
From Design Rationale to Reengineering Rationale:
Lessons Learned in a Maintenance Pilot Case Study

Maria Istela Cagnin *1, Débora M. B. Paiva1♦, José Carlos Maldonado1,

Rosângela Dellosso Penteado2, Renata P. M. Fortes1, Fernão Stella R. Germano1
1Universidade de São Paulo – USP

Instituto de Ciências Matemáticas e de Computação
São Carlos-SP, Brazil, CEP 13560-970

{istela, debora, jcmaldon, renata, fernao}@icmc.usp.br
2Universidade Federal de São Carlos – UFSCar

Departamento de Computação
São Carlos-SP, Brazil, CEP 13.565-905

rosangel@dc.ufscar.br

Abstract. Software can be considered an organizations asset, because it evolves and
incorporates value as business rules change. So, it is important that good techniques
be used in software development, in order to assure that its lifecyle is extended. One
of these techniques is Design Rationale, which documents all the project decisions
made during software development in order to ease revision, maintenance,
documentation, evaluation and project learning. Design Rationale has been used in
this paper in a context different than software development, in the reengineering of an
electronic repair shop control legacy system, and the term Reengineering Rationale
(RR) is used. In order to observe the behaviour of that technique in this context, a
pilot case study has been conducted for analysing its importance to perfective
maintenance of systems, resulting of reengineering. For this pilot case study two
hypotheses have been formulated, one concerning the support provided by RRs to
perfective maintenance and the other to maintenance time reduction. This paper
discusses the results obtained and the lessons learned of a pilot case study conducted
in academic environment.

Key words: Design Rationale, Maintenance, Pilot Case Study.

1. Introduction

Software is a product that evolves continuously to satisfy its user needs.
Furthermore, it is considered as an organizations asset, because it evolves and
incorporates value as the business rules change. So, it is necessary that good
techniques be used in its development or reengineering, in order to ease maintenance
activities and, consequently, extend its lifecyle, assuring the return of investiments
done by the organization. Design Rationale (DR) is one of the techniques that have to
be used as, according to Gruber & Russel [13] e Moran & Carroll [16], it explains
“how” and “why” an artifact has been designed in a certain way. So, DR can describe:
(1) the reasoning used to obtain a certain final design, for example, how the system
architecture meets the desired functionalities; (2) why certain architecture has been

* Financial support by FAPESP, # 00/10881-4
♦ Financial support by Capes

choosen over the other alternatives; and (3) which system behaviour is expected and
under which operational conditions. Under the same perspective, Lee [15] considers
that DRs are important because they include the reasons behind a design decision and
their justification, the other alternatives considered and all the argumentation that led
to the decision.

As DR offers help in conducting revision, maintenance, documentation,
evaluation and project learning activities [6], it can be extremely useful for reuse of
previous projects [1, 20], for coordination of people that belong to a team work [9],
for promotion of critical reflection during project development [11] and for artifact
maintenance [2]. DR concepts are extended in this paper to the reengineering context
and the Reengineering Rationale (RR) term is used.

The objective of this paper is to show the planning, execution, results and
lessons learned of a pilot case study in order to evaluate the importance of RRs in the
perfective maintenance of an electronic repair shop control system, resulting of a
reengineering process application. For this pilot case study two hypotheses have been
formulated, one concerning the support provided by RRs to perfective maintenance
and the other concerning that maintenance time reduction.

In Section 2, the related work is discussed. In Section 3 the pilot case study
definition and planning is presented, based on Wholim et al. purpose [22]. In Section
4 the pilot case study execution is reported. In Section 5 the results obtained and
lessons learned are discussed. In Section 6 the final remarks and suggestion for future
works are presented.

2. Related Work

According to Tervonen [21], Rittel [18] was the first to advocate systematic
documentation of DR as part of design, and the origin of recorded software design
rationales can be traced to Freeman's paper [12] in which he explains how these could
improve design review.

Recent research has the tendency to combine DR systems with design support
tools in different areas, such as, Mechanical Engineering and Civil Engineering.
Furthermore, different forms of DR capture have been investigated with the objective
of making that activity more automatic, less intrusive and less expensive.

