
Contextual Ontology Definition Metamodel

Ma. Laura Caliusco1, César Maidana1, Ma. Rosa Galli1,2, and Omar Chiotti1,2

1 GIDSATD – UTN – FRSF, Lavaisse 610 – 3000 Santa Fe - Argentina

{mcaliusc, cmaidana}@frsf.utn.edu.ar
2 INGAR-CONICET, Avellaneda 3657 – 3000 Santa Fe – Argentina

{mrgalli, chiotti}@ceride.gov.ar

Abstract. An effective collaborative B2B relationship requires the right modeling of
collaborative processes and business information needed to support these processes.
Business information modeling implies modeling the data syntax and semantics. In
order to model information semantics there are some ontology specification
languages. However, from a B2B perspective, the main disadvantage of these
languages is that they are mostly based on logic formalisms to support machine
reasoning. This makes the language syntax unfamiliar to business analysts who
model the business information to be exchanged within collaborative processes. The
objective of this paper is to present a metamodel for modeling explicit and formal
contextual ontologies, for human processing, associated to business documents.

Keywords. Contextual ontologies, B2B e-commerce, Metamodel, UML, XML.

1 Introduction

Today, global customers demand more quantity, better quality, a better service, more
choices and more innovation. For getting all of these, the global customers neither like to
spend much time in getting it, nor do they take any risk but prefer to pay a reasonable
price. In this scenario, technologies associated to collaborative B2B relationships are the
most vital tools to meet these challenges.

A collaborative B2B relationship implies business information interchange between
business partners, and cross-company business interactions are still a problem. When
information passes between companies, errors, inconsistencies and misunderstandings
occur very often, leading to wasted work efforts. To solve this problem XML-based
specifications were defined to exchange business information between partners. These
specifications propose to use the same vocabulary, that is, the same collection of terms.

However, this is unrealistic since in the same department of different enterprises, people
could use the same term to define different concepts. This problem is known as semantic
interoperability problem. In order to overcome this problem we have to explicitly define
the meaning of the terms, i.e., its semantics [5].

A common approach to represent semantics is to use an ontology. However, there is an
emerging approach that combines an ontology with their context definition [2]. That is, a
concept is true or false depending on its context. So, if we explicitly define the context, we
avoid misunderstanding. The resulting structure is called contextual ontology.

To process a contextual ontology at run time, it has to be expressed in a machine
processable language. Recently, some languages have appeared, i.e, C-OWL [2].
However, from B2B perspective, the main disadvantage of contextual ontology
specification languages is that they are mostly based on logic formalisms to support
machine reasoning. This makes the language syntax unfamiliar to business analysts who
model the business documents to be exchanged. Furthermore, the collaborative processes
and the business documents have to be implemented by software engineers who have to
interpret the information model.

A model consists of sets of elements that describe some physical, abstract, or
hypothetical reality. Good models serve as means of communications [13]. In order to
overcome the gap between people involved in the business documents definition and
ontology specification languages, an ontology modeling language is needed.

A metamodel is simply a model of a modeling language. It defines the structure,
semantics, and constraints for a family of models. A model is captured by a particular
metamodel [13].

Our goal is to define a metamodel that assists business analysts in the modeling of
contextual ontologies. The objective of this paper is to present a metamodel for modeling
explicit and formal contextual ontologies, for human processing, associated to business
documents. Firstly, we present a metamodel derived from UML 2.0 infrastructure. Then,
we analyze the relationship between XML specifications and ontologies in order to add
formal and explicit semantics to business documents. Finally, we present our conclusions
and future work.

2. Contextual Ontology Definition Metamodel.

In order to overcome the gap between people involved in the business documents
definition and ontology specification languages, there are proposals for using UML as
ontology modeling language [7]. But, UML itself does not satisfy needs for representation
of ontology concepts that are borrowed from Descriptive Logic and that are included in
ontology specification languages [8], like the Web Ontology Language (OWL). The
Ontology Working Group is defining the Ontology Definition Metamodel (ODM) [14].

