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1 INTRODUCTION 

 
1.1. PRE-SCIENTIFIC STATUS OF SOFTWARE ENGINEERING 

This book addresses experimentation in Software Engineering (SE). The book is 
aimed at raising readers’ interest in experimentation that has been lacking in the SE 
field. Borrowing the experimental tradition from other science and engineering areas 
could serve the discipline well. 

Experimentation refers to matching with facts the suppositions, assumptions, 
speculations and beliefs that abound in software construction. Software construction 
is supported by and uses a host of ideas: we apply techniques that we trust to output 
a given result; we believe that so many people will be able to complete project; we 
expect development time to be shorter using a given tool; we assume that the quality 
of the final product will be better if we use a particular development process, etc. 
But are we sure that our beliefs are true? Which of the claims made by the software 
development community are valid? Under what circumstances are they valid? 
Unfortunately, there is almost no certitude about the ideas on which SE is founded. 

Software engineering has reached a stage that is more resemblant of quackery than 
engineering; a situation in which one research paper after another extols the virtues 
of a particular procedure, style, technique or set of rules for taming the software 
monster and leading to the promised land; a situation in which anecdotes form the 
bulk of the information available on how well a particular scheme works, especially 
in comparison with competing models; a situation where opinions are often strongly 
held, vigorously advocated, and more prevalent than real objective data. 

At present, valid ideas are distinguished from false beliefs in SE by applying the test 
of time. The certainty of an idea is judged by whether or not people use the idea. If 
lots of people use the idea, it seems to be certain. If few people use the idea, it is 
assumed to be false and will be ravaged by time. This modus operandi is more 
reminiscent of disciplines like fashion than engineering. But, even supposing we 
accept this natural selection of ideas, what happens with development projects that 
use ideas that are later believed to be false? How can we decide whether or not to 
use an idea? How long do we have to wait before we can be sure that an idea 
works? And, more importantly, even if the idea is commonly used, are the project 
settings in which it is usually employed similar to the project where we want to use 
it? 



4  Introduction 

  

Confronted by a confusing array of options for producing software, software 
engineers need proof that a particular approach or technique is really better than 
another. They need to know the clear-cut benefits of one approach versus another. 
They need reliable evidence that one approach clearly works better than another. 
This need to work with facts rather than assumptions is a property of any 
engineering discipline.  

Very few ideas in SE are matched with empirical data. Ideas, whose truthfulness has 
not been tested against reality, are continually assumed as evident. For example, the 
famous software crisis (Naur, 1969) was and still is more a question of a subjective 
customer and/or developer impression than a confirmed phenomenon. In fact, we 
can find some claims that there is no software crisis (see comments about Turski and 
Hoare opinions given in (Maibaum, 1997)). Another example is the idea that 
traditional engineering disciplines behave much better than SE (Pezeé, 1997). For 
example, has any empirical study been performed to compare the failure rate of 
products obtained by SE and those produced by other engineering disciplines? Table 
1.1 presents the percentage of faults in the car industry shown in a study carried out 
by Lex Vehicle Leasing, one of the major world vehicle hire and leasing companies, 
on a universe of 73,700 cars in England. This fault rate could call the reliability of 
the engineering used in this industry into question; however, this is not the case. 
Therefore, if we are really to speak of a software crisis, we need studies to show that 
SE is less reliable than other branches of engineering, that is, the number of faults in 
SE should be checked against the number of faults in other branches of engineering. 

Other examples of computer science theories that have not been tested are 
functional programming, object-oriented programming or formal methods. They are 
thought to improve programmer productivity, program quality or both. It is 
surprising that none of these obviously important claims have ever been tested 
systematically, even though they are all 30 years old and a lot of effort has gone into 
developing them (Tichy, 1998). That’s why, after such a long time, it should not be 
surprising to find recent publications (Hatton, 1998), reporting, for example, strong 
evidence about the negative effects of C++ regarding programmer productivity or 
software quality. Another paradigmatic example of supposed beliefs in SE is the 
case of the maturity levels of an organisation on which process assessment and 
improvement methods are based (Fenton, 1994). These methods suppose that 
organisations at level n+1 normally produce better software than organisations at 
level n, but this ratio has not yet been empirically demonstrated. 

Although there are some exhaustive experimental studies in the computer science 
literature, this is not the general rule. The want of experimental rigour in SE has 
already been stressed by authors like Zelkowitz (1998) or Tichy (1993) (1995). 
These two authors base this affirmation on a study of the papers published in several 
software system-oriented journals. According to Zelkowitz (1998), over 30% of 
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papers had no experimental validation and only 10% of the papers that presented 
some experimentation followed a formal approach (equivalent to experimentation in 
other disciplines). Tichy’s study (1993) shows how: (1) only 8% of the papers 
published included a sizeable quantitative evaluation (at least two pages) of the 
proposed approaches; and (2) none of these evaluations were conducted formally, 
that is, by establishing a series of hypotheses and repeatable experiments. Within the 
field of computer science, this fact is particularly patent in the field of SE. A survey 
(Tichy, 1995) of 400 research articles in SE showed that of those that would require 
experimental validation, 40% had none, compared to 15% in other disciplines. 
Surveys such as Zelkowitz’s and Tichy’s tend to validate the conclusion that the SE 
community could do a better job in reporting its results, thus making it easier for 
industry to adopt the new research results.  

Table 1.1. Percentage of faults in the car industry 

Make Fault rate 
Rover 28.33 
Vauxhall 27.08 
Citroën 27.03 
Saab 24.84 
Ford 23.77 
Renault 19.93 
Volvo 19.4 
Peugeot 17.41 
Land Rover 17.03 
VW 16.79 
Jeep 15.83 
Mazda 11.78 
Toyota 10.82 
Audi 9.32 
Jaguar 9.25 
Nissan 9.16 
Fiat 8.88 
Honda 7.89 
Mercedes Benz 7.61 
BMW 7.11 

Moreover, this need for empirical testing in SE is raised nationally in countries like 
the USA, where a National Science Foundation workshop (NSF, 1998) brought 
together representatives of a broad segment of the US software community in 
October 1998 to discuss the report submitted by the President’s Information 
Technology Advisory Committee (PITAC, 1998) emphasising the importance of 
software for the nation. The workshop examined and elaborated PITAC 
recommendations for significant new research effort. Among the research strategies 
discussed, we find: “extract useful principles of software construction through 
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empirical investigation of successful projects and validate design principles 
developed in the research literature and elsewhere; advance our understanding of the 
SE process by experimenting with new approaches in application projects”. 

The above-mentioned precedents go towards corroborating what Ebert (1997) said 
concerning experimentation being one of the open questions in SE. He also claims 
in another publication titled “The Road to Maturity: Navigating Between Craft and 
Science” (1997a) the lack of conducting controlled experiments in SE is one of the 
reasons of SE immaturity. As Pfleeger (1999) put it, experimentation would lead us 
to “gain more understanding of what makes software good and how to make 
software well”. This knowledge of software development has a range of applications 
(Mohamed, 1993) (Pfleeger, 1995). For example, we would be able to decide 
between several methods/tools/techniques; look for quantitative relationships among 
variables (what relationship there is between the number of errors found in a 
program and the number of existing errors or how programmer experience affects 
the number of errors made with a given programming language); confirm certain 
theories (rules of thumb about module size to “assure” the quality of the software), 
etc. 

According to IEEE Standard 610.12 definition of SE the notion of software 
engineering, like other engineering disciplines, is to apply scientific knowledge to 
the development, operation and maintenance of software systems. Experimentation 
generally is an important part of such scientific knowledge. In “What Engineers 
Know and How They Know It” Vincenti (1990) states six categories of engineering 
knowledge, being one of them quantitative data, often the results of empirical 
observation (as well as tabulations of values of cunctions used in mathematical 
models). One of the hallmarks of software becoming an engineering discipline is to 
be able to lay aside perceptions, bias and market-speak to provide fair and impartial 
analysis and information. 

Moreover, we have to remember that the soundness of an idea is not absolute; that 
is, it depends on individual situations. Rombach (1992) claims that one of the 
misconceptions of SE is that “principles, techniques and tools are generally 
applicable; therefore, there is no need to investigate their limits in different project 
contexts”. It is doubtful whether intuition can help to predict when an idea will work 
and when it will not. 

1.2. WHY DON’T WE EXPERIMENT IN SE? 

It is interesting to look at the most commonly used excuses for not embarking upon 
experimentation in SE. Tichy (1998) presents some arguments traditionally used to 
reject the usefulness of experimentation in this area. Table 1.2 shows a summary of 
these arguments alongside a brief refutation.  
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Table 1.2. Summary of fallacies and rebuttals about computer science 
experimentation 

Fallacy Rebuttal 
Traditional scientific 
method isn’t applicable. 

To understand the information process, computer 
scientists must observe phenomena and formulate 
and test explanations. This is the scientific method. 

The current level of 
experimentation is good 
enough. 

Relative to other sciences, the data show that 
computer scientists validate a smaller percentage of 
their claims. 

Experiments cost too 
much. 

Meaningful experiments can fit into small budgets; 
expensive experiments can be worth more than their 
cost. 

Demonstrations will 
suffice. 

Demos can provide incentives to study a question 
further. Too often, however, these demos merely 
illustrate a potential. 

There’s too much noise in 
the way. 

Fortunately, techniques can be used to simplify 
variables and answer questions. 

Experimentation will slow 
progress. 

Increasing the ratio of papers with meaningful 
validation has a good chance of actually accelerating 
progress. 

Technology changes too 
fast. 

If a question becomes irrelevant quickly, it is too 
narrowly defined and not worth spending a lot of 
effort on. 

