

 1

Functional Testing, Structural Testing and Code
Reading: What Fault Type do they Each Detect?

Natalia Juristo, Sira Vegas

Facultad de Informática. Universidad Politécnica de Madrid
Campus de Montegancedo, 28660, Boadilla del Monte, Madrid, Spain

{natalia,svegas}@fi.upm.es

Abstract. The origin of the study described here is the experiment performed
by Basili and Selby, further replicated by Kamsties and Lott, and once again by
Wood et al. These experiments investigated the effectiveness and efficiency of
different code evaluation techniques (functional and structural testing and code
reading). The working hypotheses are the same in all three experiments,
although some experimental conditions were changed. The experiments
described here use the experiment package elaborated by Kamsties and Lott and
examine some of the questions posed as a result of these experiments. Wood et
al. concluded in their replication of the original study that the relative
effectiveness of the techniques depends on the program and fault type. In fact,
they suggest formulating a fault taxonomy based on technique sensitivity. Our
study intends to compare the relative effectiveness of the testing techniques and
to relate the testing techniques to fault types.

1 Introduction

One of the most important activities within software systems development is code
evaluation. Code evaluation takes place after coding the system and aims to discover
as many defects as possible. There are two complementary forms of evaluating a
program:
• Static analysis
• Dynamic analysis
In static analysis, the code is examined, the aim being to discover as many

inaccuracies as possible through observation. Static analysis techniques differ as to
the way in which the code is observed or read. In dynamic analysis, the code is
executed, the aim being to discover code errors by observing system behaviour and
trying to deduce whether or not it is satisfactory.

Additionally, whereas static analysis detects the faults the software contains (a
fault is an inaccuracy in a software product), all dynamic analysis can do is detect
failures (failures occur when a software system does not behave as expected owing to
the existence of faults). As the ultimate aim of evaluation is to correct any faults in the
software, dynamic analysis calls for a further step to identify faults from the observed
failures.

 2

Many static and dynamic techniques for evaluating software system code have
been proposed in the literature. However, not much work has gone into finding out
the strengths and weaknesses of each technique. The experiment proposed here aims
to contribute to clarifying what differences there between techniques for practical
purposes such as how many and what type of errors they detect.

The roots of this study go back to the work of Hetzel [3] and Myers [7]. More
precisely, it is the continuation of a line of experiments run by other authors, which
have added to the knowledge provided by previous experiments. The original study
was conducted by Basili in 1982, 83 and 84 [1]. This experiment studied the
effectiveness and efficiency of different code evaluation techniques. Kamsties and
Lott first replicated the study in 1995 [5]. This replication assumed the same working
hypotheses as in Basili’s experiments, but the experiment differed as to the
programming language used, as well as the fault detection process. The experiment
was replicated again, this time by Wood, Roper, Brooks and Miller, in 1997 [9]. In
this case, the experiment followed exactly the same guidelines as the experiment run
by Kamsties and Lott (who had built a laboratory package to ease external replication
of the experiment1), although new analyses were added.

Our experiment follows on from the experiments already performed, although
some hypotheses have been altered. For this purpose, we had to modify the laboratory
package supplied by Kamsties and Lott.

Table 1 and Table 2 give an overview of the four studies carried out in this series
of experiments.

The rest of the document has been organised as follows: Section 2 gives an
overview of the objectives of the study. Section 3 and Section 4 present each the first
and second experiment respectively. Section 5 shows the conclusions obtained in the
study.

2 Study Objectives

One of the findings of the experiment run by Wood et al. toys with the idea that the
relative effectiveness of testing techniques depends on the program and fault types.
Indeed, they suggest developing a fault taxonomy based on technique sensitivity. The
fact, detected in this same experiment by Wood et al., that techniques are much more
effective used in combination than used separately backs this hypothesis. On the other
hand, however, they also discovered and examined other effects, i.e., subjects
applying the same techniques did not generally find the same faults, which have to be
taken into account.

The study described here is based on the following recommendation made by
Wood et al. The relationships between fault type and testing technique effectiveness
should be examined in more detail.

1 This package is available at: the ESERNET repository.

 3

Table 1. Overview of previous experiments (1/2).

Author Prog. Lang. Techniques Aspect Results

Effectiveness
(detection)

- Experienced subjects: Better reading, then functional, and then structural.
- Inexperienced subjects:

• In one case, there is no difference between structural, functional and reading.
• In the other, functional is equal to reading, and both better than structural.

- Depends on software type
- Intermediate behave like junior and worse than advanced
- Self estimates more accurate for review, then structural. No relationship for structural.

Effectiveness
(observable)

- Functional reveals more observable faults than structural for inexperienced subjects.
- Functional technique detects more of these observable faults for experienced subjects.

Fault detection
cost

- Experienced subjects: Equal time and fault rate.
- Inexperienced subjects: Structural takes less time than review, which equals to functional
- The fault rate with functional and structural is less than with reading for inexperienced
- The fault rate depends on the program
- Functional testing has more computer costs than structural.
- Total effort is the same for all techniques
- Fault detection rate is related to experience

Basili &
Selby’87

- E1: Simpl-T
- E2: Simpl-T
- E3: Fortran

- Boundary value analysis.
- Statement coverage.
- Stepwise abstraction.

Fault type

- Review is equal to functional and both better than structural for omission and for
initialisation faults.
- Functional is equal to structural and both better than review for interface faults.
- Review is equal to structural and worse than functional for control faults.
- Structural is equal to functional and both worse than review for computation faults.
- For observable faults, functional and structural behave equal.

 4

Table 2. Overview of previous experiments (1/2).

Author Prog. Lang. Techniques Aspect Results
Effectiveness

(detection) Depends on the program, not the technique

Effectiveness
(isolation) Depends on the program and subject, not on the technique

Efficiency
(detection)

- Inexperienced subjects:
• Boundary value analysis takes less time than condition coverage
• The time spent on finding faults also depends on the subject

- Boundary value analysis has a higher fault rate than condition coverage

Efficiency
(isolation)

- Depends on the program and subject, not on the technique
- With inexperienced subjects, boundary value analysis takes longer than condition
coverage

Efficiency
(total)

- With inexperienced subjects, boundary value analysis takes less time than condition
coverage
- Time also depends on the subject.

Kamsties
& Lott’95 C

- Boundary value analysis.
- Branch, multiple condition,
loops and relational operators
coverage.
-Stepwise abstraction.

Fault type For both detected and isolated: There is no difference between techniques
Effectiveness

(detection)
- Depends on the program/technique combination
- Depends on nature of faults Wood et

al.’97 C

-Boundary value analysis.
- Branch coverage.
- Stepwise abstraction. Combination

of techniques Higher number of faults combining techniques

Juristo &
Vegas’02 C

- Equivalence partitioning.
- Branch coverage.
- Stepwise abstraction.

Effectiveness
(detected and
observable)

See section 5.

 5

So, our study aims to compare the relative effectiveness of different testing
techniques and relate the testing techniques to the fault types detected. For this
purpose, the study is composed of two experiments, designed differently to study
different factors.

The general hypotheses of the study are:

H0: Technique effectiveness is independent of the fault type.
H1: Technique effectiveness is dependent on the fault type.

However, H1 is decomposed as follows: technique ti is the most effective for faults
of type fj, where there are ixj different subhypotheses.

The study presented here consisted of two phases, which took place at the
Universidad Politécnica de Madrid in the autumn of 2001 and 2002, and are called
Experiment I and Experiment II respectively. The sequential experimentation has
enabled the initial hypotheses to be expanded and resolved by further analysis. The
hypotheses were further refined by discussions of the preliminary results.

For an overview of the experimentation methodology applied in this study see [4].

3 Round 1: Experiment I

3.1 Hypothesis and Response Variable

To test the hypothesis, that is, whether or not the effectiveness of the testing
techniques can be said to be related to the fault types in the program, Experiment I is
conceived as follows.

We are going to investigate whether or not technique effectiveness depends on the
fault type. Accordingly, the variable we intend to examine is effectiveness, which will
be the response variable and will be measured in terms of the number of subjects
who detect a given fault for each fault in the program. As what we intend to test is a
relationship (dependency of effectiveness with respect to fault type), the experiment
will collect data on the effectiveness for each technique and each fault. We will then
examine the statistical significance of the observed differences in effectiveness and,
having established significance, we will study whether there is any type of
relationship between the techniques and faults in terms of effectiveness.

The techniques and fault type are the factors of this study, whose impact on
effectiveness we intend to ascertain. However, if we take into account Wood et al.’s
description, which mentions program type, there would appear to be (or at least there
is a reasonable doubt about the existence of) another variable (factor) that influences
technique effectiveness, which would be program type. Hence, we have opted to
include this variable in the list of factors.