Empirical work has been done in recent years with the objective of
investigating how DR can be applied in project development. The results obtained
show that usually the efforts spent in DR capture are worth doing, considering the
benefits that can be obtained when maintenance, reuse and project learning activities
are conducted. Such results show the value of carrying out empirical studies with
respect to using DR information.

Karsenty [14] evaluated the use of DR documents in mechanical engineering
design. The goal of that study was to evaluate how useful DR documents are. Six
experienced professional designers were asked to understand and to assess a previous
design. These tasks were chosen because they are considered by the designers as very
important when they need to work on the results of a previous study. These designers
were provided with documents that described the solution and other documents
describing DR. They were free to use blueprints and DR as they chose. To determine
the usefulness of DR documents, the author attempts to answer the three following

questions: (1) Do designers confronted with an unknown design need to know the
design rationales? (2) How designers use design rationale documents? (3) Do we
succeed in capturing the rationales looked for by designers? It was concluded that DR
is useful for some designers who use it as support to their reasoning, but it is not
sufficient to completely answer the designers questions.

Conklin and Burgess-Yakemovic [10] did field trials for software development
using extensions of a DR scheme, named IBIS [9]. They studied planning design
meetings in an industrial setting for eighteen months. This case study identified key
points during the technology transfer issues, when introducing rationale methods,
such as the presence of a team leader and a clear argument supporting data relative to
the costs and benefits of the approach. They found that capturing DR is useful during
the requirements analysis and design stages.

Bratthall et al [5] carried out a controlled experiment where the value of
having access to a retrospective DR is evaluated both quantitatively and qualitatively.
The hypothesis was that changes would be faster and more correct if such information
was available during change impact analysis. Realistic change tasks were applied by
seventeen subjects from both industry and academia on two complex systems from
the domain of embedded real-time systems. The results from the quantitative analysis
shown that, for one of the systems, there was a significant improvement in correctness
and speed when subjects have access to a DR document. In the qualitative analysis,
DR was considered helpful for speeding up changes and improving correctness.

Shull et al. [19] introduce an empirical methodology, based on experiences
gathered over more than two decades of work, for transferring development processes
from the conceptual phase to industry. The methodology presents a series of questions
that should be addressed, and that evaluate and provide feedback for the four steps of
the methodology (feasibility study, observational study, case study: use in real
lifecycle and, case study: use in industry). This paper pilot case study complains with
the methodology two first steps.

3. Pilot Case Study Definition and Planning

Pilot Case Study Definition:

Object of study: Reengineering Rationale (RR).
Purpose: Piloty case study to validate an experiment design, which aims to

evaluate the importance of RRs in the perfective maintenance of an electronic repair
shop control system, resulting of a reengineering process application.

Quality focus: Importance of RRs usage to support maintenance.
Perspective: Related to software engineers interested in RRs usage to support

system maintenance.
Context: The pilot case study planned for twelve graduate (master and doctor

degrees) students. The following artifacts are available for the pilot case study
conduction: requirements document, system class diagram, use case diagram,
business rules documentation, system user manual, system source code in Smalltalk
language with about 2.2 KLOC. These artifacts have been created in a reengineering
process application using the PARFAIT agile process [7]. The pilot case study has

two treatments (that is, comparison of the maintenance activity with and without RRs
usage).

Pilot Case Study Planning:

Context Selection: The system to be maintained is the result of a
reengineering process application to a legacy system that controls entry and exit of
electronic appliances in a repair shop. Legacy system, originally developed in Clipper,
has been migrated to Smalltalk and MySQL DBMS [17]. The resulting system has
about 2.2 KLOC, considered of medium size.

The RRs have been collected by a software engineer, immediately after the
reenginnering end and are documented in IBIS format, which records questions
arosen during the project as well as all the positions and argumentations of designers
about each question. An example of RR is presented in Figure 1. The argumentation
considered by the software engineer has a (�) mark. The pilot case study results aim
to supply important information to other software engineers about the possibility to
use RRs to support systems maintenance.