The ODM is a MOF2 (Meta Object Facilities) compliant metamodel that allows a user to
define ontology models using the same terminology and concepts as those defined in
OWL. OWL is a semantic markup language for publishing and sharing ontologies on the
World Wide Web [12]. So, the ODM is driven by the OWL language. Furthermore, in this
metamodel the context definition is supported by using annotations. But, some concepts
are true or false depending on their context. It is well known a human being does not
reason without context.

Our goal is to define a metamodel that assists business analysts in the modeling of
contextual ontologies. The typical role of a metamodel is to define the semantics for how a
model element in a model gets instantiated. In order to define the proposed metamodel we
have imported some elements of the Core::Abstractions and Core::PrimitiveTypes
Packages of the “UML 2.0: Infrastructure” specification [16]. The Core::Abstractions
contains a set of metaclasses, most of which are abstracts, to be specialized when defining
new metamodels compliant with MOF2. The Core::PrimitiveTypes simply contains a
number of predefined types that are commonly used when metamodeling.

The main design principles of the metamodel are: (1) easy to use in rapid development
of contextual ontologies from business documents, (2) modularity and (3) high
independence degree of conextual ontology specification languages.

In order to fill the modularity design principles, the metamodel constructs were grouped
into packages. The main package is the Kernel Package which imports the reused elements
from Infrastructure::Core Package. All metamodel elements are derived from Kernel
elements.

Each element of the metamodel is described by using a description, constraints and
semantics. The description includes an informal definition of the element. The constraints
are the well-formedness rules which must be satisfied by all instances of a metaclass for
the model to be meaningful. Semantics is the meaning of a well-formed construct and it is
defined using natural language.

Following we define the main packages of the proposed metamodel.

2.1 Ontology Package

This package contains classes and associations that can be used to define an ontology. The
ontology term has been widely discussed in the AI area [6]. An ontology represents an
explicit specification of domain conceptualization. A domain conceptualization names and
describes the entities that may exist in that domain and the relationships among those
entities. It therefore provides a vocabulary for representing and communicating knowledge
about the domain [9].

An ontology can be defined as a set of terms and relations between them. Furthermore, it
is suitable to add properties and axioms to enrich the ontology. The set of properties

defines the characteristics of terms. Axioms are properties of the relations. For example,
PurchaseOrder is a sub-class of Order, and this relation is not a symmetric one (axiom).

Figure 1 represents the classes and associations of the Ontology Package. The main
component is Ontology class that includes definition of concepts used to describe and
represent a domain. This class is associated with the OntologyElements abstract metaclass,
which groups the objects of an ontology metamodel. If an ontology is removed, so are the
elements owned by it. The association imports represent that an ontology could contain
definitions whose meanings are defined in other ontologies. The association prior_Version
identifies the referred ontology as a prior version of one ontology. Each ontology element
could be described by a comment, represented by the Documentation class which derived
the Comment abstract class. The Body atribute specifies a string that is the comment. This
class intend to model, for example, the xsd:annotations elements from XML-based
documents.

The Feature class intend to represents the characterisctics of an ontology such as,
creation date, version and so on.

NamedElement

+ name : String
+ namespace : URIreference.. .

(from Kernel)

Co mment

+ Body : String

(f rom Kernel)

Documentation

+ T ype : St ring

Ontolog yE le ments
(from Kernel)

Feature

+ Name : String
+ Value : String

Ontolo gy

0..10..1

prior-Version

0..n0..n

imports

+onto logy+ownedElement 0..n0..n

features

Element
(from Kernel)

Figure 1. Elements defined in the Ontology package.

2.2 Properties and Terms Package

This package contains classes and associations that can be used to model terms and their
properties. Terms represent the set of concepts that a business analyst wants to represent in
an ontology. A term can be simple or complex. Simple terms have literal of some kind as
their values. Complex terms are composed by simple terms.

Properties describe the features of a term. For example, allowed values, the number of
the values, and other features of the values that a simple or complex term could take.

The metamodel that represents the relation between Properties and Terms is presented
in Figure 2. In the proposed metamodel, the class Properties defines the features of a term
so if a term is removed the properties owned by it have to be removed also. However, in
an ontology specification language one property could exist independently. That is
represented by the 0..1 cardinality in the +property association.