To examine the relationship between the response variable and the factors, we
intend to study how the technique, program and fault type combination influences
fault detection. The possible outcomes of the experiment are:

 6

• The technique/fault combination is significant with respect to the number of
detected faults. In this case, there will be techniques that behave better for some
fault types and we will have to analyse which ones they are. (This is equivalent to
saying that the technique/fault interaction is significant.)
• The technique/program combination is significant with respect to the number of
detected faults. In this case, there will be techniques that behave better for some
programs and we will have to analyse which ones they are. (This is equivalent to
saying that the technique/program interaction is significant.)
• The fault/program combination is significant with respect to the number of
detected faults. In this case, there will be faults that behave better for some
programs and we will have to analyse which ones they are. (This is equivalent to
saying that the fault/program interaction is significant.)
• Neither of the above combinations is significant with respect to the number of
detected faults, in which case there are three possibilities:

- There is a technique that detects more faults irrespective of the fault type.
(This is equivalent to saying that the effect of the technique is statistically
significant.)

- There is a fault that is more often detected irrespective of the technique
type. (This is equivalent to saying that the effect of the fault type is
statistically significant.)

- There is a program in which more faults are detected irrespective of the
technique used and the fault type. (This is equivalent to saying that the
effect of the program is statistically significant.)

Therefore, the hypotheses of Experiment I can be detailed as follows:

H01: The fault detection technique has no impact on the number of detected faults.
H11: The fault detection technique has an impact on the number of detected faults.

H02: The fault type has no impact on the number of detected faults.
H12: The fault type has an impact on the number of detected faults.

H03: The use of different fault detection techniques for different fault types has no

impact on the number of detected faults.
H13: The use of different fault detection techniques for different fault types has an

impact on the number of detected faults.

H04: The use of different fault detection techniques for different programs has no

impact on the number of detected faults.
H14: The use of different fault detection techniques for different programs has an

impact on the number of detected faults.

H05: Different fault types in different programs have no impact on the number of

detected faults.
H15: Different fault types in different programs have an impact on the number of

detected faults.

 7

3.2 Factors and Alternatives

As mentioned above, there are three factors in this experiment: the technique to be
used, the fault type and the program. These factors are described below.

3.2.1 Factor 1: Fault types
We will consider that all the faults cause observable failures and that, therefore, no
fault hides another. The faults are selected to assure that the programs fail only for
some inputs, where a failure can be a total failure (no output whatsoever), a serious
problem (incorrect output) or a minor problem (a wrongly spelt word in the output).
The number of faults should be the same for all the programs, and they all have to
contain the same fault distribution with respect to fault type.

As the experiment has been conceived, we needed a fault classification.
Unfortunately, there are not many classifications in the literature. We have opted to
use the classification followed by Basili in the first experiment of the series [1]. In
each case, he makes a distinction between something that is missing (faults of
omission) and something that is incorrect (faults of commission):
• Initialisation (commission and omission): An initialisation fault is an incorrect
initialisation of a data structure. For example, assigning an incorrect value to a
variable when entering a module would be an error of commission, whereas
failure to initialise when necessary would be an error of omission. Initialisation
faults of both commission and omission will be used for the experiment.
• Control (commission and omission): A control fault means that the program
follows an incorrect control flow path in a given situation. For example, an
incorrect predicate in an if-then-else sentence would be a control fault of
commission, whereas a missing predicate would be fault of omission. Control
faults of both commission and omission will be used for the experiment.
• Computation (not used): These are faults that lead to an incorrect calculation.
For example, an incorrect arithmetic operator on the right-hand side of an
assignation would be a computation fault. They will not be used for the
experiment, as the computations to be made in the program types used are too
simple (basically they would refer to variable increments for loop control).
• Interface (not used): Interface faults occur when a module uses entities that are
outside the module’s local environment and assumes things that are untrue. A
possible interface fault would be, for example, passing an incorrect argument to a
procedure or assuming that a module would fill in an array passed as an argument
with blanks. They will not be used for the experiment, because they can be
considered integration rather than unit faults and the study has always focused on
unit faults so far.
• Data (not used): Data faults are faults caused by the incorrect use of a data
structure, for example, incorrectly determining the index of the last element in an
array. They will not be used for the experiment, because they can be considered
integration rather than unit faults.
• Cosmetic (commission and omission): Cosmetic faults of commission can
result, for example, in a spelling mistake in an error message. Faults of omission

 8

are faults where an error message should appear and does not. Cosmetic faults of
both commission and omission will be used for the experiment.

Note that this study addresses a subset of faults rather than all fault types. This
approach was taken for two reasons: first, because two of the fault types are related to
integration testing, whereas the study focuses, at least for the time being, on unit
testing, and second, because the study is not intended to be exhaustive but rather to
test whether the hypothesis is true.

The faults entered in each program for the purposes of the experiment were:
• F1: Cosmetic, omission.
• F2: Cosmetic, commission.
• F3: Initialisation, omission.
• F4: Initialisation, commission.
• F5: Initialisation, commission
• F6: Control, omission.
• F7: Control, omission.
• F8: Control, commission.
• F9: Control, commission.
Note that there are three replicated faults: F4 and F5 are the same type of fault, as

are F6 and F7 and F8 and F9. The aim here was to introduce replicated fault types,
thereby increasing the reliability of the results of the experiment.

3.2.2 Factor 2: Techniques
We have used basically the same fault detection techniques as in the previous
experiment: functional testing, structural testing and code reading/review. What we
have changed is the criterion of the functional tests, using equivalence class
partitioning. This has been done due to time constraints during the operation of the
experiment. For the structural technique, the subjects have not used any tool to assure
branch coverage, because we wanted to compare the techniques under the same
conditions (see [2], [8] for a detailed description of the dynamic analysis techniques
used). This will affect the time it will take the subjects to generate the test cases (not
the quality of the task performance, as the programs are simple enough for subjects to
be able to do without a testing tool). Nevertheless, test case generation time is not
relevant, as this experiment will not examine this response variable. All the
techniques are applied for failure observation, that is, subjects look for observable
differences between the program and the specification. The failure isolation step has
been removed during technique application, that is, after finding a failure, subjects
proceed to detect the fault that caused it. We did not consider failure isolation to be
necessary for technique comparison, because the techniques provide no help for this
task.

So, the techniques will be used as follows:
• The technique reading by step-wise abstraction [6] will be used for code review.
For this purpose, subjects are supplied with a program listing. They identify
subroutines, writing their respective specifications, they group the subroutines and
the specifications and repeat the process until they have abstracted the source
code, conforming the program specifications. After this, they are given the official

 9

specifications and they identify the failures through inconsistencies between the
abstracted and supplied specifications.
• The functional tests will be based on the standard techniques of equivalence class
partitioning and boundary value analysis. Subjects are supplied with an executable
version of the program and its specification. The test cases are derived from the
specification, they are executed using the executable program and the failures are
observed in terms of unexpected results.
• For the structural tests, subjects are expected to get a result as close to sentence
coverage and decision coverage as possible. Subjects are given the source code
without a specification. They store the test data and results. Having completed this
step, they are given a specification to test the correctness of the results. The
incorrect results represent program failures.

3.2.3 Factor 3: Program
We are going to use four different programs, specifically two very similar programs
of each software type, using two software types. We have used the programs created
by Kamsties and Lott, also used by Wood et al., plus one that we have developed. The
programs used for this experiment were:
• Cmdline (functional): Program that reads the input line and outputs a summary.
• Trade (functional): Program that reads a trade transaction file and outputs
statistics about the transactions it contains.
• Nametbl (data): Program that implements the data structure of a symbol table, as
well as its operations.
• Ntree (data): Program that implements the data structure of an n-ary tree, as well
as its operations.

3.3 Parameters

The variables used as parameters (that is, whose value has remained unchanged
throughout the experiment) are:
• Program length. The average program length is similar to the length of the
programs suggested by Basili in the first experiment. They contain approximately
200 lines of code, excluding blank lines and comments.
• Subject type. Fifth-year students from the School of Computer Science,
Universidad Politécnica de Madrid, 1983 syllabus, were used for both
experiments. They are subjects with very little experience. During the experiment
they will be asked to fill in a self-assessment sheet with regard to their knowledge
of the programming language, etc.
• Programming language used. The programming language C was used for both
experiments so as not to have to recode the programs provided by Woods and, in
doing so, involuntarily introduce a fault.
• Time limit used. For logistic reasons, the code review time had to be limited to
two hours, while no time limit was imposed in the other two cases.
• Faults. Each program has the same number of faults of the same type. There is a
total of 9 faults, where 2 are initialisation faults of commission, 1 is a cosmetic

 10

fault of commission, 2 are control faults of commission, 1 is an initialisation fault
of commission, 2 are control faults of omission and 1 is a cosmetic fault of
omission.

