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Abstract. An oracleis a mechanism against which the tester can decide whether
the outputs of the program for the executed test cases are correctdAnmiental
problem of software testing is that, in many situations, the oracle is not akilab
or too difficult to apply. Ametamorphic testing (MT) method has been proposed

to alleviate the oracle problem. MT is an automated testing method that employs
expected properties of the target functions to test programs withouamum
involvement. These properties are caltegtamorphic relations (MR). For a given
problem, usually more than one MR can be identified. It is therefore Bttege

and very useful for practitioners to know how to select effective MR #re
good at detecting program defects. This article proposes a guidelitreefeelect-

ion of good MRs for automated testing. The effectiveness of our syra@gbeen
investigated through case studies.
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1 Introduction

1.1 TheOracleProblem

Program correctness has always been a critical issue forésearchers and practition-
ers. The past decades have shown that the use of formal &#dfic(i.e., program
proving) to real-life applications has been very limited filie to the difficulties in
proofs and automation. Program testing, therefore, resnie most popular means
adopted by practitioners [1, 2]. Nevertheless, testingtivasfundamental limitations.
First, the use of test cases cannot guarantee program tese®n untested inputs [2,
3]. In other words, testing cannot prove the absence off&ulnost situations. Second-
ly, in some situations, it is impossible or practically taffidult to decide whether the
program outputs on test cases are correct. This is knowreasdtle problem [4].
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This article is concerned with the oracle problem. pdte a program implementing
a specificationf. Let D represent the input domain. Usually, it is impossible to do
exhaustive testing to check whethg(t) = f(t) vt € D. As a result, a great amount
of research in the literature of software testing has beentdd to the development
of test case selection strategies, aiming at selecting those test cases that have a higher
chance of detecting failure. Let T = {t1, t, ..., ty} C D be the set of test cases
generated according to some test case selection stratégyew > 1. Running the
program on these test cases, the tester will check the aupftad, p(t2), ..., p(tn)
against the expected result$t;), f(t2), ..., f(tn), respectively. If it is found that
p(ti) # f(t) for somei, where 1<i < n, then we say a “failure” is revealed ahds
a failure-causing input. Otherwisd; is a successful test case. The procedure through
which the tester can decide whethst;) = f(t;) is called aroracle [4]. For instance,
let f(X, y) = xxy, the test casg be {x = 3.2, y= 4.5}, andp(t;) = 14.4. The tester
can verify this output either by manually calculating thegarct of 32 x 4.5 or using
the inverse function to check whether.4/4.5 = 3.2, where the inverse can be done
either manually or using a correct division program if aablé. In many situations,
however, the oracle is not so easy to apply. In cryptosysteanexample, the operands
in the multiplication are multiprecision integers with ltrads of hexadecimal digits.
As a result, the output is so large that it is practically topansive to verify the
result. Although the use of the inverse function can helpres programs for these
inverse functions may not be available, and many functiansad have an inverse, such
as the Greatest Common Divisor. In this situation, wheredtaele is not available
or too difficult to apply, there is an “oracle problem” [4]. @ examples include,
to name a few, testing programs conducting numerical iategrs or solving partial
differential equations; deciding the equivalence betwdmnsource code and object
code when testing compilers; testing programs that cakewambinatorial problems,
perform simulations, draw complicated graphics, etc. bt,faven when the oracle is
available, if it cannot be automated, the manual predistiand comparisons of the
outputs are often expensive and error-prone [5, 6]. As pdimut in [6], the oracle
problem has been “one of the most difficult tasks in softwasgitg” but it is often
ignored by researchers in software testing.

