
ProjectIT-Requirements, a Formal and User-oriented
Approach to Requirements Specification

Carlos Videira 1, Alberto Rodrigues da Silva2

1 INESC-ID, Universidade Autónoma de Lisboa,
Rua de Santa Marta, nº 56, 1169-023 Lisboa, Portugal

cvideira@acm.org
2 INESC-ID, Instituto Superior Técnico,

Rua Alves Redol, nº 9 –1000-029 Lisboa, Portugal
alberto.silva@acm.org

Abstract. Software requirements engineering is an essential activity for the
successful development of information systems. The outcome of this activity is
not always successful, which is visible in the lack of software quality, costs and
schedules overruns. Although the efforts made and the initiatives proposed,
there is not a widely accepted practice or standard in this area, comparable to
what we have achieved, for example, in the modeling activities. This paper
briefly describes the state of the art in the area of requirements specification,
explains the motivation to develop a new initiative, which we have called “Pro-
jectIT-Requirements” and enumerates the goals we want to achieve with the
project, the context in which it integrates and the results obtained from the de-
velopment of an initial prototype.

1 Introduction

The software development process is normally defined as a structured sequence of
activities, executed in a systematic and uniform way, performed by roles with well
defined responsibilities, which process a set of inputs to produce some outputs [32]. It
also includes the definition of techniques, notations, tools, standards and guidelines
that should be used.

It is commonly accepted that the development of information systems is a complex
task, involving technical, human and organizational issues. When we started to de-
velop information systems, the limited technology capacities were an important con-
straint that prevented the implementation of the most adequate solution for the busi-
ness problems. The first initiatives proposed to solve these problems were concerned
with the implementation issues, such as new programming languages or development
environments.

However, since the late sixties that the IS/IT community recognized that, to solve
the quality, budget and schedule problems, we had to find new and sounder ap-
proaches. As a result, the expression “Software Engineering” was first used in 1967
during an OTAN conference [28] to show the importance of applying systematic and
rigorous approaches to software development, which had proven effective when ap-

plied in other engineering disciplines. Although the many initiatives proposed to solve
the software development process problems, the results have not been impressive; for
example, The Chaos Report, a study periodically published by the Standish Group
[http://www.standishgroup.com], has consistently shown that the number of problem-
atic and unsuccessful projects during the last years is still very high, as Figure 1
shows.

28 26 27 16

23 28
40

31

49 46 33
53

0

20

40

60

80

100

2000 1998 1996 1994

Years

%

Unsuccessful

With Problems

Successful

Figure 1 – Level of success of IS/IT projects, according with the Standish Group

As a result of the experience gathered from previous research and practical pro-
jects, the Information Systems Group of INESC-ID [http://gsi.inesc-id.pt/], in Lisbon,
Portugal, started an initiative in the area of requirements engineering, named Projec-
tIT-Requirements, which proposes a new approach to successfully achieve some of
the goals of this discipline. This paper describes the motivation for this project, the
tasks executed and results achieved until now. It is organized in the following sec-
tions: section 2 defines the requirements concept and presents an overview of the
requirements engineering activities; section 3 describes some requirements engineer-
ing practices and related work proposed in the past, which somehow influence our
work; section 4 presents an overview of the ProjectIT initiative, whose main goal is to
contribute with new ideas to improve the software development process; section 5
describes ProjectIT-Requirements, and presents its goals, architecture and main func-
tionalities; section 6 describes the prototype development process, the results achieved
and points some of the issues to be solved in the near future.

2 Requirements and Requirements Engineering

The requirements concept is one of those IS/IT concepts where there is no standard
and widely accepted definition. This is a result of many different views from the many
different people that are somehow interested in the development of information sys-
tems. Words such as “needs”, “features” or “functionalities” are frequently used as
synonyms. The Oxford dictionary says that a “requirement is a need, a dependency

for success”. A classical definition from Kotonya says that a “requirement is a state-
ment about a system service or constraint” [21]. A definition proposed by Dorfmann
and Thayer suggests that a “requirement is a software capability needed by the user to
solve a problem he has to achieve a goal, or said another way, is a software capabil-
ity that must be met or possessed by a system or component to satisfy a contract,
standard, specification or other formalism” [9]. In an article published in 1993,
Harwell states that a “requirement is something mandatory to be accomplished, trans-
formed, produced, or provided” [19].

