

1

On the Capability of Analysis Techniques in Requirements Engineering

 Oscar Dieste Tubío1 Marta López Fernández2 Ana Mª Moreno Sánchez-Capuchino1
1Software Engineering Department

Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid (Spain)
Phone: +34 91 336 {6449, 6929} Fax: +34 91 336.96.17

{odieste, ammoreno}@fi.upm.es
2Computer Science Department

Facultad de Informática
Universidad de A Coruña

Campus de Elviña s/n, 15071 A Coruña (Spain)
Phone: +34 98 116.71.60 Fax: +34 98 116.71.50 (1238)

martal@udc.es

ABSTRACT
Requirement Engineering methods recommend that particular techniques be used to analyse specific user
needs. The capability of these techniques for easing understanding of and representing the user need is
questionable, as most of these techniques are oriented to specific development approaches, that is, they are
characterized by their orientation to specific ways of developing software.

In order to study the development orientation of the different analysis techniques, a framework has been
defined that groups the techniques used in the different analysis methods. These techniques have been
evaluated according to five criteria: Amplitude, Computational bonds, Procedure of use, Design selection
and Design derivation. The result of the evaluation shows that many of the analysis techniques are oriented
to a specific software development approach in some degree. As conclusion, none of the technique types
provides an adequate basis for supporting the analysis phase.

1. INTRODUCTION

Nowadays, Requirements Engineering (RE) is considered a critical factor in software development. Possibly, the most

important activity within this process is to understand the needs raised by the user and to be met by a system under

development [Brooks, 87] [Jackson, 95] [Andriole, 96]. Different terms are used in the literature to refer to this activity:

Problem Analysis [Davis, 93] [Jalote, 97], Modelling [Loucopoulos, 95] [Somerville, 97], Specification [Wieringa, 95], etc.

In this paper, we will adopt Davis's terminology, referring to the activity of understanding and representing user needs as

Problem Analysis.

The different RE methods recommend that particular techniques be used to analyse specific user needs. These techniques

have also been called Conceptual Models (CM) [Dallianis, 92] [Beringer, 96] [Blum, 96]. So, for example, the Structured

Analysis (SA) method proposes the use of DFD [DeMarco, 79] [Palmer, 84] [Yourdon, 89]; object-oriented methods (OO),

such as UML, propose the use of Object Diagrams (OD) [Larman, 97] [UML, 97], etc.

The capability of these techniques for easing understanding of and representing the user need is questionable, as most of

these techniques are oriented to specific development approaches, that is, they are characterized by their orientation to

specific ways of developing software. For example, the techniques used in OO are conditioned by the use of concepts like

classes, inheritance, polymorphism, etc., to develop software systems [Northrop, 97], whereas the techniques used in SA

employ concepts as data and transformation functions [Bansler, 93].

2

This has been pointed out by several authors. For example, Høydalsvik [Høydalsvik, 93] establishes that the techniques

used in OO are Oriented to the Software System, as they are directly related to the OO development approach. Høydalsvik

stresses the need for the use of analysis techniques that are independent of the development approach in software systems

development. He refers to such analysis techniques as Problem-Oriented Methods. The same approach has been proposed

by Loucopoulos [Locopoulos, 95], who claims that the analysis process should necessarily output two product types: User-

Oriented Models that describe the behaviour and non-functional characteristics of the software and serve as a basis for

software engineers, customers and users to understand each other; followed by Developer-Oriented Models that specify the

functional and non-functional system features and the different types of applicable constraints.

Beringer [Beringer, 95] and Jackson [Jackson, 98] pursue a similar line, stating that current analysis methods focus on the

characteristics and structure of the solution rather than on the problem to be solved. This idea has been supported by

[Borgida, 85], who claims:

“... there is a need for a new class of specification, one that is more oriented to

the world of the user than is permitted by current specification methods”.

Note that models of any class act as filters of the real world they represent: they stress the interesting points and hide

unimportant details. This essential feature of modelling is also present in the techniques or CMs used in software

development. Each technique stresses particular attributes of the information that it represents. So, during problem analysis,

software engineers are led by the relationship of dependence between analysis techniques and development approaches. In

that way they represent the user need according to the concepts supported by the chosen analysis technique. Thus, these

techniques acts as a filter, allowing particular problem issues to be represented and, particularly, those that will be used to

develop the system, that is, the representation is conditioned by the peculiarities of each individual approach (SA, OO, real-

time systems, etc.).