It should be noted that even when the oracle is not availdbe tester usually
is somehow still able to check the outcome of the programoioesextent. In [4],
Weyuker investigated various approaches to testing pnogjrehen there is an oracle
problem. Special or simple test cases are often used in saithadion. When testing
the sine function, for instance, the special inputsty4, 1/2, etc., are standard test
cases. Nevertheless, special values cannot give us enonfilence in the correctness
of the program on more complex or random inputs. Anothertfmacapproach is to
check the outputs against properties of the target fundtimwn from theory. When
testing a progranp supposedly implementing the sine function, for examplel.28
be a test case. Although we do not know the exact value of 28) & failure can still
be identified if the outpup(1.28) > 1 becausg¢sinx| < 1Vx € R. By employing more
mathematical properties of the sine curve, the range offil&ivalues ofp(1.28) can
be further narrowed down greatly.



1.2 Successful Test Cases

No matter how the outputs are checked, with or without anleraee all know that in
practice most test cases are “successful test cases'tt{eg.do not reveal any failure)
if the program is written by a competent programmer [7]. Gndther hand, successful
test cases have been considered useless in conventiotiiad) teecause they do not
reveal any failure [8]. As a result, in conventional testihg successful test cases have
been discarded or retained merely for regression testiag la

Our perspective, however, is different from the converdloriew. We argue that
successful test cases are informative and should be exgbliwitther in a systematic and
cost-effective way. Our argument is based on two obsemsitiBirst, successful test
cases do carry useful information that has been ignoredrimecgional testing. Fault-
based testing [9], for example, is an important breakthindagrause it uses successful
test cases to prove the absence of certain types of erroortunétely, not all testing
methods are fault-based and the majority of test cases ecessful.

Secondly, no matter whether an oracle is available, tessirexpensive in most
situations [1] because test case design, implementatiapybprediction and compari-
son, as well as documentation, are labor intensive. Hesach test caseis valuable. It
is a great waste if most of the test cases are immediatelpffadter running once. It is
therefore highly desirable to develop methodologies tectiffely utilize the successful
test cases so that the program can be verified in a more destief way.

1.3 Metamorphic Testing

A metamor phic testing (MT) method has been proposed by Chen et al. [10] and further
developed ([11-13], among others). It is an automated agprto alleviating the oracle
problem and employing successful test cases.

MT is to be used in conjunction with other test case selectivategies. To test
program p implementing functionf on domainD, let S be the test case selection
strategy adopted by the tester, such as branch coverageytetata flow testing, or
just random testing. LeE = {t1, tp, ..., ty} C D be the test set generated according
to S, wheren > 1. If the outputsp(t1), p(t2), ..., p(tn) reveal no failure, then we
encounter a set of successful test cases.

At this stage, MT can be employed to make use of the succegsfutases: By
referring to certain properties callesetamor phic relations (MR) of the target function
f, follow-up test cases can be automatically constructedcued, and checked to
further verify programp without the need of an oracle. A “metamorphic relation” is
any relation among the inputs and the outcomesnditiple executions of the target
program. For example, Igt(a, b, g) be a program supposedly computing the numerical
integration fabg(x) dx. Wheng(x) is complicated, there is no straightforward oracle
to test the program. Nevertheless, we can identify metahiomelations known from
theory, such ag’;’k x g(x)dx = k x f;’ g(x) dx, wherek is any constant. Metamorphic
testing (MT) checks programs against metamorphic relat{dMR). For our example,
if the initial test case ist : {a= 2.3, b=4.5, g=g1(X)} and no failure is detected,
then MT proposes to go one step further to generate one (@)rfalow-up test case
t':{a=23 b=45 g=0g2(X)}, whereg(x) = k x g1(x) for some constark, and



run the program again dh The outputs are then compared against the prescribed MR.
If p(t') # k x p(t), 2 then the program must be at fault. Certainly, an MR is a necgss
property, but may not be sufficient for program correctn€bs is indeed the limitation

of all testing methods.

Since it is the relation among multiple executions rath@ntkhe correctness of
individual outputs that is checked, MT is performed regesdlof the existence of an
oracle. In addition, because the whole process can be futlynaated without human
involvement, MT is an easy and efficient approach to expigituccessful test cases.