3.4 Experiment Design

The students are fifth-year computer science students. They are already familiar with
the techniques, because they took a related subject in their fourth year, although their
practical knowledge will be generally quite limited. Each group represents a set of
people who performed the experiment (individually) at the same time (and, therefore,
using the same program) applying the same technique. Therefore, we consider that
each experimental unit (a program to which a technique is applied) is replicated as
many times as subjects there in the group and as many times as different programs
have been used in each experiment (in this case two). The people were assigned to
each group depending on the available resources: 25 computers and a classroom with
capacity for 40 people.

There are a total of 195 students. Bearing in mind these restrictions, we would have
8 groups of 12 people (four groups will perform structural tests and the other four
functional tests) and four groups of 25 people (who will perform code review).

With the aim of maximising experiment randomness, the procedure for assigning
groups to days and programs and techniques to groups was as follows: the experiment
designer drew slips of paper from a bag that contained the different groups (from 1 to
12). For every three lots drawn, a slip of paper was taken from the bag that contained
the days (from 1 to 4) and another from the bag that contained the programs (P1, P2,
P3 and P4) until all the lots had been drawn from all three bags.

After this, a list was drawn up and arranged in increasing order of the groups
participating on each day and a slip of paper was drawn from a bag containing three
lots (1 per technique) for each group, thus assigning the techniques to each group.
The resulting design is a three-factor design with replication and is shown in Table 3.

Table 3. Experiment Design

 Functional Data
 Program1 Program2 Program3 Program4

 I S F I S F I S F I S F
Group 1 - - - - - - - - X - - -
Group 2 - - - - - X - - - - - -
Group 3 - - - - - - X - - - - -
Group 4 - - - - X - - - - - - -
Group 5 - - - - - - - - - - - X
Group 6 - - - - - - - - - X - -
Group 7 - - X - - - - - - - - -
Group 8 - - - X - - - - - - - -
Group 9 - - - - - - - - - - X -
Group 10 - - - - - - - X - - - -
Group 11 - X - - - - - - - - - -
Group 12 X - - - - - - - - - - -

 11

3.5 Running the Experiment

The experiment was organised in five different sessions, as shown in Table 4, and the
reason for the experiment was explained and the respective documentation delivered
in the first session. The students are aware at all times that they are participating in an
experiment and that the results will be used for grading (they will be graded using two
parameters: technique application and number of faults detected). The students will be
asked to study the documentation (they are already familiar with the techniques, as
they have studied them earlier in their degree course) and they will have to hand in
completed exercise applying the three techniques, obliging them to assimilate the
concepts that have been explained.

The students do not know what technique they have been assigned or what
program they are going to work on until the experiment starts.

Table 4. Experiment operation.

Day Day 0 Day 1 Day 2 Day 3 Day 4
Program P4 P3 P2 P1
Group 6
Group 9
Group 5

Review
Structural
Functional

Group 3
Group 10
Group 1

 Review
Structural
Functional

Group 8
Group 4
Group 2

 Review
Structural
Functional

Group 12
Group 11
Group 7

Learning
session and
introduction to
the experiment

 Review
Structural
Functional

3.6 Validity Threats

Validity threats like learning have been eliminated, as each individual applies a single
technique to just one program. We have also eliminated the influence of individual
characteristics, as all the individuals are equally experienced and have fairly
homogeneous profiles. The differences with regard to aptitude are eliminated by the
random factor of group composition, that is, given the number of subjects and their
random assignation to the technique to be applied, it is to be expected that the
distribution of more and less able students will be equal for all the techniques.

We have attempted to assure that the faults and program types are representative of
reality, that is, we have tried to assure that they simulate the faults programmers
would really make during coding.

 12

3.7 Data Analysis

3.7.1 General Analysis
As mentioned earlier, the response variable is the number of people who have
detected each fault the program contains. As the number of experiment participants
was different for each technique and program combination, we will use the percentage
of people who detected the failure rather than the number in absolute terms.

Annex I shows the values and confidence intervals for the percentage of
individuals who detected the faults there were in the programs. Table 15 shows the
mean number (per cent in each case) of people who detected a fault (for functional
and structural tests they detected the failure associated with the fault). Table 16
shows the mean number of people who detected a fault, this time by program. Table
17 shows the mean number of people who detected a fault by technique. Table 18
shows the mean number of people who detected a fault, this time with respect to the
fault type.

Fig. 1 below shows a series of graphs (one per program), indicating how the
different techniques behaved for each fault. Note that F1 was hidden by another fault
in cmdline, and was, therefore, not discovered by the people performing code review.

Fig. 1. Behaviour of the different techniques by program.

Fault type
F9F8 F7 F6 F5 F4 F3F2 F1 M

ea
n

P
E

R
C

E
N

TA
G

E
 in

 N
A

M
ET

B
L

100

80

60

40

20

0

Technique used

functional

structural

review

Fault type
F9F8 F7 F6 F5 F4 F3F2 F1 M

ea
n

P
E

R
C

E
N

TA
G

E
 in

 N
TR

E
E

100

80

60

40

20

0

Technique used

functional

structural

review

Fault type

F9 F8F7F6F5F4F3F2F1

M
ea

n
P

E
R

C
E

N
TA

G
E

 in
 T

R
A

D
E

80

60

40

20

0

Technique used
functional
structural
review

Fault type

F9 F8F7F6F5F4F3F2F1

M
ea

n
P

E
R

C
E

N
TA

G
E

 in
 C

M
D

LI
N

E

80

60

40

20

0

Technique used
functional
structural
review

 13

Table 5 below shows the result of applying analysis of variance to the response
variable with respect to the factors program, technique and fault. We have studied
both the main effects and the second-order interactions. It is not possible to study the
third-order interaction, because there are no response variable replications (this
interaction is confused with error). In any case, the experiment was not designed to
examine this interaction. Accordingly, we are considering that the third-order
interaction is negligible.

Table 5. Relationships between the parameters and the response variable.

Source Sum of
squares gl Mean

square F Sig.

PROGRAM 4028.727 3 1342.909 5.820 0.002
TECHNIQUE 6706.951 2 3353.476 14.534 0.000
FAULT 10727.572 8 1340.947 5.812 0.000
PROGRAM * TECHNIQUE 1184.047 6 197.341 .855 0.534
PROGRAM * FAULT 21637.310 24 901.555 3.907 0.000
TECHNIQUE * FAULT 6777.885 16 423.618 1.836 0.054
Error 11075.324 48 230.736
Total 166297.829 108

As we can see from Table 5, the main effects (program, technique and fault) are all

significant, as is the program and fault interaction. With respect to the technique and
fault interaction, it could in principle be considered as insignificant, as it is not
significant for a confidence interval of 95% (the p-value is greater than 0.05).
However, it is significant at 90% (the p-value is less than 0.1). Therefore, we will
consider that it is significant.

Hence, we have that the number of people who will detect a fault depends on
the program being tested, the technique being used and the actual fault.
Additionally, there are faults that behave better for certain programs and faults
that are better detected using certain techniques.

The fact that a fault behaves better with a particular program could be interpreted
as meaning that the fault cannot be taken into account separately from the
environment (for want of a better word) in which it occurs. One possibility is to
examine not the actual fault but the failure it causes. Remember that, in the ultimate
analysis, structural and functional testing techniques detect failures not faults,
whereas review directly detects faults.

Additionally, within the dynamic techniques, it is interesting to note that a
subject’s failure to detect a fault can be due to two very different reasons:
• No test case was generated to show up the fault.
• The test case was generated, but the subject was unable to see the failure on
screen.

For this reason, we suggest that it would be interesting to make a distinction
between two separate things in the second-round experimentation (Experiment II):
detection of the failures caused by faults (to study visibility) and technique fault
detection capability. As this experiment has been designed, it is impossible to
separate one thing from the other.

 14

As interactions between the program and the fault, on the one hand, and the
technique and the fault, on the other, have appeared, the factors fault, program and
technique cannot be examined separately. Therefore, we will have to study the two
interactions that have emerged.

3.7.2 Fault/technique interaction
Fig. 2 clearly shows the interaction between the fault and the technique, as the
different lines (which represent the different techniques) cross over.

Estimated marginal PERCENTAGE means

Fault type

F9F8F7F6F5F4F3F2 F1 E
st

im
at

ed
 m

ar
gi

na
l p

er
ce

nt
ag

e
m

ea
ns

70
60
50
40
30
20
10

0

Technique used
functional

structural

review

Fig. 2. Technique and fault interaction

Although we have seen that there is an interaction between technique and fault, we
still cannot determine whether or not the difference between technique and fault
groups is significant. For this purpose, we have put together a graph that shows the
confidence interval of the mean response variable for each fault, grouped by
technique. This graph is shown in Fig. 3.

