

Gathering Usability Information through Elicitation Patterns

Natalia Juristo1, Ana Moreno1, Maribel Sanchez-Segura2, Al Davis 3

1School of Computing

Universidad Politécnica
de Madrid, Spain
natalia@fi.upm.es

ammoreno@fi.upm.es

2Department of CS
Universidad Carlos III

de Madrid, Spain
misanche@inf.uc3m.es

3 College of Business
University of Colorado at

Colorado Springs, CO,
USA

adavis@uccs.edu

Abstract

Like any other quality attribute, usability cannot
be achieved at the last development moment. On
the contrary, usability has to be taken into
account right from the earliest stages by
considering features that raise the usability
level of the software system as well as usability
requirements that enhance the performance of
other functional requirements. However,
existing HCI usability heuristics are not
sufficient to serve as proper requirements from
a software engineering perspective. HCI
heuristics for incorporating usability features
lead to incomplete and ambiguous
requirements. For example, the classical
approach for reducing requirements ambiguity,
related to incorporating new information,
cannot be used for usability requirements, since
the information that would need to be added is
likely to be beyond the usability knowledge of
most requirements writers, developers and
users. One possible solution to this problem is
to bring HCI experts into the software
development process. However, this is not a
straightforward approach and may have serious
implications for the development process. In this
paper, we propose an alternative solution based
on the definition of usability elicitation patterns.
These patterns capitalise upon the know-how in
usability requirements elicitation by specifying
fundamental elements recurrently intervening in
usability requirements elicitation. We have
focused on usability features with major
implications in functionality.

Keywords: usability requirements, usability
requirements elicitation, requirements elicitation

1. Introduction

Usability is considered a critical aspect for
interactive software systems [1][2]. The benefits
related to cost savings and revenue increases

thanks to usability improvements are also well
recognised in the software community [3][4][5].

However, usability is still not a prominent
feature of software systems.

Several reasons can help to explain this
situation. One possible factor relates to business
concerns, such as time-to-market pressure, cost
limitations, or even low awareness of the
relevance of usability. Another factor, and one
we consider to be even more significant relates
to technical issues such as the inherent difficulty
of incorporating usability features into a
software system.

In this paper, we focus on some of the
technical problems that crop up when dealing
with usability requirements and, particularly, the
difficulties software developers find in
gathering all the information needed to fully
specify these requirements properly.

Section 2 discusses how usability
requirements are related to functional
requirements and, as such, should be dealt with
from the beginning of the development process.
Section 3 presents ambiguity problems that
occur when trying to incorporate usability
features as functional requirements and
discusses how the traditional approaches for
settling ambiguities are hard to apply. Section 4
presents a pattern-based solution for dealing
with usability feature requirements that will
support usability feature elicitation and
specification by software practitioners. Finally,
section 5 shows some validation results
collected after applying the proposed solution.

2. Implications of Usability for
Functional Requirements

The generally accepted proposal for dealing
with usability features at the requirements stage
is to treat them as non-functional requirements
[6][7], establishing what usability values the
system should achieve. These are then used as a
reference standard at the subsequent product
evaluation stage. For example, task X should be

performed by a novice user in less than Y
minutes, or end user satisfaction with the
application should be higher than Z on a 1-to-5
scale. This way of dealing with usability in
requirements has traditionally led to the
widespread assumption that usability has few, if
any, implications for system functionality.

Although some HCI authors have
illustrated the close relationship between
usability and software functionality [2], the
widespread belief in software engineering (SE)
is that the implications of usability can be
detached from primary system functionality, as
generally accepted design strategies like the
separation of the presentation layer from the
application layer (see, for example, well-known
architectural models, like MVC architecture [8])
appear to back.

Among the heuristics for building usable
software [1][2][7][9] (see [10] for a detailed
analysis), we find particular features that
represent concrete functionalities in a software
system (undo, cancel, feedback, aggregation of
commands, definition of user profiles, wizards,
etc.). Several SE authors have studied the
implications of these usability features in a
software design [11][12] concluding that their
inclusion in a software system requires such a
hard design rework that, like any other
functionality, they should be dealt with starting
at the requirements stage.