...

Question
Name How long has the repair shop to wait for the appliance to be retrieved before

discarding it?
Status Ready
Date March 10, 2003

Position
Title The repair shop must wait six months before

discarding the appliance, in case the owner
does not retrieve it within that period.

Key words -
Content -
Against Argumentation Favor Argumentation ����
Title Too long Title Reasonable Time
Key words - Key words -
Content Too long waiting time.

Could be a maximum of one
month. In that case, it would
not be necessary for the
repair shop to have physical
space available to store non-
retrieved appliances.

Content Reasonable time for waiting
the appliance retrieval by its
owner without judicial
damage to the repair shop.

Figure 1. RR Example

The activities that are part of the training phase for the pilot case study
conduction refer to learning of Smalltalk language programming (four hours), of the
VisualWorks 5i.4 environment (one hour), of the MySQL DBMS (one hour), of the
Design Rationale concept and rationale representation schema, named IBIS (four
hours). For completing these activities a twelve hours time is estimated.

The maintenance activity is composed of two phases. The first refers to a new
functionality inclusion related to the consultation of electronic appliances that have
been repaired and were not retrieved in a certain period of time. The second refers to a

new functionality inclusion related to the destination storage (that is, donation, sale or
auction) that will be given by the system to appliances not retrieved (first phase). For
completing that activity forty hours time is estimated. Thus, for the pilot case study
conduction a fifty-two hours total time is estimated. The time spent in each
maintenance phase to be recorded in a sheet, according to a template supplied. The
students could estipulate their own time schedule to conduct the proposed
maintenance activity.

This pilot case study is inserted in the Maintenance context of the Software
Engineering domain.

Hypothesis definition: During planning the following hypotheses were
formulated.

Null Hypothesis, H1: The RRs has not supported the system understanding
as information useful to conduct the perfective maintenance has not
been found.

Null Hypothesis, H2: The time to do the perfective maintenance is larger
when RRs are available.

Alternative Hypothesis, H1: The RRs supported the system understanding as

information useful to conduct the perfective maintenance has been
found.

Alternative Hypothesis, H2: The time to do the perfective maintenance is
smaller when RRs are available.

Data Collection: To obtain the case study results and, consequently, to justify

the hypotheses, different information is collected before, during and after the study, as
presented in Table 1.

Table 1. Data collected about the pilot case study conducted

Data
collection

period

Data collected

before case
study

Personal data (school level, specialty); OO paradigm, Smalltalk, application
domain, MySQL DBMS, DR skill; overall and specific knowledge about the
software maintenance activity.

during case
study

Maintenance time (in minutes); Which doubt led the maintainer to consult
RRs? Which RRs were used to answer the doubt raised? Which
questions/doubts arouse during the maintenance activity? Of these, which
have been answered by RRs? Which approach has been used to consult the
RRs (previous reading or reading according to the raise of doubts during the
maintenance activity)? Has the available system documentation been
sufficient to support the maintenance activity? In the negative case, which
other types of document or of information in the available documents could
be necessary? Brief description of the steps followed to do the maintenance.

after case
study

Difficulties found; Whether the available system documentation has been
sufficient; Other documents suggested; Observations; Suggestions; Consults
to customers about DR.

Variable selection: The variables selected in the pilot case study planning are
the following: independent – OO paradigm, Smalltalk language, VisualWorks 5i.4
environment and application domain student skill; school level; student specialty in
computer areas; and amount of information useful for maintenance conduction, found
in the available RR set; dependent – total time spent to do the maintenance activity.

Selection of subjects: The technique chosen to conduct the pilot case study

has been stratified random sampling (that is, the population is divided in a number of
groups with a non distribution among groups), as the subject groups have been
created from a profile analysis, obtained with the application of a specific
questionnaire.

Pilot case study design: The pilot case study has been designed to be

conducted by twelve subjects, divided in four groups of three subjects, as shown in
Table 2, considering that the first two used RRs and other two did not. The
maintenance activity has to be conducted effectively with the participation of all
group members. In case that has not been possible during the whole pilot case study,
it has to be recorded in which phase it has not been possible and why, according to the
template supplied.