We conducted a cluster analysis on the estimated mean for each technique/fault
combination (shown in Fig. 3) to analyse the significance of the fault and technique
interaction. Cluster analysis is a data analysis technique used to establish behaviour
groups for such an interaction, which means that the technique/fault combinations that
behave in the same way will fall into the same group. In this case, four groups were
established in the cluster analysis conducted: well detected faults, fairly well detected
faults, poorly detected faults and very poorly detected faults. The groups to which
each fault/technique combination belongs appear in Table 6:

Four behaviour types can be inferred from the above tables:

1. The three techniques behave equally for a particular fault. This is the case of F2.
2. The three techniques behave differently for a particular fault. This is the case of F4,

F5, F6, F7 and F9. Two behaviour types can be established in this case:

 15

-20
-10

0
10
20
30
40
50
60
70
80
90

fu
nc

tio
na

l
st

ru
ct

ur
al

re
vi

ew
fu

nc
tio

na
l

st
ru

ct
ur

al
re

vi
ew

fu
nc

tio
na

l
st

ru
ct

ur
al

re
vi

ew
fu

nc
tio

na
l

st
ru

ct
ur

al
re

vi
ew

fu
nc

tio
na

l
st

ru
ct

ur
al

re
vi

ew
fu

nc
tio

na
l

st
ru

ct
ur

al
re

vi
ew

fu
nc

tio
na

l
st

ru
ct

ur
al

re
vi

ew
fu

nc
tio

na
l

st
ru

ct
ur

al
re

vi
ew

fu
nc

tio
na

l
st

ru
ct

ur
al

re
vi

ew

F1 F2 F3 F4 F5 F6 F7 F8 F9

Mean

Fig. 3. Confidence intervals for the mean by technique and fault.

Table 6. Results of the four-group cluster analysis.

Group Functional Structural Review

Group 1
(well

detected)

F3 (I,O)
F4 (I,C)
F6 (C,O)
F7 (C,O)

F5 (I,C)
F9 (C,C)

Group 2
(fairly well
detected)

F1 (Cs,O)
F5 (I,C)
F8 (C,C)
F9 (C,C)

F3 (I,O)
F4 (I,C)
F6 (C,O)
F7 (C,O)
F8 (C,C)

F3 (I,O)

Group 3
(poorly

detected)
 F1(Cs,O)

F1 (Cs,O)
F4 (I,C)
F5 (I,C)
F6 (C,O)
F7 (C,O)
F8 (C,C)
F9 (C,C)

Group 4
(very

poorly
detected)

F2 (Cs,C) F2 (Cs,C) F2 (Cs,C)

- The functional technique behaves better than the structural testing technique and

both behave better than review. This is the case of F4, F6 and F7 (F6 and F7 are
the same faults, but have nothing in common with F4).

 16

- The structural testing technique behaves better than the functional testing
technique, and both behave better than review. This is the case of F5 and F9
(both faults of commission).

3. The structural technique behaves the same as review, and both behave worse than
the functional testing technique. This is the case of F1 and F3 (both are faults of
omission).

4. The functional technique behaves identically to the structural testing technique,
and both behave better than review. This is the case of F8 (control and
commission).

The findings from the above are as follows:
• The cosmetic faults are the most difficult to detect (F1 and F2 are in groups 3
and 4, except faults of omission using the functional testing technique which are in
group 2).
• Generally, it could be said that the fault and technique combination has an impact
for the functional and structural testing techniques, as review always behaves
worse than the other two, irrespective of the fault type. Note that all the faults fall
into group 3 for review, except F2 (cosmetic fault of commission, which belongs
to group 4) and F3 (initialisation fault of omission, which belongs to group 2).
That is, the fault type appears to have practically no impact on review
effectiveness, although this technique turns out to be the less effective one in this
experiment.
• Given the fault classification used and that, as we have seen from the ANOVA,
fault detection depends on the fault and the technique, we would expect the same
fault types to behave equally. That is, given that F4 and F5 are faults of the same
type (initialisation, commission), they should behave equally, as should F6 and F7
(both control faults of omission) and F8 and F9 (control, commission). However,
we find that this only happens in exceptional cases, like F6 and F7 (for all
techniques) and F8 and F9 (for functional testing and review). This makes us
think that perhaps the fault classification scheme is not the appropriate one,
as it does not allow the detection of the fault type for which the functional and
structural techniques are more adequate.
• The functional testing technique detects faults of omission better than faults of
commission (three out of four), whereas the structural testing technique is not very
good at detecting faults of omission (they are all in group 2).

Neither can any definitive conclusions be drawn according to each individual
classification examined separately.

3.3.3 Fault/program interaction
Fig. 4 clearly shows the interaction between the fault and the program, as the different
lines (which represent the different techniques) cross over.

Although we have seen that there is an interaction between program and fault, we
still cannot determine whether or not the difference between program and fault groups
is significant. For this purpose, we have put together a graph that shows the
confidence interval of the mean response variable for each fault, grouped by program.
This graph is shown in Fig. 5.

 17

 Estimated marginal PERCENTAGE means

Fault type

F9F8F7F6F5F4F3F2 F1 E
st

im
at

ed
 m

ar
gi

na
l p

er
ce

nt
ag

e
m

ea
ns

80

60

40

20

0

Program tested

nametbl

ntree

trade

cmdline

Fig. 4. Fault and program interaction.

-20
-10

0
10
20
30
40
50
60
70
80
90

100

na
m

et
bl

nt
re

e
tra

de
cm

dl
in

e
na

m
et

bl
nt

re
e

tra
de

cm
dl

in
e

na
m

et
bl

nt
re

e
tra

de
cm

dl
in

e
na

m
et

bl
nt

re
e

tra
de

cm
dl

in
e

na
m

et
bl

nt
re

e
tra

de
cm

dl
in

e
na

m
et

bl
nt

re
e

tra
de

cm
dl

in
e

na
m

et
bl

nt
re

e
tra

de
cm

dl
in

e
na

m
et

bl
nt

re
e

tra
de

cm
dl

in
e

na
m

et
bl

nt
re

e
tra

de
cm

dl
in

e

F1 F2 F3 F4 F5 F6 F7 F8 F9

Mean

Fig. 5. Confidence intervals for the mean by program and fault.

Cluster analysis was again applied to the data shown in
Fig. 5. This time three groups were established. The results of this analysis are

shown in Table 7.

 18

Table 7. Results of the three-group cluster analysis.

Data Functional Group nametbl ntree trade cmdline

Group 1
(well

detected)

F3 (I,O)
F5 (I,C)
F7 (C,O)
F8 (C,C)

F1 (Cs,O)
F4 (I,C)
F6 (C,O)
F9 (C,C)

 F3 (I,O)

Group 2
(fairly
well

detected)

F4 (I,C)
F9 (C,C)

F3 (I,O)
F5 (I,C)
F7 (C,O)

F1 (Cs,O)
F3 (I,O)
F4 (I,C)
F5 (I,C)
F6 (C,O)

F4 (I,C)
F5 (I,C)
F6 (C,O)
F7 (C,O)

Group 3
(poorly

detected)

F1 (Cs,O)
F2 (Cs,C)
F6 (C,O)

F2 (Cs,C)
F8 (C,C)

F2 (Cs,C)
F7 (C,O)
F8 (C,C)
F9 (C,C)

F1 (Cs,O)
F2 (Cs,C)
F8 (C,C)
F9 (C,C)

From the above tables, we can infer the following:
• Fault F2 (cosmetic, commission) behaves identically for all programs and always
poorly.
• Faults F4, F5, F8 and F9 behave identically for all the processing programs
(cmdline and trade): F4 and F5 (both initialisation faults of commission) fairly
well and F8 and F9 (both control faults of commission) poorly. It is noteworthy
that one and the same fault appears in assorted groups.
• F6 and F7 (both control faults of commission) behave identically for the cmdline
program.
• Additionally, the data programs behave better than the functional programs.
Generally, there is little more we can say, as we find that the faults behave quite

disparately for each program. This suggests that perhaps we used an ineffective
program classification.

3.9 Results of Experiment I

The results of conducting the ANOVA on the data collected in the experiment
revealed that fault detection in a program is influenced by two things: the fault and
technique combination and the fault and program combination.