Recognizing the importance of requirements in the development of information sys-
tems, we have grouped all the activities that deal with them in a new discipline called
“requirements engineering”. The term engineering emphasizes the importance of ap-
plying accepted and widely known engineering practices (such as measuring and mod-
eling), in a systematic and repeatable way, to achieve results with quality. In [27]
Nuseibeh provides an interesting overview of this discipline, identifying the tech-
niques, activities and roles involved.

Stakeholder
Analysis

Start

Problem Domain
Analysis

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

End

Requirements Change
Management

Requirements
Refinement

Figure 2 – Common activity diagram of the requirements engineering tasks

A generic workflow of the several activities that compose the requirements engi-
neering process is shown in Figure 2; Kotonya [21] and the Rational Unified Process
[22] present others with some variations. The number of different processes that are
found in the literature are a consequence of the need to adapt the requirements engi-
neering discipline to the needs of each organization, the internal and external practices
and standards followed and each intervenient expectations. A complete description of
each of these activities is out of the scope of this paper. In the next section we will
present an overview of some existing methods that influence our work.

3 Related work in the area of Requirements Specification

Existing requirements engineering methods can be classified through many perspec-
tives. According to the goals defined for our project, we have identified four areas of
prime importance, which will be briefly reviewed in this section: (1) requirements
reuse, because currently few tools truly support it, and this is crucial for minimizing
the manual work in requirements specification; (2) requirements specification initia-
tives based on UML, because we want to use UML for defining our model and for
integrating with other project initiatives and tools; (3) formal methods, because for-
malization is important to improve the quality and precision of requirements specifica-
tions; and (4) agile approaches, because we want to keep things as simple as possible.

The existing requirements reuse initiatives sometimes follow different strategies. In
[38] the authors propose a metamodel for reusing requirements, based upon the inte-
gration of information available in a number of different existing functional modelling
techniques (like scenarios, use cases, activity diagrams, data flows, task documents
and workflows). The information captured is subsequently provided for being reused
later. Cybulski proposes a framework which integrates the needs of software reuse in
the requirements engineering process, and describes a method (RARE) and a software
tool (IDIOM) that support the definition of the domain model, later used in the re-
quirements analysis, reuse and refinement process [6].

UML has become a standard language for modelling software systems and many
people have used it for requirements specification. However, some authors have ar-
gued that that UML has some deficiencies as a semiformal requirements specification
language [16]. Other authors have proposed initiatives to formalize UML, by using
formal specification techniques for the semantics of UML notations and diagrams. For
example, the Precise UML group developed a precise semantic model for UML class
diagrams, to enable formal deductions [11]. In [14] the authors describe a require-
ments modelling technique, named UMLtranZ, based on UML class and use cases
diagrams, expressed in a variant form of the Fusion Model [4]. The models can be
transformed to formal Z specifications, which can be further analysed to identify prob-
lems and inconsistencies in the requirements specified.

The use of formal requirements specification languages, based upon mathematical
notations, such as Z [34], VDM [39] or Larch [18], has also its supporters among the
requirements engineering community. They use deductive and inductive reasoning
techniques that can be automated and built into specification tools. The question
mostly faced by these initiatives is the adoption of those languages by non-technical
people. Apparently, some studies demonstrated the capability of the users to learn and
apply such methods [3].

The use of controlled natural language for requirements specification, although not
a formal approach, facilitates the process of writing, analysing and verifying require-
ments [20]. Sometimes this specification can even be transformed into executable
statements of software specification [31], providing systems simulation capabilities.
Others followed a different strategy, by providing tools and techniques that transform
formal requirements specifications into natural language, so that the stakeholders can
validate them [12], [20].

Other initiatives worth of mentioning include (1) Kaos [7], a formal language for
reasoning and modelling the system’s goals, and its use in conjunction with formal
specification languages, such as Timed Automata, for specifying the system’s re-
quirements and its internal behaviour [10]; (2) RML (Requirements Modelling Lan-
guage), probably the first important attempt to use knowledge representation tech-
niques in requirements engineering [17], or (3) Telos, its successor [26]; (4) RSML
(Requirements State Machine Language), a formal system modelling language de-
scribed in 1994 [24].