You will never get it 
published. 

Smaller steps are still worth publishing because they 
improve our understanding and raise new questions. 

Other difficulties that we have identified for SE experimentation include: 

• Software developers are not trained in the importance and meaning of the 
scientific method, which, as we will see in the next chapter, is based on 
checking ideas against reality, and think that this modus operandi is suited for 
the basic and natural sciences, such as physics and medicine, but does not 
work in engineering. As they are unfamiliar with the scientific method, 
software engineers do not understand the leading role played by 
experimentation in validating theories and converting them into facts. Perhaps 
some training concerning the scientific method in engineering, including 
production, would help software engineers to realise that the 
hypothesis/experimentation cycle used by other branches of engineering can be 
a big help for understanding software construction. 

• Software developers are unable to easily understand how to analyse the data of 
an experiment or how they were analysed by others because they are lacking 
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the (statistical) training. Not much training is actually needed, as any engineer 
or computer scientist is acquainted with the mathematics and statistics to 
understand this. It is more a case of neglect than of inability. And this neglect 
is probably the result of the need for this effort not being well understood. 

• The fact that there are no experimental design and analysis books for SE does 
not help either. This makes things harder to understand. Software engineers 
obviously prefer to read examples from their field in order to understand a 
concept. If the example concerns fertilisers, catalysts or drugs, the concept 
appears to be more difficult than it really is. This has been understood in other 
disciplines, and textbooks have been written that cut down on the theory and 
centre on practice. The appearance of similar books on experimentation in SE 
would, perhaps, encourage the inclusion of this subject in the studies of future 
developers. This book aims to explain the foundations of experimentation 
directed at software engineers and aims to play the same role of easing 
understanding as similar books do in other disciplines. 

• Empirical studies conducted to check the ideas of others are not very 
publishable. In other scientific and engineering communities, not all 
researchers are involved in proposing new ideas, the repetition of experiments 
performed by others (to check their validity), experimentation with the 
theoretical ideas proposed by others or data collection on real cases are all 
tasks that are just as meritorious as coming up with original ideas. Indeed, 
there are many disciplines that are subdivided into two groups, theoreticians 
and experimenters, where theoreticians have the job of creating theories and 
experimenters work on testing them. The case of medicine is a paradigmatic 
example of the fact that practitioners (not researchers) have an important role 
in corroborating ideas (already experimented in the laboratory) in the field. It 
is important to understand that all the new proposals tell us is: “Substance A 
eliminated bacterium B under laboratory conditions; this could be due to X, Y, 
Z. But we cannot assure that A always has this effect on B; or, worse still, A 
may have medium/long-term side-effects, which have not been studied”. SE is 
similar to medicine in this respect. The underlying theory regarding software 
construction is insufficient for us to be able to ascertain the causes of the 
effects of certain variables on others. So, the claims regarding innovative 
proposals will be similar to what is alleged by medical researchers, but will 
need large-scale corroboration. So, the publication of clinical studies by 
practitioners is just as important as laboratory experiments by researchers. 

• Another reason used is the immense number of variables that influence 
software development. It is true that research into a field is all the more 
complex, the greater the number of factors and variables that are involved in its 
phenomena. However, complexity should not lead us to neglect 
experimentation. If we were to be put off by complexity and did not use 
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experiments to try to combat and control it, we would never get a thorough 
understanding of software development or, alternatively, SE would never 
mature.  

• It is difficult to get global results in SE, such as, for example, determining the 
circumstances under which one technique should be selected instead of another 
or, alternatively, proving that alternative A is always better. However, it is 
possible to determine under what circumstances one option is better than 
another. This is still very useful information and can be used to reduce 
uncertainty and gain further knowledge. 

• Another important constraint on running experiments in SE is the effect of the 
human factor on software development; that is, SE is not a discipline whose 
result is independent of practitioners. So, the result of several people applying 
one and the same software artefact (technique, process, tool, etc.) will almost 
certainly yield different results. This amounts to a substantial obstacle to 
generalising the results yielded by empirical testing. Far from being considered 
as a barrier to experimentation, however, this question has to be addressed so 
as to minimise its impact on experiments. In the following chapter, we will go 
into this subject in more detail and will examine how to deal with this attribute 
throughout the book. 

• Yet another factor that influences this situation is the huge amount of money 
moved by the software market today. Companies are continuously developing 
new, increasingly complex and, ultimately, more expensive software systems. 
This should be a condition for applying the different approaches in a reliable 
manner. Paradoxically, however, the market is often used as a culture medium 
for performing these experiments, with the usual risks. And to top it all, no 
rigorous historical surveys are performed on what happens in the industry 
when a given method is applied, which would be useful at least in the long 
term. 

There are certainly a lot of reasons why the culture of experimentation has not 
germinated in SE. But the underlying reason is perhaps that much of the SE 
community is not conscious of this need, since if there were an understanding of the 
importance of debating facts and claims supported by data rather than suppositions 
and beliefs and the benefits that this would bring, minor difficulties would be 
overcome. These and other difficulties could be surmounted if customers were to 
demand experimental validation. Returning to the case of medicine, would any of 
us, as patients, accept that the medical community disposed of experimentation and 
tested new drugs on us just because someone said that they “could work”? 
Unquestionably, if we did not know that medical practices could be first tested in 
the laboratory and then on volunteers, we would accept the situation as another 
unfortunate thing that we had to put up with. But what would happen if we, the 
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patient community, found out that there was a possibility of some sort of testing, 
which, however, was not used by the medical community, because it was difficult, 
expensive and uninteresting, looked down upon, not publishable, etc.? 

There is no denying the fact that the Romans built bridges, despite not being 
acquainted with the experimental method. They used trial and error until the thing 
worked; and, thus, based on experience, learnt the tricks that had worked (without 
knowing why) and discarded actions that had failed. And it is clear that they were 
able to build increasingly more complex constructions as a result of the experience 
gathered. But is it licit for SE practitioners to follow the Roman method of trial and 
error and overlook five hundred years of scientific method? Einstein (Price, 1962) 
said that the development of science was based on two major accomplishments, one 
of which was the discovery (in the Renaissance) that causal relationships could be 
found by means of systematic experiments1. 

1.3. KINDS OF EMPIRICAL STUDIES 

Broadly speaking, we can identify two different approaches to running empirical 
investigations: quantitative and qualitative. Quantitative research aims to get a 
numerical (quantitative) relationship between several variables or alternatives under 
examination. For example, we would be able to determine how to improve 
programmer productivity using a new programming language by means of a 
quantitative investigation. The data collected in this sort of studies are always 
numerical values (programmer productivity in this case) to which mathematical 
methods can be applied to yield formal results. 

Other investigations aim to examine objects in their natural setting rather than 
looking for a quantitative or numerical relationship, attempting to make sense of, or 
interpret, a phenomenon in terms of explanations that people bring to them (Miles, 
1994). As Miles and Huberman said, “a main task (of qualitative research) is to 
explicate the ways people in particular settings come to understand, account for, 
take action, and otherwise manage their day-to-day situations”. Therefore, “the 
research role is to gain a holistic overview of the context under study: its logic, its 
arrangements, its explicit and implicit rules”. The data collected from these 
experiments are usually composed of text, graphics or even images, etc. Thus, for 
example, an inquiry to determine why productivity is higher with a new 
programming language and gather data on whether it appeals (and what) to 
programmers would be a qualitative study. This study would be concerned with 
things like the logic of programs and how similar they are to human reasoning. For 
example, this could explain to some extent the increase in productivity promoted by 
the language in question. In investigations of this kind, most analysis is done with 
words. The words can be assembled, subclustered, etc. They can be organised to 
permit the researcher to contrast, compare, analyse, and identify patterns. 
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Nevertheless, there is no formalised procedure for conducting this analysis and 
getting formal and completely objective conclusions from inquiries of this sort.  

Note that the concept of subjectivity and objectivity is not necessarily correlated to 
either of these types of investigation. We meet with both subjective quantitative 
studies (suppose, for example, a study in which the understanding of some 
requirements in a given formalism are to be assessed on a scale of 0 to 10) and 
objective quantitative inquiries (for example, an experiment to gather the number of 
errors detected after applying a testing technique). The same can be said of 
qualitative investigations, there are subjective qualitative inquiries (for example, a 
study to specify which modelling technique is preferred by several users and why) 
and objective qualitative studies (for example, a study that examines the diagram 
representing the module-call tree of a series of applications). 

Qualitative or quantitative studies are generally run depending on the reality under 
examination. It is the way in which the reality is described rather than the reality per 
se that is quantitative or qualitative. So, for example, both kinds of inquiries are 
applicable in what are known as the natural sciences (that is, sciences that are 
governed by the laws of nature; usually include physics, chemistry and biology) and 
social sciences (that usually include politics, antropoloty, economy and 
psychology). Thus, for example, we could run a qualitative inquiry in medicine to 
reflect the mood of patients taking a given tablet; as well as sociological studies that 
investigate the voting motivations of a given population. Nevertheless, it is true that 
quantitative studies are more common in the natural sciences. This is because, being 
more formalised, it is easier to gather numerical variables that can be used to 
measure possible relationships among variables more accurately. Very often the 
maturity of a discipline corresponds with the use of quantitative variables. In SE we 
tend to think that the most of the quantitative concepts we work with are inherently 
uncharacterizable. Vincenti’s book “What Engineers Know and How They Know 
It” (Vincenti, 1990) discusses the advance of aeronautical engineering betwen the 
world wars when they were able to “translate and amorphous, qualitative design 
problem into a quantitatively, specifiable problem susceptible of realistically 
attainable solutions” refering to “those qualities characteristics of an aircraft that 
gover the ease and precision with which a pilot is able to perform the task of 
controlling the vehicle”. In the case of SE, which, as we will see in the following 
chapter, has a weighty social component, we can run both quantitative and 
qualitative inquiries, as illustrated by the two examples on the new programming 
language above. Both sorts of studies can be applied to the same topics, even though 
they both address different questions. 