So, although it might be true that some
particular usability issues, mainly the ones
related to the pure interface (colours, fonts,
distribution of elements in the screen, etc.) can
be modified with low cost and therefore do not
need to be considered right from the beginning
of the development process, other usability
features have serious implications on the
software functionality and therefore must be
addressed earlier.

In other words, usability is not a software
attribute that can be achieved at the last
development moment. We claim that usability
has important implications for system
functionality and, consequently, the system’s
functional requirements, and should, therefore,
not be treated as just non-functional
requirements. Non-functional usability
requirements may be useful for evaluation
purposes, but are not enough for developing a
usable software system. Features that raise the
usability level of software systems need to be
contemplated explicitly, and should be treated
just like other functional requirements.

This task is, however, not void of
difficulties, as the next section shows.

3. Problems with Treating Usability
as Functional Requirements

Once we know that particular usability
features should be considered as functional
requirements, one might think that such
requirements could be specified by just stating
the corresponding usability features, for
example, the system should provide users with
the ability to cancel actions or the system should
provide feedback to the user. In fact, this is the
level of advice that HCI heuristics provide,
assuming that it is sufficient for developers to
incorporate a given usability feature into their
designs. For example, one of the most
commonly recurring rules of thumb is related to
the feedback feature. Nielsen [9] describes the
feedback design heuristic as: “Visibility of
system status: The system should always keep
users informed about what is going on through
appropriate feedback within reasonable time”.

However from a SE perspective, the above
description provides very limited information,
and nowhere near enough to properly specify
the feedback functionality, let alone design and
implement it correctly. In fact, there are four
types of feedback: interaction feedback to let
users know that the system has heard their
request; progress feedback for tasks that take
some time to finish; system status display to
inform users about any change in the system
status, or warnings to prevent users from taking
irreversible action. Although they roughly
match the above description, a developer with
no expertise in usability or HCI will find it
difficult or, perhaps, impossible, to use this
description as a satisfactory specification for
describing the all the functional requirements
relating to feedback. In other words, the
descriptions provided by HCI for usability
features that have a big impact on system
functionality lead to ambiguous and incomplete
requirements.

In fact, much more information is needed to
be able to properly incorporate the feedback
feature into a software system. Besides the
different kinds of feedback that can be provided
and to which type of functionality they affect, a
lot more information needs to be elicited to
completely and unambiguously specify each
feedback type. For example, HCI experts [13]
suggest that system status information should
always be presented to the user in the same
place (so users know where to look to find this
information) or that the information displayed
should be obtrusive or unobtrusive depending
on the criticality of the situation. So, issues like:

- which status changes in the software will
the user want to be notified of (e.g.,
software failures, external resources

failures, changes in the internal status of the
software, which changes, which states, …)

- how critical are each of the above
situations,

- what kind of information needs to be
displayed to the user in each case,

- etc.
need to be discussed with the different
stakeholders and elicited in order to properly
specify the system status feedback. Otherwise,
the specification generated will be incomplete
and ambiguous.

Note that, generally, the problem of
reducing ambiguity in functional requirements
is solved by adding more domain information to
the requirements [14][15] from either the user,
client or software engineer.

However, this solution is hard to apply to
functional usability requirements because
neither the users nor the developers are, in most
cases, likely sources of the information to be
added. Users know that they want feedback.
What they do not know is, for example, what
kind of feedback can be provided, and which
one is most suitable for each situation
(information that HCI experts do have). On the
other hand, software engineers with design and
development skills do not have the necessary
HCI knowledge either. Even if they are given
the requirement that the software system should
be usable or, better still, that the software
system should have undo, feedback or any other
usability features, their HCI inexperience means
that they do not know all the details that need to
be specified to properly incorporate such
features into a requirements specification. As
Kazman et al. report, developers do not learn
HCI-related information on their own [16].