In fact, the idea of employing identity relations to checlogmams is not new.
In [14], for example, many identity relations are used td pgsgrams, such as testing
programp(x) against the identitye? x e~ = 1", where the target function & Identity
relations are also intensively used in fault-tolerancénégues [15]program checker
[16, 17] andself-testing/correcting [18], and so on. There are, however, great differences
between these methods and metamorphic testing. First, kéTbis used in conjunction
with a test case selection strate§ywhereS can be any black- or white-box testing
strategy. A test sef generated frons must also exist in the first place. If no failure
can be revealed by, then MT can be applied to generate a follow-up set of test
cases to accompany to further verify the program against selected metamorphic
relations, which are necessary properties for programecbress. Secondly, an MR
is not necessarily an identity relation. Any relation iniob two or more executions
of the target program is an MR. To name a few, it includes iaétjes, convergence
properties, subsumption relations in set theory, and sdrofiL1], for example, we
employed the convergence property as an MR to test the progodving the partial
differential equation.

We have found that metamorphic relations can be identified wide range of
applications. In fact, for most problems, more than one MR ba identified. Let
us take the numerical integration program as an examplertApan the Eroperty
already discussed, the following properties can be ideultiis MRs as wellf;’ (g1 (x)
+ @) dx= Lo dx + [Lg(x)dx, [Pg(x)dx = — [Fg(x)dx, ... In fact, even
for a given property Iikef:k x g(x)dx = k x f;)g(x) dx, different valuations ok can
be regarded as different MRs. It is, therefore, very usefidl inportant to know how
to select good metamorphic relations that have a highercehahrevealing failures in
testing.

This article proposes a guideline for selecting good metahio relations for soft-
ware testing. In Section 2, we shall conduct case studiesvisiigate how likely it
is to select good MRs solely based on theoretical knowleddbheoproblem domain.
Our result shows that theoretically stronger MRs do not seadly have a higher
failure-detecting capability. As a result, the progranustiure must be considered for
the selection of good MRs. In Section 3, we propose our MRctele strategy based
on the white-box knowledge of the program structure. Oueérpent result shows that
the proposed method is effective. Section 4 will conclugegaper.

3 In practice, some rounding error will be allowed due to floating-point artfic.



2 Comparing MRsfrom a Black-Box Per spective

Since MRs are identified with regard to the original spediificarather than the program
under test, it would be ideal if we could also have a way toctejeod MRs without
white-box knowledge of the program. In this section, theref we shall treat the
program as a black box and discuss the selection of MRs dmdalyd on the specificat-
ion, i.e., the target function.

For a given specification, suppose two MRs have been idahtifiemelyR; and
R>. An intuition is that ifR; is stronger thaiR, from theory, i.e., iRy = Ry, thenRy is
likely to have a higher chance of detecting failures. Howesiace the implementation
is not necessarily corred®; is not necessarily better th& in revealing the defect in
the implementation. Nevertheless, in order to provide atpral guideline for software
testers, it is still worthwhile to investigate how likelyetstronger relations are better
than the weaker ones for testing and the reasons behind.

2.1 A Case Study on the Shortest Path Program

Our first case study is on a progre@nortestPath (G, a, b) that implements Dijkstra’s
algorithm to find theshortest path between verticea andb in graphG and also output
its length, whereG is an undirected graph with positive edge weights. Wkseis
nontrivial, the program is difficult to test because no ceam@n be practically applied.
Nevertheless, many MRs can be identified for this problenth wihich MT can be
performed.

Left Circular ShiftsastheMRs A property that can be commonly found for programs
in graph theory is the permutation property. L&;, aj, by) be the first input to
programShortestPath. Let (G, az, by) be the second input, whe is any permut-
ation of Gy, vertexa, in Gy corresponds to the vertesg in G1, and vertexb, in

Gy corresponds to the vertek; in G;. Then ShortestPath(Gi, a;, by) and
ShortestPath (G, ay, by) must return the same length for the paths found.