Quantitative investigations can get more justifiable and formal results than 
qualitative inquiries. Because they gather numerical variables, they are more useful 
for matching ideas or theories with reality. Thus, quantitative studies can be used to 
very reliably expand the body of knowledge of any discipline. This does not mean 



12  Introduction 

  

that qualitative studies are useless. Although these studies cannot be as easily 
formalised, they are necessary for comprehensively defining the full body of 
knowledge of any discipline. So, the two inquiries are to be considered as 
complementary rather than competitive (as Einstein pointed out “Not everything that 
counts can be counted; and not everything that can be counted counts”). So, 
qualitative inquiries could be used as a basis for establishing hypotheses that could 
then be quantitatively matched with reality. Similarly, when a discipline has a set of 
quantitatively matched ideas, qualitative procedures can be used to try to find the 
causes of or justify the above quantitative results. Readers interested in qualitative 
studies are referred to (Miles, 1994), whose authors review a range of existing 
qualitative approaches and propose a (pseudoformalised) procedure for analysing 
textual data gathered in these studies. 

1.4. AMPLITUDE OF EXPERIMENTAL STUDIES 

Remember that the purpose of the experimentation is to match ideas with reality. 
Well, this experimentation is performed at different levels by several groups within 
a community. This means that a range of groups within the community have 
different responsibilities with regard to the verification of knowledge. Let's take a 
look at what happens in other disciplines so as to get an idea of how the 
responsibility of verifying knowledge should be stratified in the SE community. 

The first link in the chain responsible for checking theories against facts are the 
researchers themselves. This level of experimentation is what are known as 
laboratory or in vitro experiments. Although it is the researchers who are 
responsible for checking their ideas, the community must press for this. The results 
of above-mentioned studies conducted by Tichy (1995) and Zelkowitz (1998) about 
SE publications, where many of the ideas are presented by researchers without any 
empirical testing whatsoever, are disheartening. 

Laboratory studies are characterised by having strictly controlled conditions, as 
opposed to the real world, where the conditions cannot be controlled at will. Thus, 
for example, when the pharmaceutical industry wants to investigate the influence of 
a given substance on a particular disease-causing bacterium, the laboratory 
experiments involve isolating the bacteria in test tubes and adding the substance in 
question. Obviously, the test tube is nothing like the human body (the real situation 
in which the bacteria in question live). However, this first round of laboratory 
experiments is absolutely necessary to answer the preliminary question “does 
substance S have any effect on bacteria B?” If the results of the laboratory 
experimentation are unpromising, the research will have to change direction. On the 
other hand, if the results confirm the idea that S influences B, then a different sort of 
experiment is conducted under increasingly less controlled and real-like conditions, 
moving from the test tube to the living organism, the rat, the monkey, up to the 
human being subject to scientific observation. Only if these investigations yield 
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satisfactory results is the medicine administered to the typical patient. Note that the 
strength of the evidence is related to the degree of control we have in the studies we 
perform. If we can carefully control all the variables that affect bacteria B, we can 
say that a change in bacteria B is due to substance S, but if we cannot control all the 
variables, all we can say is that that substance S probably or possibly causes the 
change. 

This transition of experiments from the laboratory (controlled conditions) to reality 
(uncontrolled conditions) takes place in all other fields of science or engineering. 
Experiments on new materials, for example, are not conducted on the constructed 
artefact. First, their properties are investigated in the laboratory, and if they 
satisfactorily pass this first round of experiments, tests can be carried out on the 
artefact in question and, finally, during routine use. So, although the first link in the 
chain of verifying ideas against reality is the researcher, laboratory experiments are 
not the whole story. If the SE community were structured similarly to other 
engineering communities, idea validation should be at least a three-stage process. 

First, as discussed above, the innovative idea should be checked by its inventor by 
means of laboratory experiments. For SE, a laboratory experiment is a (or part of a) 
development project not subjected to market pressures, in which the techniques 
used, the process employed, the background of the developer, etc., can be 
controlled. As discussed in the next chapter, the laboratory experiment must be able 
to be replicated in other laboratories for the new knowledge to be considered valid. 
So, this first level of experimentation is formed not only by the experiments of the 
original researcher but also by the experiments replicated by other researchers that 
corroborate the results. 

The second level of experimentation should be carried out on real projects, whose 
developers are prepared to run risks for the purpose of learning about the latest 
technological innovations. In other areas of SE, such teams are known as early 
adopters and the projects, as case studies. The limits of the innovative proposal can 
be better studied by means of these experimental projects or in vivo experiments. In 
other branches of engineering, it is very common to find articles reporting the 
results of one or several experimental projects, informing the community about 
when the theory tested at the laboratory level did and did not work in the real world. 
In this respect, Geoffrey Moore (1991) asserts that, as adopters of a new technology, 
this kind of practitioners are visionaries. They are eager to change the existing 
process, willing to deal with faults and failures and, in general, are focused on 
learning about how a new technology works. They are revolutionaries willing to 
take big risks, and they feel comfortable replacing their old tools and practices with 
new ones. 

Only when a new idea has satisfactorily passed through these two levels of 
experimentation can we proceed to its use in genuine real-world projects (by 



14  Introduction 

  

pragmatic practitioners as opposed to the visionary practitioners mentioned in the 
previous level). Only then will the users of the innovation know the risks they run in 
using it and what the best conditions for its use are. However, even at the start of 
routine use of an innovation, the community is responsible for collecting data on its 
performance, that is, observing the development projects in which the innovation is 
applied. By gathering these historical data, the consequences of its use will be 
perfectly determined in a few years' time and, hence, the application of a particular 
idea in given circumstances will have foreseeable results. A good example of such 
data collection occurs in medical science by means of what are known as clinical 
trials. During these trials, practitioners, in this case physicians (note not the 
researchers), collect data about their patients to gather evidence about how a new 
medicine behaves in the uncontrolled reality of a standard patient. Again, this type 
of studies are made known to the community through publications.  

Note that a fundamental difference between this and the above levels is that 
researchers merely observe reality in the latter case, whereas they somehow 
“modify” this reality in the above cases, subjecting it to changes to evaluate their 
effect.  

So, three types of practitioners are involved in testing an idea in other scientific or 
engineering disciplines: 

− Researchers perform laboratory experiments to check their proposals under 
controlled conditions. Researchers publish their original proposal and the results 
of their experiments that identify the conditions of application or use of the 
proposal and the improvements that can be obtained. At this same level, other 
researchers replicate the original experiments and publish the results of the 
replications so that the community knows whether they were satisfactory and a 
given theory can be considered to work in the laboratory at least. 

− Innovative developers venture to use the latest innovations according to the 
guidelines set out by the laboratory experiments. These innovative practitioners 
publish their experimental projects, establishing more accurately when the 
researchers’ proposal worked and when it did not, and what improvements were 
observed. The limits and boundaries of the proposal can be defined by 
accumulating real cases.  

− Routine developers use the new proposals at little risk, knowing what 
improvements they can expect from their use (as the improvements are 
supported by experimental studies and not by mere opinions). Some of these 
developers collect data from their projects and publish the behaviour of the new 
proposals in a host of different circumstances. Thanks to the evidence gathered, 
the researchers’ original proposal is accepted by the community after a few years 
and is considered to be an established fact rather than a mere speculation. 
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Additionally, along the road from speculation to fact, when and how the original 
idea is to be used will have been established. Theoretical advances in the 
discipline will be needed to establish why the new idea works. 

The adaptation of this idea to SE is illustrated in Figure 1.1. 
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Figure 1.1. The SE community structured similarly to other engineering communities 

The software community obviously does not take the benefits (in terms of reduced 
risks and increased useful investment) of empirically testing suppositions at any of 
the above levels seriously. As an illustration of how things are done in software 
projects, consider our usual manner of incorporating innovations transferred to 
another branch of engineering. Suppose a materials researcher went to the president 
of an aircraft company with a new, revolutionary metal alloy perfect for 
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manufacturing lightweight airliners and insisted that the metal be put on the 
production line the next day. What do you think would happen? The researcher 
would be taken away in a straitjacket for such an outrageous recommendation. The 
company, as is usual practice in engineering, would want to experiment with the 
metal first, testing it on a small scale, then gradually extending its use, if the 
experiments proved successful. Immediate adoption would be out of question. 

The three levels of experimentation we are discussing have also been called 
laboratory experiments, quasi-experiments and surveys, respectively. They are 
applicable in the above-mentioned order to contrast an idea in what are known as 
the applied sciences (physics, engineering, chemistry, etc.). However, they can also 
be applied separately to run other kinds of studies, such as, for example, surveys to 
evaluate the mean development productivity of an organisation or to analyse the 
mean surplus cost in software projects run by the above organisation. Ideally, the 
more homogeneous the elements examined in the surveys are, the better the results 
obtained will be. So, for example, the greater the similarity between the projects 
carried out at the above organisation, the more representative the mean productivity 
obtained for a new project will be. However, if the projects assessed at the above 
organisation refer to different domains, different development approaches, etc., the 
mean productivity obtained is unlikely to be very representative for a new project to 
be undertaken. On the other hand, this homogeneity which, as we have said, is good 
within each organisation, makes it more difficult to extrapolate the results to other 
organisations, for example. 