In sum, although ambiguity in requirements
is hard to deal with, it can be addressed in the
case of functional domain requirements by
gathering new information from experts in the
domain. However, this is not a viable solution
for functional usability requirements, as their
proper and full specification is beyond the
usability knowledge of average developers and
users.

One way to address this shortage of HCI
expertise could be to incorporate HCI experts
into the software development team (as
suggested by the HCI field [32][33]). However,
there are at least two problems with this
solution. The first is that as HCI is a different
discipline from SE, difficulties in
communication between the software team and
HCI experts may arise. As Sheffard and
Metzker point out [17], the causes of this
communication breakdown are to be found in
the use of different vocabulary, notations,
software development strategies, etc. Such

difficulties can be a considerable obstacle
having a big impact on software construction.
The second impediment is the cost of this
solution. Many small- to medium-sized software
development companies cannot afford to engage
an HCI expert to work on their development
teams.

We propose an alternative approach that
uses a pattern-based solution to support
information elicitation and specification for
usability features with an impact on functional
requirements.

4. A Pattern-Based Solution For
Gathering Functional Usability
Requirements

4.1. Usability Elicitation Patterns

The concept of pattern was introduced by
Alexander in 1977 in the building architecture
domain [18] and is considered a solution to a
recurrent problem in a context. In software
development, the concept of pattern has been
used extensively for different purposes. For
example, we can find design patterns [19] that
propose solutions to common design problems;
architectural patterns [20] that propose skeletons
of well-known architectural models; or business
patterns that set out classical business processes
and organizational relationships [21]. Also
patterns have been proposed in the requirements
field to document user needs and specify
generic system behaviour at a high level of
abstraction [22][23], as well as to record best
requirements engineering practices [24]. In all
these approaches, the pattern concept is used to
represent information to be reused at different
development stages.

In this paper, we propose the notion of
elicitation patterns that capitalize upon the
know-how in requirements elicitation so that
fundamental elements intervening recurrently
throughout requirements elicitation can be
specified and reused in different projects by
requirements engineers. Our aim is to propose
artefacts (patterns) enabling the reuse of
usability knowledge to support software
developers during usability requirements
elicitation so that they can use these patterns to
extract all the information they need to
completely and unambiguously specify a
usability feature.

Note that the solution we are proposing is
different from the HCI or usability patterns
provided by the HCI community
([25][26][13][27][28][29]). HCI patterns deal
with interface recommendations about the
visible part of usability features. For example,

Welie [13] talks about different ways to present
system status data – obtrusively or
unobtrusively; and Tidwell [27] suggests the use
of animated indicators to display the progress of
tasks with particular characteristics. The
information provided by these patterns cannot
be used as requirements (because they mainly
focus on interface issues), although they can be
used to generate issues to be discussed with the
user in order to fully specify the usability
feature in question; for example, the criticality
of the different tasks or situations about which
status feedback is to be provided.

We will use HCI patterns, as well as the
HCI literature, as sources of knowledge to be
reused in our elicitation patterns. HCI sources
need to be carefully examined to extract useful
information from a SE perspective to be used by
software developers to discuss and then

properly specify usability features with the user
and other stakeholders.
4.2. Functional Usability Features

Table 1 shows the usability features that we

have selected to develop usability elicitation
patterns. We have chosen features that have a
significant impact on usability according to the
usability literature (column 1), a significant
impact on system functionality (column 2), and
about which there is enough HCI information
(column 3) to derive the essentials to be elicited
and specified.

According to HCI experts, each usability
feature in Table 1 includes a variety of subtypes.
Therefore, we have developed a usability
elicitation pattern for each subtype, which we
have then termed a usability mechanism (to
distinguish from a usability feature).

