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Abstract. Bayesian network is a graphical model appropriated to represent 
and to analyze uncertainty, knowledge and beliefs contained implicitly in the 
data. In this paper we propose the XPC algorithm for structural learning in 
Bayesian networks using decomposable metrics in families (a variable and its 
parents) in order to obtain the maximum-score network. The concept of 
conditional independence, based on Pearl’s d-separation, is used to identify 
conflicting regions, where the existence of some edges depends on the non-
existence of others. Hence, the user is required to choose which edges are 
relevant in the structure. The comparative experiments using well-know 
benchmarks show XPC produces better results than other algorithms mainly 
when the amount of data is small. A heuristic for optimizes the independence 
tests are also proposed. Keywords: Bayesian Networks, Structural Learning, 
Machine Learning, Uncertainty, Structural Ambiguities. 

1   Introduction 

Bayesian network (BN) is a graphical model that combines the main features of 
Graph Theory and Probability Theory to represent uncertainty in expert systems [1,7]. 
A BN is a directed acyclic graph (DAG), consisting of: 

1. nodes representing random variables; 
2. arcs between nodes representing dependencies and; 
3. a conditional probability table attached to each node that depends on the states 

of adjacent predecessor nodes. 
In summary, a BN represents through its structure probabilistic relationships 

among variables of interest [12]. This approach has proved both a powerful and a very 
useful tool for representing and reasoning under uncertainty conditions. 



 

To build a BN means to identify the structure (DAG) and the numeric parameters 
(conditional probabilities tables). This can be made in three forms: a) by an expert 
domain, b) automatically from the data and c) combining the two previous forms. 

There are two approaches of algorithms for structural learning in Bayesian 
networks given a dataset: 

− Search and scoring based algorithms [12,13] and 
− Dependence analysis based algorithms [2,7,10]. 
In this paper an algorithm for structural learning in BN given a dataset using 

dependence analysis is presented.  
The structural learning in BN aims to generate the DAG G that it is more adherent 

to the joint probability distribution (JPD) P induced from a dataset D. With the 
dependence analysis method, it tries to explore the dependence relationships among 
the variables, using the d-separation criterion to obtain a structure that best represents 
the relationships of dependences and independence observed in D. This method uses a 
major property of BN, known as assertive of conditional independence (ACI) that is 
very efficient in structural learning in sparse BN [1]. The necessary statistical tests to 
identify the ACI can lead to a combinatorial explosion, what justifies the needing of 
using efficient heuristic techniques to reduce the search space. 

When all ACI verified in a JPD P are present in the DAG G and vice versa, G and 
P are said be faithful each other, and G is a perfect map (P-map) of the JPD P [7].  

Traditional learning algorithms based on dependence analysis produce provably 
correct structures under the assumptions of infinite datasets, perfect tests, and Pearl’s 
DAG faithfulness. However, in practice this assumption doesn't necessarily happen, 
mainly because not always the amount of data is enough to guarantee the correct 
statistical tests. In this case, can appear mistakes in the conditional independence tests 
(CIT) and the resulting graph can not be a P-map of the probability distribution P. 
Therefore, structural ambiguities can be generate. These ambiguities represent the 
uncertainty associated to the existence of some edges among variables with weak 
dependence relationship. 

We propose the XPC (eXtended PC) algorithm as a satisfactory solution for the 
problem of structural uncertainty in learning in Bayesian networks. This hybrid 
algorithm combines part of the techniques of the PC algorithm of Peter Spirtes and 
Clark Glymour [10] with some concepts of the necessary path condition, introduced 
by Harald Steck [11]. A heuristic to reduce the effort computational of the 
independence tests is also proposed in the XPC algorithm. 

The XPC learns Bayesian networks very close of the real, even when not have 
large datasets, which is very common in several areas. That is possible because XPC 
doesn't eliminate edges prematurely with weak dependence; it identifies regions 
ambiguous and allows a domain expert to solve the uncertain associated to the 
presence or absence of these edges. An empirical evaluation of XPC with known 
benchmarks presented satisfactory results in comparison with the real networks and 
other algorithms of learning Bayesian network. 

