CSEE&T-03

Madrid, Spain, 20 March 2003

Teaching
how to engineer software

CSEE&T-

Dieter

University of Kaiserslautern Computer
Science Department

Software Engineering Chair
Kaiserslautern, Germany

03 Keynote

Rombach

Fraunhofer Institute
for Experimental Software
Engineering (IESE)
Kaiserslautern, Germany

= Slide 0
L5t
P e 1 Fraunhofer ...,
Exparsment clkes
Sottwane Erginaaring
CSEE&T-03 Madrid, Spain, 20 March 2003

Focus & Message

* Teaching the engineering of software

requires

-Communicating

existing proven best

practices as a basis

-Concentration on first-order principles

-Practice and experience of benefits

-Analysis before construction

Ao se

1 = Slide 1
=i

Fraunhofer

restitut
Expenment cles
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

Contents
« (Software) Engineering
* Practice of software engineering
e Today’s typical teaching curricula
« Some (innovative?) Ideas for adequate teaching
« Proven Best Practices
e (Graduate) SE Curriculum at Kaiserslautern

e« Summary & Outlook

mEs Slide 2
L5t

e e e, Fraunhofer .
Expenment clkes
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

(Software) Engineering (Expectations)
e Engineering requires the ability to

-Choose an appropriate approach to solve a
given problem > No optimal solution exists!

- Assure adherence to best (proven) practices
(engineering principles) = Ignorance violates
due diligence!

- Apply the approach in a predictable way = Can
customize to goals & characteristics!

- Repeat results = Continuous success &
improvement!

- Guarantee success before regular use = Works
first time!

—etc. — Slide 3

CEH
e e Fraunhofer .

Expenment cles
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

(Software) Engineering (Special Characteristics)

e Software Engineering

-Focuses on development (non-
deterministic due to human involvement)

—-Is based on insufficient set of “laws” and
“theories”

~Requires more empirical observations to
derive “software laws and theories”

— Slide 4

o Fraunhofer
Exparsment clkes
Sottwane Erginaaring

CSEE&T-03 Madrid, Spain, 20 March 2003

(Software) Engineering (what is required?)

« Software Engineering requires the ability to

-Choose an appropriate approach to solve a
given problem

Requires knowledge ab t the effects of alternative
approaches (? E.g., testin®O\?)

Models are typically empirically basé¢

- Repeat results

Requires predictive models including the effects of
context variables (“laws”?)

- Slide 5

P P Fraunhofer .. .
Expanment eles
Sottwane Erginaarning

CSEE&T-03 Madrid, Spain, 20 March 2003

(Software) Engineering (Science Base)

e Software engineering is based on
-Science (computer science, economics,

psychology, ...)
-Mathematics (discrete, ...)

* Analogy (electrical engineering)
-Science (physics)

-~Mathematics (...)

mEs Slide 6
(M? lﬂl.ll'lhoﬂlf ratitut
Setware Enginaaring
CSEE&T-03 Madrid, Spain, 20 March 2003
(Software) Engineering (Laws in SE?)
* Physics offers laws for electrical eng.
-Precise Physical laws
-Not circumventable
e Computer Science & offers laws for SE
-Empirically precise Cognitive Laws
-Circumventable
Slide 7

A== Fraunhcfor

restitut
Expenment cles
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

(Software) Engineering (Facets of SE)

e Software Engineering comprises
-(Formal) methods (e.g., modeling techniques)

-System Technology (e.g., architecture,
modularization, OO, product lines)

-Process Technology (e.g., life-cyle models,
processes, management, measurement,
organization, planning QS)

—~-Empirics (e.g., experimentation, experience
capture = cognitive laws, experience reuse)

(] =2 Slide 8

retitut
Expersment elks
Sottware Erginaearing

P (L Fraunhofer

CSEE&T-03 Madrid, Spain, 20 March 2003

Practice of Software Engineering (what could be taught?)

e Symptoms

- QPT always out-of-control
- System complexity out-of-control
- Reuse sub-optimal

- Precise prediction capability is lacking
- No sustained successes

e Causes
- Tools 2 Methods/Techniques = Principles
- Construction before analysis

- No commonly agreed body of knowledge

How can we change

- No value orientation regarding SE

- No (empirically based) prediction models . . .
. o this via education?
- No focus on early detection of deviation

- No documentation based development

(] =2H Slide 9

ci{: Fraunhofier st tut
— . Esparment elkes
Sottwane Enginaaring

CSEE&T-03

Madrid, Spain, 20 March 2003

System Complexity out-of-control

A

Cost
Avoiding deterioration
o of product complexity
SE principles &)))
. . : over time yields linear
technical engineering
brosesses cost curve!
—: actual LM
cost curve =
——: desired
cost curve Product Functions
PReleases) over time
1 2 3
Slide 10
K S
i Fraunhofer .

