
CSEET 2003© Kramer

Jeff Kramer

Distributed Software Engineering
Department of Computing

Imperial College
London

Abstraction – is it teachable?Abstraction – is it teachable?

the devil is in the detailthe devil is in the detail

or

CSEET 2003© Kramer

Chapter 1. Teaching experience

CSEET 2003© Kramer

Teaching experience

Courses:
software engineering,
distributed systems,
distributed algorithms,
programming,
concurrency,
……

Skills:
problem solving,
conceptualization,
modelling,
analysis,
……

CSEET 2003© Kramer

Experience: the better ones….

Some students are able to produce
elegant designs and solutions.

Generally the same students are also
able to comprehend the complexities of
distributed algorithms, the applicability
of the various modelling notations, and
so on.

CSEET 2003© Kramer

Experience: the others ….

Why ?

A number of others are not so able.

They tend to find distributed algorithms
very difficult, do not appreciate the
utility of modelling, find it difficult to
know what is important in a problem,
produce convoluted solutions which
replicate the problem complexities, ……

CSEET 2003© Kramer

I believe …..

… that the heart of the
problem lies in a difficulty in
dealing with

CSEET 2003© Kramer

Chapter 2. What is it? Why is it so important?

Abstraction

CSEET 2003© Kramer

Definitions

� the act of withdrawing or removing something

� the act or process of leaving out of consideration one
or more properties of a complex object so as to attend
to others

�a general concept formed by extracting common
features from specific examples

� the process of formulating general concepts by
abstracting common properties of instances

=> generalisation (core or essence)

=> Remove detail (simplify and focus)

CSEET 2003© Kramer

Abstraction in other disciplines

Art – Matisse

Music – jazz

Maps – London Underground map

CSEET 2003© Kramer

Matisse – guess what ….

representation
of the essence
of the subject

&
removal of
detail

CSEET 2003© Kramer

Jazz

jazz musician –

“It is easy to make something simple sound
complex, however its more difficult to
make something complex sound simple”.

CSEET 2003© Kramer

1930 – London Underground map

Aspect of
focus?

Relationship
between
stations and
interchanges,
not actual
distances

CSEET 2003© Kramer

1933 – Harry Beck (1st schematic image map)

CSEET 2003© Kramer

2001 – Fit for purpose

CSEET 2003© Kramer

Why is abstraction important in Software Engineering?

Requirements

Design

Programming

Software is abstract!

CSEET 2003© Kramer

Why is it important? requirements engineering

“The act/process of leaving out of consideration one or more
properties of a complex object so as to attend to others”

Requirements - elicit the critical aspects of the
environment and required system while
neglecting the irrelevant.

requirements

goals
scenarios
assumptions
constraints
properties

CSEET 2003© Kramer

Why is it important? design

Design - articulate the software architecture
and component functionalities which satisfy
functional and non-functional requirements while
avoiding unnecessary implementation constraints.

eg. Compiler design (Ghezzi):

• abstract syntax to focus on essential
features of language constructs;

• design to generate intermediate code for
an abstract machine

“The act/process of leaving out of consideration one or more
properties of a complex object so as to attend to others”

CSEET 2003© Kramer

Why is it important? programming

Programming - use
data abstraction
and classes so as
to generalize
solutions.

“the process of formulating general concepts by
abstracting common properties of instances ”

Selectable

guard()

listSelect
add()
choose()

Channel
send()
receive()

Port
send()
receive()

Entry
call()
accept()
reply()

clientChan

Message passing

CSEET 2003© Kramer

Why is it important? advanced topics

Abstract interpretation for program analysis -
map concrete domain to an abstract domain
which captures the semantics for the purpose at
hand.

eg. Rule of signs for multiplication *

0*+ = 0*- = +*0 = -*0 = 0

+*+ = -*- = +

+*- = -*+ = -

“the process of formulating general concepts by
abstracting common properties of instances ”

Hankin

CSEET 2003© Kramer

Abstraction

Abstraction is fundamental to Engineering
in general, and to Software Engineering in
particular !