In this section, let us consider a special kind of permuitatibe circular shift.
We regard different circular shifts as different MRs. In @xperiments, we used 10-
vertex graphs as test cases. As a result, we have got 9 MRsatgplto any test case,
namely Shift;, Shift,, ..., Shifty, where Shift; represents the following identity, for
i=12 ...,9

ShortestPath (G, a, b).length = ShortestPath(1i(G), oi(a), oi(b)).length, (1)

whereT;(G) denotes the graph generated by circularly shifting leftvibices ofG
i times. For instance, if the vertices &f are denoted byvo, vi1, ..., Vg), then the
same vertices are denoted by, Vs,..., Vo, Vo, V1) in T2(G). Vertexai(a) in 1;(G)
corresponds to the vertexin G, and vertexo;(b) in 1;(G) corresponds to the vertdx
in G, such asy2(v1) = vz in our preceding exampleShortestPath(1).length” denotes
the path length returned tghortestPath on inputl.



Yo vy v, b= vy vy V3 3
1 2 1 02 3 1 2 - 1 -
3 7 -2 0 4 3 i 10 2
Vg - 340 v, 4 -20
(a) Graph H (b) Adjacent matrix of H (c) Graph H’ (d) Adjacent matrix of H’

Fig. 1. Graphs and their representations

The 9 MRs can be categorized into the following 3 classes:

Class, = {Snift;, Shifty, Shift;, Shiftg}
Class, = {Shift,, Shift,, Shifts, Shiftg}
Classs = {Shifts}. ©)

It is not difficult to prove that, for any 10-vertex graf) the MRs that belong to the
same class are equivalent to one another. For exampiléass;, Shift; can be obtained
by applying Shift; for 3 times, andShift; can be obtained by applyinghift; for 7
times. Furthermore, any MR @lass; implies all the other MRs i€l ass, andClasss,
ie, R = Rj;,wherei=1, 3,7, 9andj =2, 4, 5, 6, 8. Note thatShift; does not
imply any other MR. Hence, the 4 MRs @lass; are the strongest among the 9. We
shall investigate the failure-detecting capabilities ibtlzese MRs to see whether the
stronger MRs have a higher chance of revealing a failure.

The Representation of Graphs and Vertices For programShortestPath(G, a, b),
the input graphG is represented by aadjacent matrix of sizen x n, wheren is the
number of vertices in grapB. Let us usey, vi, ..., V,_1 to denote the vertices. If
there is an edgevi, v;) in graphG, where 0< i, j <n, then the(i +1, j+1)-entry

of the adjacent matrix stores the weight of this edge; ifeiemo such an edge, then
the (i+1, j+ 1)-entry of the matrix will be assigned a special value to iathc'no
edge”. It is also assumed that there is always an edge witghvifrom a vertex to
itself. For example, for graphl shown in subfigure (a) of Fig. 1, its adjacent matrix
is shown in subfigure (b). If we want to find the shortest patfiben verticesy and

vy in H, then the input to prograrBhortestPath(G, a, b) will be G=H, a=0 and

b = 2. Suppose thigH, 0, 2) is the first test case. In metamorphic testing, if we apply
an MR “circularly shift left once” to this test case, then fodlow-up test case will be
(H’, 1, 3), whereH’ is shown in subfigure (c) and (d) of Fig. 1. The expected @fati
is that the path length returned IShortestPath(H, 0, 2) and the length returned by
ShortestPath(H’, 1, 3) must equal each other.

TheMutants To investigate the failure-detecting capabilities of thR$4we manually
seeded various faults into the source code of prodgiaontestPath. Each faulty version
of the program is called eutant, and each mutant has included ai@ple fault, i.e.,



each mutant can be turned into the correct version by makisiggle correction to
the program. Examples of these “simple faults” are opefafperand replacements,
deletion of a statement, etc. We have excluded mutants whadsees can easily be
detected, such as an execution that never terminatesnireua negative path length,
returning a path length of 0 when the two terminal verticesdifferent, and returning
a nonzero path length when the two terminal vertices areticlnFurthermore, we
excluded equivalent mutants using the following heuriapproach: if the outputs of
two mutants are identical on all the 1000 initial test caselsich will be explained
shortly), then remove one of the two mutants. In the end, we batained 19 mutants.