Furthermore, this dependence between techniques and development approaches means that the same philosophy has to be

used throughout all the development phases and, therefore, determines the manner in which the software system is to be

built [Henderson-Sellers, 90] [Jalote, 97]. Accordingly, and bearing in mind that each development approach is better suited

for addressing a particular spectrum of problems [Davis, 93], there is little prospect of the software engineer switching to a

different approach after having analysed the problem, even if the approach selected originally proves not to be the best

suited for the need raised at the end of this activity.

All this means that the user need is often adapted to a particular way of building software rather than the artifacts that are

best suited for the need raised being used. This redounds upon the quality of the software products developed, as it

gratuitously raises software construction complexity, with the resulting impact on both development and maintenance time

and costs.

This paper seeks to prove the dependence of analysis techniques on development approaches, for which purpose it presents

an evaluation of the techniques or CMs most commonly used today, studying which points of reality they are capable of

representing and what associated computational connotations they have. Procedural points related to the use of the analysis

techniques are also studied in order to evaluate the guidelines provided to software engineers for representing the user need.

3

For this purpose, the paper has been structured as follows: section 2 presents the classification framework of the techniques

under evaluation; section 3 describes the criteria to be studied for each technique, from the viewpoint of both their

expressiveness and their procedural support for use; section 4 shows the results of technique assessment; finally, section 5

presents the major conclusions of this paper, stressing the close relationship between most of the techniques evaluated and

particular development approaches. Thus justified, this hypothesis is being used by the authors as a starting point for

proposing a redefinition of the problem analysis process, whereby the user need would be studied using analysis techniques

that are independent of the development approach.

2. CLASSIFICATION OF ANALYSIS TECHNIQUES

Each analysis method proposes an ordered, though not mechanic, sequence of activities for performing the requirements

phase. For example, DeMarco's SA [DeMarco, 79] is a method with a well-defined, well-know sequence of activities:

modeling the current physical, current logical, proposed logical and proposed physical system. In the same way, Palmer's

SA [Palmer, 84] is also a method, with its own sequence of activities, as Yourdon's SA [Yourdon, 89], OMT [Rumbaugh,

91], Coad's OO [Coad, 90], SADT [Ross, 77], etc. Each method uses one or several analysis techniques, that support the

various activities proposed by the different analysis methods. Techniques are recipes, that is, a sequence of procedural steps

that actually generates a solution to the problem addressed in a given activity. There are much fewer analysis techniques

than analysis methods, as many methods use the same techniques or variations thereon, as shown in figure 1.

Structured Analysis
[Yourdon, 89]

A = B + C + D*

B = { E + [F | G] }5

OMT
[Rumbaugh et al., 91]

Figure 1. Techniques used in SA and OMT.

Authors like Webster [Webster, 88], Zave [Zave, 90], Bickerton [Bickerton, 93] or Blum [Blum, 96] have proposed

classification schemata for some of the existing analysis methods and techniques, based on different criteria. Although they

are mostly based on the expressiveness of the different methods, the above criteria do not meet the needs of this paper:

show the limitations of the analysis techniques for expressing the user need, independently of any development approach,

provide a basis for the discusion about the orientation of analysis methods and techniques and stablish a starting point for

the development of new, more adequated, analysis methods and techniques. The main reason is that none of these authors

analyse the fitness of the different methods for performing analysis. Additionally, each classification includes different

methods and techniques, and it is hard to compare the results of the different authors.

In view of how many methods there are, it is difficult to draw up an alternative classification to those already proposed.

This is aggravated by the fact that there is not a set of universally accepted criteria on which the above classification can be

4

based. Therefore, instead of reclassifying the analysis methods in use today, we opted to analyse and classify the

techniques, or CMs, used in the different methods. Such analysis and classification is easiest to define and can be used to

gain knowledge about the different analysis methods, because methods usually have a dominant technique, which drives

all later development.

Most analysis methods use different techniques for expressing different viewpoints about the real world [Beringer, 95].

Although a greater wealth of nuances can be expressed by this means, it is very difficult to unify all the information

gathered by the different techniques to derive a later design. To bypass this problem, each method has one main technique,

and all the remaining techniques are used as a complement. For example, the Object Diagram is the basic technique used in

OO; the dominant technique in the case of SA is the DFD and the dominant technique in Information Engineering is the

Entity/Relationship Diagram.