More recently, the agile software development approaches have also developed
some specific techniques to be applied in the requirements activities. Ambler has
discussed the best practices about agile requirements modelling, and how to integrate
them with the rest of the agile development process [1]. Extreme Programming [2]
proposes the concept of user stories, a set of small sentences that express the user
needs, in his own words. The idea is to simplify, whenever possible, the process of
information gathering about the system functionalities, doing the effort needed to
capture the current user needs and nothing else. Detailed requirements information
represents frequently an unnecessary overhead at the beginning of the project, because
requirements change.

In the area of Human Computer Interaction, some proposals have been made to im-
prove software usability, requiring the effective user involvement throughout the de-
velopment process. Some authors, like Dix [8] call it Usability Engineering, empha-
sizing the usability aspects, while others call it User Centered Design. In terms of
requirements, most of these initiatives, like Usage Centered Design [5], or GUIDE
[30], propose an iterative process, where different types of requirements are gathered
from the user of the system, then the system is designed or prototyped, and the user
evaluates the result, which can originate more requirements. In [35] there is an over-
view of these processes; the important point to retain to our initiative is the close and
permanent relation between the user and the IT people, in terms of the requirements
activities.

Finally, there are some initiatives in the software development process that have
proposed relevant best practices, which we want to take into account and use appro-
priately. Besides the model driven ideas, we recognize a strong influence from the
ideas of product line software development [23] and agile development [2]. Aspect-
oriented requirements engineering [29] and viewpoints [13] are also initiatives we will
monitor to understand how they can influence our work.

4 The ProjectIT initiative

The Information Systems Group of INESC-ID is a group interested in research topics
connected with software engineering and the software development process, and in
applying them to the daily projects in which it is involved. In the recent past, the
group has been involved in two research projects in the area of software engineering:

1. XIS, whose main contribution was the development of the XIS/UML profile in-
tended to specify, simulate and develop information systems following a MDD ap-
proach [33].

2. ProjectPro, a Web based collaborative system to support the definition of basic
concepts (projects, releases, sub-systems, requirements) and their relationships
[25].
After the initial versions of both these projects, we reached the conclusion that their

added value would be greater if we integrate them in a single project, which we have
called “ProjectIT”. The goal is to provide a complete software development work-
bench, with support for project management, requirements engineering, analysis, de-
sign and code generation activities. The current view of the functional architecture of
the project is represented in Figure 3.

ProjectIT
Requirements

ProjectIT MDD
(XIS)

ProjectIT Tests

ProjectIT Time

ProjectIT
Workbench

Figure 3 – ProjectIT architecture

ProjectIT-Workbench provides the basic and common infrastructure to all the other
components (such as user definition, permissions, version management, and project
definition). ProjectIT-Time is the component that supports, among other features, the
definition of the activities to be performed throughout a project, their workflow, the
artefacts involved. ProjectIT-Tests is an initiative in the area of tests engineering,
closely related with requirements engineering. ProjectIT-MDD is the component that
provides the analysis, design and code generation features of ProjectIT, following an
approach according with the principles of model driven development. For historical
reasons, it can be also known by “XIS”, which stands for “eXtensible Interactive Sys-
tems”.

5 ProjectIT-Requirements

In the area of requirements engineering, the analysis of the existing initiatives and
practices led us to conclude that there are important factors that justify new initiatives:

1. The research initiatives developed in the past, like those identified in sections 2 and
3, have represented an important contribution, but for a number of different reasons
they have not been widely adopted.

2. The available tools, such as CaliberRM [http://www.borland.com/caliber/], Requi-
sitePro [http://www-306.ibm.com/software/awdtools/reqpro/], Doors
[http://www.telelogic.com/products/doorsers/], RTM [http://www.chipware.com/],
although representing an important step forward, are above all requirements man-
agement tools; they have many features to input requirements in the system, to clas-
sify them, to define relationships, and to analyse them, but most of them still lack
the capabilities to automate important tasks, or to guarantee a consistent integration
with the rest of the development process (it is our intention to prepare a more de-
tailed paper concerning this aspect).