The Test Cases We first generated a set of initial test ca3es- {t1, to, ..., t1000}-
To generate this test set, we first randomly generated 5hgrapfollows: Each graph
has 10 verticesp, V1, ..., Vo. In each graph, each pair of the vertices have a 50%
chance of being connected, i.e., the existence of any edigcided by tossing a fair
coin. If two vertices are connected, then the weight of thgeegd randomly chosen from
integers 12, ..., 50; otherwise a special value will be assigned to the coomdipg
entry of the adjacent matrix to indicate that the edge doésxist. For each graph thus
generated, we randomly selected 20 different pairs of rdiffenodes as the terminal
vertices (note that ifa, b) are selected, thefb, a) will not be selected). Hence, each
graph further generated 20 test cases. As a result, we htameth a set of 26 50=
1000 test caseB = {t1, to, ..., ti000}-

For each metamorphic relati&hift;, wherei =1, 2, ..., 9, a follow-up test s€f; =
{ti1, ti2, ..., ti 1000} Was generated based on the initial tesflset {t1, to, ..., tio00},
wheret;k in T; was a follow-up input oft, in T, for k=1, 2, ..., 1000. For each
mutant progranmutant;, wherej =1, 2, ..., 19, and for each MFshift;, wherei =
1, 2, ..., 9, mutant; was run onT andT;, respectively. The relation of the outputs
(mutant; (t,), mutant;(tj )) was checked against the MRRIift;, fork=1, 2, ..., 1000.
Among the 1000 pairs of the outputs, if, let's say 530 paidsdit satisfy the MRshift;,
then we say théailure rate of mutant; againstshift; was 53%. The above procedure is
described by the following pseudocode:

fori=1to9do
for j =1to 19 dof
failureCount = 0;

for k=1 to 1000 do{
if (mutant;j (ty).length # mutant; (t; ).length), wheret, € T andt; i € T
then failureCount = failureCount + 1,

Print: The failure rate ofnutantj againstshift; is failureCount /1000.
}

The Experiment Result Our experiment result shows that, among the 9 identified
MRs Sift;, Shift,, ..., Shiftg, the theoretically weakest proper@hifts exhibited the
highest failure-detecting capability. For clarity andea$ understanding, we grouped
the 9 MRs into 3 classes according to Equation (2). Theirageifailure-detecting
capabilities demonstrated in the experiment are shown gn Ei Thex-axis in the
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Fig. 2. A comparison of the failure-detecting capabilities of the 3 classes of mepdacaelations
on the 19 mutants for the shortest path problem

figure has been divided into 19 regions. Regiaf the x-axis corresponds tmutant;,
fori=1, 2, ..., 19. They-axis denotes the failure rate, from 0% to 100%. The
histogram in region 1, for example, shows that whautant; was tested using 1000
pairs of test cases against the MRsQhass; = {Shift;, Shifts, Shift;, Shiftg}, the
average failure rate was 20%; whewitant; was tested against the MRs@hass, =
{Shift,, Shift,, Shiftg, Shiftg}, the average failure rate was 27%; wheatant; was
tested againghifts, the failure rate was 39%. Note thattants, mutants, andmutant; s
could not be killed by any MR on the test cases (the performamil be improved
using our proposed MR selection strategy as will be desgribeSection 3). Hence,
let us consider the remaining 16 mutants. Altholts is the weakest mathematical
property among the 9 from theory because it cannot imply #mgraVR, it has demons-
trated the highest failure-detecting capability on 15 ef1é mutants; on the other hand,
the average performance ©fass; (the group of the strongest mathematical properties
from theory because any MR in this group can imply all the o&gIRs) was the worst
on 13 of the 16 mutants and medium on the other 3 mutants.