With regard to the first of these combinations, we tried to establish a pattern to
predict the fault types that behave better with each technique, although this was not
possible. However, we did find that:
• Generally, cosmetic faults are poorly detected, which means that the
fault/technique relationship bears no influence on this fault type.
• Code reading is less sensitive to fault hiding than the other techniques. The
fault detection in code reading does not depend on executing the part of code
where the fault is, or on other faults; therefore the detection is less influenced by
other factors.
• The fault/technique relationship only occurs for the structural and functional
techniques. This led us to look for other factors that may have an impact on one

 19

particular fault being detected more often than another in code reviews. For
Experiment II, we propose to examine fault location in the program.
• Since the subjects executed their own test cases, and the response variable
measured the number of people who detected the failure produced by the fault, it
was impossible to detect whether the actual technique did not generate a test case
to show up the fault or the subject was unable to see the fault uncovered by the
technique. This led us to consider examining actual fault detection capability
(generation of test cases which are able to show up the failure) and failure
visibility (the subject sees the failure once this is shown up) in Experiment II.
Basili and Selby already studied this.
• Related to the previous bullet, we have also not taken into account the possibility
of subject randomisation not working properly (subjects better prepared will find
more faults independently of the technique). The previous studies to this one,
already discovered that subjects applying the same techniques did not find,
generally, the same faults. This lead us to consider changing the design of the
experiment for Experiment II, where all subjects will apply all techniques.
• As far as the functional and structural testing techniques are concerned, it is
difficult to establish a behaviour pattern for the different faults. Although the
functional technique behaves better than the structural testing technique in
most cases, the cases in which the two techniques behave identically or better than
each other occur indistinctly for each replication of fault type. For example, the
functional technique behaves better than the structural technique for F1 (cosmetic,
commission), F3 (initialisation, omission), F4 (initialisation, commission) and F6
and F7 (both control faults of omission), the structural technique behaves better
than the functional technique for F5 (initialisation, commission) and F9 (control,
commission), and both techniques behave identically for F8 (control,
commission). On the other hand, the fact that no conclusions can be drawn from
the original classification suggests that all the faults should be replicated, and not
just some as we did in this experiment (F1, F2 and F3 were not replicated). This
led us to consider creating two versions of each program inserting different faults,
albeit of the same type, for Experiment II. This contrasts with the differences
Basili and Selby found for omission faults and for initialisation, interface, control
and computation faults, and with the differences that Kamsties and Lott could not
find.
• Bearing in mind the fault classification we used, F4 is the same fault as F5
(initialisation, commission), and the same goes for F6-F7 (control, omission) and
F8-F9 (control, commission). This means that they should behave identically, but
this is only the case for F6 and F7 (control, omission). However, it does appear
that the functional technique behaves better than the structural technique for
faults of omission (all except F4), and the structural technique behaves better
or identically to the functional technique for faults of commission. This
contrasts with what Basili and Selby found about behaving functional technique
and code reading equal and better than structural and the no difference found by
Kamsties and Lott.

As regards the second relationship, the fault/program combination, our findings

were:

 20

• The cosmetic faults of commission are again the ones that behave worst for all
programs. This is not true of the cosmetic faults of omission.
• Again, the program classification (data and functions) does not appear to be
significant, as no pattern of fault behaviour can be established. This suggests that
we should look for other program classifications, taking into account things like
complexity, embedding, etc. This will not be taken into account in Experiment II,
and will be left for future research.
• Again, we have encountered problems with the fault classification, as we were
unable to establish any fault type pattern with regard to the programs developed.
This will be further investigated in Experiment II, creating two versions of each
program, as mentioned above.

4 Round 2: Experiment II

We have run another experiment based on the findings of the first, which involved
refining the earlier experiment to be able to reach conclusions that could not be drawn
from Experiment I due to design limitations.

4.1 Hypothesis, Parameters and Response Variable

The goal of this second experiment is to investigate three things:
• Influence of fault visibility. We were unable to deduce from the earlier
experiment whether the fact that a subject does not detect a fault is because the
technique does not produce a test case that causes the failure to occur or because
the actual subject does not observe the failure when it occurs. This was due to the
fact that subjects executed the test cases that they generated to detect the possible
program faults. In this experiment, the subjects will be asked to execute a set of
test cases that we generate and that detect all the program defects. Accordingly,
we will find out how visible the failures caused by the faults are. Additionally, by
examining the test cases generated by each individual, we will be able to find out
which faults the test cases generated by a given technique potentially detect.
• Influence of the technique and fault type. Owing to the above, we cannot be sure
that the findings reached in the earlier experiment with regard to the
fault/technique interaction are true. Therefore, we want to investigate to what
extent the use of one or another testing technique influences fault detection again.
• Influence of fault position. In the earlier experiment, we also saw discovered that
there was practically no difference between the number of people who detected
each fault for code review. This prompted us to look for another fault
characteristic that may influence review effectiveness. It occurred to us that it
might perhaps be easier to see certain faults because of their position in the
program. This will also be investigated.

Another result of the earlier experiment was that the program classification used
was not useful for identifying the behavioural differences between the techniques with
regard to programs. However, this is something that has been left for future research

 21

and will not be taken into account in this experiment, which will employ a subset of
the programs used in Experiment I.

Additionally, the experimental design has been changed, as detailed later in the
respective sections.

Accordingly, Experiment II will test the hypotheses investigated in Experiment I
(see section 3.1), plus the following:

H06: The visibility of the failures generated by the faults has no impact on
effectiveness.

H16: The visibility of the failures generated by the faults has an impact on
effectiveness.

H07: The position of the faults has no impact on effectiveness.
H17: The position of the faults has an impact on effectiveness.
Both the parameters and the response variable used for this experiment are the

same as used in the earlier experiment.

4.2 Factors and Alternatives

The earlier experiment was composed of three factors: technique, fault and program.
Although we have already mentioned that this experiment will not investigate the
impact of the program, this does not mean that it should no longer appear as a factor,
since its influence has already been confirmed. Moreover, we found some indications
in the earlier experiment that perhaps the fault classification we were using was not
suitable. We were, however, unable to confirm this for two reasons. One, which we
have already mentioned, is related to the influence of failure visibility on fault
detection. The other is that three of the six faults entered in the program occurred only
once, whereas the other three were replicated (occurred twice). As the programs are
not very long, however, it is not possible to insert a lot of faults, so we opted to
implement two versions of each program. This will provide for fault replication in the
programs. The version is introduced as a new factor in the experiment.

4.2.1 Factor 1: Fault types
The same fault types as used for the first experiment will be employed, save that the
number of faults will vary as a result of the introduction of the version factor. In this
case, the programs will each include 7 faults, these being:
• F1: Cosmetic, omission.
• F2: Cosmetic, commission.
• F3: Initialisation, omission.
• F4: Initialisation, commission.
• F5: Control, commission.
• F6: Control, omission.
• F7: Computation, commission.
Clearly, all the fault types are different, which was not the case in Experiment I.

We did this because there are two versions for each program in Experiment II, this
being how the faults are replicated. Additionally, we have tried to assure, as far as
possible, that the same faults generate the same failures. They are shown in Table 8.

 22

Table 8. Failures produced for each fault.

Fault Version cmdline nametbl ntree

V1 Does not recognise the “top” option. Does not output error when an unknown
resource type is supplied

Does not output error if the first node of the “are
siblings” node does not belong to the tree. F1

V2 Prints input file names incorrectly. Does not output error when an unknown object
type is supplied.

Does not output error if the second node of the
“are siblings” node does not belong to the tree.

V1 Use message containing spelling
mistake. Error message containing spelling mistake.1. Error message containing spelling mistake. F2

V2 Incorrectly written error message. Message containing spelling mistake. Error message containing spelling mistake.

V1 Does not output use message when
search measure and option is missing.

Correctly assigns the object but outputs an error
message saying that the element does not exist.1

If the two nodes exist, they are never recognised
as siblings.

F3
V2 Does not output error message when

there is no input file.

Correctly assigns the resource but outputs an
error message saying that the element does not
exist.

Whenever there are two nodes, they are never
classed as siblings.

V1 Interprets LKHM as LKOM. Interchanged DATA and FUNCTION
resources, assigns them inversely. Does not print the far left-hand node.

F4
V2 Prints the number of input files

incorrectly.
Interchanged SYSTEM and RESOURCE
objects, assigns them inversely. Search does not find the far left-hand siblings.

V1 The “minimum” option outputs an
error message. Does not recognise the RESOURCE object

If the second node belongs to the tree, it says it is
not there, and if it does not belong, it says
nothing. F5

V2 Incorrectly interpreted “help” option. Does not recognise the FUNCTION object. Search_tree works the wrong way round. If the
node does not exist, it outputs strange things.

V1
The “minimum” option with several
search options does not output error.2

Always assigns the resource irrespective of
whether or not the element belongs to the table.

If the node does not belong to the tree, no error
message is output during the search. F6

V2 Does not output error message when
there is an invalid measure option.

Always assigns the object irrespective of
whether or not the element belongs to the table. The tree is not indented when printed.