3. There is an evident gap between the academic and research initiatives developed
and their application and implementation in tools adopted by the market.
ProjectIT-Requirements is the component of the ProjectIT architecture that deals

with requirements issues. The main goal of the project is to develop a model for the
definition and documentation of requirements, which, by raising their specification
rigor, facilitates the reuse and integration with development environments driven by
models. Taking into account the different types of requirements, we must emphasize
that we are currently interested in software requirements [21], those that can more
easily be “converted” in software design models by MDD approaches. We recognize
that other types of requirements, in particular non-functional requirements (such as
usability, performance, security, safety, maintainability), are more difficult to formal-
ize, and require different approaches.

5.1 ProjectIT-Requirements Goals

The main idea behind the project is that we must combine the benefits of formalizing
the requirements specification, with the need to use a format and notation that is un-
derstandable by every involved project stakeholder. That is why we propose a “con-
trolled natural language”, a subset of natural language with specific rules for require-
ments specification, with a limited vocabulary and a simplified grammar. This type of
language will enable every stakeholder in the software development process to easily
use the ProjectIT-Requirements tools, and to reduce the time-consuming learning
curve to work with the requirements deliverables of the project.

At the same time, by transparently raising the level of the rigor of the requirements
specification through formalization (using a limited vocabulary with well defined
rules), we will reduce the errors frequently found in the requirements specification
process [21]. The generic principles followed by ProjectIT-Requirements are de-
scribed with more detail in [37]. We have also identified the results we want to
achieve, the most significant being:
1. The definition and management of the project glossary, which is elaborated by

identifying the business entities and their properties.
2. The definition and formalization of a requirements specification language, which

can be represented textually and graphically, and provides the basic mechanisms to

define rigorously the system requirements. In order to maximize the benefits of
close integration with the other components of the ProjectIT architecture, benefit-
ing from a single and global metamodel, we have decided to define a new language
and not reusing an existing one.

3. The definition and management of requirements architectures, as a way to pro-
mote the reuse and increase the productivity in requirements engineering.

4. The definition of mechanisms to provide the requirements management in the
context of specific projects based in requirements architectures.

5. The capability of establishing relationships between requirements and other pro-
ject-based concepts, for example, projects, people, modules, etc.

6. The extension of the current XIS/UML profile in order to provide the seamless
integration with modelling activities and the other ProjectIT sub-systems, result-
ing in the future ProjectIT/UML profile.

5.2 ProjectIT-Requirements in the context of ProjectIT

The main components of the ProjectIT-Requirements architecture in the context of
ProjectIT are shown in Figure 4.

Requirements
Language

Model
Foundation

Requirements
Tools

ProjectIT-Requirements

ProjectIT

XIS/UML Profile

Modelling Tools

ProjectIT
Workbench

Figure 4 – Relationship between ProjectIT and ProjectIT-Requirements

The Model Foundation defines the project vision, its strategy, how it interacts
with other ProjectIT components and the vocabulary used throughout the other parts
of the project. The Requirements Language is defined by a model, which shows the
concepts to be used for requirements description, and by a grammar for defining the
rules to map these concepts into sentences. The first defines the language’s syntax and
the second its semantics. The Requirements Tools supports the definition of require-
ments and their exploration in real projects, in conformance with the language de-
fined. The XIS/UML Profile acts as the bridge between ProjectIT-Requirements and
ProjectIT-MDD, enabling the mapping between the requirements and the modelling
and design artefacts produced (in fact, the requirements language will be represented
by a model common to the XIS/UML Profile model).

5.3 ProjectIT-Requirements architecture

The ProjectIT-Requirements architecture, shown in Figure 5, is based upon an inte-
grated set of tools that together will enable the definition of requirements and their
relationships and provide the support for reusing previously defined requirements and
the integration with modelling tools, developed in the context of ProjectIT-MDD.

Requiremen ts Lan guage

Req. XML
Schema

Requiremen ts Tools

Req.
Exporte r

Req.
Repository

Req Language
Compiler

Req.
Editor

Intell isense
Feature

Req.
Analyser

Figure 5 – ProjectIT-Requirements tools architecture

The information is stored in a Repository (either a DBMS or a XML file), whose
information is managed by the Requirements Editor. It acts like a traditional editor
for introducing controlled requirements text, but has additional options, like the possi-
bility of classifying requirements (for later requirements reuse) and viewing traceabil-
ity information. New requirements can be introduced in the system by reusing existing
requirements. The editor will also provide other features that will be used if appropri-
ate. For example, requirements can be associated with other concepts (such as sub-
systems, systems, projects) managed by ProjectIT-Workbench; a requirement can be
associated with different roles (e.g., the stakeholder who asked for it) and with differ-
ent project deliverables (e.g., requirements specification, test cases).

