing visibility over the computation
performed by the overall system components at the programming level.

In RTP we exploit, as well architectural reflection, a new kind of reflection
termed temporal reflection [5] enabling the system to reify, observe, and control
its own temporal behaviour. RTP, exploiting reflection principles, raises at the
application programming level:



— strategies definition (action choice on behalf of events);

timing issues management (speed-up/slow-down tuning);

— component behaviours definition (adding/removing performable commands);
— system topology definition (adding/removing connected components).

According to the definitions in [8] and in [4], RTP software architecture is
defined in terms of components and connectors. RTP extends the above defini-
tions by adding strategy as an architectural component. In detail, RTP is based
on the following key concepts:

— a system is made up by computational components (components);

— computational components exchange information via alignment components
(connectors);

— both computational and alignment components are activated and controlled
by supervising components (strategy).

The above three key concepts have lead to individuate three well distinct
corresponding roles inside a system: the role of computing data, the role of dis-
tributing information, and the role of activating both computation and distribu-
tion. RTP assigns these roles to three specific components: Performer, Projec-
tor, and Strategist. Performer is the entity expressly designed to perform elab-
oration on own data, Projector is the entity expressly designed to project (dis-
tribute) data between Performers, and Strategist is the entity expressly designed
to device or to employ plans or stratagems toward goals like the activation of
Performer computations and Projector alignments. The identification of these
well-distinguished components emphasises the “separation of concerns” between
information processing, information alignment, and their activation. To achieve
reuse both off-line and on-line, the following requirements must hold:
Performer should be unaware about both the surrounding environment (in
terms of topology) and the system behaviour; moreover it should perform its
activities only upon triggered commands;

Projector should be aware about only the Performers it projects, but it should
be unaware about the system behaviour; moreover it should perform alignment
activities only upon triggered commands;

Strategist should be aware about the overall system behaviour. Strategies
should be dynamically created thanks to reflective mechanisms.

Strategies definition implies the definition of planned actions. An action spec-
ifies the activity that may be performed by a Performer or a Projector. An action
must be fulfilled with temporal constraints, i.e., the time interval in which it
should be executed. The Strategist plans system temporal behaviour by adding
temporal actions upon a timeline. In this view, a timeline models system tem-
poral behaviour. It is modelled as a monotonic sequence of time instants charac-
terised by the non-decreasing now() value of the current time. The current time
splits the timeline into a past and a future timeline. The Strategists puts future
actions in the future timeline only. When an action is performed, it is moved
in the past timeline and it is enriched with additional information about when
(actual time) it has been performed.
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Fig. 1. TimedRequest and TimedTrace

In terms of RTP concrete architecture (see Figure 1), a Strategist defines
system behaviour by manipulating TimedTraces. A TimedTrace defines system
behaviour in terms of partially ordered set of TimedRequests. A TimedRequest
models an action: it is defined as (recipient, command_to_perform, planned_time),
where the recipient is a Performer or a Projector, command_to_perform is the
command that the recipient has to execute, and planned_time is the time inter-
val in which the command must be delivered and executed (labelled planned).
Referring to Figure 1, the other association with TimeInterval class (labelled
when (actual time)) describes the actual (if any) temporal interval. This as-
sociation specifies the time in which the request has been delivered and then
executed. The cardinality of the association is 0..1 because it may occur that
a request cannot be executed since its planned time is expired with respect to
the now value. A TimedTrace is aware of the current time by means of the as-
sociated VirtualClock (an active entity that is in charge of advancing current
time). When its next () method is invoked, it finds for the TimedRequest whose
planned TimeInterval is near to current time. A TickedEngine activates the
TimedTrace next () method. TickedEngine class is “ticked” each time the ref-

erence real time advances’.

! The reason why we do not associate the TickedEngine class to a VirtualClock is
that an engine may “controls” several virtual clocks whose periods are different.