The fact that there is a dominant technique does not mean that this is the only technique used. A priori, no method

establishes the superiority of one technique over another. This would be to negate, to some extent, the usefulness of the

relegated techniques. As mentioned above, each technique provides a particular view of the world; however, the dominant

technique acts as a catalyst of all later development, as shown in figure 2, whereas the other techniques support or specify

the decisions made on the basis of the dominant technique.

Thus, a method can be defined as oriented according to its dominant technique. Thus, for example, a method will be able to

be said to be data-oriented if its dominant technique is primarily used to represent the data present in the domain of

discourse, or information-transformation-oriented if its dominant technique represents mainly transformation processes.

Real-world
 Problem

Dominant Technique

Preliminary Design Preliminary Design

Class
NumericClass

ByteClass
IntegerClass

StringClass
ApplicationClas

SensorClass
EfectorClass

Dominant Technique

Using Object Oriented-
Analysis

Using Structured
Analysis

Figure 2. The existence of a dominant technique induces design orientation.

In this work, the authors have analysed and classified analysis techniques, but the results have not been already extrapolated

to analysis methods: The classification is as follows:

1. Procedure-oriented techniques. Describe the process to be followed to solve a problem or to carry out a task.

They replace a natural language text by other less ambiguous representations.

5

2. Information-transformation-oriented techniques. Describe information transformations. Their orientation is

similar to the above group, but they are characterized by greater expressiveness, which means that they can express

higher level procedures.

3. Data structure-oriented techniques. This is the group that is most difficult to define because of the multiplicity

of existing techniques. They are characterized by being oriented to identifying the structure of the data in the

universe of discourse; however, a host of variants emerge around this central idea. The approach taken in this

paper for selecting the techniques included in this group was as follows:

• Determine which techniques represent the same concepts, even if their diagrams differ, that is, divide

the set of existing techniques into classes. The classes were defined depending on the capability of

representing the data structure, the capability of defining the operations on the above data and the

manner in which these operations are expressed.

• Determine the best representative of each class identified earlier in view of the relative impact of

each technique.

The above criteria allow a small set of techniques to be selected, which, in essence, faithfully reflect the total set of

existing techniques in this category.

4. Problem structure-oriented techniques. These could also be termed "Techniques with an explicit problem-

domain meta-model". This set of techniques, most of which were developed in this decade, differ from the above

in that the underlying ontology is wealthier in terms of concepts. All the techniques in this group explicitly set out

the underlying ontology, defining a meta-model, of which each posible model built during analysis is merely an

instance.

5. Dynamics-oriented techniques. Define the behaviour of a system over time. They are usually used to analyse

systems in which control and time are important factors.

6. Interaction-oriented techniques. Describe an interchange of information. They consider that user needs and the

system can be modelled as a “black box”.

The analysed techniques are presented in figure 3. The techniques used by methods that cannot be classed as being used for

analysis purposes, as design or specification methods, have not been included. The fundamental difference between analysis

and specification methods has been assumed to be that specification methods are oriented to modelling the knowledge

acquired by the software engineer rather than to easing the understanding of the customer/user needs.

6

Models

Procedure-
Oriented

Transformation-
Oriented

Data-
Oriented

Problem-
Oriented

Dynamics-
Oriented

Interaction-
Oriented

Minispecification

Decision Table

Decision Tree

Program Design
Language

Data Flow
Diagram

Control Flow
Diagram

Data Flow Diagram
Real Time

PSL/PSA

Entity-Relationship

Extended Entity-
Relationship

Functional Data
Model

Operational
Dynamic
Models

Declarative
Dynamic
Models

Object-Oriented
Models

TELOS

KAOS

Enterprise
Modeling

Finite-state
machine

State-Transition
Diagram

Hipergraph

Use cases

Scenarios

Event traces

Data Dictionary

Figure 3. Selected techniques.

3. CRITERIA FOR EVALUATING THE CAPABILITY OF ANALYSIS TECHNIQUES

A series of criteria are needed to be established in order to study the selected techniques. To stablish these criteria, it has

been considered that techniques are composed of two elements: a process and a model. The process is, in principle, a well-

defined procedure that guides software engineers in performing the tasks required to solve the problem addressed by the

technique. For example, DeMarco [DeMarco, 79] recommends developing a top-down DFD, whereas Orr [Orr, 81]

establishes a bottom-up process. The model is a representation formalism, usually graphic, which is used to manipulate the

different problem components and document the results. Taking the DFD technique again, the model is a diagram in which

the processes are represented as circles, the data as arrows, etc.