The Requirements Analyser component, closely integrated with the editor, is re-
sponsible for viewing requirements and traceability information in different formats
(e.g., documents, reports, matrixes, graphs); it works like a management information
system for obtaining statistical information about requirements.

The Exporter component provides bidirectional integration with external tools.
This component enables functionalities such as importing requirements written in a
word processor, performing some validations and suggesting the changes needed to
conform to our requirements language rules, besides importing and exporting re-
quirements using standard formats. The integration with the modelling components of
ProjectIT will be performed according the rules and semantics described in the
XIS/UML profile, and its XML schemas.

Finally, the Requirements Compiler and Intellisense, are responsible for check-
ing the requirements definitions, introduced in the editor, against the rules defined by
the Requirements XML Schema, which is generated from the model, and represents
our requirements specification language. Our vision is to build a tool for writing “re-
quirements documents”, like in a word processor, and as we write, it will warn us of
errors violating the requirements language and grammar rules we have defined (very
similar to what happens nowadays in the Word application, underlining in red some
syntactical errors).

6 ProjectIT-Requirements prototype development

The architecture described in the above section represents our vision of the set of tools
needed to implement the complete functionality of ProjectIT-Requirements. The need
to establish a compromise between the functionality expected and the delivery of
results, which clearly eases the validation of the concepts proposed, led us to initiate
an iterative project, delivering small results in short periods of time. As such, we de-
cided to develop an initial prototype of the most important deliverables of the project:
(1) the requirements specification language, which we have called ProjectIT-RSL; (2)
the main requirements tools, the editor and the compiler.

6.1 ProjectIT-RSL

The ProjectIT-RSL is currently a simple language that can be represented by a meta-
model (a brief overview is shown in Figure 6), and by a grammar for defining the rules
to map these concepts into sentences [36]. This metamodel identifies the basic con-
cepts that the language will describe; the grammar will define the syntactic and seman-
tic rules between these concepts, which will be validated by the compiler and the
intellisense features.

Primitive Types

Operation

groups

Type Property

Entity

relates with

Actor
performs operation

specializes

Figure 6 – ProjectIT-RSL metamodel simplified representation

Following our goal to keep requirements definition as simple and close to reality as
possible, we analysed how requirements are most often specified. In most situations,
requirements are expressed by normal language sentences that have a subject, a verb

and other words that complement their meaning. We “transformed” this natural lan-
guage into requirements language saying that actors carry out operations, which can
access one or more entities. These are precisely the main concepts of our language:
- Actors are active resources (e.g., an external system or an end-user) that perform

operations involving typically one or more entities.
- Entities are the static resources affected by the operations (e.g., a document, the

data about a client or an invoice stored in a database). Entities have Properties
that represent and describe their state.

- Operations are described by their respective workflows, which consist of a se-
quence of simpler Operations that affect Entities. This recursive definition will end
in atomic and primitive Operations (e.g., create, update or delete operations) pro-
vided by default by our framework.

Another important concept not represented in the metamodel (for simplicity rea-
sons) is the System, which represents a software component (either a complete appli-
cation or a reusable component) with which an actor interacts, by executing the opera-
tions of the system to access or manage the entities available. Each of the three basic
concepts can be reused in different systems; the idea is to provide requirements reuse
mechanisms supported by the reuse of the requirements basic elements.

With this type of language we can express some of the most frequent software re-
quirements for the kind of systems we are working on, which are above all interactive
software applications. This model supports a simple description of a system (as shown
below), which can later be used for generating part of it.

WinInvoice is a system
WinInvoice has three types of users:
- the operator;
- the manager;
- the administrator.

The Client entity is described by:
- a name;
- a unique Social Security Number;
- zero to three phone numbers;
- a credit limit;
- a sequential client number automatically assigned.

The operator can create bills and view clients.
The manager has the same permissions as the operator, but he cannot
create bills.