ComplexDataType
(from DataType)

Simple1 +type1

OntologyElements
(from Kernel)

TermsValueSpecification
(from Kernel)

Properties
0..n

+property
0..n 0..1

1 0..1
+specification

1 0..1

Figure 2. Elements defined in the Properties and Terms Package.

2.3 Relations Package
This package contains classes and associations that can be used to model relations
between terms belonging to an ontology. Relations can be divided into hierarchical
relations (is-a, part-of and inst-of relations), conceptual relations (synonym and antonym)
and particular relations (defined by the modeler).

The relations’ metamodel is presented in Figure 3. Terms and Relations classes are
associated via the RelationEnd class. An instance of Relations class has to be associated at
least with two instances of RelationEnd class, it is indicated with the label 2..n.
RelationEnd class is associated with one Terms class and contains the information about

cardinality and the role of terms. Furthermore, this class has the Navigable attribute to
represent the direction of the relation.

One important requirement for ontologies is the ability to structure the relations into
hierarchies, i.e., to define sub-relations of a relation. Furthermore, it is suitable to define
equivalent relations and inverse relations. Subrelationof, inverseof and equivalentto
relations model these characteristics.

Terms
(f rom Terms and Propert ies)...)

RelationEnd

+ M inCardinality : S tring
+ M axCardinalit y : S tring
+ Role : Stri ng
+ Navigable : Boole an

0..1

1

0..1

1

target1

0..1

1

0..1source

Rel at ions2..n 0..12..n 0..1

Hierarchi cal Conceptual

Synonym Antonymis-a part-of inst-of SimpleRelationComposit eRe lat ion

Particular

+ Description : String

1..n1..n

0..10..1

subrelationof

0..10..1

inverseof
0..10..1

equivalentto

OntologyElements
(f rom Kernel)

Figure 3. Elements defined in the Relations Package.

2.4 Axioms Package

This package contains classes and associations that can be used to describe axioms about
relations. Axioms are properties of relations that help to constrain interpretation of
concepts. Furthermore, they provide guidelines for automated reasoning. In the knowledge
engineering area, axioms have been represented using logic languages. In the UML class
diagram, axioms could be expressed by OCL [16]. For example, OCL constraints have to
be used to declare a transitive property of a relation between terms. However, describing
such constraints may involve writing moderately complex OCL expressions that are not
immediately understandable to a human reader. In addition, there may be several different
expressions encoding the same constraint. An interesting issue is to represent axioms as
objects [15].

Axioms can be divided into two subsets: the set of axioms for relational algebra and the
set of particular axioms. That is, the axioms defined by users. We include symmetric,
reflexive, transitive and functional axioms as relational algebra axioms.

Figure 4 represents the metamodel for modeling axioms and their association with the
class Relations.

Relations
(from Relations)

Axioms

0..1 1..n0..1 1..n
onRelations

Relational

Symmetric Transitive Asymmetric Reflexive

Period
+ Start : Date
+ End : Double

AParticular
+ Description : String

11temporal

OntologyElements
(from Kernel)

Functional

Figure 4. Elements defined in the Axioms Package.

2.5 Context Package

This package contains classes and associations that can be used to describe a context. In
the area of AI there is a large amount of discussion about context [10][3]. From B2B
perspective, a context can be defined by a collection of relevant assumptions that make a
situation unique and composed by the real content. The assumptions are the characteristics
or attributes that define the context, i.e., a description of a context; and the real content is
the ontology. Following, we present the definition of a context and then the class diagrams
that represent a context.

Definition 1. Let J be a set of indexes j , a context Cj Jj ∈∀ can be defined as a 3-tuple
<c, Dj, Oi,j>, where c is the unique identifier of the context j, Dj is a set of assumptions
about context j and Oi represents the ontology i within the context j.

NamedElement

+ name : String
+ namespace : URIreference

(from Kernel)

SimpleContext

Ontology
(from Ontology)

Assumptions
+ Value : String

Context
1..n 0..1

+ownedOntology
1..n

+context
0..1

0..10..1

derivedfrom

0..10..1

prior-version

1..n1..n

CompositeContext

1..n
0..1

1..n
0..1

Figure 5. Elements defined in the Context Package.