Table 2. Pilot case study design

Group Maintenance with
RRs support

Maintenance without
RRs support (ad hoc)

G1 X
G2 X
G3 X
G4 X

Instrumentation: The following instruments have been used by the subjects

during the pilot case study conduction: requirements document, business rules
documentation, system user manual, system class diagram, use case diagram,
electronic repair shop control system source code (all produced during the
reengineering using the PARFAIT1 agile process [7]), RR set (only for the subject
groups that conduct the maintenance with its support – G1 and G2), maintenance
activity plan, pilot case study data collection form and material used in training.

Validity evaluation: To verify the validity of the results obtained in the pilot

case study, the following validity threats have been established:
♦ Conclusion validity: Some data collected are subjective (as for example:

the system available documentation is or is not sufficient; the RRs
description is or is not clear, sufficient or not sufficient, etc) and depend
on the skill of the software engineer that is conducting the maintenance;

1 PARFAIT is the acronym for Processo Ágil de Reengenharia baseado em FrAmework no domínio de
sistemas de Informação com VV&T (in Portuguese), which means “Framework-based Agile Reengineering
Process in the Information System Domain with VV&T”.

♦ Internal validity: the pilot case study has to be conducted by the subject
without any restriction of day, time and place, that is, he/she can
conduct it in the moment he considers more proper.The subjects
selected are not volunteers. That can influence the results. There is a
possibility of communication between subjects (groups) participating in
the pilot case study, but the groups are motivated not to publish data
related to the pilot case study;

♦ Construct validity: as the pilot case study has to be conducted by more
than one subject it is necessary to know how many years of experience
they have so as to classify data obtained in different categories. The
RRs have been recorded by only one individual (that conducted the
reengineering). That record has been made only after the reengineering
completion;

♦ External validity: this pilot case study has to be conducted in the
academic environment using a system resulting of a reengineering
process application. So, there is difficulty to generalize results for the
industrial environment.

4. Pilot Case Study Conduction

The pilot case study has been conducted during the second semester of 2003
by twelve graduate students (ten master degree and two doctor degree). All students
had already coursed Software Engineering disciplines. The ten master students were
enrolled a discipline Software Engineering Special Topics of the Graduate Program in
Computer Science at the Federal University of São Carlos. The two doctor students
were enrolled in the Graduate Program in Computer Science at the ICMC-USP.

The pilot case study execution has been conducted in three phases. In the first
phase, the twelve hours training have been conducted on the techniques envolved in
the study, according to what has been planned. In the second phase, a presentation of
the plan and of the pilot study case objective has been done for the participants. In the
third phase, the maintenance activity plan has been distributed to the participants
together with the source code and system documentation, RRs (only for Groups G1
and G2), data collection form of the pilot study case and the material used in training,
so as to allow the participants to use it in case of doubts about the techniques. Each
group delivered, after two month time, the electronic repair shop control system with
the maintenance conducted and the data collection form filled. Then, a meeting has
been conducted in which all the participants of each group reported: a) the steps
followed to conduct each maintanance activity phase; b) results of the maintenance
activity (screen and reports demonstration, etc); c) whether the training given has
been sufficient; d) how the work has been articulated when some group member was
not present (via e-mail, ICQ, etc), e) main doubts arose; f) main difficulties faced; g)
whether there was been interaction between groups, in the positive case, how it has
been done.

5. Results Obtained and Lessons Learned

Several lessons have been learned with the conduction of the pilot case study
and will cooperate for the conduction of an experiment, aimed to obtain the desired
statistical significance, as they have raised several problems, both before the pilot
case study (planning and training) and during its conduction. These lessons learned
have been based on the data collected during and after the pilot case study. At the end
of this section, a summary of the data colleted after the pilot case study is presented
(Table 5).