Note that in that surveys many of the variables that influence projects are not 
controlled. But, as a lot of data are collected in these cases, the effects of this 
variables are theoretically equally divided. Finally, let’s say that this surveys do not 
necessarily have to be collected contemporarily. It is also possible to analyse 
historical data, that is, data collected over time.  

In other areas, like the social sciences, surveys are very common practice, for 
example, for analysing voting intentions or running market research. As specified 
by Judd (1991), however, laboratory experiments are not always appropriate for 
running experiments in this sort of sciences, where there are variables, like race or 
sex, that are constant or where long-term effects (“important phenomena in social 
relations develop only ever weeks, months or years”) have to be taken into account. 
This involves the use of less controlled settings, like quasi experiments. As far as SE 
is concerned, despite its weighty social component (which is examined in detail in 
the next chapter), these three levels are still applicable, although the necessary 
precautions have to be taken to minimise the impact of the variation between 
practitioners, as discussed throughout the book. 

These three levels of experimentation can be applied both to qualitative and 
quantitative investigations in theory. However, laboratory experiments are usually 
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typified as quantitative studies in practice, as they are based on measuring the 
changes caused by different variables. During these investigations, quantitative data 
are collected, to which mathematical (particularly statistical) methods can be applied 
to get formal results. In this book, we will mainly focus on the process of 
experimentation for quantitative laboratory experiments, as they are, on the one 
hand, the first link in the experimental chain, and, on the other, being quantitative, 
can yield justifiable results that can be used to expand the body of knowledge of our 
disciplines. Readers interested in the other levels can consult (Judd, 1991) and 
(Campbell, 1963) for detailed information. 

1.5. GOALS OF THIS BOOK 

In view of the situation discussed above, we thought that it would be a good idea to 
write a book directed at software engineers about running experiments. This book 
could be an aid for improving the grounds given for the dearth of experimentation in 
SE. As mentioned above, we will actually focus on experimentation run in the 
laboratory aimed at quantifying the effect of one or more variables. Thus, we will 
apply the technique of Experimental Design and Analysis (founded over 80 years 
ago by Sir Ronald Fisher). The experiments supported by this technique aim to 
quantify the effect of qualitative variables (for example, use of the tool A or B) on a 
particular property that can be measured quantitatively (for example, the quality of 
code measured as the number of errors in the code). Other experiments, not 
addressed in this book, look for quantitative relationships between quantitative 
variables, for example, determining the relationship between the number of errors 
found and the number of errors there are in a program, for which other techniques, 
like correlation, are used. These are not addressed as they are better documented in 
the literature than the others have traditionally been.  

Firstly, we have assumed that readers do not necessarily have such an in-depth 
knowledge of mathematics as called for by the traditional books on experimental 
design. Hence, we will focus on the conceptual essence of experiments, specifying 
the mathematical calculations to be made in a clear and simple manner, often 
skipping the mathematical and formal reasoning that justifies the use of certain 
statistical or mathematical expressions. For readers interested in this subject, we will 
include references which they can consult for this mathematical reasoning. 

Secondly, the book is practically oriented, for which reason the least amount of 
theory required to run experiments has been included. This is not, therefore, a 
theoretical book on experimental design and data analysis. There are many books of 
this sort, written by reputed mathematicians and statisticians on the market. Readers 
in search of thorough theoretical knowledge of experimental design and data 
analysis should consult specialised books that address these issues generally and do 
not focus on a particular discipline. 
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Thirdly, the book is totally directed at SE. This means that all the examples used to 
explain how to run experiments are considered in a software setting. This feature 
should make it easier for software engineers to learn the basic notions on how to run 
experiments. Additionally, the situations encountered in the examples can be 
expected to be familiar to readers and easily assimilated to their situations, and this 
means that the concepts learnt can be applied almost directly. When software 
engineers look to learn how to run experiments from the books there are on this 
issue, the examples they find are taken from biology, medicine, agriculture, 
chemistry, etc., but not from software. These examples using specialised 
terminology from other fields are more difficult for software engineers to 
understand. 

Fourthly, this book presents, whenever possible, real examples of experiments run 
in the SE setting. Thus, the book supplies readers with data on the state of the 
practice in SE experimentation. The results of the experiments discussed here (most 
of which are taken from the literature) can help readers to ascertain what empirical 
data there are on certain SE theories. 

1.6. WHO DOES THIS BOOK TARGET? 

As it is conceived, this book can be used by both researchers and software 
developers who are new to the experimental process. So, it is important to 
emphasise that this is a book directed primarily at novices to the field of 
experimentation. The first group will be able to use the content of the book to 
formally test the features of new artefacts for software development generated as a 
result of their research. In this manner, they will be able to rigorously examine the 
behaviour of their theories in a variety of situations and thus define the best 
conditions of applicability. This will enable them to demonstrate what benefits their 
new theories offer, something for which the software industry has been crying out 
for some time. 

On the other hand, many software development organisations find that they have to 
choose between a series of development artefacts; however, they do not have the 
quantitative data to determine what benefits each one offers. The content of this 
book can help decision-makers to put together experiments that output a data set on 
the basis of which to determine which artefact to use. Software developers can also 
use the content of this book to analyse the impact of innovations on their 
development and thus determine whether or not the above novelties should be taken 
up by their organisations. 

Developers can also use the content of this book to control software production 
similarly to product production in other engineering disciplines. In this case, the 
developer does not run laboratory experiments but has to collect data during 
development/production. These data can be an aid for better understanding the 
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factors that affect the problem and thus for better controlling development. Part III 
of the book, which discusses data analysis, is a useful aid for developers in 
performing this task. 

So, after reading this book, readers can be expected to have understood the need and 
importance of experimentation in SE; to be able to assess whether they need to run 
experiments; if they opt to run experiments, benefit from recommendations on how 
to carry the experiments out. If readers decide to go further into the subject of 
experimental design and data analysis, this book will have been useful as an 
introduction and, above all, for situating the content of the other books they decide 
to study within the experimentation process. 

1.7. OBJECTIVES TO BE ACHIEVED BY THE READER OF THIS BOOK 

Readers who read this book from cover to cover are expected to achieve a variety of 
objectives. Firstly, they should apprehend the need and importance of 
experimentation in the software community, understanding how software 
development can benefit from experimentation. Secondly, they should understand 
when to experiment, that is, readers should be able to determine when it is useful to 
run experiments and decide whether they are warranted by the situation. Thirdly, if 
they have to run experiments, the book will help readers as to how to do this, that is, 
readers will identify what activities they have to perform to run experiments, how 
they should be focused, how the data obtained should be interpreted, etc. 

This is a beginners’ book, in which, as mentioned above, we seek to lay the 
foundations of experimentation in SE and provide a guide for performing 
experiments in SE. Therefore, our objective is to provide a knowledge base for 
researchers and developers who want to experiment and empirically validate their 
ideas. It is important to note that this is not a pure statistics book, nor does it provide 
full details on experimental design, which is what the traditional books concerning 
these fields (which are referenced throughout this book) are for. The idea is that 
researchers and developers who are novices with regard to experimentation can 
consult this book to gain an understanding of the basic concepts of experimental 
design and analysis in SE. If, having understood these ideas, readers need to resort 
to more detailed information, they can consult books specialised in particular 
subjects (some of which are referenced in this book).  

1.8. ORGANISATION OF THE BOOK 

The book is composed of four parts. Part I: Introduction to Experimentation deals 
with general issues concerning the experimentation process, including its usefulness 
for the process of acquiring knowledge and describing how to undertake 
experiments. Part II: Designing Experiments details the concepts related to the first 
part of the experimental process, that is, the development of a complete plan that 
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will specify how to run the experiments to be carried out. For this purpose, this part 
describes the terminology used in experimental design, and the concepts to be 
considered to define this plan. Part III: Analysing Experimental Data describes how 
to interpret the data gathered from the experiments. This is the part that addresses 
the mathematical and statistical concepts to be applied to interpret the above results. 
However, as specified previously, these concepts are explained in simple terms, and 
more importance is attached to how they are to be interpreted to draw conclusions 
from the experiments than to their mathematical justification and formalisation. 
Finally, Part IV: Conclusions presents some general recommendations on SE 
experimentation and gives a guide for documenting experiments. 

Below, we briefly describe the content of the chapters in each of the three parts. Part 
I is composed of three chapters. Chapter 1: Introduction, which, as we have just 
seen, describes the different kinds of empirical inquiries that can be performed, 
delimits the sort of empirical studies examined in this book. This chapter also 
describes the motivation of the book and its organisation. Chapter 2: Why 
Experiment? The Role of Experimentation in Scientific and Industrial Research 
describes the relationship between experimentation generally (not only the 
laboratory experiments on which the book focuses) and the formation of knowledge 
in any discipline. The objective is to underline the fundamental role played by 
experimentation in maturing any field. Chapter 3: How to Experiment focuses on the 
generic process to be followed to run an experiment. In short, this chapter describes 
the strategy for planning experiments, which, as we shall see, is based on successive 
approaches or iterations, and on the phases to be addressed in each of the 
approaches. 

As already mentioned, Parts II and III focus on the most important phases of 
experimentation, Experimental Design and Experimental Data Analysis, 
respectively.  

Part II starts with Chapter 4: Basic Notions of Experimental Design. This chapter 
describes the basic concepts that are used in experimental design, including 
experimental unit, factors, response variables, etc., and discusses their application in 
SE experiments. Depending on the conditions of each experiment, it will follow 
what is called a particular kind of experimental design. Chapter 5: Experimental 
Design describes the different types of designs and discusses real experiments run 
according to the above designs. The different experimental designs are described 
focusing on the questions that experimenters may raise when planning. 