In the class diagram of Figure 5, we associate the Context class with one or more
Ontology classes and with one or more Assumptions classes. In [1] the following
components are defined as assumptions: the owner of the context, the group in which the
context has been developed, the security information and information on how a context
was generated. But, we preferred to define the class in general to allow a user to define
their own Assumptions. In addition, a context could be derived from other context and this
is modeled by the derivedfrom association.

Furthermore, a context could be a simple one or a complex one. That is, a context could
be formed by other contexts. For example, the context of supplier could be composed by
different contexts that represent different domains that compose an enterprise, such as
Forecasting, Planning, Scheduling, Product Design, and so on.

2.6 Context Mapping Package

This package contains classes and associations that can be used to define the mappings
between terms that belong to different contexts. A context mapping allows us to state that
a certain property holds between elements defined in different contexts. A context
mapping is defined by bridge rules as linking rules between contexts. Following we define
context mappings and bridge rules.

Definition 2. A context mapping tsM , can be defined as a 3-tuple <cs, ct,BR> where: cs

identifies the context source, ct identifies the context target and BR represents the set of
bridges rules that map an element from source context to elements of the target context.

Mappings are directional, i.e., Ms,t is not the inverse of Mt,s. A mapping Ms,t might be
empty [2]. That means that there is no relation between both contexts.

Definition 3. A bridge rule br can be defined as a 3-tupple >< Ree ts ,, where: se is an
element from source context, te is an element from target context and R is the relation
between elements.

A bridge rule from context s to context t is a statement of one of the following forms,
where ei and ej are elements of context cs and ct respectively.

 (1) (2) (3) (4) (5)

Rule (1) means that ei is similar to ej. For example, Forecasting:Item →≡
Scheduling:Item.

Rule (2) means that both elements are disjointed. For example, Forecasting:Forecast

→⊥ Scheduling:Employee.

Rule (3) means that ei and ej are compatible elements. For example,
Forecasting:Forecast →* Scheduling:Schedule (an Schedule derives from a Forecast).

Rule (4) means that ei is less general than ej and

Rule (5) means that ei is more general than ej. For example,
Forecasting:Bucket →⊇ Scheduduling:Date (bucket: valid forecast time period).

Finally, we have to define the container of all the above defined elements. This container
is the domain space concept. That is, the contexts and the rules that relate the elements
between context and context mapping are contained in a domain, which in our example is
the B2B collaborative domain.

Definition 4. A domain space is defined as a duple that contains all contexts Cj Jj ∈∀ and
the set of mappings Ms,t tsJts ≠∧∈∀ , .

jtis ecec :: *→jtis ecec :: →⊥
jtis ecec :: →≡

jtis ecec :: →⊆
jtis ecec :: →⊇

Element
(from Kernel)

NamedElement

+ name : String
+ namespace : URIreference

(from Kernel)

DomainSpace
+ Description

Context
(f rom Context)1..n0..1 1..n0..1

Mapping
1..n

0..1

1..n

0..1

11

target

11

source

OntologyElem ents
(from Kernel)

Rule
+ Stereotype : Object

BridgeRule
1..n0..n 1..n0..n

22

1
1

1
1

Equivalence MoreGeneral LessGeneral Compatible Dis junct

Figure 6. Elements defined in the Context Mapping Package.

Figure 6 represents classes and associations to model the context mapping, bridge rules
and domain space. The DomainSpace class is associated with one or more Context and
Mapping classes. A BrigdeRule class associated with Rule class could be one of the five
rules defined above.

3 A Case Study

The main characteristic of a collaborative B2B relationship is that a customer and a
supplier define business processes to be jointly executed, such as Forecasting and
Scheduling Processes, and business information within them, such as, product requirement
information.

In order to integrate this information to their own information systems, both parties have
to know what the information exactly means. For example, the meaning of the
“requirement information” depends on the business collaborative process. That is, at
Forecasting Process level “requirement information” means a demand forecast sent from a
customer to a supplier. At Scheduling Process level, “requirement information”�means a
supply schedule sent from a supplier to a customer. To inform this information between a
customer and a supplier the structure of the business document could be the same, i.e. as
shown in Figure 7; but the semantics changes.