This experiment has shown that theoretically stronger MB®iat necessarily good
at detecting program defects. It is suggested, therefoat selecting MRs from a pure
black-box perspective is not adequate. This point is coefitivy our next case study.

2.2 A Case Study on the Critical Path Program

In project planning and scheduling, we often need to finddtitcal path, i.e., the
activity that takes the longest time to complete, so thatavekmow what the bottleneck
of the project is. Hence, the critical path problem is esaipto find the longest path in
a directed and weighted graph. Let us Gsiical Path to denote the program. Although
it is also a graph theory program, its algorithm and datactire are totally different
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from the shortest path program. Hence, this program has seeated for our second
case study.

The input to progranCriticalPath is a directed and weighted grajgh If G is
acyclic, the longest path i@ and its length will be returned; otherwise the program
will report that a cycle exists in the graph. The graph isespnted by a dynamic data
structureadjacent list (rather than the static adjacent matrix). Progf@ritical Path is
difficult to test because a practically feasible oracle isavailable when the input graph
is nontrivial. Hence, we have applied MT to test it.

The identification of MRs and construction of mutants and teses were very
similar to our previous case study for the shortest pathlpmbWe used randomly
generated 10-vertex directed acyclic graphs as test cambsised the 9 identified
relations Shift;, Shift,, ..., Shifty as MRs, whereshift; has the same meaning as
described previously. The graph is acyclic and represdneah array of dynamically
linked lists. Again, these 9 MRs are grouped into 3 classé@sBguation (2). The initial
test sefl included 1000 random test cases. In addition, 18 nonecuivatutants were
created.

The experiment result is shown in Fig. 3. Among the 18 mutafitsould not
be killed by any MR on the test cases (the performance willnbgroved using our
proposed MR selection strategy as will be described in 8@8&j. Hence, let us consider
the remaining 12 mutants. From the figure, we see that thenpeahce of the 3 groups
of MRs was quite close. Stillhift; demonstrated relatively higher failure-detecting
capability than the other two groups. Its failure rate rahftest on 10 of the 12 mutants,
second on 1 mutant, and third on 1 mutant. On the other haadyvérage performance
of Class; = {Shifty, Shiftz, Shift;, Shifty} was still the worst.

As a result, our second case study confirms that the thealfgtstronger MRs are
not necessarily better at detecting program defects. Iolasion, selecting MRs from
a pure black-box perspective is not adequate. In the nekibsegve shall look inside



the program structure to find the reasons behind the diffgreriormance of different
MRs.

3 ldentifying Good MRsfrom a White-Box Per spective

As has been shown, theoretical knowledge of the problem dloimaot adequate for
distinguishing good MRs. Hence, we suggest looking intgottoggram structure.

3.1 TheProposed MR Selection Strategy

Let p be the program under testbe the initial successful test casepe an MR, and
t’ be the follow-up test case generated accordinf.té-or ease of presentation and
understanding, let us concentrate on MRs that are idergiations. For non-identity
relations, the discussion will be similar. Hence, it is th&tion “p(t) = p(t’)” that is
checked in MT. Our aim is to select such an MR that has a highanee to cause
p(t) # p(t’). We propose the following hypothesis:

Hypothesis 1

For a faulty progranp and a pair of metamorphic test cagest’), in most situations
the more the execution gf(t’) differs from the execution of(t), the more likely it is
that their outputs are not equal.

We have not explicitly defined the concept of “differencevssn two executions”.
This concept covers all aspects of program executionsydimy) the paths traversed,
sequence of the statements exercised, sequence of diffeteas assigned to variables,
etc. Based on Hypothesis 1, our MR selection strategy islezssuch MRs that can
make the two executions as different as possible.