V1 Prints the names of the input files
incorrectly. Prints the number of table elements incorrectly. The tree is incorrectly indented when printed. F7

V2 Does not recognise the “top” option. Prints the number of table elements incorrectly. The tree level is wrong when printed.

2 The failures shown on a grey background in this table were hidden in the programs

 23

4.2.2 Factor 2: Techniques
The same techniques as in the first experiment will be used in this experiment.
However, the procedure followed to run the structural and functional tests will differ,
because, as already discussed, we intend to separate test case generation and fault
detection by the tester from each other.
• The subjects will apply the technique to generate test cases. These test cases will
be used in the experimental analysis to determine what faults each technique
detects.
• Afterwards, the subjects will execute the test cases we supply, which detect all
the program faults. This will enable us to examine whether failure visibility
influences failure detection, that is, to check whether the results obtained in
Experiment I on the functional and structural techniques are valid and there is no
bias.

4.2.3 Factor 3: Program
Of the four programs used for the first experiment, one will be discarded.
Accordingly, for this experiment, we will use the three genuine programs that came
with the original experimental package. The reason for this was to balance the
experimental design. We found from the previous experiment that randomisation was
perhaps not enough to isolate the possible effect of subject capability on whether or
not they detect a fault. Therefore, this experiment has been designed differently, and
the subject has been introduced as a blocking variable.

4.2.4 Factor 4: Version
We have already discussed the reason for introducing program versions. The idea is to
replicate all the faults under study for each program. As the programs are small in
size, we cannot insert as many faults as we would like to without violating the
premise of some faults masking others. The solution to this problem is to introduce
the concept of version: two versions differ as to the faults they contain, but they
always have to contain the same number of faults and the faults have to be of the
same type.

4.3 Experimental Design

For this experiment, we have 46 subjects. As discussed above, this time each subject
will apply all three techniques, leading to the experimental design shown in Table 9
and Table 10. Each group in the experiment will be composed of 7 to 8 people.

4.4 Data Analysis

Again, we have used the ANOVA for data analysis. For ease of reading, we have
structured the analysis of Experiment II differently to the analysis of Experiment I.
This time we will conduct the analysis on the basis of the findings of Experiment I
and discussing the results of Experiment II with respect to the results of Experiment I.

 24

Table 9. Experimental design.

Program cmdline ntree nametbl
Technique I S F I S F I S F
Group 1 X - - - X - - - X
Group 2 X - - - - X - X -
Group 3 - X - - - X X - -
Group 4 - X - X - - - - X
Group 5 - - X X - - - X -
Group 6 - - X - X - X - -

Table 10. Experiment execution.

Day Day 1 Day 2 Day 3
Program cmdline ntree nametbl
Group 1, Group 2
Group 3, Group 4
Group 5, Group 6

Review
Structural
Functional

Group 4, Group 5
Group 1, Group 6
Group 2, Group 3

 Review
Structural
Functional

Group 3, Group 6
Group 2, Group 5
Group 1, Group 4

 Review
Structural
Functional

The results of each of the three aspects examined during this experiment, which are
influence of the testing technique and fault type, failure visibility and fault visibility
for code review, are discussed below. Annex II contains the ANOVA tables.

4.4.1 Influence of the Testing Technique
The goal here is to repeat the analysis already conducted during Experiment I, that is,
we intend to investigate the possible influence of programs, techniques, faults and
versions on the response variable. It is important to note that the definition of
effectiveness has changed, because the experiment is run differently in this case.
Whereas it was defined as the number of students who detect a fault in Experiment I,
here it is specified as the number of students who generate a test case capable of
detecting the fault. Again we have studied both the main effects and the second- and
third-order interactions. Owing to design considerations, it is not possible to study the
fourth-order interaction, there being no response variable replications (this interaction
is confused with error). Accordingly, we are considering that the fourth-order
interaction is negligible. Table 22 shows the results of the ANOVA.

As we can see from Table 22, the main effects of technique, version and fault are
significant, as are the second-order program/technique, program/fault and
technique/fault interactions.

Hence, we have that the number of people who will generate a test case to
detect a fault depends on the version, the technique used and the fault in
question. Additionally, there are faults that behave better for certain programs,

 25

faults that are better detected using certain techniques and programs that
behave better for certain techniques.

As interactions have appeared between the effects of the fault and technique, these
factors cannot be studied separately. However, we will not analyse all the interactions
that have emerged as significant here. We will concentrate only on the interactions of
interest, which are the program/technique and technique/fault interactions. As
compared to Experiment I, it is noteworthy that the program effect did not turn out to
be significant in this case, whereas the version and the program/technique
combination did. We will discuss the influence of the version later in section 4.4.4.
The program/fault interaction will be left aside, since we had already planned to
research the influence of the program in future experiments.

The ANOVA clearly showed the interaction between technique and fault in this
experiment, as it did in Experiment I. We have built the confidence levels of the
response variable means for each combination of factor levels to determine how the
combinations of the different levels of the two factors are related. Fig. 6 shows these
intervals.

Fig. 6. Confidence intervals for the mean by technique and fault.

A cluster analysis has been conducted on the intervals shown in Fig. 6, establishing
four groups (as in Experiment I): well detected faults, fairly well detected faults,
poorly detected faults and very poorly detected faults. Table 11 shows the results of
this analysis. It is important to note that none of the faults that appear in Table 11 are
replicated (F1...F7 are seven different faults), as they were in Experiment I.
Replications do not appear here because it is the version that generates the replication,
and this does not interact jointly with fault and technique.

As we suspected from Experiment I, although it shows up much more clearly here,
code review always behaves worse than the functional and structural techniques,
irrespective of the fault. As regards the comparison between the functional and the
structural techniques, remember that the functional technique behaved better than the
structural technique in most cases in Experiment I, although we were unable to
establish a behaviour pattern for fault type. In this experiment, we find that the two
techniques behave equally (which means that they are equally powerful), and the
difference there was in Experiment I is no longer there. This can be attributed to the
fact that we are now studying whether the technique generates test cases that reveal a

 26

Table 11. Cluster analysis results for four groups.

Group Functional Structural Review
Group 1

(well
detected)

F1 (Cs,O)
F2 (Cs,C)
F4 (I,C)
F5 (C,C)

F1 (Cs,O)
F2 (Cs,C)
F3 (I,O)
F4 (I,C)
F5 (C,C)

--

Group 2
(fairly well
detected)

F3 (I,O)
F6 (C,O)

F7 (Cm,C)

F6 (C,O)
F7 (Cm,C) --

Group 3
(poorly

detected) -- --

F1 (Cs,O)
F3 (I,O)
F5 (C,C)
F6 (C,O)

F7 (Cm,C)
Group 4

(very
poorly

detected)

-- -- F2 (Cs,C)
F4 (I,C)

given fault type. What Table 11 tells us is that both the functional and the structural
techniques are equally effective at generating test cases. Additionally, the behaviour
pattern for fault types, which we were unable to establish from Experiment I, can be
found here, as we can see that there are faults that behave worse than others (as is the
case of F6 and F7).

It is interesting to note that the technique/program interaction turned out to be
insignificant in the earlier experiment, whereas it is significant in this one. As before,
we built the confidence intervals for the response variable means for each
combination of factor levels. Fig. 7 shows the results.

 27

Fig. 7. Confidence intervals for the mean by technique and program.

We conducted a cluster analysis on the intervals shown in Fig. 7, again establishing
four groups. Table 12 shows the results of the analysis.

Table 12. Cluster analysis results for four groups.

Group cmdline nametbl ntree
Group 1

(well
detected)

Structural Functional
Structural --

Group 2
(fairly well
detected)

Functional -- Functional
Structural

Group 3
(poorly

detected)
-- -- Review

Group 4
(very

poorly
detected)

Review Review --

Unlike Experiment I, where there were no techniques that behaved better for

particular programs, here we found that the program determines technique
behaviour, although generally we can affirm that the structural and functional
testing techniques will behave similarly and always better than review.

4.4.2 Influence of Failure Visibility
The goal pursued by this analysis is to study the visibility of a failure (how many
people really observe and, consequently, detect the failure, once it has occurred).
While there are currently not many fault classifications, there are even fewer (in fact,
there are none) failure classifications, which represents an obstacle to this
investigation. Therefore, what we are going to try to do here is to establish a failure
classification based on the program, version and fault factors, which are the three
parameters that define the behaviour of the failure on the basis of the fault.

During this experiment, as mentioned earlier, the subjects ran test cases with which
they were supplied, which means that the technique will not exert any influence
whatsoever (the test cases were generated so as to visualise all the program failures
without applying any particular technique). Table 19, Table 20 and Table 21 show the
number of people who visualised failures by program, technique and fault,
respectively. Table 23 shows the results of the ANOVA for failure visibility.