Part III describes how to analyse the quantitative data collected from experiments. 
The first chapter of this part, Chapter 6: Basic Notions of Data Analysis presents 
some brief statistical notions for SE experimenters to get an idea of how the results 
yielded by the experiments are analysed. The following chapters are focused on 
possible questions raised by experiments and how to analyse the data to answer the 
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questions posed in Chapter 5 on the different kinds of designs. In these chapters, 
statistics takes second place, as it is subordinated to use within the experimental 
process. However, the statistical notions presented in Chapter 6 are necessary so that 
the terminology used in the remainder of Part III does not scare off readers and they 
can understand the underlying concepts. As we will see, there are different 
techniques of analysis depending on the design of the experiment and the 
characteristics of the data collected. Those techniques can be classified as 
parametric and non-parametric methods. Parametric methods are studied in Chapters 
7 to 13 depending on the number of factors under consideration. Non-parametric 
methods are described in Chapter 14: Non-Parametric Analysis Methods. Chapter 
15: How Many Times Should an Experiment Be Replicated discusses how to find 
out how many times we should replicate our experiments. Actually, this is a design 
question, but the concepts to be used for this task are statistical concepts that are 
explained during Part III of this book. This explains why we have included this 
chapter at the end of this part. 

We conclude with Part IV and Chapter 16: Some Recommendations on 
Experimenting offering a series of recommendations and suggestions on performing 
and reporting experiments in SE. 

These four parts are supplemented by three annexes. Annex 1: Some Software 
Project Variables describes a set of variables that can affect software development  
so that novice readers interested in running SE experiments can examine whether or 
not they are of use in their individual experiments. Annex II: Some Useful Latin 
Squares and their use in Building Greco-Latin and Hyper-Greco-Latin squares 
details a particular sort of experimental design, known as Latin squares, and their 
origin, which is far removed from the field of experimental design and analysis. 
Finally, Annex III: Statistical Distributions presents the tables of the statistical 
distributions that are used in Part III of the book in the process of analysing 
experiments. 

 

NOTES 

1 This is taken from a letter (cited in Price’s book “Science since Babylon”, published by Yale University 
Press in 1962) sent by Einstein to Switzer, which read as follows: “The development of Western science 
is based on two great accomplishments: the invention of the formal system of logic by the Greek 
philosophers and the discovery that causal relationships can be discovered by means of systematic 
experiments”. 



  

2 WHY EXPERIMENT? 
THE ROLE OF EXPERIMENTATION 

IN SCIENTIFIC AND TECHNOLOGICAL  
RESEARCH  

2.1. INTRODUCTION 

Chapter 1 briefly described some ideas about the need for experimentation in 
SE. This chapter discusses in more detail this question. In particular, section 2.2. 
analyses what use the process of experimentation is to any scientific and 
engineering discipline, that is, analyses how scientific experimentation 
contributes to the development of a science or branch of engineering. We will 
see how these ideas are also applicable to a scientific discipline to be used for 
software development.  

Software development has, however, some important characteristics concerning 
experimentation. These characteristics are mainly based on the importance of 
the human factor in software development and, therefore, on the experiments to 
be run in SE. Although several forms of dealing with this characteristic will be 
examined throughout the book, this issue and its possible implications for SE 
experimentation are discussed in detail in section 2.3. 

In sections 2.4 and 2.5 we will take a closer look at the process of 
experimentation in any discipline and will study how this process fits the 
scientific method generally. Finally, in section 2.6, we will discuss what sort of 
results we can expect from running experiments depending on the kind of 
knowledge available at the time about the discipline in question, and we will 
specify these ideas for the current maturity status of SE.  

2.2. RESEARCH AND EXPERIMENTATION 

Research is an activity performed, voluntarily and consciously, by humankind in 
search of indisputable knowledge about a particular question, that is, to bring to 
light a parcel of knowledge that was unknown. However, a researcher’s goal is 
not always merely to broaden knowledge. Often researchers seek to gather 
certain knowledge to meet a particular practical end of technological, social or 
economic interest. In “The Nature of Engineering” Rogers (1983) describes the 
aims of technological research: “The essence of technological investigation is 
that they are directed towards serving the process of designing and 
manufacturing or constructing particular things whose purpose has been clearly 
defined. We may wish to design a bridge that uses less material, build a dam that 
is safer, improve the efficiency if a power station, travel faster on the railways, 
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and so on. A technological investigation is, in this sense, more prescribed than a 
scientific investigation. It is also more limited, in that it may end when it has led 
to an adequate solution of a technical problem”. 

Anyone working in scientific and technical research accepts, as a working 
hypothesis, that the world is a cosmos not a chaos, that is, there are natural laws 
that can be comprehended and thought out. In the case of SE, researchers can be 
said to assume that precepts that describe and prescribe the optimum means of 
building software can be discovered and established. As Pfleeger (1999) said, 
the basis of all empirical software engineering is “if we look long enough and 
hard enough, we will find rational rules that show us the best ways to build the 
best software”. 

For a body of knowledge to be considered scientific, its truth and validity must 
be proven. A particular item of knowledge is considered to be scientifically 
valid if it has been checked against reality. Scientific progress is founded on the 
study and settlement of discrepancies between knowledge and reality. Scientific 
research is the antithesis of opinion. Ideally, researchers do not opine, they 
explain objective results. Their studies are not based on subjective factors, like 
emotions, opinions or tastes. Scientific investigations are objective studies, 
based on observations of or experimentation with the real world and its 
measurable changes. 

It can be said that there are various levels of knowledge in science (Latour, 
1986): facts given as founded and accepted by all, undisputed statements, 
disputed statements and conjectures or speculations; that is, postulates range 
from enunciations bordering on factualness to the most speculative assertion. 
The ranking of an enunciation depends on the change in its factuality status. The 
path from subjectivity to objectivity paved by experimental verification or 
comparison with reality determine these changes. Unfortunately, we have to 
admit that ideas are not checked against reality in the field of SE as often as 
would be necessary to assure the validity of the models, processes, methods and 
techniques that are constantly being proposed and used in software construction. 
We are still working in the field of subjectivity, opinion and speculation today 
or, at best, in the realm of disputed statements. 

Traditionally, scientific research was defined as investigation in search of 
knowledge about the physical universe, as opposed to philosophical, historical 
and literary inquiry. Today, the scientific method is pervading all disciplines. In 
the beginning, scientific research was rooted in the observation of nature -the 
world and the universe- without modifying anything about nature. Now, most 
scientific research is based on experimentation, that is, on the observation of 
phenomena provoked for research purposes (by modifying reality) and on the 
measurement of the variables involved in the phenomena. The old view taken of 
the scientific method applicable only to natural science (physics, chemistry, 
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biology) is now obsolete. So, we can find experiments that compare conjectures 
against reality in disciplines as far removed from the natural sciences as 
sociology and linguistics. For example, the writings of Whorf (1962) and 
Lenneberg (1953) stress the need to objectify the hypotheses on which 
linguistics is based using empirical tests. One of these empirical tests (these 
studies contributed to what Whorf termed the principle of linguistic relativity, 
according to which there is a correlation between the linguistic structure and 
non-linguistic behaviour) was run by Brown and Lenneberg (1954). These 
authors showed that the differences in the ability to remember and recognise 
colours was associated with the availability of specific names in a given 
language. Today, individual branches of science differ with respect to the use to 
which they put the knowledge obtained (basic pure research, basic oriented 
research, applied research and experimental development) but not with regard to 
the method applied to gather the above knowledge (OECD, 1970). 

Founding engineering disciplines on scientific knowledge (that is, knowledge 
that has been subjected to experimentation to check its factuality) is a means of 
guaranteeing the artefacts built. The major advantage of scientific knowledge is 
that it is predictive. The physical law of speed (a paradigmatic example of a 
theoretical statement confirmed by facts) can be applied to predict the distance 
travelled by an object in movement within a particular space of time. Laws on 
materials resistance can be used by engineers to predict how a particular 
material will behave if it is used to build a bridge (provided the length of the 
bridge, the weight it is to bear and a series of other conditions are known). In 
other words, the body of proven knowledge within an engineering discipline can 
be used to predict the behaviour of the artefacts built: how resistant a dam will 
be, whether or not a new plane will fly, whether a building will stay upright, etc. 

Obviously, the knowledge underlying engineered constructions has its 
limitations. But, usually, the failure of an engineered product to behave as 
predicted by the knowledge used in the construction process can be put down to 
two things: negligence on the part of developers (the knowledge was poorly 
applied, whether mistakenly or deliberately) or the knowledge failed. 
Knowledge usually fails as a result of special conditions: either the artefact was 
an innovation (a longer bridge, a higher building, etc.) or exceptional 
circumstances arose (stronger winds than usual in the place in question, an 
atypical landslide, etc.). 

It is quite clear that the results of software construction cannot be predicted by 
the body of SE knowledge. If technique T is used, will it take more or less time 
to complete the project? If more people are brought into the team, will a system 
be more or less reliable? Etc. No relationship can be said to be known in SE, not 
even between certain project variables. Is SE so different from other engineering 
disciplines that certainty about the effects of a series of changes on software 
production is unattainable?  
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2.3. THE SOCIAL ASPECT IN SOFTWARE ENGINEERING 

If we were to overlook the human factor in software development, the last 
question in section 2.2 could be answered affirmatively. In other words, other 
disciplines deal with the laws of natural science that are independent of who it is 
that manipulates them. This means that the laws of physics do not differ if they 
are used by a novice or by an expert, and the same goes for a chemical reaction. 
Natural processes differ from social processes, which are the product of human 
intention or consciousness. In this sense, SE can be considered as a social 
process in that the artefacts (methods/tools/paradigms) to be used are affected by 
the experience, knowledge and capability of the user. Thus, an important 
difference between SE and other engineering disciplines is the importance of the 
human element. Moreover, we find that SE takes place in a social context and, 
as such, is influenced by relationships among people (the project team, the 
managers, the users, etc.) and the social context (corporate culture, 
organisational procedures, etc.). 