The objective of the criteria defined is to allow model expressiveness and the development support provided by the

procedural part of the technique to be evaluated. Therefore, two groups have been defined, as shown in figure 4.

Criteria

Process-oriented
Criteria

Model-oriented
Criteria

Amplitude

Computational Bonds

Procedure of Use

Design Selection

Design Derivation

Figure 4. Criteria defined for model evaluation.

7

Model-oriented criteria refers to model expressiveness. These criteria determine the real-world concepts that each model is

capable of representing, and the possibility of entering elements that do not exist in the real world. These elements are

mostly computational characteristics, which lead to design considerations being brought into analysis. Two criteria has been

defined:

1. Amplitude: Determines the capability of the model for representing real-world concepts, that is, how many

concepts existing in the universe of discourse can be represented by the model. Notational "tricks" will be required

to set out any concepts that cannot be directly represented in the representation formalism. These tricks mostly

place constraints on the design of the future system.

This criterion will have three possible values: High, when a lot of real-world concepts can be represented directly,

and Medium, when the notation has to be constrained or other models have to be used as support for representing

a particular concept type. The Low value will be used when the model does not explicitly set out real-world

concepts, but is used to support another technique (minispecifications, for example, which support the description

of DFD processes).

2. Computational Bonds: Determines whether the model introduces notations for concepts that do not exist in the

problem domain. This criterion determines whether there are elements in the representation formalism that do not

match any real-world issue. These concepts are mostly exponents of the underlying computational paradigm and

determine a single means of implementing the future system. This criterion has two possible values, which, for the

sake of simplicity, will be termed Yes and No.

The first criterion must not be confused with the second one. Amplitude is used to analyse whether the model allows all the

concepts to be represented directly or calls for other models or "tricks" (for example, the use of two processes in a Data

Flow Diagram to model a communications channel). The computational bonds criterion analyses whether the model

explicitly includes implementation issues (for example, a buffer in the Data Flow Diagram/Real-Time model proposed by

[Ward, 85]).

Process-oriented criteria refer to the process by means of which the different models are developed. They also refer to how

useful the models are for the subsequent development phases. They, therefore, determine what support is provided to the

software engineer for analysis, what possibility there is of their concepts resulting in a design and to what extent they can

be transformed into several alternative designs. These criteria are as follows:

1. Procedure of use: Determines whether the technique establishes guidelines for performing analysis, that is, the

technique has a well-defined process to guide software engineers, especially novices, in performing their work.

This criterion will have three possible values: Doesn’t exist, if the technique does not establish guidelines for

performing analysis; Partial, if it defines a generic procedure or a series of recommendations, and Total, if it gives

a detailed process for performing analysis.

2. Design selection: Determines whether the technique specifies which design type is the best suited, as Davis

[Davis, 93] states, or whether it directly prescribes the use of a particular architecture in the design phase.

This criterion has four possible values: No advice, if the technique does not define which is the best suited design;

Advice, if it recommends or prioritizes all the possible design methods; Show, if it defines which is the most

8

advisable design, and Prescribe, if it univocally determines a design type. The values of this criterion can be

ordered from the viewpoint of the support needed by the software engineer as follows: Show, Advice, Prescribe

and No advice.

3. Design derivation: Determines whether the technique establishes a procedure by means of which to derive a

design, that is, the technique specifies a series of procedural steps by means of which to derive the design

architecture. This criterion has three possible values: Doesn’t exist, if the technique does not establish guidelines

for deriving a design; Partial, if it defines a generic procedure or a series of recommendations, and Total, if it

gives a detailed process for transforming the analysis outputs into design products.

Figure 5 shows the relationship between the established criteria and the major development process phases. The criterion

procedure of use is related to the process for generating a model of the real world. This model should contain real world

concepts (criterion amplitude) and can also contain concepts not related to the real world, but to the development world

(criterion computational bonds). Finally, the criteria design selection and design derivation refer to the capability of each

analysis technique for selecting a computer-based system design and deriving such design.