Expenment clkes
Soltware Enginearing

CSEE&T-03

Madrid, Spain, 20 March 2003

Reuse is suboptimal

Cost o

Product Line
Reuse

Exploiting reuse
potential with proper
scoping (tool
support) yields
constant cost curve!

—: PL cost
curve
——: desired
cost curve ;
Product Functions
T T T »Releases) over time
1 2 3
Slide 11
e
e e Fraunhofer .

Expersment elles
Eodtveane :'I'l._| naarng

CSEE&T-03

Madrid, Spain, 20 March 2003

Precise Prediction Capability is lacking

Cost o
Measurement-based
Management project management
Principles model yields small
bandwidth prediction
capabilities!
X
: maximum %
oscillation
——: desired
SEEEEE Product Functions
PReleases) over time
Slide 12
=4
M Fraunhofer restitut

Expenment clkes
Soltware Enginearing

CSEE&T-03

Madrid, Spain, 20 March 2003

Practice of Software Engineering (Challenge)

e Establish proper academic education & industrial

training

e The more students graduate with sound software
engineering background, the better practice will get

Ao se

Slide 13

1ESE

Fraunhofer

ratitut
Expersment elles
Eodtveane :'I'l._| naarng

CSEE&T-03 Madrid, Spain, 20 March 2003

Today' typical Teaching Curricula

* What
- (formal) methods

- System theory?

* How
- As science (“this solves all problems”)

- Not as engineering (“it depends”)

e How
- Passive

- No active guided experience (“it works for me”)

— Slide 14
L5t
(A_G-‘SE . ‘ﬂuﬂhﬂf\ﬂr ratitut

Expenment clkes
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

Some (innovative?) Ideas for adequate Teaching (Goals)

e Teaching goals for any student

-Knows basic principles in all facets of SE
(and can apply them to new technologies)

-Knows existing body of knowledge

—Can apply current technigues/methods/tools
(but understands them as examples)

-Understands effects (pro’s & con’s) of
competing t/m/t’s for different contexts

Never again uses “superlative”
] = Slide 15
=i
(M. Fraunhofer ratitut

Expenment cles
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

Some (innovative?) Ideas for adequate Teaching

(Contents)

- All four facets (including process technology & empirics)

- Only techniques/method/tools based on sound engineering
principles (%)
e How
- Analysis before construction
- Product & process engineering

- As engineering (i.e., with effectiveness models for various
contexts)

- In the context of large systems (e.g., maintenance)

- Active “measured” experience capture to motivate usefulness
(e.g., repeatable experiments in class)

Slide 16

IESE |

.:M_ Fraunhofer

restitut
Expenment clkes
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

Some (innovative?) Ideas for adeguate Teaching (Principles)

e Product Principles
- Natural in concepts & notation (stakeholder oriented)
- Divide & Conquer
+ Requires closed-form mathematics (to comprehend)
+ Requires level complete refinements (to scale-up)

+ Good examples: functional sem (Mills), MIL (DeRemer), and SCR
requirements spec (Parnas)

. Bad examples: axiomatic specs, OO models w/o imports

- Horizontal & vertical traceability
- Simplified by document-based development

- Explicit documentation of verification/validation
- Modularization (e.g., low coupling, high cohesion & inf. hiding)

- etc.

Slide 17

1ESE

.:M_ Fraunhofer

restitut
Expenment cles
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

Some (innovative?) Ideas for adeguate Teaching (Principles)

* Process Principles
- Prevention over detection of defects
- Early detection to reduce cost
—-Incremental development to reduce risk
- Design for testing, modification, variation

- Separation of concerns

-etc.
Slide 18
2= 5e Fraunhofer . .
Exparsment clkes
Sottwane Erginaaring
CSEE&T-03 Madrid, Spain, 20 March 2003

Proven Best Practices

e (Empirical) observations

- Observations of phenomena

- Inspection technique X reduces rework by 50%

* Laws
- Repeatable observations (what?) Y

- Rework reduction = f (exp, pgm language, size)

¢« Theories

- Cause-effect models (why?)

v
- Defect reduction cost increases by a factor of 10 per phase

delay; each defect detected by inspection instead of
testing reduces cost (explains why ROI in first project!)

Slide 19

1ESE

e e Fraunhofer .
Expenment cles
Soltware Enginearing

10

CSEE&T-03 Madrid, Spain, 20 March 2003

Proven Best Practices
« Lots of observations, laws & theories exis

Complete change
e Professionalism requires
- Application of existing knowledge

of current practice!