To acknowledge the social factor in software development prevent us from 
falling into the error of directly apply physical determinism to human behaviour. 
The direct application of the causal-deterministic model of classical physics to 
social phenomena means to accept that social facts (psychological, sociological) 
are completely determined by the preceding facts. This vision excludes 
explanations referring evolution, option and responsibility in human matters. As 
the social sciences have long acknowledge (Alston, 1996) working with human 
beings makes experiments more complex than natural sciences. 

These characteristics are often used by software engineers as an excuse for not 
experimenting. However, not experimenting leads to the above-mentioned 
situation in which SE artefacts are used without any certainty as to their results. 
Far from being used as an excuse for not empirically corroborating the ideas 
used in SE, SE’s special situation, resembling what befalls the social sciences, 
has to be exploited to gain a better understanding of these properties and assure 
that the above characteristics are taken into account when running experiments 
and generalising their results. Throughout the book, we will see how it is 
possible to employ a range of strategies (such as block design, randomisation, 
different levels of experimentation -discussed in Chapter 1- or other 
recommendations mentioned in Chapter 5) to deal with these characteristics and 
minimise their impact. 

Furthermore, defining scientific theories can take a long time in any discipline, 
during which experiments are repeated, manipulating different parameters until 
the theory can be supported or refuted. However, technology changes rapidly in 
SE, and it can be difficult to run this sort of studies. Again, this cannot be 
allowed to stand in the way of experimentation. Instead, Pfleeger suggests the 
application of an iterative approach to deal with this problem, similar to the one 
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used in the social sciences, and suggests the following example (Pfleeger, 1999). 
“An educator proposes a new reading technique and tries it on a group of school 
children. Based on the result of the initial study, the technique is improved 
somewhat, and a second, similar study is run.” As we will see in this chapter, 
this iterative procedure can be used in SE to run experiments.  

2.4. THE EXPERIMENTATION/LEARNING CYCLE 

Research is a process of directed learning. Learning progresses according to the 
iteration illustrated in Figure 2.1. 

The three reasoning modes for arriving at a hypothesis are deduction, induction 
and abduction. Deduction proves that something must be, induction shows that 
something is really operational and abduction is confined to suggesting that 
something could be. So, by means of a process of deduction, a preliminary 
hypothesis about a phenomenon leads to particular consequences, which can be 
compared against data taken from reality. When the consequences of the theory 
and the real data do not coincide, the discrepancy can lead, by means of a 
process of induction and abduction, to the hypothesis being modified. A second 
cycle of iteration then commences. The consequences of the modified 
hypothesis are deduced and again compared with the data, which can then lead 
to further modifications and a gain in knowledge. Data can be collected by 
different means: through scientific experimentation, by unearthing existing 
information in a library or through observation. 

This experimentation/learning cycle can be illustrated by means of a 
simplification of a SE learning experiment: 

∗ Hypothesis 1 and its consequences: A company that builds CASE tools 
believes (hypothesis) that one of its tools decreases design time. 

The researcher has a provisional hypothesis and infers its consequences, but 
has no data by means of which to verify or reject the hypothesis and, as far 
as he/she knows from conversations with other software engineers and 
examining the literature, no one has ever built such a tool. He/she therefore 
decides to perform a series of experiments. 
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Figure 2.1. Iterative learning process 

∗ Experimental design 1: He/she takes a group of developers employed by a 
regular customer who accedes and performs an experiment on a development 
project under selected conditions (problem type, software system type, team 
of developers, etc.). The project manager plans the project as usual (as if the 
design was to be performed without the CASE tool). Then the designers are 
given a one-week course, and the project is designed using the tool. The 
generic hypothesis H1 is adapted in this experiment in that the real design 
time should be shorter than the planned designed time. However, there could 
be alternative experimental designs, such as: perform experiments on the 
same project carried out by different teams, each team using a different 
CASE tool; or have the same team carry out several projects, using the tool 
for some and not for others, etc. 

Suppose that, as happens in practice, the result of the first experiment is 
frustrating. Design time is not improved, it is worsened by the tool in 
question. 

∗ Facts (Data 1): The design takes 50% longer than planned. Hypothesis 1 and 
Data 1 are irreconcilable on this point. The software engineer meditates the 
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problem, is somewhat sullen over supper, has a shower the next morning and 
starts to think as follows: 

∗ Induction and abduction: Perhaps the designers are so accustomed to 
designing the way they used to do that interaction with the tool slows them 
down rather than helping them. 

∗ Hypothesis 2 and its consequences: The training time cannot have been long 
enough. The design time would have improved with more training. 

∗ Experimental design 2: Some members of the original team of developers 
are given exhaustive training on tool use. After this period they undertake 
another project of similar characteristics. Additionally, another experiment is 
performed at the same time, where the other members of the group are not 
retrained. 

∗ Facts (Data 2): Design time was 10% lower in the first experiment (with the 
retrained members of the team) than the planned time. Design time was 25% 
longer than planned in the second experiment (with the non-retrained 
members of the team). 

The subsequent course of such a piece of research is easy to imagine: 
modification of the hypothesis at each stage, which leads to other 
experiments that shed more light on the available knowledge and, finally, 
after a series of ups and downs, celebration of success or admission of 
failure. 

It is usually more efficient to estimate the effect of several variables at the 
same time (for the sake of simplification, learning was the only variable in 
the above example). As shown in Figure 2.2, the experiment can be 
imagined as a mobile window through which some aspects of reality (the 
variables considered during the experimentation) can be observed as more or 
less distorted by background noise. 

As shown in Figure 2.2, the choice of experimental design (what aspects the 
experiment is to involve, what variables are to be taken into account, what data 
are to be observed in the experiment, etc.) depends on the applicable hypothesis 
and on the resource constraints placed on the experimenter, and, as we will see 
in the next chapter, is crucial for the success of any experiment. The design 
chosen must investigate the grey areas in our current knowledge of the problem 
whose clarification we consider to be an advance. 

Note that this approach to research does not assume that there is only one way 
of solving the problem. Faced with the same problem, two equally well qualified 
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researchers will generally start at different points, advance along different paths 
and may, even so, arrive at the same solution. What we are looking for is 
convergence rather than uniformity. 

A familiar example is the “20 questions” game, also known as "animal, 
vegetable or mineral". The objective of the game is to guess what the opposing 
player has in mind, asking no more than 20 questions, which are answered either 
yes or no. Suppose that player 2 has to guess the name of the Colombian writer 
Gabriel García Márquez. After having actually played the game with two 
different people, the results were as follows: 

 
 
Person A 

Question Answer 
1. Animal? Yes 
2. Rational? Yes 
3. Living? Yes 
4. Male? Yes 
5. Northern Hemisphere? Yes 
6. Footballer? No 
7. Member of the world of culture? Yes 
8. Writer? Yes 
9. Stephen King? No 
10. Goethe? No 
11. North American? No 
12. Camilo José Cela? Yes 

Person B 

Question Answer 
1. Man? Yes 
2. Living? Yes 
3. Northern Hemisphere? Yes 
4. American? No 
5. Politician? No 
6. Artist? Yes 
7. Writer? Yes 
8. Spanish-speaking? Yes 
9. Nobel laureate? Yes 
10. Camilo José Cela? Yes 

The game follows the iterative pattern shown in Figure 2.2. In this case, a new 
design is formulated in each cycle (choice of question). The suspicion held by 
the player at each point in the game leads to the choice of a question, the 
response to which, assumed to be honest, modifies his or her suspicion 
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(hypothesis), and so on. Players A and B took alternative routes, but arrived at 
the right question, as the data (responses) on which both were based were true. 

The qualities required to play this game well are knowledge of the subject, 
intelligence and strategy. With regard to the strategy, it is no secret that the best 
way to play is to put a question at each stage, which, if possible, divides the 
remaining objects into equally likely halves. Both players, A and B, used this 
strategy at least once. 

The strategy illustrated in this example plays the same role as methods of 
experimentation do in research. Note that the game can be played without any 
knowledge of strategy (it is possible to experiment without knowledge of 
appropriate methods), albeit not very well. However, there is no way you can 
play without knowledge of the subject (you cannot experiment without 
knowledge of the field). Note, nevertheless, that the best results are obtained by 
applying a sound knowledge of the subject combined with a good strategy. 

The conclusion can be extrapolated to the relationship between methods of 
research and experimentation. An investigation could be run by a researcher 
without knowledge of experimentation, but not by an experienced experimenter 
who has insufficient knowledge of the field. However, it is much better for the 
researcher to use methods of experimentation. Induction of the reality proper to 
complex systems is very difficult even if the scientific data contain no noise 
(that is, are subject to no disturbance caused by incomplete control of the 
experimental environment or owing to measurement errors). This is even harder 
if there are experimental errors. Under these circumstances, researchers can put 
their intelligence and knowledge of the subject to better use if they can use 
statistical tools to interpret the data collected in the experiments. 

The convergence towards the result will be quicker and more certain if they are 
supported by methods at the primary points of experimentation: experimental 
design and data analysis; that is: 

I. Efficient experimental design methods that are as unambiguous and 
unaffected as possible by experimental errors by means of which to get 
responses to their questions. 