Do our students’ powers of abstraction depend on
their genes ?

Can we improve their abilities ? …and if so, how ?

Is it possible to teach abstraction ?

CSEET 2003© Kramer

Cognitive Development

Jean Piaget’s fours stages of cognitive development:

1st & 2nd: sensorimotor and preoperational (0-7yrs)

3rd stage: concrete operational thought (7-12yrs)
no abstract thought

4th stage: formal operational period (12–adult)
think abstractly (logical use of symbols

related to abstract concepts),
systematically and hypothetically

Changes in thinking by which mental processes
become more complex and sophisticated.

CSEET 2003© Kramer

Cognitive Development – formal operational thought

4

3

3

Huitt &
Hummel

CSEET 2003© Kramer

Cognitive Development

Jean Piaget’s fours stages of cognitive development:

1st & 2nd: sensorimotor and preoperational (0-7yrs)

3rd stage: concrete operational thought (7-12yrs)
no abstract thought

4th stage: formal operational period (12–adult)
think abstractly (logical use of symbols

related to abstract concepts),
systematically and hypothetically

Changes in thinking by which mental processes
become more complex and sophisticated.

Not reached by all individuals. Only 30%
to 40% of teenagers exhibit ability for
abstact thought, some adults never do!bad news

Some ability for abstraction with training

good news

CSEET 2003© Kramer

Chapter 3. Teaching abstraction?

CSEET 2003© Kramer

Courses on Abstraction?

1st Year (all required):
Declarative Programming I

Databases 1

Declarative Programming II

Discrete Mathematics 1

Discrete Mathematics 2

Hardware

Programming I

Logic

Reasoning about Programs

Programming II

Computer Systems

Mathematical Methods and Graphics

2nd Year (most required):
Algorithms, Complexity and Computability

Architecture II

Compilers

Artificial Intelligence I (optional)

Operating Systems II

Computational Techniques (optional)

Software Engineering - Design I

Concurrent Programming (optional)

Statistics

Networks and Communications

Software Engineering - Design II

Imperial College MEng in
Software Engineering

CSEET 2003© Kramer

Courses on Abstraction?

3rd Year (most optional):
Advanced Databases

Advanced Computer Architecture

Advances in Artificial Intelligence

Computational Finance

Computational Logic

Custom Computing

Distributed Systems

Introduction to Bioinformatics

Knowledge Management Techniques

Decision Analysis

Operations Research

Graphics

Quantum Computing

Management - Organisation and Finance (required)

Simulation and Modelling

Multimedia Systems

Software Engineering - Methods (required)

Performance Analysis

The Practice of Logic Programming

Robotics

Type Systems for Programming Languages

4th Year (most optional):
Advances in Artificial Intelligence

Advanced Graphics and Visualization

Advanced Issues in Object Oriented

Programming Automated Reasoning

Advanced Operations Research

Complexity

Computer Vision

Computing for Optimal Decisions

Intelligent Data and Probabilistic Inference

Domain Theory and Exact Computation

Modal and Temporal Logic

Grid Computing

Models of Concurrent Computation

Knowledge Representation

Natural Language Processing

Management - Economics and Law

Network Security

Multi-agent Systems

Program Analysis

Parallel Algorithms

Software Engineering - Environments

CSEET 2003© Kramer

Courses on Abstraction?

Which courses rely on or utilise the powers of
abstraction to

• explain

• model

• specify

• reason

• solve …. ?

CSEET 2003© Kramer

List of courses which do NOT make use of Abstraction?

CSEET 2003© Kramer

So ….?

Abstraction is essential but has to be
taught indirectly.

CSEET 2003© Kramer

So ….?

How should we ensure that students
can understand and make use of
abstraction ?

1. Teach enough Mathematics

2. Teach (formal) modelling and analysis
Caveat: Must be tool supported

Must feel the benefit

3. Other techniques ?

CSEET 2003© Kramer

Chapter 4. Modelling and analysis

Teaching
modelling

CSEET 2003© Kramer

Models and Modelling?