A specific training in software engineering has not been offered to the subjects
participating of the pilot case study, as it has been believed that they had sufficient
skill in software engineering, according to the results of the profile questionnaire that
has been submitted to the subjects. However, during the pilot case study conduction,
it has been observed that some of the questionnaire results have not portraited reality,
so, it should be stressed that the questionnaire subjectivity has to be considered in the
validity threats. Another form to evaluate the subject skill has to be conducted or
software engineering basic concepts training should be supplied so as to level the
subjects knowledge.

For the groups creation, the answers given individually to the subjects profile
questionnaire have been considered, as mentioned before. Trying to obtain
homogeneity among groups, the students have been allocated according to their skill
level. But, as all questions pertaining the subject knowledge were subjective, the
absence of quantitative information has been observed (for example, undergraduate
marks average, graduate marks average (common disciplines), undergraduate course
name, course emphasis, course institution, etc), so as to make group creation more
adequate and homogeneous. Even so, the questionnaire questions may not review the
subject skill level, so some profile questionnaire answers must be considered in the
validity threats.

The subjects have had great difficulty in the Smalltalk language, so, according
to the feedback questionnaire (Table 5) applied after the pilot case study, the need to
dedicate more time to the practical training in the Smalltalk language has been
observed. Another point observed was that the groups without RRs support have not
followed correctly the pilot case study conduction, as they have not consulted the
customers. This should have been done when the information necessary to the
maintenance activity conduction was not available. A more rigorous follow-up by
groups has to be done to avoid that deviation.

Group 1 conducted the pilot case study with only two components. One of
these had enough knowledge of the GREN framework (that is, Gestão de REcursos
de Negócios, in portuguese), [3, 4]), done some instantiations and even framework
modifications, totaling about thirty-six hours of experience. The authors were not
aware of these component experiences with the GREN framework, as the subjects
profile questionnaire did not have a question about it. That information is important,
as the system reengineering has been based on GREN, so all the system classes
structure is based on the framework class hierarchy and its knowledge may influence
the analysis of the data collected. The Smalltalk language and the GREN framework
knowledge of the other participants has occurred only after the training given. No
participant had DR knowledge.

The time in hours spent by the groups in the maintenance activity is presented
in Table 3. Due to the visible time discrepancy among groups, the need to obtain more
information about subjects profile of each group has been felt, that is, undergraduate
marks average, graduate marks average (common disciplines), in order to better
analyse the data. Group 1 members have studied in a Computing Engineering
undergraduate course, whereas the others have had Computer Science. Furthermore,
as already mentioned, one of the members was already experienced in Smalltalk
language and GREN framework. That explains the significative difference among
Groups 1 and 2, even though Group 1 had one component less. The difference among
Groups 2 and 3 is acceptable and, analysing other data of the students profile, it has
been observed that almost all these groups components have taken an undergraduate
course in the same institution, with the exception of only one Group 2 component.
The time spent by Group 4 has been very different from the others. This can be
explained by its components disinterest, noted during the pilot case study conduction
and by the exactness of time intervals spent annotated in the template of the supplied
sheet.

Table 3. Time spent by groups on the maintenance activity

Group Subject Maintenance with
RRs support

Maintenance without
RRs support (ad hoc)

G1 Component 1,
Component 2

10:30 hs -

G2 Component 4,
Component 5,
Component 6

17: 30 hs -

G3 Component 7,
Component 8,
Component 9

- 19:50 hs

G4 Component 10,
Component 11,
Component 12

- 32 hs

With relation to Hypothesis 1, the RRs supported partially the system

understanding for doing perfective maintenance. Group 1 stated during the pilot case
study data collection that the RRs supported about 30% of the maintenance activity.
However, Group 2 stated that has not had support. On the other side, during the
results oral presentation, the Group stated that consulted the RRs as doubts arose and
that they have helped to answer some of the existing doubts. So, the RRs supported,
even partially, the maintenance activity conducted. About Hypothesis 2, it has been
observed, as shown in Table 3, that the time spent to do the perfective maintenance is
lower when RRs are available.

In Table 4 the planning parts are presented, identified during the pilot case
study results evaluation, that have to be altered for the experiment conduction.