Computational
bonds

AmplitudeProcedure of
use

Class
NumericClass

ByteClass
IntegerClass

StringClass
ApplicationClass

SensorClass
EfectorClass

Design
Selection

Des
ign

Deri
va

tio
n

Design

Derivation

Real World Problem
Analysis

Conceptual
Model

Design Design
Models

Figure 5. Criteria-development process relationship.

4. EVALUATION OF ANALYSIS TECHNIQUES

Table 1 shows the evaluation of the criteria for the set of selected techniques. As the table provides too much information to

gain an overview, the models were regrouped. The objective of this grouping is to determine which techniques are to be

considered as solution oriented, although the procedural characteristics to which the second set of criteria used in the

evaluation refer also have to be considered to analyse the support that each technique provides to the software engineer

during the analysis phase.

GROUP TECHNIQUE AMPLITUDE COMPUTATIONAL
BONDS

PROCEDURE
OF USE

DESIGN
SELECTION

DESIGN
DERIVATION

Procedure- Minispecification Low Yes Doesn’t exist No advice Doesn’t exist

9

Decision table Medium No Doesn’t exist No advice Doesn’t exist
Decision tree Medium No Doesn’t exist No advice Doesn’t exist

oriented

PDL Low Yes Doesn’t exist No advice Doesn’t exist
DFD Medium Yes Partial Prescribe Total
CFD Medium Yes Partial Prescribe Doesn’t exist
DFD/RT Medium Yes Partial Doesn’t exist Doesn’t exist
SADT High No Doesn’t exist Doesn’t exist Doesn’t exist

Transformation
-oriented

PSL/PSA Medium Yes Partial Prescribe Doesn´t exist
Data Dictionary Low Yes Doesn´t exist No advice Doesn´t exist
ER Medium No Total Doesn´t exist Total
EER Medium No Total Doesn´t exist Total
FDM Medium No Total Doesn´t exist Total
Operational dynamic models Medium Yes Doesn´t exist Prescribe Total
Declarative dynamic models High No Doesn´t exist Advice Partial

Data-oriented

Object-oriented models Medium Yes Doesn´t exist Prescribe Total
TELOS High No Doesn´t exist No advice Doesn´t exist
KAOS High No Total No advice Doesn´t exist Domain-

oriented
Enterprise modeling High No Partial No advice Doesn´t exist
Finite-state machine Medium No Doesn´t exist No advice Partial
State-transition diagram Medium No Doesn´t exist No advice Partial Dynamics-

oriented
Hipergraphs Medium No Doesn´t exist No advice Doesn´t exist
Use cases Medium No Doesn´t exist No advice Doesn´t exist
Scenarios High No Doesn´t exist No advice Doesn´t exist Interaction-

oriented
Event traces Low Yes Doesn´t exist No advice Doesn´t exist

Table 1. Result of the Evaluation.

The figure 6 shows the values of the criteria used for regrouping the different techniques. There has not been needed to use

all the possible values, or combination of values, of all criteria, but just these that are important to meet the needs of this

paper: show the limitations of the analysis techniques for expressing the user need. Thus, it has been considered that a

technique with clear computational bonds implies solution-orientation. Also, if any technique prescribes the use of a

particular design technology (for example Structured Design, or OO Design), that is, if the value of the criterion design

selection is prescribe, it can be said that such technique has a strong computational background, and should be considered

solution-oriented in consequence. On the other hand, a technique is classified as isolated if the criterion design derivation

evaluates doesn’t exist, that is, if there are not a process for deriving any type of design.

AMPLITUDE DESIGN
DERIVATION

DESIGN
SELECTION

PROCEDURE OF
USE

COMPUTATIONAL
BONDS

Low Doesn´t existNo adviceDoesn´t existYes

Medium PartialAdvicePartialNo

High TotalShowTotal

Prescribe

Implies solution-orientation Implies isolation

OR

Figure 6. Grouping criteria.

Using the grouping criteria shown in figure 6, most of the techniques fell in two non-disjoint groups. The first group was

called "solution-oriented techniques", as the techniques classed therein have computational bonds or directly prescribe the

use of a given design type. The second group was called "isolated techniques", as there is no defined procedure for

10

generating a design of any type from the information contained in the models proposed by the techniques included in this

group. The groups defined have the following characteristics:

1. Solution-oriented techniques: Oblige analysts to address computational issues during analysis. The models

thus developed prescribe a particular design. It will take, at best, a lot of time and effort to transfer the

concepts outputted by the analysis phase to an alternative design. This transformation is often out of the

question.