For programp(t), the inputt is a tuple including one or more parameters, i.e.,
t = (X1, X2, ..., Xn), wheren > 1. Usually, differenk;’s (1 <i < n) play different roles
in the execution and, hence, they have different influencéhemverall execution flow
(i.e., paths executed, variable values, iteration tims) Elence, we propose selecting
those MRs that can change the values ofdhtical parameters as greatly as possible.
A “critical parameter” is such ax in t that plays the most important role in controlling
how the program is to be executed. The follow-up test ¢askus generated will,
therefore, force a very different execution. As a resultoading to Hypothesis 1, it
will be more likely that the outpup(t’) differs from the output op(t).

Hence, our strategy considers the algorithm adopted byribgrgmmer to be the
most important factor for selecting effective MRs. Even fhe same problem, an
MR may have very different performance with regard to ddfaralgorithms. In the
following subsections, we shall conduct case studies tbdes hypothesis and the
proposed MR selection strategy.

3.2 Further Study on the Shortest Path Program

Identifying More MRs The general structure of the algorithm for program
ShortestPath (G, a, b) is as follows: The control starts from the source vedeXhe



search is conducted along the edges connectedated will go through the vertices
directly or indirectly connected tauntil the destinatiofb is reached.

According to Hypothesis 1, we identified an MR, namigéyer se, that was expected
to be good; we also deliberately identified two more MRs, rgr&echange(0,9) and
ChangeSource, that were expected to be less effectiRever se represents the property

ShortestPath (G, a, b).length = ShortestPath(G, b, a).length.
Exchange(0,9) represents the property
ShortestPath (G, a, b).length = ShortestPath (Ti(G), @, b').length,

wheret(G) is a transposition o6 obtained by exchanging the verticesandvg, and
a andb’ in (G) correspond to the verticesandb in G, respectively. The third MR
ChangeSource represents the property

ShortestPath (G, a, b).length = ShortestPath (G, v;, b).length+d,

where(a, v;) is the first edge in the shortest path returnedshgrtestPath (G, a, b)
andd is the weight of the edgé, v;).

The MR Reverse was selected because we found thatgteech direction plays a
critical role in the algorithm: for an inpuiG, a, b), the algorithm always starts from
a, searching along the adjacent vertices, and finish at thindé@en vertexb. Hence,
when the source and destination are exchanged, the seaygbnse will be totally
reversed: the control will start frofmand search backwards & Hence, the sequence
of the edges and vertices traversed in the executidi®@ob, a) will be very different
from that in(G, a, b). According to Hypothesis 1, this MR is expected to be effecti
for revealing failures.

On the other hand, changing the notations of two verticesExighange(0,9) or
moving forward the starting vertex vighangeSource would not have as much impact
because they do not make much change to the overall exe¢héibfollows: the edges
and vertices will be traversed in a similar sequence as igaat execution. According
to Hypothesis 1, these two MRs are expected to be less efidbtainRever se.

Experiment Result The experiment result is shown in Fig. 4, where the mutands an
the 1000 initial test cases were the same as before. Among&mautantsmutants
could not be killed by any MR on the test cases. On the remgihB mutants, the
performance oReverse was obviously better than the other two: its failure ratekesh
first for 15 times and second for 3 times.

We have also compardgbverse with Shifts, the most effective MR in Section 2.1.
Their average failure rate was similar, bReverse can kill two mutants rfutants and
mutant;s) that could not be killed byifts. Hence, we conclude th&everse is the
best MR among all the MRs studied. This experiment resulpstip Hypothesis 1 and
shows that our MR selection strategy is effective.
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Fig. 4. Further experiment result on the shortest path program

3.3 Further Study on the Critical Path Program

Although the data structure and algorithm of progr@nitical Path are very different
from those ofShortestPath, we found that the “search direction” is still the critical
factor. This is understandable because almost all segr@igorithms are performed
along a certain direction. In a graph, the search usuallyssteom the source vertex
and go along the adjacent edges towards the destinaticexvéfrthe search direction
is changed greatly, the execution sequence will be changeatlg as well and, as a
result, the second output will be more likely to differ frohetfirst one. For program
Critical Path, the source vertex is the one whose in-degree is 0; the déstinvertex
is the one whose out-degree is 0. According to Hypothesiselhave identified the
MR ChangeDirection : CriticalPath(G).length = Critical Path(G').length, whereG’
is obtained by reversing the directions of all the edgés.in