II. Analysis of the data collected as a result of the experiments, which 
specifies what can be reasonably deduced from the valid hypothesis 
and produces new ideas for consideration. 
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Figure 2.2. Experimentation/learning cycle 

As we shall see, the more important of these two resources is experimental 
design. If the wrong experimental design is chosen, the resulting data contain 
little information. Hence, there will be few findings no matter how detailed and 
sophisticated the analysis is. On the other hand, if the right experimental design 
is chosen, researchers can get a lot of knowledge, and a complex analysis might 
not be necessary. Indeed, all the important findings are patent in many cases by 
merely examining the data, without the need for sophisticated or very complex 
analyses. This book aims to provide basic knowledge about methods by means 
of which to design experiments for SE and analyse the data yielded. These 
foundations of experimental design and data analysis are given in Parts II and III 
of this book, respectively. 

However, before moving on to discuss this knowledge, it is important for 
readers to grasp the role of experimentation and understand what sort of 
knowledge can be obtained from it. All these concepts are outlined in the 
remaining sections of this chapter. However, readers who would prefer to 
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directly learn how to run experiments can skip the remainder of this chapter and 
go straight to Chapter 3. 

2.5. SCIENTIFIC METHOD 

Although there are many methods of research, any investigation, ideally at least, 
has certain common characteristics with regard to the manner of attaining new 
knowledge. These common factors are the essence of the scientific method. The 
activities making up the backbone of any scientific research are: interaction with 
reality, intellectual speculation and checking the results of speculation against 
reality. As, in 1753 Diderot put it in his work On the Interpretation of Nature: 
“We have three important means (of interpreting nature): observation, reflection 
and experimentation. Observation gathers facts, reflection changes the facts and 
experiments checks the result of the combination”. These activities, which are 
described below, are not ordered strictly sequentially, they alternate; that is, 
researchers transit from one to another, returning time and again to each one. 

The first task of interacting with reality can be performed by means of two 
different activities: observation and experimentation. 

• Interaction by means of observation: Researchers merely perceive facts 
from the outside; that is, perceive things as they are in the outside world, 
and there is no interference by researchers with the world (except any 
provoked by observation itself). Researchers have no control over reality 
during observation, as this is in its natural state. 

• Interaction by means of experimentation: Researchers are not mere 
receivers, they enter into dialogue with the object under study. This 
dialogue involves subjecting the object to new conditions and observing 
the reactions. In this case, researchers interfere with the outside world and 
their observations are the result of such interference. Researchers have 
control over reality during experimentation, as the experiment is a situation 
provoked by the researchers, which they, therefore, control (to some 
degree at least). 

There is actually no clear dividing line between observation and 
experimentation, except for the fact that observation is passive and 
experimentation is active, and observation is uncontrolled and experiments 
controlled. So, observation and experimentation are two very closely related 
means for researchers to obtain experiences/facts/impressions from the outside 
world, which fire their reasoning. 

During the stage of speculation, researchers hypothesise about the perception of 
the outside world. The level of abstraction of these lucubrations can vary. It may 
be a mere description of a particular case; for example, when biologists 
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experiment in search of an answer to the question “what effects does compound 
X have on cells Y?” The final research result is a statement or description of 
what happened.  

However, the lucubrations can aim to get more general knowledge. The level of 
abstraction is higher in this case. Researchers do not stop at a description, they 
make an induction leading to the formulation of a general law that establishes 
unknown relationships. This is the case of the laws of pendulum motion, for 
example, discovered by Galileo after studying individual cases and varying the 
length of the thread, and the size and material of the pendulum. He did not 
merely describe what he observed, he discovered the relationships (length of the 
thread, amplitude of motion, weight of pendulum, …) that existed for what he 
observed to occur.  

With respect to SE, we are looking for relationships between the development 
variables by means of which to predict the implications for the process itself and 
the products output. This then is not a question of developing simple 
hypotheses, but, in the last analysis, of arriving at laws that co-ordinate software 
development and relate variables, such as, techniques with productivity or 
process with reliability, etc. These, of course, are not binary relationships but 
relationships that are as complex as need be to describe the real world of 
software development. 

In order to check the speculations, they have to be confronted with reality. 
Experimentation is again used to compare theoretical speculations and reality. 
This time the new conditions to which the objects are subjected are especially 
contrived to confirm or refute the lucubration; that is, experiments are designed 
to test whether the ideas are confirmed by events. This is where the different 
types of experimentation described in Chapter 1 and, particularly, the controlled 
or laboratory experiments on which we focus in this book come in. 

Strictly speaking, experiments cannot prove any theory, they can only fail to 
falsify it. Popper in 1935 introduced this idea of falsifiability rather than 
verifiability in his book “The Logic of Scientific Discovery” (Popper, 1959), 
which read: “But I shall certainly admit a system as empirical or scientific only 
if its capable of being tested by experience. These considerations suggest that 
not the verifiability but the falsifiability of a system is to be taken as a criterion 
of demarcation”. In other words, “… it must be possible for an empirical 
scientific system to be refuted by experience”. This leads scientific knowledge 
to be considered as a system not of true statements but of claims that are 
provisionally true as long as they are not contradicted. However, this does not 
stop the knowledge from being used and considered true, provided the 
precautions imposed by falsifiability are taken into account. Besides, 
falsification has a different role in technological research. As Rogers says in 
“The Nature of Engineering” (Rogers, 1983) “We have seen that in one sense 
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sciences progresses by virtue of discovering circumstances in which a hither to 
acceptable hypothesis is falsified, and that scientists actively pursue this 
situation. Because of the catastrophic consequences of engineering failures - 
whether it be human catastrophy for the customer or economic catastrophy for 
the firm - engineers and technologists must try to avoid falsification of their 
theories. Their aim is to undertake sufficient research on a laboratory scale to 
extend the theories so that cover the foreseeable changes in the variables called 
for by a new conception” 

It can safely be said that experimentation is the stage that lends research its 
scientific value, as the stages of interacting with reality and speculation occur in 
other intellectual disciplines far from being considered scientific; for instance, 
philosophy, theology or politics, etc. Note that, in Figure 2.1, these last two 
stages are located in the thought part, whereas checking against reality falls 
within the part referred to as the real world. 

However, it is not sufficient for researchers to ratify their ideas against reality. 
Before the above experiences can be considered facts, they must also provide 
the community with data by means of which other researchers can repeat the 
original experiments. The following section elaborates on the discussion of the 
critical role of replication in experimentation. 

2.6. WHY DO EXPERIMENTS NEED TO BE REPLICATED? 

A branch of human knowledge can be said to attain the status of science when 
the above knowledge is verifiable and, therefore, valid. In this respect, Popper 
says: “We do not take even our own observations quite seriously, or accept them 
as scientific observations, until we have repeated and tested them.” (Popper, 
1960). 

These ideas are supported by modern scientific ideology, which also calls for 
experimental results to be reproducible by an external agent. For example, 
Lewis et al. claim: “The use of precise, repeatable experiments is the hallmark 
of a mature scientific or engineering discipline” (Lewis, 1991).  

So, a science can be considered as such, when it is based on the scientific 
method; that is, each new item of knowledge is confirmed by means of fully 
defined experiments, such as can be repeated by other scientists who can then 
verify the results. This possibility of other scientists reproducing the results is 
extremely important, as it is what (provisionally) labels a new idea as true. 
Phrases of the style “unfounded assertion”, “unscientific experiments”, “not 
really proven” and “unreliable” discredit any contribution by a researcher that 
cannot be proven by other researchers. On the other hand, an idea confirmed by 
means of reproducible experimentation is usually qualified as “irrefutable 
evidence”. 
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Take the dispute over Freud’s psychodynamic theories for instance. They are 
criticised as being unscientific because they can be neither verified nor refuted 
empirically. Note that they have been checked against reality to some extent (the 
cases studied by Freud); the problem is, however, that these experiments cannot 
be generalised. Freud's theories were based on his interactions with reality, but 
these theories and experiments are not reproducible by other scientists and the 
new knowledge cannot be asserted as being valid. Indeed, Eysenk (Cohen, 
1996) raised a now famous objection when he said that the truth that there was 
in what Freud said was nothing new and what was new was not true (in obvious 
reference to the lack of empirical confirmation). Most therapists argue that 
psychoanalysis is more of an art than a science, precisely to shelter it from 
empirical criticism. 

Another famous case, this time in the field of physics, is what is known as cold 
fusion. In 1989, the physicists Pons and Fleischmann surprised the world by 
announcing at the University of Utah that they had finally discovered the means 
of cold fusing two atoms. For the rest of the community of physicists to take 
them seriously, Pons and Fleischmann had to publish their experimental design 
so that other physicists could repeat the experiment to validate the new findings 
and add them to the body of knowledge of physics. Upon reproduction, the 
community of physicists found that under the same circumstances (that is, 
replicating the experiment), cold fusion did not take place, thus the new 
knowledge was not valid. Indeed, the phenomenon of cold fusion is now defined 
as: “... the temporary name attached to anomalous phenomena that occur when 
hydrogen is absorbed by some metals and some oxides. However, these 
phenomena cannot at present be produced at will; the necessary experimental 
conditions are not yet known and, therefore, are not under experimental control. 
The research has been directed to prove unambiguously that more energy can 
sometimes be generated than the amount of energy put into a process, the origin 
of which is thought to be an unknown nuclear transformation" (Fox, 1997). 