The drawback of using the techniques included in this group is precisely the difficulty in deriving an

alternative design. That is, a particular technique for understanding the concepts of the problem to be solved is

selected during analysis. If, having completed the analysis and understood the problem, software engineers

realize that it is not advisable to design the system as prescribed by the above technique, it is very difficult for

them to drop the above approach and, even if it is possible, a switch to another approach will be very costly in

terms of effort and time.

2. Isolated techniques: Do not determine which sequence of activities have to be performed to derive a design.

Their use in the subsequent software development process phases is limited, since, while they provide

software engineers with an understanding of the problem, they offer no support for deciding which design to

adopt, nor do they allow the above design to be derived.

Most of the techniques analysed fall into the above two groups. This means that these techniques are not suitable for

performing the analysis phase, as they either do not allow a design to be generated or they prescribe the use of a single

design type, ruling out exploration of alternative development approaches.

Of all the techniques analysed, there is a fraction that cannot be classed in either of the above groups. These techniques

have been considered as "problem-oriented" techniques. These techniques have the following characteristics:

3. Problem-oriented techniques. The techniques included in this group are really effective for analysing a real-

world problem without bringing in clearly computational issues or introducing restraints too early on in the

development of a computerized solution. Unfortunately, they can only be used partially in the development

process, since either they do not allow the dynamic component of a particular problem to be represented (like

ER or FDM models) or they provide a limited capability for deriving a particular design from the information

contained in their models.

The allocation of the different techniques to each of the groups identified is shown in figure 7. It follows from figure 6 that

the above groups can overlap, that is, they are not disjoint. It is also clear that most of the techniques are either solution-

oriented, like the more popular analysis techniques (DFD, OD, etc.), or are isolated and do not provide a procedure for

deriving a design.

11

Solution-oriented

Isolated

Problem-oriented

Minispecification

PDL

DFD

CFD

DFD/RT

PSL/PSA

Data Dictionary

ER

EER

FDM

Operational
Dynamic
Models

Object-Oriented
Models

KAOS

EM Hipergraph

Use cases

Scenarios

Event traces

TELOS

SADT

Declarative
Dynamic
Models

Decision
Table

Decision
Tree

Finite-state
machine

State-Transition
Diagram

Figure 7. Final classification.

5. CONCLUSIONS

The hyphotesis, already mentioned by other authors, that most analysis methods in use today for understanding the user

need are strongly related with the software system that solves those need has been confirmed by the evaluation carried out

in this paper. Thus, limitation of the techniques for expressing the user need independently of any development approach

has been justified. The most important consequence of this is that the use of actual methods and techniques gratuitously

raises software development and maintenance complexity.

For proving the hyphotesis, a classification was defined that groups the techniques used in the different analysis methods.

These techniques have been evaluated according to five criteria and, as a result, three technique types were identified. The

first type is characterized by being solution oriented. The second technique type is characterized by not providing a

mechanism for selecting or deriving a later design. Finally, the third type is characterized by being problem oriented;

however, the techniques classed in this group are insufficient either because they do not allow all the real-world concepts to

be represented or they do not provide a method for deriving a design.

This evaluation shows that there is a need to define new analysis methods and techniques. These methods must assist

software engineers in understanding real-world problems independently of any development approach and evaluating all

the alternative system development approaches. The authors of this paper are actually working on this theme.

The results addressed herein are intended to provide a basis for discussion about the orientation of analysis methods and

techniques and to serve as starting point in the finding of development approaches closer to the users view of the problem

than to the developers view.

6. REFERENCES

[Andriole, 96] Andriole, S.J.; Managing Systems Requirements: Methods, Tools and Cases; McGraw-Hill,
1996.

12

[Bansler, 93] Bansler, J.P., Bødker, K.; A Reappraisal of Structured Analysis: Design in an Organizational
Context; ACM Transactions of Information Systems, vol. 11, no. 2, 1993, pp. 165-193.

[Beringer, 95] Beringer, D.; The Model Architecture Frame: Quality Management in a Multi Method
Environment; Proceedings of the SQM’95, Seville, 1995.

[Beringer, 96] Beringer, D.; The Goals of the Analysis Model; Technical Report 96/216, Swiss Federal Institute
of Technology, 1996.