The remainder of the paper is organized as follows. Section 2 presents the 
definitions of marginal and conditional independence, Minimum Description Length 
(MDL), statistical test G2 and concepts of the necessary path conditional. Section 3 
describes the PC algorithm. Section 4 presents the four main phases of the XPC 



algorithm and the way it works with an example. Section 5 shows the experimental 
results and finally, section 6 addresses some conclusions. 

2   Definitions and Concepts 

This section introduces some definitions and necessary concepts for the 
understanding of the remaining of the paper.  

2.1 Marginal and Conditional Independence 

Let X, Y, Z be discrete random variables with marginal probability functions P(x), 
P(y) and P(z) respectively and with joint probability functions P(x,y), P(y,z) and 
P(x,z) respectively. 

1. X is (marginally) independent of Y if and only if: 
 P(x|y) = P(x) whenever P(y) > 0, denoted by (X⊥Y). 

2. X is conditionally independent of Y given Z if and only if: 
 P(x|y,z) = P(x|z) whenever P(y,z) > 0, denoted by (X⊥Y|Z). 

To check whether or not the marginal or conditional independence hypothesis 
holds among variables given a dataset, it is necessary to carry out statistical tests. The 
MDL and G2 can be used for this purpose. 

The reliability of the statistical tests depends directly on the amount of available 
data. When this amount is not enough can happen two types of mistakes: type (1) 
rejected hypothesis when it should be accepted and type (2) hypothesis accepts when 
it should be rejected. 

2.2 Minimum Description Length 

Although MDL has your origin in the information theory it has the same 
mathematical formula as BIC (Bayesian Information Criterion) that measures the 
quality of the adjustment of the network to the data using maximum likelihood [1,12]. 
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Where Nijk is the frequency of the k-th state of the variable Xi, conditioned to j-th 
state of its parents; Nij is the marginal frequency of the variable Xi conditioned to j-th 
state of its parents; ri is the cardinality of the states set of the variable Xi; qi is the 
cardinality of the joint states set of the parents of Xi (pai), and N is the number of 
cases in the dataset. 

MDL can be used to test marginal and conditional independence among variables, 
as: 

i) If MDL(X,Y) - MDL(X,φ) < γ then X is marginally independent of Y, i.e., 
(X⊥Y)P. 



 

ii) If MDL(X,{Y,S})-MDL(X,S) < γ then X is conditionally independent of Y given 
S, i.e., (X⊥Y|S)P. 

 
The computational effort of computing MDL(X{Y,S}) is exponential in the size of S 

– i.e., requires time proportional to the product of the sizes of the domains of X, Y, 
and of all of the nodes of S. The same claim is also hold for G2 measure. The heuristic 
proposal in the subsection 4.2 minimizes this problem. 

2.3 Statistics G2 

The statistical test G2 possesses asymptotically the chi-square distribution (χ2) when 
the independence hypothesis is true [10,14]. 
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Where ijkN  is the observed frequency, ijkm̂  is the expected frequency, and 

2
)(,12

1
dfαχ −

 is the penalty term of complex structures. 

To test marginal and conditional independence using G2  the result of the equation 
above needs to be compared with the value obtained in the table of percentiles of the 
χ2 distribution for the corresponding significance level α and the degree of freedom 
(df): 

-  If 2
)(,1

2 ),,( dfYXG αχφ −<  then X is marginally independent of Y, i.e., (X⊥Y)P.  

- If 2
)(,1

2 ),,( dfSYXG αχ −<  then X is conditionally independent of Y given S, 

(X⊥Y|S)P. 
The Fig. 1 shows the equivalence between γ parameter and the significance level 

α; both are used to determine the intensity in the dependence relationships among the 
variables [5]. 

 
α γ Intensity 
0.08 0...1 Weak 
0.05 1...3 Medium 
0.01 3...5 Strong 
0.001 > 5 Very Strong 

Fig. 1. Equivalence among γ and α parameter 
 
If the marginal or conditional independence hypothesis holds, then arcs between a 

pair of variables are removed or not added. 