Table 1. Usability features addressed by usability elicitation patterns

Usability feature HCI authors who
claim that the feature
is relevant for
software usability

High impact on software
functionality

HCI authors who
provide information
about this feature

Feedback Nielsen [9],
Constantine [1],
Shneiderman [2], Hix
[7]

Bass et al. [11], Juristo et
al.[12]

Tidwell [27][13], Welie
[26], Laasko [29],
Brighton [25], Coram
[28]

Undo/Cancel Nielsen [9], Hix [7],
Shneiderman [2]

Bass et al. [11], Juristo et
al.[12]

Brighton [25], Tidwell
[13], Welie [26], Laasko
[29]

Form/field validation

Shneiderman [2], Hix
[7], Constantine [1]

Bass et al. [11], Juristo et
al.[12]

Brighton [25], Tidwell
[27][13]

Wizard Constantine [1] Juristo et al.[12] Welie [26]

User profile Hix [7] Bass et al. [11], Juristo et
al.[12]

Welie [26], Tidwell [13]

Help Nielsen [9] Bass et al. [11], Juristo et
al.[12]

Tidwell [27]

Table 2 shows the specific usability

mechanism for which we have developed a
usability elicitation pattern. However, as the
usability and HCI fields are continually
evolving, we plan to add other mechanisms to
the list as new information appears.

4.3. An Example of a Usability
Elicitation Pattern

Table 3 provides one example of a usability
elicitation pattern for the System Status
Feedback. The complete list of usability
elicitation patterns is available at
http://www.ls.fi.upm.es/udis/usability-
elicitation-patterns) We describe a usability
elicitation pattern by means of the identification
of the usability feature addressed by the
usability elicitation pattern, the problem tackled,

the context in which this pattern will be useful,
and the solution to the problem. Let us look at
these fields in more detail.

The first information that appears in the
pattern is its identification. This includes
information like the name of the usability
mechanism under consideration, the family of
usability features to which it belongs (that is, the
usability feature of which this mechanism is a
subtype) and possible aliases by which this
usability mechanism may be known.

The problem addressed by each pattern is
how to elicit and specify the information needed
to incorporate in a software system the
corresponding usability mechanism.

The usability context provides information
related to the situation that makes this
mechanism useful for the application to be built,
and therefore makes the usability elicitation

pattern useful for a requirements engineer. This
information can act as a general usability
requirement statement so a software practitioner
knows whether or not this feature is applicable
to the software under development.

The solution part of the pattern that we
propose is composed of two elements: the
usability mechanism elicitation guide, and the
usability mechanism specification guide.

Table 2. Specific usability mechanisms for which a usability elicitation pattern has been
developed

Usability
Feature

Usability
Mechanism

Goal

Feedback System Status [13] [28] To inform users about the internal status of the system
 Interaction [25] [28] To inform users that the system has registered a user

interaction, that is, that the system has heard users
 Warning [26] [25] To inform users of any action with important consequences
 Long Action Feedback

[27][13] [26] [28] [25]
To inform users that the system is processing an action that
will take some time to complete

Undo/Cancel Global Undo [27][13]
[26] [29] [25]

To undo system actions at several levels

 Object-Specific Undo
[29]

To undo several actions on an object

 Abort Operation [25]
[13]

To cancel the execution of a command or an application

 Go Back to a Safe State
[13]

To go back to a particular state in a command execution
sequence

Form/Field
Validation

Structured Text Entry
[13] [25]

To help prevent the user from making data input errors

Wizard Step-by-Step Execution
[27][13] [26]

To help do tasks that require different steps with user input

User Profile Preferences [13] [26] To record each user's options for working with the system at
the functional level

 Personal Object Space
[13]

To record each user's options for working with the system at
the interface level.

 Favourites [13] [26] To record certain places of interest for the user
Help Multilevel Help [26] To provide different help levels for different users

The usability mechanism elicitation guide
provides knowledge for eliciting and gathering
information to fully specify the usability
mechanism. It lists issues that stakeholders
(users, developers, HCI experts if available,
etc.) should discuss to properly define how the
usability mechanism is to be considered in a
particular software system. For example, if a
user wants to be notified when a change in
system status occurs [13], one of the first issues
to be discussed for each particular application is
for what kind of status changes this notification
requires. The example in Table 3 lists some
specific questions (about system failures,
internal resources, external resources) to be
addressed when discussing this issue, along with
other questions for dealing with related issues.