What is relevant is that the model allows strategy changes dynamically dur-
ing the lifecycle of the system. In fact, since Strategies can be planned at the
application domain level, the system behaviour may be easily changed to re-
spond to the specific requirements by changing, adding, and removing Requests
inside a Trace (the future portion). Moreover, a Strategist may even change, at
the application level, the dynamics of the system in terms of timing issues, e.g.,
it may accelerate or decelerate some activities exploiting virtual clocks. Figure
2 sketches the system temporal behaviour controlled by a Strategist as provided
by RTP.
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Fig. 2. RTP system temporal behaviour controlled by a Strategist

3 Time related QoS

In general, QoS can be managed by “reflecting” attributes of a system, so that the
system can at least monitor itself and possibly control its own performance [1]. A
reflected attribute can be read to examine the status of a system component and
may also be written (if causally connected) to fine tune component behaviour. Of
course, system domain affects the set of reflected attributes and their operativity
(i.e., read/write ability).

The original version of RTP allows a basic level of QoS management. In fact,
a Strategist may analyse delays (e.g., average actual action endings with respect
to planned endings) in the past segment of any trace to decide rearrangements in
the future segment. This can be done by changing time intervals (i.e., changing
planning), thus adapting system behaviour to environment/component condi-



tions. For example, consider a system with one Performer accepting just one
2.

kind of command (“snap”) and with a plan such the following one®:
— PAST
— (17:00:00 - 17:01:00 ; 17:00:10 - 17:00:20) [webcaml,snap]
— (17:01:00 - 17:02:00 ; 17:01:15 - 17:01:28) [webcaml,snap]
— (17:02:00 - 17:03:00 ; 17:02:20 - 17:02:32) [webcaml,snap]
— FUTURE
— (17:03:00 - 17:04:00 ; nil - nil) [webcam1,snap]
— (17:04:00 - 17:05:00 ; nil - nil) [webcam1,snap]
— (17:05:00 - 17:06:00 ; nil - nil) [webcam1,snap]

The reader may notice that no request is executed out of time, so no tuning
seems necessary. Let now imagine a slightly more complex system, with an added
“image compressor” component (Performer) and a plan like this:

— PAST

— (17:00:00 - 17:00:30 ; 17:00:10 - 17:00:20) [webcaml,snap]
— (17:00:30 - 17:01:00 ; 17:00:40 - 17:01:05) [jpegl,pack]

— (17:01:00 - 17:01:30 ; 17:01:15 - 17:01:29) [webcam]l,snap]
— (17:01:30 - 17:02:00 ; 17:01:45 - 17:02:03) [jpegl,pack]

— (17:02:00 - 17:02:30 ; 17:02:20 - 17:02:30) [webcaml,snap]
— (17:02:30 - 17:03:00 ; 17:02:48 - 17:03:02) [jpegl,pack]

— FUTURE

— (17:03:00 - 17:03:30 ; nil - nil) [webcam1,snap]
— (17:03:30 - 17:04:00 ; nil - nil) [jpegl,pack]
— (17:04:00 - 17:04:30 ; nil - nil) [webcaml,snap]
— (17:04:30 - 17:05:00 ; nil - nil) [jpegl,pack]
— (17:05:00 - 17:05:30 ; nil - nil) [webcaml,snap]
— (17:05:30 - 17:06:00 ; nil - nil) [jpegl,pack]

In this case we may notice that an almost systematic end-of-action delay
is born by the jpegl component: 5 seconds, 3 seconds and 2 seconds for the
three requests in past trace. We may argue that these delays can be caused by
external factors, such as scene changes in front of the webcam, possibly stressing
the jpeg compressor with increased image details. Please note also that this delay
may not necessarily imply any system inconsistency at the functional level for
this example system, but it is an out-of-specification behaviour and it must be
treated accordingly. Some kind of corrective strategic action is needed. If no
particular high-level requirements are in place (such as “must take a picture
every XX seconds”) we may think about rewriting the future plan with less

2 Requests format is “(Planned Begin - Planned End; Actual Begin - Actual End)
[recipient, command]”. Moreover, Projector details will omitted in every example
since they are redundant for the purpose of this paper. Please also note that timings
are purely exemplificative.



stringent timings by spreading time intervals to avoid future delaying of actions.
We are changing system behaviour of course, and we can only do it if we can
rewrite future segments of the plan without breaking other requirements. But
the most important remark here is that the system is able to monitor its own
temporal behaviour and it can do something about it, or just notify that “the
current plan cannot be done”.