- Justification of voiding (by accepting responsibility)

* In case of failures
- Adherence to best practice (i.e., existing knowledge)
- Otherwise violation of due diligence
- Accountability

-Example: Company does not establish vertical
traceability & modification results in operational
failure =» accountable!

PRI CERELTAT ﬁ Slide 20
e s Fraunhofor ..

FaenRi kT Exparsment elles
TET O RU AT Sottwars Enginearing

Fraunhofer IESE Series

Handbook capturing existing
body of knowledge

Students can learn
about existing body of knowledge

MNanadpbooK ¢ i are

il S'jl'StEI'HS EI"IC]%I"IE‘EI‘iﬂg Practitioners can avoid negligance

of due dilligance

Empirical Olbvibrvationg, Lavet and Thaard

Albert Endres]

e Additions are welcome
Dieter Rombach s e

for next edition of book

11

CSEE&T-03 Madrid, Spain, 20 March 2003

Laws (Requirements)

- Requirements deficiencies are the prime source of project failures (L1)
- Source: Robert Glass [Glas98] et al
- Most defects (> 50%) stem from requirements
- Requirements defects (if not removed quickly) trigger follow-up defects in later
activities
Possible solutions:

- early inspections
- formal specs & validation early on
- other forms of prototyping & validation early on
- reuse of requirements docs from similar projects
- etc.
+« Defects are most frequent during requirements and design activities and are more
expensive the later the are removed (L2)
- Source: Barry Boehm [Boeh 75] et al
- >80% of defects are caused up-stream (req, design)

- Removal delay is expensive (e.g., factor 10 per phase delay)

Slide 22
2= 5e Fraunhofer . .
Exparsment clkes
Sottwane Erginaaring
CSEE&T-03 Madrid, Spain, 20 March 2003

Laws (Requirements)

< Prototyping (significantly) reduces requirements and design defects,
especially those related to the user interface (L3)

— Source: Barry Boehm [Boeh84a]
— See: prototype life-cycle model (SE I, chapter 1)
« The value of a model depends on the view taken, but none is best for
all purposes (L4)
— Source: Alan Davis [Davi90]
- Requirements model suitable for stake-holders increase the likelihood
of inconsistencies and incompleteness

- See: Warsaw plane crash (SE I, chapter 1)

Slide 23

=

e e Fraunhofer .
Expenment cles
Soltware Enginearing

12

CSEE&T-03 Madrid, Spain, 20 March 2003

Laws (Design)

« Good designs require deep application domain knowledge (L5)
- Source: Bill Curtis et al [Curt88, Curt90]

“Goodness” is defined as stable and locally changeable (diagonalized
requirements x component matrix)

- Key principle: information hiding
- Domain knowledge allows prediction of possible changes/variations
- See: Y2K example (SE I, chapter 1)

« Hierarchical structures reduce complexity (L6)
— Source: Herb Simon [Simo062]
- Examples: large mathematical functions, operating systems (layers), books
(chapter structure),
- Incremental processes reduce complexity & risk (L6a)
- Source: Harlan Mills (Cleanroom) [MIL87]
- Large tasks need to be refined in a number of comprehensible tasks

- Examples: Arabic number division, iterative life-cycle model (SE I, chapter 1,
incremental verification & inspection (SE I, chapter 4)

Slide 24
(A_G-‘SE . lr:urllwf\ur ratitut
Expenment el
Sottwane Erginaarning
CSEE&T-03 Madrid, Spain, 20 March 2003
Laws (Design)
« A structure is stable if cohesion is strong & coupling is low (L7)
- Source: Stevens, Myers, and Constantine [Stev74]
— High cohesion allows changes (to one issue) locally
— Low Coupling avoids spill-over or so-called ripple effects
« Only what is hidden can be changed without risk (L8)
— Source: David Parnas [Parn72]
- Information hiding applied properly leads to strong cohesion/low
coupling
- See: Y2K-Problem (SE I, chapter 1)
. Slide 25
1E5E |
(Jﬂ_G‘SE m Ir:urllwfur ratitut

Expenment cles
Soltware Enginearing

13

CSEE&T-03

Madrid, Spain, 20 March 2003

Laws (Implementation)

« Well-structured programs have fewer defects and are easier to maintain (L13)

Source: Edsger Dijkstra [Dijk69], Harlan Mills [Mil71], and Niklaus Wirth
[Wirt71]

e.g., well-structured imperative programs use for control flow sequence,
alternative & iteration only