The usability mechanism specification
guide provides a template to be instantiated for
each application. In the particular case of Table
3, this template calls for the instantiation of the
System Status Feedback for the application
under development. So, for each application,
status X, XI and XII will be a particular status
of the software system developed, whereas
faults I, II and III will be particular faults that
can occur while the system is executing tasks A,
B, and C, respectively, etc.

Table 3. System Status Feedback Requirements Information
IDENTIFICATION

Name: System Status Feedback
Family: Feedback
Alias: Status Display [13]
 Modelling Feedback Area [28]

PROBLEM
Which information needs to be elicited and specified in order to provide users with system status information.

CONTEXT
When changes that are important to the user occur or
When failures that are important to the user occur, for example:

- During task execution
- Because there are not enough system resources
- Because external resources are not working properly.

Examples of status feedback can be found in status bars on windows applications; train, bus or airline schedule systems; VCR
displays; etc.

SOLUTION
Usability Mechanism Elicitation Guide:

1. HCI experts argue that the user wants to be notified when a change of status occurs [13]
 So, the issues to be discussed with stakehorlders include:

- Will the system have the capability to report system status?
- If so, changes in system status can be triggered by user-requested or other actions or when there is a problem with an external or system

resource. So, which kind of changes will the system need to manage?
o What system statuses are there and about which does the user need to be informed?
o Do stakeholders want the system to provide notification of system failures? If so, which ones?
o Do stakeholders want the system to provide notification if there are not enough resources to execute the ongoing

commands? If so, which resources?
o Do stakeholders want the system to provide notification if there is a problem with an external resource or device with which

the system interacts? If so, which ones?
2. Well-designed displays of information to be shown should be chosen. They need to be unobtrusive if the information is not critically

important, but obtrusive if something critical happens. Displays should be arranged to emphasize the important things, de-emphasize the
trivial, not hide or obscure anything, and prevent one piece of information from being confused with another. They should never be re-
arranged, unless users do so themselves. Attention should be drawn to important information with bright colours, blinking or motion, sound
or all three – but a technique appropriate to the actual importance of the situation to the user should be used [13].

 So, for each situation identified above under item 1, discuss with stakeholders:
- Which information will be shown to the user?
- Which of this information will have to be displayed obtrusively because it is related to a critical situation? Represented by an indicator

in the main display area that prevents the user from continuing until the salient information is closed.
- Which of this information will have to be highlighted because it is related to an important but non-critical situation? Using different

colours and sound or motion, sizes, etc.
- Which of this information will be simply displayed in the status area? Locating some kind of indicator in the system status area.
For each piece of system status information to be displayed according to its importance, the range will be from obtrusive indicators (for
example, a window in the main display area which prevents the user from continuing until it has been closed), through highlighting (with
different colours, sounds, motions or sizes) to the least eye-catching indicators (like a status-identifying icon placed in the system status
area). Note that during the requirements elicitation process, the discussion of the exact response can be left until interface design time, but
the importance of the different situations about which status information is to be provided and, therefore, which type of indicator (obtrusive,
highlighted or standard) will be provided does need to be discussed at this stage.

3. As regards the location of the feedback indicator, HCI literature mentions that users want one place where they know they can easily find
this status information [28]]. On the other hand, aside from the spot on the screen where users work, users are most likely to see feedback in
the centre or at the top of the screen, and are least likely to notice it at the bottom edge. The standard practice of putting information about
changes in state on a status line at the bottom of a window is particularly unfortunate, especially if the style guide calls for lightweight type
on a grey background [1]. The positioning of an item within the status display should be used to good effect. Remember that people born into
a European or American culture tend to read left-to-right, top-to-bottom, and that something in the upper left corner will be looked at most
often [13].