1) <xs:complexType name="ReplenishmentOrder">
2) <xsd:simpleType name = "Description">
3) <xsd:restriction base = "xsd:string">
4) <xsd:maxLength value = "40"/>
5) </xsd:restriction>
6) </xsd:simpleType>
7) <xsd:element name = "Item" type = "Items"/>
8) <xs:annotation>
9) <xs:documentation> Customer’s actual requested amount of the item </xs:documentation>
11) </xs:annotation>
12) </xs:element>
13) <xsd:complexType name = "LocalAddress">
14) <xsd:complexContent>
15) <xsd:extension base = "Address">
16) <xsd:element name= "zip" type = "xsd:string"/>
17) </xsd:extension>
18) </xsd:complexContent>
19) </xsd:complexType>
20) <xs:complexType/>

Figure 7. A fragment of the business document: Replenishment Order

If business analysts do not define in an unambiguous way the semantics associated to
the information, a problem arises when the software engineer wants to integrate business
documents information to its own information system [5]. Furthermore, the information
stored in trading partners information systems have to be mapped into business
documents.

First of all, trading partners have to define the context and the characteristics that make
the context unique. For example, they could define the “Forecasting” context and decide
the schemas of business documents that will be interchanged during this collaborative
process.

Following we present some rules to model terms belonging to a XML-based business
document:

1. The xsd:complexType element has to be modeled by the class Complex. For
example, from the document defined in Figure 7, line 1 and line 13, we can model
ReplenishmentOrder and LocalAddress terms as complex terms.

2. The xsd:simpleType element has to be modeled by the class Simple. For example,
from the document presented in Figure 7, line 2, we can model Description
element as a simple term.

3. Then the elements defined by xsd:element tag could be simple or complex
depending on its type definition. That is, if they are defined as a base xsd type, they

are simple terms. For example, on line 16 the zip element is defined as xsd:string.
So, this element has to be modelled as a simple term. Then, on line 7, the Item
element is defined as Items. In order to determine whether it is a simple or complex
term we have to analyse if Items has been defined as a simple or complex term.
This definition is not in this document. So, we suppose that Items was defined as a
complex term.

4. Furthermore, the xsd:restriction element has to be modelled by Properties class.
For example, on line 3 the Description element is restricted by using
xsd:restriction definition so this characteristic has to be modelled as a property of
the Description term.

In addition, the relationships between concepts can be derived from an XML document
as follows:

1. The xsd:extension element represents the is-a relationship between terms. For
example, in Figure 7 line 15, the <xsd:extension base = "Address"> definition
states that the previously defined element (LocalAddress) is-a Address.

2. The combination of complexType and element primitives represents the part-of
relationship between terms. For example, all elements defined between the
complexType primitives that define the ReplenishmentOrder term are related to
it by the part-of relation. That is, Date, Description, Items and LocalAddress
are part-of ReplenishmentOrder.

3. The element primitive represents the Inst-of relation between terms.

Figure 8 presents the sintactic and semantics models of the terms belonging to the XML-
based document shown in Figure 7. The semantics model was obtained by applying the
rules defined above. The notation used to graphically represent this model is based on the
UML notation by using UML stereotypes. However, we are working on the definition of a
graphical notation for the metamodel presented in this paper. The tool, called VCODe
Tool, is based on agent technology [4] and it is still in progress.

Fig. 8. Sintactic and semantics models of an XML-based document.

4 Conclusions and future work

An effective collaborative B2B relationship requires the right modeling of collaborative
processes and each message within these processes. Each message contains business
information that may be defined by a vocabulary that is shared by the parties engaged in
the B2B relationship. XML (eXtensible Markup Language) is becoming widely used for
defining specifications that define both the process and the business documents. However,
these specifications are not easy to implement due to the heterogeneity problem at
semantic level because XML does not express semantics by itself.

In order to fill the gap between people involved in the business documents definition
and ontology specification languages we have defined a Contextual Ontology Definition
Meta-model. This metamodel allows business analysts to explicitly model the contextual
ontologies. Ontologies and contexts have to be integrated in order to solve the semantic
heterogeneity problem and this is the main characteristic of the proposed metamodel. On
the one hand, ontologies define concepts and relationships between them. On the other
hand, contexts are useful tools to model concepts since the latter are true or false
according to their contexts.