Table 4. Summary of planning alterations

Planning parts
altered

Content altered

Construct validity - consider the subjectivity of the software engineer profile questionnaire.
- consider the answers related to the software engineer knowledge, as
they may not reveal the true subject knowledge level.

Profile
questionnaire

- obtain quantitative data about the knowledge, that is, undergraduate
average marks level, graduation average marks level (common
disciplines), undergraduate course name, course emphasis and course
institution.
- include a question about the GREN framework skill.

Training - provide software engineering basic concepts training to level the
subjects knowledge.
- dedicate more time to Smalltalk language practical training.

Execution - do more precise follow up of the experiment responsible persons, so as
to avoid deviation from what has been planned.

In Table 5, a summary of the answers given by the groups after the pilot case

study conduction is presented.

Table 5. Summary of feedback questionnaire

Questions G1 G2 G3 G4
Difficulties
found

wrong
understanding
of the
maintenance
that should
have been
conducted,
implied in
GREN
modification,
that has been
done thanks to
skill of one
group member.

group members did
not know the
information that
should have been
presented in the
report (doubts have
been answered via e-
mail).

GREN and
Smalltalk
language skills.

Smalltalk
skill.

System
documentation
has sufficed?

Yes No No No

Other
documents
suggested

- GREN
documentation.

DB details,
GREN manual,
maintenance
details.

-

Suggestions

Number the
RRs

- more classes
using GREN.

more
Smalltalk
training

continued

Questions G1 G2 G3 G4
Observations have not

previously read
the RRs.

have previously read
the RRs.

code has been
extensively
studied.

-

Consult to
customers
about RRs

- - no no

6. Final Remarks and Future Work

The result of the pilot case study allowed: a) improvement in the plan initially
defined, mainly with respect to construct validity, profile questionnaire, training, pilot
case study execution, as presented in Table 4; b) lessons learned and, mainly, traps
that could invalidate the experiment statistical significance; c) observation of pilot
case studies importance before the experiment, in order to identify problems both in
planning and those arose during the experiment conduction, so as to avoid resources
and associated costs waste.

Even being a pilot case study, with problems identified both in the planning
and in the pilot case study conduction, it has been observed that RRs documented
during the system reengineering, have supported its understanding to conduct
perfective maintenance and the time spent in the perfective maintenance activity is
lower when RRs are available. It has also shown the importance of the DR technique
applicability also in the reengineering context.

Results, found in the literature, demonstrate the value of carrying out empirical
studies with respect to using DR information. Our pilot case study has also supplied
indications of that fact.

As presented in Section 2, Conklin and Burgess-Yakemovic [10] found that
capturing DR is useful during the requirements analysis and design stages. With the
pilot case study reported in this paper it has been observed that DR capture is useful
also in reengineering to ease future maintenance.

The hypothesis of Bratthall et al [5], that changes would be faster and more
correct if DR was available during impact change analysis, was confirmed by the pilot
case study. In this paper it has been observed, by quantitative analyses, that the
maintenance time with RRs has been lower than the maintenance time without RRs.

With the results obtained and lessons learned in the pilot case study conducted,
the authors will do the experiment to obtain results that can be analysed with
statistical significance. With that, it will be possible to confirm the results obtained in
the pilot case study. Besides the conduction of the experiment in the academic
environment, it is also intended to apply it in the industrial environment. That will
allow attendance of the last two steps of the Shull et al. methodology [19], that is,
case study: use in real lifecycle and, case study: use in industry.

References

[1] Ball, L., Lambell, N., Ormerod, T., Slavin, S., and Mariani, J. (1999).
Representing Design Rationale to Support Innovative Design Reuse: A
Minimalist Approach. In Proceedings of the 4th Annual Design Research
Thinking Symposium - MIT.

[2] Boy, G. (1995). Supportability-based Design Rationale. In Proceedings of the
6th IFCA Symposium on Analysis, Design and Evaluation of Man-Machine
Systems, Boston, MA, USA.