 So, the issues to be discussed with the user include:
- Do people from different cultures use the system? If so, the system needs to present the system status information in the proper way

(according to the user’s culture). So, ask about the user’s reading culture and customs.

- Which is the best place to locate the feedback information for each situation?
Usability Mechanism Specification Guide:
The following information will need to be instantiated in the requirements document.

- The system statuses that should be reported are X, XI, XII. The information to be shown in the status area is..... The highlighted information
is …… The obtrusive information is….

- The software system will need to provide feedback about failures I, II, III occurring in tasks A, B, C, respectively. The information related to
failures I, II, etc…. must be shown in status area…. The information related to failures III, IV, etc , must be shown in highlighted format.
The information related to failures V, VI, etc , must be shown in obtrusive format.

- The software system provides feedback about resources D, E, F when failures IV, I and VI, respectively, occur. The information to be
presented about those resources is O, P, Q. The information related to failures I, II, etc….must be shown in the status area..... The
information related to failures III, IV, etc , must be shown in highlighted format. The information related to failures V, VI, etc , must be
shown in obtrusive format.

- The software system will need to provide feedback about the external resources G, J, K, when failures VII, VIII and IX, respectively, occur.
The information to be presented about those resources is R, S, T. The information related to failures I, II, etc….must be shown in the status
area..... The information related to failures III, IV, etc , must be shown in highlighted format. The information related to failures V, VI, etc ,
must be shown in obtrusive format.

5. Proof of Concept

We have worked with the usability
elicitation patterns in different contexts. A
validation has been performed at the UPM with
final-year undergraduate students. Additionally,
case studies have also been carried out with
software companies.

To test whether software developers could
produce usable software using HCI-type
information as requirements, we ran a survey at
the UPM with final-year undergraduate
students. The students had taken three, 90-hour,
SE-related subjects as part of their computing
degree courses. In addition, most students were
working part time at software companies and
could, therefore, be considered as junior
developers. We worked with pairs of students.
Each pair of students developed the same
system from a software requirement
specification (SRS) document using the IEEE-
830 format [30]. We asked students to include a
particular usability requirement (like feedback
or undo) and to generate the corresponding
software. We gave one of the students of the
pair the respective usability elicitation patterns
and the other student only the definitions of the
usability feature according to the usability
heuristics found in the literature and encourage
him/her to complete this description with
information to be found in internet or in other
sources. For example, for the feedback feature,
we gave one student the four usability elicitation
patterns of the family listed in Table 2, and we
gave the other student the description of this
feature according to usability literature, namely,
“the system should always keep users informed
about what is going on through appropriate
feedback within reasonable time” [9].

Students modified the original SRS to
include this new requirement. They examined
how each function to be performed by the
system would be affected by each feature. They
recorded the different tasks they performed
during the development process (reading and
understanding the original SRS, extracting
information about feedback, working on the
analysis models, etc.), as well as the time taken
for each one.

Comparing the two SRSs generated by the
student pairs, we found important differences in
completeness and ambiguity. As expected,
students who did not use the pattern generated
incomplete SRSs, because they had little
usability knowledge and could not extract this
knowledge from users. The students did not
consider all variants of the usability features to
be incorporated. Also the usability features that
they did identify were not fully specified. This
means that many usability issues arose at late

development stages (mainly coding and
evaluation) and significant rework was required.
On the other hand, SRSs developed using the
patterns had complete and relatively
unambiguous descriptions of the different tasks
related to the usability features to be considered,
and the subsequent development tasks were
more straightforward.

We also found that usability elicitation
patterns helped students avoid misconceptions
related to the usability features. For example,
some students who did not use the patterns
confused feedback messages with cancellation
or error messages.

Regarding the case studies at software
companies, we applied the usability elicitation
patterns in the context of a European research
project (STATUS project, IST–2001–32298). In
particular, we gave these patterns to the
industrial partners participating in the project
for them to use to develop pilot applications.