Furthermore, in this paper we present an approach to automatically generate an
ontology model from a XML-based document. This approach is being implementing in a
visual tool.

The future directions will be focus on the mapping between the contextual ontology
definition language presented in this paper and one contextual ontology specification
language.

REFERENCES

[1] Bouquet, P, Dona, A, Serafini, L and Zanobini, S. Contextualized local ontologies
specification via CTXML. AAAI-02 Workshop on Meaning Negotiation (MeaN-02) July 28,
2002, Edmonton, Alberta, Canada.

[2] Bouquet, P; Giunchiglia, F.; van Hamerlen, F.; Serafini, L and Stuckenshmidt. C-OWL:
Contextualizing ontologies. In the Proceeding of the Second International Semantic Web
Conference, 2003. 164-179.

[3] Brézillon, P. (1999) Context in problem solving: A survey. The Knowledge Engineering
Review, 14 (1), 1-34.

[4] Caliusco, Ma. L.; Maidana, C.; Chiotti, O. and Galli, Ma. R. Propuesta de un Sistema
Multiagente para Asistir al Modelado de Documentos de Negocio. Accepted to be presented in
Argentine Symposium on Information Systems (ASIS 2004). September 20-24. Argentina.

[5] Caliusco, Ma. Laura, Galli, Ma. Rosa and Chiotti, Omar. Ontology and XML-based
specifications for collaborative B2B relationships. In Proceeding of III Jornadas
Iberoamericanas de Ingeniería de Software e Ingeniería de Conocimiento (JIISIC). Valdivia
(Chile). November 2003.

[6] Corcho, O., Fernández-López, M., Gómez-Pérez, A. Methodologies, tools and languages for
building ontologies. Where is their meeting point?. Data & Knowledge Engineering 46 (2003)
41–64.

[7] Cranefield, S., Haustein, S. and Purvis, M.. UML as an ontology modelling language. In
Proceedings of the Workshop on Ontologies in Agent Systems, 5th International Conference
on Autonomous Agents, Montreal, Canada, 2001.

[8] Duric, D.; Gasevic, D; Devedzic, V. A MDA-based Approach to the Ontology Definition
Metamodel. Proceedings of a 4TH Workshop On Computational Intelligence And Information
Technologies. October 13, 2003, Faculty of Electronics, Niš, Serbia.

[9] Farquhar A, Fikes R, Rice J (1997) "The Ontolingua Server: A Tool for Collaborative
Ontology Construction". International Journal of Human Computer Studies 46(6):707-727

[10] Giunchiglia, F. and Bouquet, P. "Introduction to contextual reasoning. An Artificial
Intelligence Perspective", in B. Kokinov (ed.), Perspectives on Cognitive Science, 3, NBU
Press, Sofia (Bulgaria) 1997. http://dit.unitn.it/~bouquet/pers-publ-engl.html

[11] Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith, J. UML for
Ontology Development, Knowledge Engineering Review Journal Special Issue on Ontologies
in Agent Systems, 2002 Vol. 17.

[12] McGuinness, D and van Harmelen, F. OWL Ontology Web Language - Overview. W3C
Recomended Propesed. December 2003. http://www.w3.org/TR/owl-features/.

[13] Mellor, S; Scott, K; Uhl, A. and Weise, D. MDA Distelled – Principles of Model-Driven
Architecture. ADDISON-WESLEY, 2004.

[14] Ontology Definition Metamodel (ODM). Initial Submission to OMG. August, 2003.

[15] Staab, S; Mädche, A.. Axioms are objects, too - Ontology Engineering Beyond the Modeling
of Concepts and Relations. In: V.R. Benjamins, A. Gomez-Perez, N. Guarino (eds.).
Proceedings of the ECAI 2000 Workshop on Ontologies and Problem-Solving Methods.
Berlin, August 21-22, 2000.

[16] UML 2.0 Infrastructure – Final Adopted Specification. September, 2003.