Considering the text above, we can see that the sentence specifying the permissions

of the operator conforms to our model: the actor is the “operator”, the operation is
“create” and the entity is “bill”. This description also points to some of the issues in
ProjectIT-RSL that we are aware of, but have not implemented yet; some are minor
issues, like the need to standardize on the terms (for example, always use the singular,
such as bill instead of bills) and the style (the sentences should be kept as simple as
possible and more elaborated sentences should be divided, when possible, into simpler
ones).

Probably the most important question still under discussion is the level of resem-
blance to natural language that we will adopt; here the option is between a description
like the one above, very close to natural language, or a “programming language” style,
which is the approach followed in the current implementation, mainly due to practical

reasons as we will see. Besides this issue, the next important step is to provide in Pro-
jectIT-RSL the capability to specify a complex operation using simpler operations and
workflows, thus gathering enough information for being later used by code generation
techniques.

With the evolution, the metamodel of the ProjectIT-RSL language will integrate
and extend the current XIS/UML profile. Their merging will result in ProjectIT/UML
profile, a common metamodel for all initiatives developed under the ProjectIT pro-
gramme.

6.2 Prototype Development

To test our initial model of ProjectIT-RSL in an iterative way, we built a prototype of
the editor and compiler of the ProjectIT-RSL. Although we intend to develop an ap-
plication integrated in a new development environment, to shorten the initial devel-
opment time and to quicker validate the model of ProjectIT-RSL and see how it sup-
ported the requirements specification task and what type of additional features were
still needed, we decided to take the benefits of the features provided by Visual Studio
.NET and the .NET Framework [http://msdn.microsoft.com/] and we built a prototype
in this environment. We chose this development environment because it provides
some of the features we consider important, such as intellisense and syntax validation
when writing code. Microsoft also provides the Visual Studio Industry Partner Pro-
gram [http://msdn.microsoft.com/vstudio/extend/], abbreviated VSIP, which are a set
of COM APIs that enable the integration of new features in the Visual Studio.NET
development environment, such as the possibility of adding new languages, or creating
new types of projects. With these features, we can directly use the Visual Studio de-
velopment environment, to edit new types of projects in new languages, without hav-
ing to develop a new editor from scratch.

The VSIP APIs are powerful, but difficult to understand and very low-level from
the developer’s point of view (they are written in C++ with the code difficult to under-
stand). That is why we decided to use the Babel library that comes together with
VSIP, but provides a higher abstraction layer above it. For example, the intellisense
feature is handled directly by Babel and can be accessed from it. We also used imple-
mentations of Lex and Yacc (Flex [http://www.gnu.org/software/flex/] and Bison
[http://www.gnu.org/software/bison/bison.html]) to implement the features associated
with language checking in the editor, and also for the compiler of the ProjectIT-RSL.
They are classical tools used to check syntactic and semantic rules from programming
languages, based upon a grammar description and analysis of regular expressions.
Figure 7 shows how the different components of the architecture integrate to provide
the global functionality.

Visual Studio
Integration Package

Babel

Proje ct IT -RSL Lang uage Se rvice and
Proje ct IT -RSL VS. NET Int egration Package

ProjectIT -RSL
Compiler

ProjectIT -RSL
XML Description Fi le

VSIP COM
Interfaces

Babel COM
Interfaces

Direct Access to VSIP f or
implementing the project
in VS .NET

Figure 7 – ProjectIT-Requirements tools architecture

Using these tools we have implemented the possibility of creating new projects in
Visual Studio .NET, the ProjectIT-RSL projects (Figure 8).

Figure 8 – Creating a ProjectIT-RSL project in Visual Studio .NET

This project uses the standard Visual Studio .NET editor, extended with the capa-
bility of writing the ProjectIT–RSL sentences, according with the model presented in
Figure 6. The editor, shown in Figure 9, supports on-the-fly syntactic language verifi-
cation and full syntax highlighting, which means that as we write, all expressions are
validated (by the component generated by Bison for language checking, and according
with the rules previously defined) and in case there is any error, it is immediately

detected and highlighted. Besides, the auto-complete feature is also always available
giving the writer suggestions of correction or of the next allowed and available term,
according with the language.