The industrial partners found the patterns
useful. They included much of the usability
knowledge covered by the patterns, most of
which was unfamiliar to practitioners and which
they had, therefore, not used in earlier
development projects. They also mentioned that
the patterns provided support for the elicitation
process by guiding them through the discussion
with the users about particular usability features.
Usability tests were conducted by the industrial
partners to get an indicator of user satisfaction
and found out whether the developed software
improved the average level of usability of the
applications they develop. One of the
companies, LogicDIS (Greece) compared the
results of the tests of existing applications
developed without the patterns with the results
of the tests of the new versions of these
applications developed with the patterns [30].
An improvement in usability of almost 25% was
found in the new applications. Although
preliminary because the number of applications
was quite low (3 case studies), these results are
indicative of a positive tendency and of the
potential benefits the use of usability elicitation
patterns can provide.

6. Conclusions

We have discussed some usability issues
that stand in the way of creating usable software
systems. Specifically, we have established that:

1. Late incorporations of particular usability
issues into a software system may
involve a lot of rework. Therefore, these
features should be incorporated at the
requirements stage.

2. Usability has implications for the
functional requirements, and the classical

approach of dealing with usability as
non-functional requirements falls short of
the mark.

3. Usability features are more difficult to
specify clearly than may appear at first
glance, as a lot of details may need to be
explicitly discussed with stakeholders,
and typically neither software
practitioners nor users have the HCI
expertise to know these details.

We have discussed this problem as a
vehicle for better understanding what
implications usability has for software
development. Having placed usability into the
right perspective within software development,
it is evidently necessary to provide developers
with support to satisfactorily deal with usability
features during the requirements process.

To this end, we have proposed usability
elicitation patterns that provide software
practitioners with knowledge that guides them
through the process of eliciting and specifying
particular usability features. In other words, the
use of such patterns helps developers to
determine whether and how a usability feature
applies to a particular system. Several tests have
been run on this issue. The preliminary results
are encouraging. However, we are in the process
of performing more empirical studies that
should contribute to confirming our hypothesis
that these elicitation patterns can be particularly
useful for organizations with no HCI experts on
their software development team, as these
patterns have been developed to cover much of
the existing public HCI expertise.

We have worked on a pattern-based
solution because the information provided in the
different usability elicitation patterns can be
reused to guide the usability elicitation process
for a particular feature across different projects.
Nevertheless as is the general rule with pattern
use, each individual application is likely to have
its particularities, to which the pattern-based
solution will need to be adapted. We have not
yet had the opportunity to demonstrate whether
or not pattern-based elicitation guidelines will
work as well with other traditional types of non-
functional requirements.

References

[1] L. Constantine, L. Lockwood. Software for
Use: A Practical Guide to the Models and
Methods of Usage-Centered Design. Addison-
Wesley, 1999.
[2] B. Shneiderman. Designing the User
Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley, 1998.