We would like to compare the failure-detecting capabditief the 3 MRs
ChangeDirection, Exchange(0,9), and Shift;, as shown in Fig. 5. Among the same
18 mutants and on the same 1000 initial test casatant, andmutantg could not be
killed by any MR on the test cases. For the remaining 16 msit&htngeDirection has
killed all of them, butshift; andExchange(0, 9) could only kill 12 of them. For the 12
mutants that can be killed by all these MRs, the failure r&@hangeDirection ranked
first for 10 times and slightly lower thaghift; on mutantz andmutant; .

34 Why DoeslIt Work?

We have also studied individual cases for the reasons whgroposed strategy works.
Because of the length limit of this paper, we shall only dibscthe rationale behind.
For programp(x) implementing functionf (x), lett be the first test case andbe the
follow-up test case generated with regard to an MR. Supp@éhas not revealed any
failure, then there are actually two possibilities: f(i}) = f(t); (2) p(t) # f(t) but
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Fig. 5. Further experiment result on the critical path program

this could not be detected by the tester because of the lattleadracle. For case (1),
there are two subcases: (1{(}) did not touch the buggy code; (1.gjt) touched the
buggy code but the output happened to be correct. For cakg ¢bviously the more
the execution op(t’) differs from that ofp(t), the higher is the chance fp(t’) to touch
the buggy code and, hence, to reveal a failure; For case {fit2¢ execution ofo(t’) is
very similar to that ofp(t), then the cause that magé) = f(t) may still remain in the
execution ofp(t’) and, as a resulp(t’) may also compute correctly; For case (2), the
reasoning is similar: the greater the similarity betweenekecution ofp(t) andp(t’),
the higher the chance for both executions to make the sameserd, hence, output the
same result. In this situation, although both outputs angmwith regard to function
f, the failure cannot be detected with regard to the MR.

4 Discussions and Conclusion

Metamorphic testing method effectively exploits succeldsist cases and alleviates the
oracle problem. Since the procedure is straightforwardcamcbe fully automated, MT
is cost-efficient and, hence, useful and practical for |iianers.

For many problems, more than one MR can be identified. It wbelddeal if all
MRs could be used for testing. Since the resources for soétdevelopment are always
limited, however, it is desirable to know which MRs shoulddieen priority for use
in testing. In this article, we conducted case studies ugiagnutants of two programs
in graph theory, where there is an oracle problem. The maulteare: (a) theoretical
knowledge of the problem domain is not adequate for diststgng good MRs, and
(b) good MRs should be those that can make the multiple exerubf the program as
different as possible.

Strictly speaking, our MR selection strategy emphasizesithportance of the
structure of the program under test. However, it is not [ratto require the testers



to fully understand the program code before testing. Hemee propose that good
MRs should be selected with regard to #igorithm that the program follows because
algorithms are easier to understand than the source coitheuh the programmer may
make mistakes in the implementation, the general structutiee algorithm should be
kept because of the competent programmer hypothesis.

It must be pointed out that: (1) MT is a technique for genagtllow-up test cases.
In other words, pure MT is not adequate for software qualitguaance. It must be
combined with other test case selection strategies. (2p®pariment result shows that
different MRs have different failure-detecting capak@ktwith regard to different types
of program defect. How to employ different MRs in a collalim@aand complementary
way to achieve the best result will be a future research topic

We have not defined the concept of “difference between twoudians” explicitly
because the execution of programs is very complicated. \A# stady this issue and
give more explicit guidelines in our future research. Iniidd, we shall look seriously
into the phenomenon that some mutants could not be killednlpyidentified MR on
the test cases.
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