2.4 Assertive of Conditional Independence and d-separation Criterion 

The Assertive of conditional independence (ACI) about a joint probability distribution 
P, is the set of statements about all the independence relationships implicit in P. 

When the joint probability distribution P(X) is represented by a BN on X, the 
assertive of conditional independence on P can be verified in the structure G of that 
net using the d-separation criterion. The structure G of a BN is a DAG. Taking the 
subsets W, Y and S of X, W and Y are independent, given S, if S d-separates W of Y in 
G, according to equation (3) [1]. 

G DAG on  Y and W separate-d )|( SSYW G ⇔⊥  (3) 

A DAG G is said to be an independence map (I-map) of a JPD P if 
(X⊥Y|S)G⇒(X⊥Y|S)P, i.e., if all the derived ACI of G are also present in P. A graph G 
is said to be a minimum I-map of a JPD P if it is an I-map of P, but it stops being if 
some edge be removed. 

2.5 Important Definitions 

A directed acyclic graph G  is considered optimal if it maximizes the global quality of 
a BN, i.e., if it is the directed acyclic graph most probabilistically adherent to P.  

The edges of interest are those that if inserted in a DAG G increase the quality of 
the network. Therefore, the presence of such edges is a necessary condition for a 
DAG to be optimal. These are called certainly-present edges. Inversely, certainly-
absent edges can exist. When they are eliminated of G, the quality of the network 
increase. 

An edge X~Y is certainly-present in a DAG G (locally optimal) or in your 
correspondent skeleton G  if ∀S⊆V\{X,Y}: (X ⊥/ Y|S)P and (Y ⊥/ X|S)P. Inversely, an 
edge X~Y is certainly-absent if ∀S ⊆ V\{X,Y}: (X⊥Y|S)P and (Y⊥X|S)P, where V is the 
set of variables in dataset D.  

Besides the edges certainly-present and certainly-absent, ambiguous edges can also 
exist. An edge X--Y or Y--X is considered ambiguous if (X ⊥/ Y|S)P given some subset 
S⊆V\{X,Y}, and (X⊥Y|S’)P given some other subset S’⊆V\{X,Y} with S’≠S. 

2.6 Necessary Path Conditional 

The necessary path condition can be seen as a local approach for the learning task, 
once this is conceived with the edges and present paths in the neighborhood of an 
absent edge. If (X⊥Y)p, then should exist a such S⊆V\{X,Y} in a path between X and Y 
that d-separates them. 

If X⊥Y, then should exist a S⊆V\{X,Y} in a path between X and Y that it d-separates 
them. The complete recursive path (sc-path) and incomplete recursive path (si-path) 
represent this concept in the necessary path condition. 



 

Fig. 2. Neighborhood of an absent edge X~Y, characterized by necessary path condition 
 
In the Fig. 2, small dashed lines represent si-paths, the solid lines represent the 

edges between a node and its parent-candidates and long dashed lines symbolize sc-
paths. 

According to the Fig. 2, for an edge X~Y to be absent in a skeleton, it is necessary 
to observe the following statements:  

i) If doesn't exist sc-path between X and Y, Fig. 2(a), then an si-path needs to be 
present: 

− Between X and the parent-candidates of Y, and  
− Between Y and the parent-candidates of X, and  
− Among the parent-candidates of X and Y.  

ii) If exist a sc-path between X and Y, Fig. 2(b) and 2(c), then a si-path needs to 
be present: 

− Between Y and each parent-candidate of X, and  
− Among the parent-candidates of X, or  
− Between X and each parent-candidate of Y, and  
− Among the parent-candidates of Y.  

According with the necessary path condition, if a skeleton is locally optimal, 
should exist a si-path among all pair of variables X,Y ∈ V. Inversely, if exist a pair of 
variables X,Y ∈ V so that not exist a si-path among them, the skeleton cannot be 
optimal. For more details see [11]. 