[3] G. M. Donahue. “Usability and the Bottom
Line.” IEEE Software, vol. 18 (11) 2001, p. 22-
30.
[4] J. Nielsen. “Return on Investment for
Usability”. Alertbox, January 2003.
Http://www.useit.com
[5] M. Chrusch. “Seven Great Myths of
Usability. Interactions.” Journal Name?
September/October 2000, pg. 13-16.
[6] J. Whiteside, J. Bennett, and K. Holtzblatt.
"Usability Engineering: Our Experience and
Evolution", in Handbook of Human-Computer
Interaction (editor M. Helander). pp. 791-817.
North-Holland, 1988
[7] D. Hix, H.R. Hartson. Developing User
Interfaces: Ensuring Usability Through Product
and Process. John Wiley and Sons, 1993.
[8] F. Buschmann, R. Meuneir, H. Rohnert, P.
Sommerland, M. Stal. Pattern-Oriented
Software Architecture, A System of Patterns
Chichester, Eng. John Wiley and Sons, 1996
[9] J. Nielsen. Usability Engineering. AP
Professional, 1993., John Wiley & Sons, New
York, NY.
[10] A. Andrés, J. Bosch, A. Charalampos, R.
Chatley, X. Ferre, E. Folmer, N. Juristo, J.
Magee, S. Menegos, A. Moreno. “Usability
Attributes Affected by Software Architecture”.
Deliverable. 2. STATUS project, June 2002.
Http://www.ls.fi.upm.es/status
[11] L Bass, B. John, J Kates. Achieving
Usability Through Software Architecture.
Technical Report. CMU/SEI-2001-TR-005,
March 2001.
[12] N. Juristo, A. Moreno, M. Sánchez..
Techniques and Patterns for Architecture-Level
Usability Improvements. Deliverable 3.4.
STATUS project.
Http://www.ls.fi.upm.es/status May 2003.
[13] J. Tidwell. The Case for HCI Design
Patterns. Visited February 2004
Http://www.mit.edu/jdidwell/common_ground_
onefile.htm
[14] B. Kovitz. “Ambiguity and What to Do
about It.” IEEE Joint International Conference
on Requirements Engineering (RE’02) pp. 213
(Key talk).
[15] D.Berry. “The importance of Ignorance in
Requirements Engineering.” Journal of Systems
and Software, vol 28 (2), pp. 179-184.
[16] R. Kazman, J. Gunaratne, B. Jerome. "Why
Can't Software Engineers and HCI Practitioners
Work Together?", Human-Computer Interaction
Theory and Practice - Part 1 (Proceedings of
HCI International '03), (Crete, Greece), June
2003.
[17] A. Sheffah, E. Metzker. “The Obstacles
and Myths of Usability and Software
Engineering.” Communications of the ACM.
December 2004, vol 47 (12), pp. 71-76.

[18] C. Alexander. A Pattern Language: Towns,
Building, Construction. Oxford University
Press, 1977.
[19] E. Gamma. R. Helm, R. Johnson, J.
Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1994.
 [20] M. Shaw. “Some Patterns for Software
Architectures.” in Pattern Languages of
Program Design 2. J. Vlissides, J. Colien and N.
Kerth Eds. Pp. 255-269, 1996.
[21] H.E. Eriksson, M. Penker. Business
Modeling with UML . Business Patterns at
Work. John Wiley and Sons, 2000.
[22] S. Robertson. Requirements Patterns Via
Events/Use Cases. The Atlantic Systems Guild.
http://www.systemsguild.com/GuildSite/SQR/R
equirements_Patterns.html
[23] S. Konrad, B. Cheng. “Requirements
Patterns for Embedded Systems.” IEEE
International Conference on Requirements
Engineering. 2002.
[24] L. Hagge. K. Lappe. "Sharing
Requirements Engineering Experience Using
Patterns.” IEEE Software. Jan-Feb 2005. Pg 24-
31.
[25] Usability Pattern Collection. Visited
January 2004
Http://www.cmis.brighton.ac.uk.research/patter
ns

[26] M. van Welie. The Amsterdam Collection
of Patterns in User Interface Design. Visited
January 2004. Http://www.welie.com .
[27] J. Tidwell. UI Patterns and Techniques.
Visited February 2004. Http://time-
tripper.com/uipatterns
[28] T. Coram, L. Lee. Experiences: A Pattern
Language for User Interface Design. 1996.
http://www.maplefish.com/todd/papers/experien
ces/Experiences.html
[29] S. A. Laasko. User Interface Designing
Patterns, 2003.
http://www.cs.helsinki.fi/u/salaakso/patterns/ind
ex_tree.html Visited October 2004.
[30] IEEE, Recommended Practice for Software
Requirements Specifications, Standard 830,
19xx.
[31] N. Juristo, A. Moreno, D. Tsirikos Analysis
and Comparison of Usability of Old and New
Developments Deliverable.6.3. STATUS
project. Http://www.ls.fi.upm.es/status
December 2004.
[32] ISO. ISO 13407.Human-Centred Design
Processes for Interactive Systems. ISO, 1999.1
[33] D. J. Mayhew. The Usability Engineering
Lifecycle. Morgan Kaufmann, 1999.