� A model is a description from which detail
has been removed in a systematic manner
and for a particular purpose.

� A simplification of reality intended to
promote understanding.

� Models are the most important engineering
tool; they allow us to understand and
analyse large and complex problems.

Finkelstein

CSEET 2003© Kramer

Ockam’s Razor

�William of Ockam (1285) formulated the
famous “Rule of the Razor”:

Entia non sunt multiplicanda sine
necessitate.

Entities should not be multiplied without
necessity.

� In other words a model should be as simple as
possible, but no simpler - it should discard
elements of no interest.

� “Fit for purpose”.

CSEET 2003© Kramer

formal methods experience

Attempts to teach software engineering students how
to use formal models as part of their software
development process have generally been unsuccessful.

The models often
♦ do not integrate well into the

software development process,
♦ are too difficult to learn and use,

♦ provide inadequate tool support

♦ are not well motivated

Much pain with little gain!

CSEET 2003© Kramer

software engineering students

The challenge is to make
modelling and analysis
accessible and useful to
software engineering students.

CSEET 2003© Kramer

teaching Concurrency – models and programs

�Concepts
�we use a model-based approach for the design and

construction of concurrent programs

�Models
�we use finite state models to represent concurrent

behaviour (FSP and LTS), and model checking for
analysis (LTSA).

�Practice
�we use Java for constructing concurrent programs.

http://www-dse.doc.ic.ac.uk/concurrency/

CSEET 2003© Kramer

component VOTER - behaviour

Component:

Process specification in FSP:

VOTER enter
exit

VOTER = (enter -> vote -> exit -> VOTER

) @{enter,exit}.

Actions {enter,exit} are
exposed, vote is hidden.

CSEET 2003© Kramer

component USER - behaviour

Labelled transition system LTS:
LTS Animation
can be used to
step through
the actions to
test specific
scenarios.

VOTER can be minimised
with respect to Milner’s
observational equivalence.

VOTER enter tau

exit

0 1 2

enter

exit

0 1

CSEET 2003© Kramer

component BOOTH - behaviour

Component:

Process specification in FSP:

BOOTH
enter exit

const Max = 3
range Int = 0..Max

BOOTH(N=Max) = BOOTH[N],
BOOTH[v:Int] =(when(v>0) enter->BOOTH[v-1]

|when(v<Max)exit->BOOTH[v+1]
).

CSEET 2003© Kramer

Modelling concurrent systems

Composite
components

Primitive
components

CSEET 2003© Kramer

Composite component behaviour

Three voters p[1..3] use a shared booth, madrid,
to register their vote. To ensure mutual exclusion ……

… the
number of

spaces
available in
the booth
must be 1.

p[1] : VOTER

madrid : BOOTH(1)

p[2] : VOTER p[3] : VOTER

VOTESDEMO

CSEET 2003© Kramer

Composite component behaviour

||VOTESDEMO = (p[1..Max]:VOTER

|| madrid:BOOTH(1)

)

/{p[1..Max].enter/ madrid.enter,

p[1..Max].exit/ madrid.exit}.

p[1]

madrid

p[2] p[3]
VOTESDEMO

CSEET 2003© Kramer

Benefit - behaviour analysis

CSEET 2003© Kramer

Reachability analysis for checking models

Searches the system state space for deadlock states
and ERROR states arising from property violations.

Deadlock - state with no outgoing transitions.
ERROR (π) state -1 is a trap state. Undefined
transitions automatically mapped to the ERROR state.

30 1 2-1
ERROR
state

Deadlock
state

CSEET 2003© Kramer

Safety - property automata

Safety properties are specified by deterministic
finite state processes called property automata.
Invalid behaviour transitions to an ERROR.

property EXCLUSION = (p[i:1..3].enter
-> p[i].exit
-> EXCLUSION).

||CHECK = (VOTESDEMO || EXCLUSION).

Safety properties are are violated if ERROR is
reachable in the composed system.