2.7 Minimal Skeletons 

The minimal skeletons (MS) assist the necessary path condition and they don't 
possess any certainly-absent edge. They are minimal in the sense that cannot remove 
any edge without violating the necessary path condition. In the set of all the skeletons 
that satisfy the necessary path condition are the minimal skeletons and those with 
some edges incorrectly inserted.  

All the optimal skeletons are among the graphs in conformity with necessary path 
condition. However, nor every optimal skeleton has to be minimal. Therefore, each 
MS is optimal or it is contained in an optimal skeleton. Thus, a MS is a sub graph of 
an optimal skeleton. 

X Y X Y X Y
(a) (b) (c)



3   PC Algorithm 

The PC algorithm is based on dependence analysis, and it produces good results given 
large datasets. This algorithm is called stepwise backward, because it begins with a 
complete undirected graph and with subsets SXY of Adjacent(X)\{Y} of cardinality 
zero, after cardinality one, and so on; edges (X,Y) are removed recursively of the 
complete graph when a marginal or conditional independence is found, using the 
statistical test G2. 

The main problem of the PC algorithm is that it doesn't possess a mechanism to 
consider and to treat mistakes in the independence tests. Therefore, edges with weak 
dependence relationship can be eliminated or maintained incorrectly in the final 
graph, as Fig. 7(a). 

4   XPC Algorithm 

The XPC algorithm seeks to repair the limitation of the PC algorithm treating possible 
mistakes in the conditional independence tests. The solution proposal is based on an 
approach introduced by Steck [11] called necessary path condition and a heuristic for 
optimizes the independence tests (subsection 4.2). The notion of ambiguous regions 
allows identifying sets of uncertain and inter-dependent edges. These structural 
ambiguities can be resolved for interaction with an expert domain. 

The necessary path condition is implemented in the XPC algorithm by rules. These 
rules can be simplified from way to reduce the uncertainty related to the presence of 
ambiguous edges. The XPC is constituted by four main phases, as below: 

 
XPC Algorithm 
1. Applies marginal and conditional independence tests; 
2. Generates the rules of necessary path condition; 
3. Simplifies the rules; 
4. Resolves the ambiguities. 

 
In the subsections below, the phases of XPC algorithm will be concisely presented. 

This paper does not present all details of the XPC algorithm. More information can be 
found in [5]. 

Asia

Tuberculosis

Dyspnoea

Tuber or Cancer

Bronchitis

Smoker

Cancer

X-Ray
 

 

Fig. 3. Real Asia Bayesian network 



 

An example using Asia Bayesian network (Fig. 3) shows the performance in each 
phase of the XPC algorithm. Asia is a well known fictitious medical example about 
whether a patient has tuberculosis, lung cancer or bronchitis, related to their X-ray, 
dyspnea, visit-to-Asia, and smoking status. This BN was introduced by Lauritzen and 
Spiegelhalter [16] and can be found in Norsys Website [15]. 

4.1 Independence Tests 

The tests of marginal and conditional independence are accomplished in the first 
phase of the XPC algorithm. Initially XPC tests the marginal independence among all 
the pairs of variables X,Y ∈ V, using MDL metric. If (X ⊥/ Y|φ)P then inserts an edge 
between X and Y in the skeleton. Fig. 4(a) shows the initial graph produced by this 
procedure.  

After XPC tests the conditional independence among all the pairs of variables 
X,Y∈V adjacent in G , conditioned to subsets S≠φ, where S⊆Adjacents(X)\{Y}. If 
(X ⊥/ Y|S)P, the edge between X~Y is maintained, otherwise is considered ambiguous 
(X--Y) and it will be manipulated by the necessary path condition. Fig. 4(b) shows the 
preliminary graph generated at the end of the phase one.  
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Fig. 4. Initial Graph (a) and Preliminary Graph (b) 
 

The main difference between PC and XPC algorithm is that PC eliminates an edge 
of the graph immediately when finding a marginal or conditional independence, while 
XPC uses the necessary path condition as heuristic to consider the uncertainty 
(mistakes) in the statistical tests.  