3.1 Time related QoS extensions

To exemplify extensions added to RTP, here the reader may find a brief list of
methods that were introduced to add self monitoring ability, they were added
to the TimedTrace class to help analysing past trace:

getMissed() returns missed requests;
howManyUnfulfilled() returns the number of unfulfilled requests (it will be
overwritten in the QoSTrace extension);
getActualDurationLastRequest() returns last request actual duration;
getPlannedDurationLastRequest() returns last request planned duration;
aveActualDuration() returns the average of actual durations in the past;
minBeginDelay() returns the minimum among beginning-of-actions delay;
maxBeginDelay() returns the maximum among beginning-of-actions delay;
aveBeginDelay() returns the average beginning-of-actions delay;
minEndDelay() returns the minimum among ending-of-actions delay;
maxEndDelay() returns the maximum among ending-of-actions delay;
aveEndDelay() returns the average ending-of-actions delay;
maxTimelInterval() returns the maximum time interval set for any action in
the past trace;
minTimelnterval() returns the minimum time interval set for any action in
the past trace (this can be useful to check the “quantum” time interval for
a system, if the corresponding action was executed on time).

Every method listed above has different versions: without parameters and
with “selective” parameters. Selective parameters are needed when statistics
need to be computed on subsets of past history. For example, if we need to
know the average end delay of every “pack” action, instead of the same av-
erage but generically computed on every action in the past, we may use an
aveEndDelay(Filter) method.

4 RTP extensions for resource QoS

This section shows other extensions to let the system take into account fac-
tors not only related to time, but also to generic allocation of resources. In our
extended RTP framework, resource QoS is managed at two different levels:



At Plan level it is possible to tweak system behaviour by rearranging requests
in terms of time, order, duration, and budgeted resources in the future
part of the trace. Hints for correct tuning come from the analysis of past his-
tory, by calculating values such as “average begin delay” or “average memory
consumption” of actions and so on;

At Performer level it is possible to monitor resource consumption of QoS-
enabled Performers; some kind of control is also possible since every QoS-
enabled Performer will not accept a request that is clearly impossible to
fulfill with current resources (compared to the budgeted ones).

At Plan level we need some kind of resource allocation information, the same
as it is for time information. Moreover, we need to keep track of planned resources
(budget, forecasts) and of actual usage/consumption. The QoS RTP extensions
model resource allocation by associating a set of resource budgets to every re-
quest. Every request, if and when honored, is then piggybacked with information
about the actual resource consumption needed for its execution. This “enriched”
request can be studied in terms of system usage. For example, let us augment
the above “webcam+compressor” system with resource data and imagine a plan
such as the following?:

— PAST

— (17:00:00 - 17:00:30 ; 17:00:10 - 17:00:20) {ram:3k,2k} [webcaml,snap]
— (17:00:30 - 17:01:00 ; 17:00:40 - 17:01:05) {ram:10k,5k} [jpegl,pack]

— (17:01:00 - 17:01:30 ; 17:01:15 - 17:01:29) {ram:3k,2k} [webcaml,snap]
— (17:01:30 - 17:02:00 ; 17:01:45 - 17:02:03) {ram:10k,8k} [jpegl,pack]

— (17:02:00 - 17:02:30 ; 17:02:20 - 17:02:30) {ram:3k,2k} [webcaml,snap]
— (17:02:30 - 17:03:00 ; 17:02:48 - 17:03:02) {ram:10k,11k} [jpegl,pack]
— FUTURE

— (17:03:00 - 17:03:30 ; nil - nil) {ram:3k,nil} [webcam1l,snap]

— (17:03:30 - 17:04:00 ; nil - nil) {ram:10k,nil} [jpegl,pack]

— (17:04:00 - 17:04:30 ; nil - nil) {ram:3k,nil} [webcam1l,snap]

— (17:04:30 - 17:05:00 ; nil - nil) {ram:10k,nil} [jpegl,pack]

— (17:05:00 - 17:05:30 ; nil - nil) {ram:3k,nil} [webcam1l,snap]

— (17:05:30 - 17:06:00 ; nil - nil) {ram:10k,nil} [jpegl,pack]