[Bickerton, 93] Bickerton, M.J., Siddiqi, J.; The Classification of Requirements Engineering Methods; IEEE
International Symposium in Requirements Engineering, Jan 4-6, San Diego, CA, IEEE Computer
Society Press, 1993.

[Blum, 96] Blum, Bruce I. Beyond Programming. To a New Era of Design. New York. Oxford university
Press, 1996.

[Borgida, 85] Borgida, A., Greenspan, S., Mylopoulos, J. Knowledge Representation as the Basis for
Requirements Specifications. IEEE Computer, vol. 18, no. 4, 1985, pp. 82-91.

[Brooks, 87] Brooks, F.; No Silver Bullet: Essence and Accidents of Software Engineering; IEEE Computer,
vol. 20, no. 4, 1987, pp. 10-19.

[Coad, 90] Coad, P., Yourdon, E. Object Oriented Analysis. Yourdon Press, New York, 1990.
[Dallianis, 92] H. Dallianis. A Method for Validating a Conceptual Model by Natural Language Discourse

Generation. Proceedings of the 4th International Conference on Advanced Information Systems
Engineering, Manchester, Great Britain, 1992, pp: 225-244.

[Davis, 93] Davis, A.M.; Software Requirements: Objects, Functions and States; Prentice-Hall
International, 1993.

[DeMarco, 79] DeMarco, T. Structured Analysis and System Specification. New Jersey. Prentice-Hall, 1979.
[Henderson-Sellers, 90] Henderson-Sellers, B., Edwards, J.; The Object Oriented Systems Life Cycle; Communications

of the ACM, vol. 33, no. 9, 1990, pp. 143-159.
[Høydalsvik, 93] Høydalsvik. G.M., Sindre, G. On the Purpose of Object Oriented Analysis. Proc. of the

OOPSLA’93, pp. 240-255.
[Jackson, 95] Jackson. M.; Software Requirements & Specifications. A Lexicon of Practice, Principles and

Prejudices; Addison-Wesley, 1995.
[Jackson, 98] Jackson, M.; Defining a Discipline of Description; IEEE Software, vol. 15, no. 5, 1998, pp. 14-

17.
[Jalote, 97] Jalote, P. An Integrated Approach to Software Engineering. New York. Springer-Verlag, 1997.
[Larman, 97] Larman, C; Applying UML and Patters: And Introduction to Object-Oriented Analysis and

Design; Prentice-Hall, 1997.
[Loucopoulos, 95] Loucopoulos, P., Karakostas, V; System Requirements Engineering; McGraw-Hill, 1995.
[Northrop, 97] Northrop, L.M.; Object-Oriented Development; in Software Engineering. IEEE Computer

Society Press, Los Alamitos, USA, 1997, pp. 148-159.
[Orr, 81] Orr, K.; Structured Requirements Definition; Ken Orr and Associates, Topeka, Kansas, 1981.
[Palmer, 84] Palmer, J., Mcmenamin, S. Essential Systems Analysis. Yourdon Press/Prentice-Hall, New York,

1984.
[Ross, 77] Ross, D.T.; Structured Analysis: A Language for Communicating Ideas; IEEE Transactions on

Software Engineering, vol. 3, no. 1, 1977, pp 6-15.
[Rumbaugh, 91] Rumbaugh, J. et al. Object-Oriented Modeling and Design. Prentice-Hall, New York, 1991.
[Sommerville, 97] Sommerville, I., Sawyer, P.; Requirements Engineering. A Good Practice Guide; John Wiley &

Sons, 1997.
[UML, 97] UML; UML Notation Guide; Version 1.1, September 1997.
[Ward, 85] Ward, P., Mellor, S. Structured Development for Real-Time Systems. Vol. 1-3, Prentice-Hall,

Englewood Cliffs, NJ, 1985.
[Webster, 88] Webster, D.E; Mapping the Design Information Representation Terrain; IEEE Computer, vol.

21, no. 12, 1988, pp. 8-23.
[Wieringa, 95] Wieringa, R.; Requirements Engineering: Frameworks for Understanding; John Wiley &

Sons, 1995.
[Yourdon, 89] Yourdon, E. Modern Structured Analysis. Yourdon Press/Prentice Hall, NY, 1989.
[Zave, 90] Zave, P.; A Comparison of the Major Approaches to Software Specification and Design; in

System and Software Requirements Engineering, Thayer, R.H., Dorfman, M. (Eds), IEEE
Computer Society Press, 1990.