Therefore, edges that would be eliminated or inserted erroneously will be 
considered by the algorithm XPC by rules that will try to reinforce the independence 
hypothesis using the criterion d-separation. 

4.2 Heuristic for Optimizes Independence Tests 

The XPC algorithm uses the measure MDL as test of marginal and conditional 
independence among two variables. As presented in the sub section 2.2, the equation 



1 uses frequency count of the configurations observed in the data. Configuration is a 
joint state of the variables X, Y and of the variables of the condition set S.  

In real domains, as prevention of frauds in credit cards, the amount of used 
variables is very big and the number of states of each one surpasses a dozen [4]. 
Therefore, same having a considerable sample of data, several configurations are not 
present. This fact does with that the matrix of frequency calculated of the data is 
sparse, i.e. it contends a lot of cells with zero, what turns its representation in costly 
memory. Exemplifying with the practical application mentioned above, when the 
algorithm tried to accomplish a test of conditional independence between variable X 
and Y given a conditional set contends five variables, it exceeded a gigabyte of 
available memory.  

We propose a satisfactory solution for this problem, just storing in a matrix of 
frequencies the present configurations in the sample of data and using a B-Tree to 
index this matrix. In this way, the cells with zero won't be considered, reducing the 
necessary space for storage.  

Besides, the calculations with measured MDL already accomplished are stored in a 
hash table and recovered when necessary, reducing the number of calculations. 

4.3 Generates the Rules 

The XPC algorithm implements the necessary path condition by the rules c-rule and i-
rule. A c-rule is CR(Xr,CA,CC,CI) and an i-rule is IR(Xr,CA,CI) where Xr=[X,Y] is a 
pair of variables X,Y ∈ V; CA, CC, and CI are sets of pairs of variables, called 
condition sets. 

The CA set represents the need that a certain edge exists, the CC set represents the 
sc-path condition and the CI set represents the si-path condition. Together, these sets 
represent the conditions on the ones, which the edge Xr can be absent in a skeleton. It 
is considered that a certain rule was satisfied when all the conditions CA, CC and CI 
are found, in another words, when these sets are empty. A rule is generated for each 
ambiguous edge identified by the second phase of the algorithm. The example below 
shows the rules generated for the ambiguous edges S--C and S--TC, respectively, as 
Fig. 4(b). 

− CR([S,C],{[S,TC]},{[C,TC]},{[C,TC]}) 
− CR([S,TC],{[S,C]},{[C,TC]},{[C,TC]}) 

4.4 Rules Simplification 

After all the rules have been generated in the second phase of the algorithm, these can 
be simplified from way to reduce the uncertainty on the presence or absence of the 
ambiguous edges. In this phase some ambiguous edges can be eliminated. For a 
specify ambiguous edge X--Y to be absent it is necessary that at least a rule will be 
satisfied for this pair of variables. In other words, all the sets conditions CA, CC and 
CI should be empty after the simplification process. The phase of simplification of the 
rules is composed by three procedures: remove satisfied conditions, condition graph 
and reduction of the number of rules [5]  



 

After the rules simplification phase is possible to identify the inter-dependence 
among the ambiguous edges. An ambiguous region consists of a set of inter-
dependent uncertain edges. The edge (C,TC) was eliminated of the rules set CC and 
CI because it is an edge certainly-present. The Fig. 5 exemplifies the identification of 
the inter-dependences based on the rules set. 

 
CR([S,C],{[S,TC]},{},{})  
CR([S,TC],{[S,C]},{},{}) 

 
Fig. 5. Conditional Graph representing inter-dependence 

4.5 Resolves the Ambiguities 

In this phase of the XPC algorithm the identified ambiguous regions are exhibited 
graphically in an only summary graph, which allows to identify and to solve the 
structural uncertainties visually, as Fig. 6(a).  
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Fig. 6. Summary graph representing ambiguous regions 
 
Thus, the domain expert can to select and to confirm the existence of an ambiguous 

edge and the algorithm automatically eliminates the other inter-dependent edges. 
Inversely, when the expert eliminates an ambiguous edge the algorithm automatically 
confirms the existence of the other inter-dependent edges. The Fig. 6(b) shows the 
graph generated after resolving the structural uncertainties. 