…if the initial value of the booth is 2 ? …or 0?

CSEET 2003© Kramer

Liveness - progress properties

We support a limited class of liveness properties,
called progress, which can be checked efficiently:

[]◊◊◊◊a
[]◊◊◊◊a ⇒⇒⇒⇒ []◊◊◊◊b

i.e. Progress properties check that, in an infinite
execution, particular actions occur infinitely often.
For example:
progress OKtoVOTE[i:1..3] = {p[i].enter}

…if we give priority to two of the voters?

CSEET 2003© Kramer

Deadlock – analysis Vs intuition

Dining Philosophers

CSEET 2003© Kramer

Model interpretation animations

LTS
model

LTS Model checking
�safety properties
�progress properties
�compositional reachability
�abstraction & minimisation

Animation

Separate graphic
animation model which
preserves the behaviour
of the model and has
sound semantics based
on Timed Automata.

mapping

CSEET 2003© Kramer

abstract models concrete animations

CHAN
in

in

out

fail

0 1 2

CHAN = (in -> out -> CHAN
|in -> fail -> CHAN
).

CSEET 2003© Kramer

Flexible Manufacturing Cell

Animated
models can
be
composed
to form
complex
models.

CSEET 2003© Kramer

Model based design of concurrent programs

http://www-dse.doc.ic.ac.uk/concurrency/

CSEET 2003© Kramer

from requirements to models

♦ goals of the system
♦ scenarios (Use Case models)
♦ properties of interest

Requirements

Model

♦ identify the main events, actions, and interactions
♦ identify and define the main processes
♦ identify and define the properties of interest
♦ structure the processes into an architecture

♦ check traces of interest
♦ check properties of interest

Any
appropriate

design
approach

can be used.

CSEET 2003© Kramer

from models to implementations

Model

Java

♦ identify the main active entities
- to be implemented as threads

♦ identify the main (shared) passive entities
- to be implemented as monitors

♦ identify the interactive display environment
- to be implemented as associated classes

♦ structure the classes as a class diagram

CSEET 2003© Kramer

Chapter 5. Conclusions ...

CSEET 2003© Kramer

How ….?

How can we teach abstraction ?

1. Teach enough Mathematics

2. Teach (formal) modelling and analysis
Caveat: Must be tool supported

Must feel the benefit

3. Other techniques ?

CSEET 2003© Kramer

Experience …..

� Generally very good - the students find the
models relatively intuitive and helpful in
clarifying the problem.

� Comprehension is facilitated by model
animation, model checking and simulation.

� However – some still seem to find
constructing models themselves, ab initio, to be
very difficult!

CSEET 2003© Kramer

Modelling

� It is not enough to think about what
they want to model, they need to
think about how they are going to use
that model.

� … fit for purpose (Occam’s Razor)

CSEET 2003© Kramer

Other techniques?

Learn from Cognitive Development ?

➨ Give students an opportunity to explore
many hypothetical questions

➨ Encourage students to explain how they
solve problems.

➨ Whenever possible, teach broad
concepts, not just facts, using materials
and ideas relevant to the students.

CSEET 2003© Kramer

Other techniques?

More emphasis on …

• Active learning - key to development and
learning is activity

• Social context of learning -
learning climate,
community’s expectation,
teachers’ perceptions, …

CSEET 2003© Kramer

Teach respect for Clarity and Simplicity

“It has been my experience with literary
critics and academics in this country, that
clarity looks a lot like laziness and ignorance
and childishness and cheapness to them. Any
idea which can be grasped immediately is for
them, by definition, something they knew all
the time.”

Kurt Vonnegut

CSEET 2003© Kramer

I believe that …

� Abstraction is fundamental to
Software Engineering.

� Abstraction has to be taught
indirectly.

� Students who can understand,
appreciate and utilise abstraction
produce the most elegant models.

CSEET 2003© Kramer

Abstraction – is it Teachable?

If the devil is in the detail, If the devil is in the detail,
perhaps salvation is in

Abstraction ?!