As we can see from Table 23, the main effects version and fault, the second-order
interaction between program and fault and the third-order interaction between
program, version and fault are significant, which means that failure visibility
(number of people who detect the failure) depends on the fault that causes the
failure, and the program and version in which the failure occurs. This is quite
logical, as, looking at Table 8, we find that there are different faults and versions that
cause one and the same failure (for example, F1 in V1 produces the same failure as F7

 28

in V2). As the third-order interaction is significant, our examination will focus on this
interaction, which cancels out the other effects.

Table 13 shows the failure classification developed on the basis of the faults and
failures described in Table 8. This is a preliminary classification and has been put
together according to two failure parameters:
• Failures related to printing (P, or the printed contents of the output), error
messages (E) and program results (R).
• Failures of omission (O, the program does not do everything it should) or of
commission (C, the program does things wrong).

Table 13. Program failure classification

cmdline nametbl Ntree Failure V1 V2 V1 V2 V1 V2
F1 Error

Commission
Printing

Commission
Error

Omission
Error

Omission
Printing

Commission
Printing

Commission
F2 Printing

Commission
Printing

Commission
Printing

Commission
Printing

Commission
Printing

Commission
Printing

Commission
F3 Error

Omission
Error

Omission
Error

Commission
Error

Commission
Result

Commission
Result

Commission
F4 Result

Commission
Result

Commission
Result

Commission
Result

Commission
Printing

Omission
Result

Commission
F5 Error

Commission
Result

Commission
Result

Commission
Result

Commission
Result

Commission
Result

Commission
F6 Error

Omission
Error

Omission
Result

Commission
Result

Commission
Error

Omission
Printing

Commission
F7 Printing

Commission
Error

Commission
Printing

Commission
Printing

Commission
Printing

Commission
Printing

Commission

Yet again, we have used cluster analysis as an aid for examining this interaction.

Table 14 shows the results of this analysis, establishing five behaviour groups:
failures with very good, good, fair, poor and very poor visibility.

The suspicion we had in Experiment I that failure visibility has an impact on
failure detection appears to be confirmed here. From Table 14, we can deduce that the
errors of omission are very visible, as they appear in either of the top two visibility
groups (good and very good). However, the visibility of the errors of commission
varies, as they can appear in any of the five groups. On the other hand, the result
failures are the most visible (together with the failures of omission), as again they
always appear in the top two groups. With regard to error failures, failures of
omission appear to behave better than failures of commission, as the failures of
commission tend to appear in group 3 and the failures of omission in groups 1 and 2.

This, together with the earlier result proving that the functional and structural
techniques behave equally in terms of fault detection, confirms that the differences
observed in Experiment I depend not on the actual technique, but on how well
the failure is visualised.

Hence, one wonders whether, owing to its modus operandi, the functional
technique may somehow predispose subjects to be more sensitive to program failures.
Remember that the functional technique is based on the program specifications, which
are used to generate the test cases. On the other hand, subjects using the structural

 29

Table 14. Cluster analysis results for five groups.

cmdline nametbl ntree Group V1 V2 V1 V2 V1 V2

Group 1
(Very good
visibility)

 (P,C) F7
F1 (P,C)
F4 (R,C)
F5 (R,C)

 (E,O) F1
(R;C) F4
 (R,C) F5
 (R,C) F6
 (P,C) F7

 (E,O) F1
 (E,C) F3
 (R,C) F4
 (R,C) F5
 (R,C) F6
 (P,C) F7

 (R,C) F3
(P,O) F4
(E,O) F6

(P,C) F1
 (R,C) F4
(R,C) F5

Group 2
(Good

visibility)

(E,O) F3
(R,C) F4
(E,C) F5

F3 (E,O)
F6 (E,O) -- -- (P,C) F1

(R,C) F5
 (R,C) F3
 (P,C) F7

Group 3
(Fair

visibility)
(E,C)F1 F7 (E,C) -- -- -- (P,C) F2

 (P,C) F6

Group 4
(Poor

visibility)
-- F2 (P,C) -- (P,C) F2 (P,C) F2 --

Group 5
(Very poor
visibility)

(P,C) F2 -- -- -- (P,C) F7 --

technique do not have the program specification until they are about to run the
generated test cases, which may mean that they are not as sensitive to the possible
failures that may arise.

Another noteworthy point is that there were failures that appeared more than once
when the test cases were run during this experiment (there was more than one test
case that fired these failures). And some subjects saw these failures every time, other
subjects saw them only once and others never saw them at all. For simplicity’s sake,
we considered for the purposes of this investigation that once a subject had seen a
failure (even if only once), it was a detected failure. However, it would also be
interesting to explore the question raised by this observation, that is, how many times
does a failure need to appear during testing for it to be seen? This could refine the
visibility classification.

4.4.3 Influence of Fault Visibility
The goal in this case is to study a possible relationship between the visibility of a fault
in the program code using the reading technique and the number of people who detect
the fault. For this purpose, fault visibility is defined by its position in the code, which
will be determined by three parameters:
• Quadrant: The page has been divided into four quadrants so that each fault will
have an associated value of 1 to 4 depending on the position it occupies. The
quadrants have been numbered from left to right and from top to bottom.
• Embedding: Each fault will have an associated number that will indicate its level
of embedding within the code.
• Place: Page number of the file on which the fault is located.
Table 24 shows the results of the ANOVA. From this analysis, we can deduce that

none of the parameters considered and none of their combinations influence the

 30

results and, therefore, the number of subjects who detect a fault using the reading
technique does not depend on fault visibility. This means that code review has no
preference for specific fault types. This is the same result as we found for the
functional and structural techniques, which behave equally for all faults. At this point,
one might wonder what advantages review then has over the dynamic techniques. On
the one hand, one of the most valuable features of review is that it is applicable not
only to code but also to any software product, which enables earlier fault detection
and lowers the cost of correction. On the other hand, we have the point identified in
Experiment I that review is not influenced by fault interdependency.

4.4.4 Influence of the Version
This experiment yielded an unexpected result, which was that the version influenced
the number of people who detected a fault. This means that, irrespective of the
program, technique and fault type, more subjects generated test cases that detected
faults in version 2 than in version 1. Note that the versions 1 and 2 of each program
are identical, the only difference being the faults entered.

This is an interesting result, because it says that it is the instance of the actual fault
and not the program type or form that determines how well a fault will be detected by
the testing techniques. This contrasts with the finding from Experiment I that the
program was influential.

This raises the ineludible question of which parameters are likely to influence fault
detection by a test case. Could it be how well the subject applies the technique? This
is an open question to be addressed in later studies.

5 Conclusions

In this chapter, we presented two successive experiments that aim to clarify the
fault detection capability of three code evaluation techniques: two dynamic analysis
(functional and structural) and one static analysis (code reading by stepwise
abstraction) techniques. The first experiment is based on the earlier findings of the
experiment performed by Woods et al., which concluded that the relationship between
evaluation techniques and the fault types they detect needed to be investigated.

The design of the first experiment included four programs, four fault types per
program (although they contain two faults of three of the types, adding up to a total of
nine faults per program) and each subject applied a single technique. From
Experiment I, we found that the cosmetic faults showed up worst (irrespective of the
technique and the program) and that code review was not affected by the fault type
(they were all detected equally). This contrasts with Basili and Selby’s findings, of
review detecting better certain types of faults, and Kamsties and Loot’s finding of no
difference between fault type. As regards the actual techniques, the functional
technique came out better than the structural technique for faults of omission (the
same finding as Basily and Selby) and the structural technique behaved equally or
better than the functional technique for faults of commission (Basili and Selby did not
find this, but all behaved equally), although, on the whole, the functional technique
tended to behave better (as in one of the experiments of Basili). However, we did not

 31

manage to discern a clear behaviour pattern as regards what fault types each of the
two techniques detects better (contrasting with Basili and Selby’s findings).

Some of the findings of Experiment I, however, led to the preparation Experiment
II. The fact that not all the faults were replicated in Experiment I led to the creation of
two versions of each program in the second experiment. As replicated faults behaved
differently (which was strange), we thought that perhaps it could be the failure that
caused this variation. Therefore, we examined failure visibility during Experiment II.
For this purpose, we generated test cases that detected all the fault and asked the
subjects to use these test cases instead of running their own. As the fault did not
appear to be have an impact on the static technique, we decided to investigate fault
visibility in the static technique in Experiment II. Finally, we also suspected that the
subjects might have influenced fault detection in Experiment I, which led us to have
all the subjects apply all the techniques rather than just one as in Experiment II.