This example is time-wise identical to the one shown before, but in this case
every request has an associated “resource budget” information. The reader may
notice that the past trace contains a request that was executed without com-
plying to the “ram” budget that was set for that request. This is an example of
a request without strict budget: these requests are honored even when the Per-
former realises that the budget will not be satisfied. QoS RTP extensions allow
also the definition of strict budgets. Performers must not execute strict-budget

3 The new request format is “(Planned Begin - Planned End; Actual Begin - Actual
End) {resource: planned, actual}* [recipient, command]”. The “{}*” syntax
stands for: “{} a number of times”.



requests if they cannot guarantee budget satisfaction. This example shows a sit-
uation for which there is no straightforward solution of course: there is no simple
way of rearranging requests to bind memory consumption of a component, but,
again, the system has at least a way to know about the problem.

4.1 Resource QoS extensions

Figure 3 shows the new QoSRequest class, an extension of TimedRequest, to
keep track of information about planned and actually consumed resources. A
Resource instance is a representation of a physical resource. As an example,
an instance of Memory (extends Resource) is used to represent the amount of
memory (e.g. 10KB) that must not be exceeded to perform a single action.

In this version of RTP, Performer duty has been loaded with an additional
responsibility: filling consumption information into any request processed. An
Engine gets a Request from its associated Trace and dispatches it to a Performer.
The receiving Performer examines the Resource budget associated to the Request
to decide if it may be fulfilled, and if so it executes the Request. After execution,
the Performer gathers consumption info (self generated) and fills it into the
Request for later analysis. The Request goes back to the the trace, in the past
segment. Now the trace is very rich in terms of meta-information about past
system behaviour. Requests in the past segment are associated with time and
resource-consumption information, thus new methods to extract statistics were
added to the QoSTrace (see Figure 3), such as:

minResourceUsage(Resource) returns minimum resource usage for a par-
ticular Resource;

maxResourceUsage(Resource) returns maximum resource usage for a par-
ticular Resource;

aveResourceUsage(Resource) returns average resource usage for a particu-
lar Resource;

howManyUnfulfilled() (overridden) returns the number of unfulfilled requests
in the past, not only in terms of time (TimedTrace version) but also in terms
of resources;

zxxResourceUsage(Resource, Filter) returns (min|max|ave) resource us-
age for a particular Resource, selective versions (not shown).

At Performer level, newly added RTP components are the QoSPerformer and
the QoSProjector. They offer the capability to keep track of their own perfor-
mance by recording “statistics”. A set of continuously updated Statistics in-
stances is associated to every QoS (Performer|Projector) to make these compo-
nents aware of their own past performance. The new QoS (Performer|Projector)
operates a double information fill: one on the QoSRequest and another on itself
by updating consumption info on its own set of Statistics instances. This way,
the longer a system runs, the “wiser” it becomes in terms of the ability to decide if
an action can be executed within budget, since every node accumulates informa-
tion about its own performance-wise behaviour. If the RespectResourcePlanning
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attribute of a request has been set, the receiving Performer should not honor
that request unless absolutely sure about respecting planned resource budget.
This mechanism is not an easy task to implement (it may even be undecid-
able). At the moment, the only information taken into account by the receiv-
ing Performer is its own set of statistics. By examining its own past perfor-
mance, a Performer may have a clue on the possibility to respect a budget. The
boolean fulfilled() method on the QoSRequest returns false on a yet-to-be-
executed request and true for an executed request that has respected its budget
set. QoSRequest fulfilled(Resource) and Resource fulfilledBy(Resource)
methods are utilities to compare planned budgets and actual consumptions.
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5 Conclusion

This paper presents RTP extensions to manage QoS parameters for time-related
and resource consumption aspects. These extensions were added to keep track
(and take control) of timely behaviour and resource consumption at every logical



level supported by the framework itself. QoS can now be managed (monitored
and controlled) by operating at different levels:

Plan level monitoring, plans can now be queried to know about past
system performance in terms of timely behaviour and resource consumption;

Node level monitoring, every Performer exports information about its
own behaviour in terms of statistics on past performance;

Strategic control, active system behaviour management can be done by
changing the future part of the trace (i.e., replanning), this is no different than
before, but in this new version of RTP strategies can take into account more time
related aspects and the newly added resource consumption information spread
throughout the framework.
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