Figure 9 – The ProjectIT-RSL editor

Upon successful compilation, the compiler produces an XML file, which is the in-
put to ProjectIT-MDD. This component processes this file, and will be able to gener-
ate different project artifacts, including a UML model of the information specified and
code, following with an MDD approach.

7 Conclusions

In this paper we tried to justify the need for new initiatives in the area of requirements
engineering, which is recognized to be a crucial part of the software development
process. We strongly believe that the integration with other project tasks, in a model
driven development approach, reusing previously developed requirements, expressed
in a more formal (yet universally understandable) way, and which are used by auto-
mated tasks, are essential characteristics that must be taken into consideration by any
modern initiative in the area of software engineering. These are precisely the main
drivers of ProjectIT-Requirements.

We have already established ProjectIT-Requirements architecture, defined an ini-
tial version of ProjectIT-RSL, a basic component of our project. To test it, we have
built a prototype of the editor and compiler reusing many features provided by the
Visual Studio .NET development environment. We are now initiating the next itera-
tion of the project’s implementation, which includes adding more features to Projec-
tIT-RSL (like the support for the specification of more complex and versatile opera-
tions and workflows, and the checking of additional rules), and the implementation of
requirements reuse based on requirements architectures. In this process, we will inte-

grate the developed features into our development environment, and enable the inte-
gration with ProjectIT-MDD. When we accomplish these goals, it is our intention to
use the developed tools in real projects, to test and proof the ideas we are proposing.

We are aware that this is an ambitious project, and that there are still some open is-
sues for which we will actively research in the near future. We pretend to make some
innovative proposals, but we also intend to integrate the ideas of previously developed
initiatives. We strongly believe that the apparent contradiction between formalization
and user involvement, which we consider both fundamental for the success of software
development, can be overcome if we follow a pragmatic approach like the one pro-
posed in this paper.

References

1. Ambler, Scott, Agile Requirements Modeling, Essay, available at
http://www.agilemodeling.com/essays/agileRequirements.htm, 2004

2. Beck, K. Extreme Programming Explained: Embracing Change, Addison Wesley, October
1999

3. Bowen, J., Hinchey, M., Seven More Myths of Formal Methods, PRG-TR-7-94,:Oxford
University Computing Laboratory, 1994

4. Coleman, D., et al., Object-Oriented Development: The Fusion Method. Prentice Hall,
Englewood Cliffs, NJ, Object-Oriented Series edition, 1994

5. Constantine, L., Essentially Speaking. In Software Development, Vol. 2, No. 11, pp. 95-96,
1994

6. Cybulski, J., Application of Software Reuse Methods to Requirements Elicitation from
Informal Requirements Texts, PhD Thesis, La Trobe University, Australia, March 2001

7. Dardenne, A., A. van Lamsweerde, A., Fichas, S., Goal directed requirements acquisition,
Science of Computer Programming, 20:3–50, 1993

8. Dix, A. et al., Human Computer Interaction. Prentice Hall, Boston, 2003
9. Dorfmann, M., Thayer, R., Standards, Guidelines, and Examples of System and Software

Requirements Engineering, Los Alamitos, California, IEEE Computer Society Press, 1990
10. Dubois, E., Yu, E., Petit, M., From Early to Late Formal Requirements: a Process-Control

Case Study, Proc. 9th Int. Workshop on Software Specification and Design, Isobe, IEEE CS
Press, 34-42, April 1998

11. Evans, A., France, R., Lano, K., Rumpe, B., Developing the UML as a Formal Modelling
Notation, UML'98, Beyond the notation International Workshop, Mulhouse France, 1998

12. Feather, M., Reuse in the context of a transformation-based methodology, in Software
Reusability: Concepts and Models, Biggerstaff, T.J. and Perlis, A.J. (Editors). New York,
New York: ACM Addison Wesley Publishing Company. p. 337-359, 1989

13. Finkelstein, A., Nuseibeh, B., Kramer, J., A framework for expressing the relationships
between multiple views in requirements specification. Transactions on Software Engineer-
ing. 20(10): p. 760-773, 1994

14. France, R., Grant, E., Bruel, J., UMLtranZ: An UML-based rigorous requirements model-
ing technique, Technical report, Colorado State University, Ft. Collins, Colorado, January
2000