Experiment II was run on the basis of these premises. The findings from the
experiment corroborated some of the suspicions we had had during the first
experiment. Firstly, as regards the possible impact of the fault and the technique, we
found that the functional and structural techniques behaved identically (this contrasts
with Basiili and Selby´s findings of functional technique behaving better). This
refutes the finding from Experiment I that the functional technique behaved better
than the structural technique for some fault types. This is because there was a hidden
effect in Experiment I, namely, failure type. This was influencing failure detection.

As regards failure visibility, this does indeed have an influence. Hence, we have
been able to establish a failure taxonomy, where error messages that do not appear
and incorrect results are the most visible. So, the results observed in Experiment I
were due to failure visibility not to the power of the techniques. It is not clear,
however, whether perhaps the functional technique, owing to its modus operandi,
tends to make subjects more sensitive to the detection of certain faults. From this we
can deduce that it is not only important to teach subjects the testing techniques, but it
would also make sense to teach them to see the failures. This would involve training
them to use heuristics and checklists concerning the failure types they should look for
(for example, check that all the error messages are output and output at the right
time). However, the failure visibility classification needs to be refined, which leaves
room for an extension of this study.

Additionally, a new thing we found was that the program/technique combination
has an impact on the number of faults detected (as Wood et al. already found),
although the functional and structural techniques again behaved equally in all cases
for the same program. This means that technique effectiveness (irrespective of
whether it is the structural or functional technique) is affected by the program. In
other words, whatever the technique (structural or function) we apply, it will always
be less effective for a given program type than for another.

Another interesting result was that the position of a fault has no influence on the
number of people who see the fault using the reading technique. This suggests that we
should look for other factors that may have an impact (perhaps experience, which has
been addressed in earlier experiments). Although neither of these experiments has
taken this into account, aspects like subject experience have been investigated in
earlier experiments examining code review effectiveness.

 32

Finally, another unexpected finding was that the actual version influenced the
number of subjects who were able to generate a test case that detected a fault. We
have interpreted this as it being the actual fault, that is, the particular instance and not
the type of fault, rather than the program type or form that determines whether more
or fewer faults are detected. This leaves the field open for further research.

References

[1] Basili, V.R., and Selby, R.W. 1987. Comparing the Effectiveness of Software Testing
Strategies. IEEE Transactions on Software Engineering. Pages 1278-1296. SE-13 (12).

[2] Beizer, B. 1990. Software Testing Techniques. International Thomson Computer Press,
second edition.

[3] Hetzel, W.C. An experimental Analysis of Program Verification Methods. PhD thesis,
University of North Carolina, Chapel Hill, 1976.

[4] Juristo, N and Moreno, A. M. Basics of Software Engineering Experiemntation. Kluwer
Academic Publishers. 2000.

[5]Kamsties, E., and Lott, C.M. 1995. An Empirical Evaluation of Three Defect-Detection
Techniques. Proceedings of the Fifth European Software Engineering Conference. Sitges,
Spain.

[6] Linger, R.C., Mills, H.D, and Witt, B.I. Structured Programming: Theory and Practice.
Addison Wesley, 1979.

[7]Myers, G.J. 1978. A Controlled Experiment in Program Testing and Code
Walkthroughs/Reviews. Communications of the ACM. Vol. 21 (9). Pages 760—768.

[8] Sommerville, I. Software Engineering. 6th Edition. Addison-Wesley. 2001.

[9]Wood, M., Roper, M., Brooks, A., and Miller J. 1997. Comparing and Combining Software
Defect Detection Techniques: A Replicated Empirical Study. Proceedings of the 6th
European Software Engineering Conference. Zurich, Switzerland.

Annex I Values from Experiment I

Table 15. Mean number of people who detected a fault (per cent).

Confidence interval at 95% Mean Std. error Lower bound Upper bound
31.056 1.462 28.117 33.994

Table 16. Mean number of people who detected a fault by program (per cent).

Confidence interval at 95% Program
type Program Mean Std.

error Lower bound Upper bound
nametbl 35.760 2.923 29.882 41.638 Data
ntree 38.100 2.923 32.222 43.978

 33

trade 23.127 2.923 17.250 29.005 Functions cmdline 27.235 2.923 21.357 33.112

Table 17. Mean number of people who detected a fault by technique.

Confidence interval at 95% Technique
used Mean Std. error Lower bound Upper bound

functional 37.720 2.532 32.630 42.810
structural 35.459 2.532 30.368 40.549
review 19.988 2.532 14.897 25.078

Table 18. Mean number of people who detected a fault by fault type.

Confidence interval at 95% Fault type Fault Mean Std. error Lower bound Upper bound
Cosmetic.
omission F1 22.325 4.385 13.508 31.142

Cosmetic.
commission F2 7.794 4.385 -1.023 16.610

Initialisation.
omission F3 41.561 4.385 32.745 50.378

F4 36.044 4.385 27.228 44.861 Initialisation.
commission F5 41.518 4.385 32.702 50.335

F6 34.690 4.385 25.873 43.506 Control.
omission F7 33.360 4.385 24.544 42.177

F8 28.517 4.385 19.701 37.334 Control.
commission F9 33.690 4.385 24.874 42.507

Annex II Values from Experiment II

Table 19. Mean number of people who detected failures by program.

Confidence interval at 95%
Program tested

Mean

Std. error

Lower bound Upper bound

nametbl 68.325 6.572 55.249 82.402
Ntree 78.721 6.572 65.645 92.798
Cmdline 73.661 6.572 60.584 86.737

Table 20. Mean number of people who detected failures by technique.

Confidence interval at 95%
Technique
used

Mean

Std. error

Lower bound Upper bound

functional 75.755 5.363 65.085 86.424
structural 71.383 5.363 60.714 82.053

 34

Table 21. Mean number of people who detected failures by fault.

Confidence interval at 95%
Fault type

Mean

Std. error

Lower bound Upper bound

F1 87.525 7.842 71.909 103.141
F2 24.075 7.842 8.459 39.691
F3 73.925 7.842 58.309 89.541
F4 97.142 7.842 81.526 112.757
F5 91.633 7.842 76.018 107.249
F6 68.542 7.842 52.926 84.157
F7 72.142 7.842 56.526 87.757

Table 22. ANOVA for the influence of the technique used.

Source Sum of
squares

gl Square
mean

F Sig.

PROGRAM 1152.003 2 576.002 2.170 0.136
TECHNIQUE 57223.145 2 28611.572 107.769 0.000
VERSION 1503.167 1 1503.167 5.662 0.026
FAULT 5534.719 6 922.453 3.475 0.013
PROGRAM*TECHNIQUE 6541.040 4 1635.260 6.159 0.001
PROGRAM*VERSION 490.361 2 245.181 0.924 0.411
PROGRAM*FAULT 14441.028 12 1203.419 4.533 0.001
TECHNIQUE*VERSION 576.635 2 288.318 1.086 0.354
TECHNIQUE*FAULT 8144.093 12 678.674 2.556 0.024
VERSION*FAULT 2904.345 6 484.058 1.823 0.137
PROGRAM*TECHNIQUE*VERSION 1271.672 4 317.918 1.197 0.337
PROGRAM*TECHNIQUE*FAULT 11523.079 24 480.128 1.808 0.077
PROGRAM*VERSION*FAULT 5877.257 12 489.771 1.845 0.097
TECHNIQUE*VERSION*FAULT 3122.916 12 260.243 0.980 0.493
Error 6371.767 24 265.490
Total 672791.060 126

Table 23. ANOVA for failure visibility

Source

Type III
sum of
squares

gl

Square
mean

F

Sig.
PROGRAM 1513.553 2 756.777 4.799 0.13
VERSION 5008.229 1 5008.119 31.756 0.00
FAILURE 42646.258 6 7107.710 45.069 0.00
PROGRAM * VERSION 203.685 2 101.843 0.646 0.529
PROGRAM * FAILURE 18735.974 12 1561.331 9.900 0.00
VERSION * FAILURE 1701.730 6 283.622 1.798 0.123
PROGRAM*VERSION*FAILURE 166297.829

23039.252
12 1919.938 12.174 0.00

Error 6623.710 42 157.707
Total 554114.280 84

 35

Table 24. ANOVA results for fault position.

Source

Type III
sum of
squares

gl

Mean
square

F

Sig.
EMBEDDING 2377.557 5 475.511 0.788 0.573
QUADRANT 3630.543 3 1210.181 2.005 0.154
PLACE 1292.625 4 323.156 0.535 0.712
EMBEDDING*QUADRANT 209.975 2 104.988 0.174 0.842
EMBEDDING*PLACE 2244.535 4 561.134 0.930 0.471
QUADRANT*PLACE 39.993 2 19.996 0.033 0.967
EMBEDDING*QUADRANT*PLACE 217.361 1 217.361 0.360 0.557
Error 9656.569 16 603.536
Total 75250.980 42