See: Functional Semantics approach (SE I, chapters 3 and 4)

« Software reuse reduces cycle time and increases productivity and quality (L15)

Source: Doug Mcllroy, in 1968 Garmisch Conference[Naur69b]
Reuse of proven software avoids defects and saves development time

Reuse is only possible if it is well understood and trusted “(a) what its services
are, (b) what its degree of verification & validation is, and (c) what its
integration constraints are

See: Software evolution (SE I, chapter 8)

.:M_ Fraunhofer

Slide 26

restitut
Expenment clkes
Soltware Enginearing

CSEE&T-03

Madrid, Spain, 20 March 2003

Laws (Implementation)

« Object-Oriented programming reduces defects and encourages reuse
(L17)
— Source: Ole-Johan Dahl [Dahl67], Adele Goldberg [Gold89]

— First languages: Simula 67, Smalltalk, Java

- Based on information hiding via classes & increased reuse potential

.:M_ Fraunhofer

Slide 27

1ESE

restitut
Expenment cles
Soltware Enginearing

14

CSEE&T-03 Madrid, Spain, 20 March 2003

Laws (Verification)

+ Inspections significantly increase productivity, quality and project stability
(L17)

- Source: Mike Fagan [Faga76, Faga86]

- Early defect detection increases quality (no follow-up defects, testing of clean
code at the end =2 quality certification)

- Early defect detection increases productivity (less rework, lower cost per
defect)

- Early defect detection increases project stability (better plannable due to fewer
rework exceptions)

- See: Inspections (SE I, chapters 3 and 4), Cleanroom (SE I, chapters 4,5)
- Perspective-based inspections are highly effective and efficient for textual
documents (L19)
- Source: Victor Basili [Bas96c, Shull00]]
- Best suited for non-formal documents

- See: PBR inspections (SE I, chapters 3, 5, 6)

Slide 28
2= 5e Fraunhofer . .
Exparsment clkes
Sottwane Erginaaring
CSEE&T-03 Madrid, Spain, 20 March 2003

Laws (Validation)

+ Testing can show the presence but not the absense of defects (L22)
— Source: Edsger Dijkstra [Dijk70]
— by definition (as a sampling technique)
- Empirical data shows that in large system testing covers only a
fraction of possible usages (less than 25%)
e A developer is unsuited to test his or her code (L23)
— Source: Weinberg [Wein71]
— Developer can devise test cases, but should not judge the results

- See: Cleanroom (SE I, chapters 5, 6)

e Usability is quantifable (L26)

— Source: Jacob Nielsen, Doug Norman [Niel94, Niel0O]

Slide 29
e
retitut

Expenment cles
Soltware Enginearing

(_,H:]G—- SE : Fraunhofer

15

CSEE&T-03 Madrid, Spain, 20 March 2003

Laws (Evolution)

« A system that is used will be changed (L27)
— Source: Many Lehman [Lehm80]
- IBM Os/360
« grew from 1 MLoC to 8 MIOC in 3 years

« Induced 2 defects for any 1 removed

e An evolving system increases complexity unless work is done to reduce it
(L28)

- Source: Many Lehman [Lehm80]

- evolving systems must be re-engineered in regular intervals

- See: Product Line Approach (SE I, chapter 8)

Slide 30

.:M_ Fraunhofer

restitut
Expenment clkes
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

Laws (Project Management)

¢ Individual developer productivity varies considerably (L31)

— Source: Sackmann [Sack68]

« Development effort is a (non-linear) function of product size (L33)
- Source: Barry Boehm [Boeh81, Boeh00c]
- See: COCOMO-Model (SE I, chapter 7)

* Adding resources to a late project makes it later (L36)

- Source: Fred Brooks [Broo75]

Slide 31

1ESE

e e Fraunhofer .
Expenment cles
Soltware Enginearing

16

CSEE&T-03

Madrid, Spain, 20 March 2003

(Graduate) SE Curriculum at Kaiserslautern

* Comprehensive set of classes (taught by university &

industry folks)

* Experimental studies included to motivate key lessons

learned

- Unit inspection more efficient than testing

- Traceable design documentation r

educes effort & risk of change

- Informal (req) documents can be inspected efficiently (> 90%)

« Practical courses (1 semester each)
- Use large systems to be changed
- Team work (based on roles)
- Real customer

- Goals: running product & process

improvements

Slide 32
2= 5e Fraunhofer . .
Exparsment clkes
Sottwane Erginaaring
CSEE&T-03 Madrid, Spain, 20 March 2003

SE Curriculum

Software Engineering / Software Technology
(University of Kaiserslautern)