[3] Braga, R.T.V. A Process for Construction and Instantiation of Frameworks
based on a Domain-Specific Patterns Language. Sc.D. Thesis – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos-SP, Brazil, 224 p., 2003. (in portuguese).

[4] Braga, R.T.V.; Masiero, P.C. A Process for Framework Construction Based on
a Pattern Language. In: 26th Annual International Computer Software and
Applications Conference (COMPSAC’2002), IEEE, Oxford, England,
p.615-620, August, 2002.

[5] Bratthall L., Johansson, E., Regnell, B. Is a Design Rationale Vital when
Predicting Change Impact? A Controlled Experiment on Software
Architecture Evolution. In: Proceedings of the Second International
Conference on Product Focused Software Process Improvement, Springer-
Verlag, 2000, pp. 126–139.

[6] Burge, J. and Brown, D. C. (2000). Reasoning with Design Rationale. In
Proceedings of Artificial Intelligence Design Conference.

[7] Cagnin, M.I.; Maldonado, J.C.; Penteado, R.; Germano, F. PARFAIT: Towards
a Framework-based Agile Reengineering Process. In: Agile Development
Conference, Salt Lake City, Utha, EUA, 25-29 June, 2003.

[8] Cincom Systems Inc (2001). Smalltalk Visual Works NonCommercial, 5i.4
release. Version 5i.4. URL: http://cincom.br/visualworks/. Accessed: March,
2004.

[9] Conklin, J. and Begeman, M. L. (1988a). gIBIS: A Hypertext Tool for
Exploratory Policy Discussion. ACM Transactions on Office Information
Systems, pages 303–331.

[10] Conklin, J.; Burgess-Yakemovic, K. A Process-Oriented Approach to Design
Rationale. In: Design Rationale Concepts, Techniques and Use, T. Moran
and J. Carrol (editors), Lawrence Erlbaum Associates, p. 293–428, 1995.

[11] Fischer, G., McCall, R., and Morch, A. (1989). Design Environments for
Constructive and Argumentative Design. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI’89), pages 269–
275.

[12] Freeman P. Toward improved review of software designs. Proceedings of the
National Computer Conference, 1975.

[13] Gruber, T. R.; Russel, D. M. Design Knowledge and Design Rationale: A
Framework for Representation, Capture, and Use. Technical Report KSL
90-45, Knowledge Systems Laboratory, Standford, California, 40 p., 1991.

[14] Karsenty, L. (1996). An Empirical Evaluation of Design Rationale Documents.

In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI’96), pages 13–18, Vancouver, BC.

[15] Lee, J. (1997). Design Rationale Systems: Understanding the Issues. IEEE
Expert, pages 78–84.

[16] Moran, T. P.; Carroll, J. M. Design Rationale: Concepts, Techniques, and Use
Computers, Cognition, and Work. New Jersey: Lawrence Erlbaum
Associates, 1996. 659 pages.

[17] MySQL (2002). MySQL Reference Manual for Version 3.23. URL:
http://web.mysql.com/. Accessed: February, 2002.

[18] Rittel, W.H.J. On the planning crisis: Systems analysis of the first and second
generations. Bedriftsøkonomen, vol.34, n.8, 1972.

[19] Shull, F.; Carver, J.; Travassos G. H. An Empirical Methodology for
Introducing Software. In: 8th European Software Engineering Conference
(ESEC’2001). Vienna University of Technology, Austria, September 10-14,
2001.

[20] Stutt, A. and Motta, E. (1995). Recording the Design Decisions of a
Knowledge Engineering Community to Facilitate Re-use of Design Models.
In Proceedings of the 9th Knowledge Acquisition for Knowledge-Based
System Workshop (KAW’95), Banff, Canada.

[21] Tervonen, I. Quality Derivation, Refinement and Generalization in Object-
Oriented Software Construction, IEEE, 1993.

[22] Wholim, C.; Runeson, P.; Höst, M.; Ohlsson, M.; Regnell, B.; Wesslén, A.
Experimentation in Software Engineering. Kluwer, 2000.