15. Fuchs, N., Hofmann, H., Schwitter, R., Specifying Logic Programs in Controlled Natural
Language, 94.17,: Department of Computer Science, University of Zurich, 1994

16. Glinz, M., Problems and Deficiencies of UML as a Requirements Specification Language,
Proc. of the 10th IEEE Int. Workshop on Software Specification and Design, 2000

17. Greenspan, S., Mylopoulos, J. and Borgida, A., Capturing More World Knowledge in the
Requirements Specification, Proceedings 6th International. Conference on SE, Tokyo, 1982

18. Guttag, J., Horning, J., Larch: Languages and Tools for Formal Specifications, New York.
Springer-Verlag. 1993

19. Harwell, R. et al, What Is A Requirement?, in Proceedings of the Third International Sym-
posium of the NCOSE, 1993

20. Johnson, W., Feather, M., Using evolution transformation to construct specifications, in
Automatic Software Design, Lowry, M.R. and McCartney, R.D. (Editors). Menlo Park,
California. The MIT Press. p. 65-91, 1991

21. Kotonya, G., Sommerville, I., Requirements Engineering Processes and Techniques, New
York. Jonh Wiley & Sons, 1998

22. Kruchten, P., The Rational Unified Process: An Introduction, Addison Wesley, January
2004

23. Kuloor, C., Eberlein, A., Requirements Engineering for Software Product Lines, Proc. of
the 15th Int. Conference on Software & Systems Engineering and their Applications, Paris,
2002

24. Leveson, N., Heimdahl, M., Hildreth, H., Reese, J., Requirements specification for process-
control systems. IEEE Transactions on Software Engineering, pp 684-706, September 1994

25. Moreira, V., ProjectPRO, Plataforma de Gestão de Requisitos, Relatório de Trabalho Final
de Curso, Lisboa, July 2003

26. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., Telos: Representing Knowledge
about Information Systems,” ACM Transactions on Information Systems, October 1990

27. Nuseibeh, B., Easterbrook, S., Requirements Engineering: a roadmap. In Proc. of the Con-
ference on The Future of Software Engineering, pages 35-46, Limerick, Ireland, 2000

28. Pressman, R., Software Engineering: A Practitioner's Approach: European Adaptation. 5th
Edition, McGraw-Hill Education, Europe, 2000

29. Rashid, A., Sawyer, P., Moreira, A., Araújo, J., Early Aspects: a Model for Aspect-Oriented
Requirements Engineering, Requirements Engineering 2002 (RE'02), Essen, Germany, 9-13
September 2002

30. Redmond-Pyle, D., Moore, A., Graphical User Interface Design and Evaluation. Prentice-
Hall, London, 1995.

31. Schwitter, R., Fuchs, N., Attempto - from specifications in controlled natural language
towards executable specifications, in GI EMISA Workshop, Natürlichsprachlicher Entwurf
von Informationssystemen. Tutzing, Germany, p. 163-177, 1996

32. Silva, A., Videira, C., UML, Metodologias e Ferramentas CASE, Centro Atlantico, Lisboa,
2001

33. Silva, A., Lemos, G., Matias, T., Costa, M., The XIS Generative Programming Techniques,
Proc. of the 27th Annual Int. Computer Software & Application Conference, Dallas, 2003

34. Spivey, J., An introduction to Z and formal specifications, Software Engineering Journal.
4(1): p. 40-50, 1989

35. Videira, C., A review of user centered processes, I Jornadas de Postgrado en Ingeniería
Informática, Salamanca, Spain, May 2004

36. Videira, C., Carmo, J., Silva, A., The ProjectIT-RSL Language Overview, accepted for
publication in UML 2004, Lisbon, October 2004

37. Videira, C., Silva, A., A broad vision of ProjectIT-Requirements, a new approach for
Requirements Engineering, accepted for publication in CAPSI 2004, Lisbon, November
2004

38. Villegas, O., Laguna, M. Garcia, F., Reuse based Analysis and Clustering of Requirements
Diagrams, Proceedings of REFSQ'02, 8th Int. Workshop on Requirements Engineering:
Foundation for Software Quality, Essen, Germany, September 2002

39. Woodman, M. Heal, B., Introduction to VDM. McGraw-Hill, London, 1993