Language, Tools, and Product Track

Process Track

Translation of Specification & R Product Lines E £ | Sof
Progr. Languages | Verification of BIEIETS and Man;“:fgg:fir I mg:lc‘i();‘lﬁyware Process Modeling
0O Porgrams Eng;ggermg Reengineering gIESE glEéé 9 IESE
AGST AGST
Component Technolog-P Language Implement.-P Open Source-Praktikum SE Il-Praktikum
Impl. Of formal Advanced
Deseriprion Aspects of 00 Software Software Project Planning &
Languages Programming Architecture Management (SE Il)
AGST AGST e ACSE
Seminars S HAEMITII Practical
Semester in
Principles of Industry
Software Engineering (SE)
AGSE, AGST
Slide 33
e e Fraunhofer .. .

Expenment cles
Soltware Enginearing

17

CSEE&T-03 Madrid, Spain, 20 March 2003

Problem- Used

Description System
User- i Usable
Requirements System

Developer- Executable
Requirements System

Unit-] Executable

Requirements Unit

retitut
Expersment elks
Sottware Erginaearing

P (L Fraunhofer

CSEE&T-03 Madrid, Spain, 20 March 2003

(Graduate) SE Curriculum at Kaiserslautern (SE 1)

e Chapter 1: Introduction & Motivation
e Chapter 2: Summary of existing Knowledge (see book)

e Chapter 3: Basics of Software Engineering (e.g., principles,
modeling & architecture, quantification)

e Chapter 4: Software Unit Engineering

e Chapter 5: Software System Engineering

e Chapter 6: Software Application Engineering

e Chapter 7: Basics of Software Project & Quality Management

e Chapter 8: Software Evolution

(] =t Slide 35

retitut
Expersment elks
Softwane Erginaearing

A== Fraunhcfor

Software Application Products

CSEE&T-03 Madrid, Spain, 20 March 2003

| Project Organisation n
Project Organisation 1

Product
Goal and
Characteristic

Project |
Planning

Storage
NG —

measures)

Experience Factory

—l _l - TIMIW Storage
@ - Products

Process- Product Quality - Project
models models models plans
Experience database Project database [~
: B
(’a‘]G*SE nl "ﬂl.ll"'bufﬂ' retitut

Expersment elks
Sottware Erginaearing

CSEE&T-03 Madrid, Spain, 20 March 2003

(Graduate) SE Curriculum at Kaiserslautern (SE 2)

« Chapter 1

- Basics of software project & quality management & improvement
e Chapter 2

- Basics of engineering-style software development
« Chapter 3

- Engineering style planning and performance of software projects
« Chapter 4

- Basics of empirically based Learning
« Chapter 5

- The learning Software Organization

(] =t Slide 37

e e Fraunhofer ... o
Exparsment els
Sottwane Erginaarning

19

CSEE&T-03 Madrid, Spain, 20 March 2003

Graduate) SE Curriculum at Kaiserslautern (Principles

* Product principles
- Easy to understand (focus on stake-holders)
- Divide & conquer (to maintain intellectual control)

« Requires closed-form mathematics (Parnas)
+ Requires document-based development

Examples: Functional sematics (Mills), MIL (DeRemer),
SCR mode-based requirements tables (Parnas)

Bad: Axiomatic spec, OO specs without “imports”
-Level completeness
- Horizontal & Vertical Traceability
- Explicit documentation of verification/validation

Slide 38

e e e, Fraunhofer .
Expenment clkes
Soltware Enginearing

CSEE&T-03 Madrid, Spain, 20 March 2003

Graduate) SE Curriculum at Kaiserslautern (Principles

* Process principles
- Prevention over detection
- Early detection saves cost
—-Incremental development reduces risk

- Design for testing, modification, variation

+ Simplicity is desirable (programming contests are
counter-productive; simple design contests are needed!)

- Separate concerns

Slide 39

1ESE

e e Fraunhofer .
Expenment cles
Soltware Enginearing

20

CSEE&T-03 Madrid, Spain, 20 March 2003

Summary & Outlook

¢ Teaching engineering requires

Key hiring questions revealing the difference
between mathematicians & engineers:

What is the ,best“ XYZ technology?

- Empirical modeling building provides predictable

Our next step:

point first one/two UG years for all engineers including CS/SE|

Slide 40

2= 5e Fraunhofer
Expenment elles

Facisied i Soltware Enginearing

The book is
available
as of today!

HanQoood (]] A3
and Systems Engineering

Empirical Dlibrvationg, Lavel and Thie

Albert Endres i

Dieter Rombach e iy

21