5   Empirical Evaluation 

The intention of the next example is to show more explicitly the comparison of the 
performance of PC and XPC algorithms. The graph shown by the Fig. 7(a) was 
generated by PC implemented by the software Tetrad IV [10] and the graph shown by 
the Fig. 7(b) was produced by XPC implemented by us in the software UnBBayes [6]. 

Comparing the graph of the Fig. 6(a) with the Fig. 7(a) it can be observed that the 
edges inserted erroneously by the PC were considered by XPC as ambiguous and 
handled by the necessary path condition. This positive characteristic of the algorithm 

S,C S,TC



here proposed gets the attention of the domain expert for structural uncertainties that 
would be arbitrarily inconsiderate by PC algorithm. Thus, it is evidenced that XPC 
produces better results than the PC algorithm. 

Both algorithms use the procedures proposed by Pearl to orient the edges [7]. 
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Fig. 7. Final result produced respectively by the PC and XPC 
 
Several experiments were accomplished using known benchmarks, such as Asia, 

Fire, Mendel Genetics and Cancer in order to compare the structures induced with the 
originals in a qualitative form. Most of these files containing the description of the 
conditional probability tables and the BN structures were taken from the Norsys 
Website [15]. The structures generated by the XPC algorithm were also compared 
with those produced by the algorithms TPDA de Cheng, Bell and Liu [2], PC [10]. 

The comparison criterion used was the number of structural errors that is the sum 
of the number of extra edges plus absent edges in relation to the structures real of the 
Bayesian networks cited above. Different sizes of samples were generated from the 
real Bayesian networks using the procedure of cases generation of Norsys Netica [15]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Results of the accomplished experiments with Asia and Fire 
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Fig. 9. Results of the accomplished experiments with Mendel and Cancer 
 
According with the graphics of Fig. 8 and 9, the XPC algorithm had smaller 

variation than others when the size of the datasets was reduced. This happens because 
the XPC considers the uncertainty in the presence of some edges among variables 
with weak dependence in the joint probability distribution. This evidences the 
characteristic of the XPC of producing good results even when the volume of data is 
small. 

6   Conclusions 

This paper explored the structural learning in Bayesian networks, considering the 
neighborhood of each edge when deciding on presence or absence of this. That is 
done using the necessary path condition that was derived from the properties of 
optimal DAG. This condition allows an edge to be only absent if other edges or path 
are present in its neighborhood. Thus, it identifies inter-dependence among the edges, 
producing alternative structures. 

Compared to the other algorithms based on dependence analysis, the XPC 
algorithm reduces the number of structural errors. That happens because the XPC 
algorithm does not eliminate an edge of the graph immediately when meeting a 
correspondent conditional independence. These uncertain edges are considered by the 
rules that implement the necessary path conditional, identifying structural 
ambiguities. These ambiguous structures can be shown to the domain expert in an 
summary graph, what facilitates the interpretation of multiple solutions. This fact 
increases the reliability and acceptance of the generated models. 

The XPC algorithm and the heuristic for optimizing the independence tests are the 
main contributions of this research. It produces good results in structural learning in 
Bayesian networks even when it is not had a large dataset. That algorithm is available 
in the framework UnBBayes [6] that is a GNU GPL license open source software. 

Josep Roure [9] proposed a heuristic approach for incremental learning i.e. to 
update the model with new distribution of the data. In this way, the computation effort 
is reduced once it will not be necessary to execute the process of learning of the 
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beginning. Roure assumes that is possible to store in memory whole statistical 
sufficiency. However, that representation has quadratic complexity in the number of 
variables and in the number of states of them, what became infeasible when we have 
so many variables. As a future work, the same heuristic for optimizing the 
independence tests proposed by this paper can be adapt to optimize the representation 
of the statistical sufficiency requested by the incremental algorithm of Roure.  
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