Scientists and engineers consider repeatability as a critical test to be passed by 
any new knowledge. Failure in this respect invariably raises serious doubts 
about the validity of the results. Another example of new knowledge not being 
considered scientific because the experiment could not be repeated is the 
experiment on extrasensory perception performed by the biologist Rhine, who 
directed the department for the study of extrasensory perception at the 
University of Duke (USA) in the 30s (Cohen, 1996). The main problem in this 
case was failure to control the factors involved in the experiment. The Rhine 
method was very simple. He put the receiver subject in one room, while another 
person in another room took cards out a 25-card pack. Each card contained one 
of five geometric pictures; there were five cards of each type in the pack. The 
receiver was to guess which cards were being taken out of the pack. Rhine’s 
preliminary results were surprising, because the result was convincingly 
positive, and the receivers’ guesses were right on more than the five occasions 
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that would have been expected purely by chance. And, in a series of tests, one 
subject correctly guessed all the cards in a sequence of 25. Rhine's results could 
not be reproduced by other experimental psychologists, even at his laboratories. 
So, the scientific community considered that Rhine's discoveries were nothing of 
the kind and that an uncontrolled factor in his experiments had influenced the 
results. Sceptics criticised Rhine's results, believing that clues about the cards 
had deliberately or inadvertently been given to the receivers. Note that the 
subject studied by Rhine is still considered by science today as non-existent 
precisely because there is no experimental evidence; that is, the knowledge that 
Rhine sought to supply was not added to the patrimony of psychology, because 
it was not proven. Nevertheless, it worked on that occasion. 

There is another famous case in the field of biology (Latour, 1986). In 1962, 
Schibuzawa asserted that he had isolated thyrotropin-releasing factor (TRF) and 
even presented the amino acid composition of this hypothalamic humour. 
However, far from being acclaimed for having solved the TRF problem in only 
two years, his work was questioned. His papers were criticised, and it was said 
that his samples of TRF were active only in his laboratory and not in others. It is 
said that when he was invited to repeat his experiment at another laboratory, he 
did not turn up. Schibuzawa's assertions, which he had sought to present as 
confirmed facts, were doubted and disapproved. He wrote no more articles after 
1962, his claims to having solved the TRF problem faded away, and the 
substance that he asserted he had detected came to be considered as a 
subjectivity. Later, he also stopped researching. It is important to stress that, 
although Schibuzawa was unable to prove his assertions at the time, they were 
proven ten years later (except for the composition of the amino acid). Guillermin 
and Schally were awarded the Nobel Prize for the isolation of TRF. Note that 
this anecdote illustrates the scientific practice of rewarding the researcher who 
establishes a new fact rather than the one whose speculations incidentally 
coincide with reality. 

The replications described above are called external replications that are run by 
independent researchers in order to build confidence in the results of the 
experimentation. There is another sort of replication, termed internal replication, 
that is run within the experiment itself in order to raise the probability of 
correctly deducing results from the experiments. This sort of replication is 
discussed in more detail in Chapter 4.  

It is very difficult, if not impossible, to repeat identical experiments for software 
development projects. If we had a fixed team of developers, problem, 
development process and series of products, the development conditions would 
be far from being the same in the second and successive repetitions of the 
experiment, as the second time the team embarked on the same development 
project, it would be more experienced and less effort would be required. So, 
replicability (both internal and external) has to be based on similarity in SE; that 
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is, each experiment will consist of a similar problem, a similar process, a similar 
team, etc. 

Note, however, that this problem of similarity versus equality also occurs in 
other sciences and engineering fields, especially in disciplines in which, like SE, 
the phenomenon under study is very complex and, therefore, the number of 
parameters of the experimentation is high. For example, it is feasible to run the 
same two chemistry experiments under almost identical circumstances, in which 
certain substances are mixed to produce, for instance, a harder material than is 
usually used, since the amount of each substance, heat, time, etc., can be very 
accurately adjusted as they are all measurable parameters. Note, however, that 
this was not always the case. There was a time when the variables involved in 
the chemical reactions were unknown. 

However, it is unlikely that the experiments in disciplines like agriculture, 
biology or medicine will have parameters with the exact same value; that is, it is 
difficult to set values in agriculture because of the uncontrollable influence of 
the farmed land. However, replication may be practicable for experiments 
performed by the same experimenter, if the experiments are repeated on the 
same plots of land. 

In biology and medicine, as in SE, identical parameter values are out of the 
question. When a new substance is used in an animal or a person, it is not 
feasible to use the same animal in another experiment and alter, for example, the 
medication only, since the effects of the first application are unavoidable. The 
equality of values in this case must be obtained using another animal under 
similar conditions: same age, same lifestyle, similar feeding, etc. Note that no 
two identical animals are ever going to be found and, for us to speak of similar 
animals, we have to define which of the many characteristics of an animal or a 
person are considered basic. Evidently, this consideration will depend on the 
objective of the experiment. For one piece of research, the colour of the 
animals’ coat will have to be the same or similar, whereas this trait may be 
irrelevant for other experiments and, therefore, not be considered for identifying 
similar animals. 

SE is similar to medicine with regard to experimentation and replication: no two 
identical software projects are ever going to be found. Therefore, the basic 
characteristics of a project must be defined in order to speak of replication based 
on similarity. In SE, like medicine, there are a host of uncontrollable variables; 
however, this variability does not prevent experimentation in medicine being a 
pillar for its progress. Therefore, the intrinsic difficulties of software 
development are not an excuse for not experimenting. The poet Machado said 
“se hace el camino al andar” (the path is made by walking it). Similarly, the 
attempt to define software development project characteristics in order to be 
able to replicate experiments will make the path, discarding characteristics that 
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appeared to be basic and turned out not to be and adding new characteristics, 
walking along the experimentation/learning binomial discussed above. In 
medicine, however, although there are no two identical human beings, basic 
biological and biochemical processes do not differ very much from one person 
to another (although there are some systemic differences between adults and 
children and men and women). On the other hand, in software development 
there is a human factor in software development (the cognitive element of the 
way of thinking of each developer, as well as social element of relationships 
within the development team), which makes experimentation in SE more 
complex than in medicine. As discussed in section 2.3, SE is more resemblant of 
disciplines like cognitive psychology or other social sciences on this point, 
where experimentation plays an important role but generalisation is trickier. 

Again in SE, there may be circumstances in which it is out of the question to 
even speak of similarity, because it is impracticable to find individuals who have 
a characteristic of similar value or find two teams of developers that have a 
particular characteristic in common, etc. In these cases, there are special means 
of designing/organising experiments so as to minimise the impact of the 
uncontrolled variations. In this case, even though similar individuals or similar 
projects have not been found, the manner of designing the experiment means 
that conclusions can be drawn despite the differences. Moreover, experimental 
methods are powerful enough to detect when there are important variations that 
are not being taken into account. Experimenters can then study and opt, if 
possible, to eliminate such variations or for experimental designs that prevent 
them biasing the results. 

Finally, remember that the replication of an experiment may aim to repeat the 
experiment under conditions that are as similar as possible or, alternatively, may 
be run by varying one or more parameters of the original experiment. In this 
case, and depending on the variation, it would be debatable whether the second 
experiment should be considered a replication of the first or as a new 
experiment. In the case of replication under similar conditions, the aim of the 
replication would be to confirm the hypothesis of the first experiment as 
discussed so far; whereas the second case of replication, in which a variable is 
altered, would aim to check whether a variable could be generalised for certain 
values of the results yielded by the first experiment. Exactly what sorts of 
variables can be changed from one experiment or another in order to generalise 
results are discussed in Chapter 4.  

An important question can arise at this point. What happens when an original 
experiment is replicated and the results yielded are different? For example, the 
effect of different levels of inheritance on the maintainability of object-oriented 
programs were investigated at the University of Strathclyde (Daly, 1995). 
However, this experiment was replicated at the University of Bournemouth, and 
produced the opposite effect (Cartwright, 1998). Both experiments were well 
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designed and analysed, which means that this result could indicate a lack of 
confidence. Cases of this sort call for further research and more experiments that 
output more information on what caused the variation, such as other variables 
possibly not taken into account, for example. The results of altering a parameter 
of the original experiment in the replication are an aid for exactly determining 
under what circumstances a technology is better used. 

2.7. EMPIRICAL KNOWLEDGE VERSUS THEORETICAL 
KNOWLEDGE 

The data obtained from the real world are meaningless, unless it is in relation to 
a theoretical model of the phenomenon. Box gives the following example (Box, 
1978). Suppose, for example, that we observed a clock at 12 p.m. on Sunday 
and every twelve hours afterwards. Suppose that every time we looked at the 
clock, the hands pointed to 6 o' clock. These data would be interpreted 
differently depending on the theoretical model considered appropriate. 

One idea that would fit the data would be that the clock had stopped at 6 o' 
clock. The mathematical model in this case would be: η=β0, where η is the time 
indicated by the clock at reading and β0 is a constant equal to 6. A second 
interpretation is that the small hand moves right round every twelve hours, but 
that the clock is six hours fast. The model in this case is η=(β0 + x)mod 12, where 
x is the time in hours since the first reading and (β0 + x)mod 12 is the remainder 
obtained after dividing β0 + x by 12. A third hypothesis is that the hand goes 
round not once but p  times every 12 hours, where p is an integer, in which case 
η=(β0 + px)mod 12. 

In the second and third theoretical models we assumed that the hands moved 
clockwise at a regular speed. The observations are also consistent with a model 
in which the hand moved anticlockwise or with another in which the hands 
moved very quickly in the first part of the cycle and very slowly in the second. 

The possible theoretical models are clearly innumerable. However, we almost 
always have basic knowledge of the phenomenon under study (the mechanism 
of the clock, in this case). The experimenter can use this background knowledge 
to class some models as possible and others as impossible. Experimental designs 
are chosen on the basis of the hypotheses of the experimenter concerning which 
models are feasible. Even when experimenters think that they know what the 
model should be like, they must also take into account some reasonable 
alternatives. Hence, the experiment must be designed so as to be able to detect 
the points on which the preliminary model is unfit. Models are built by means of 
the iterative procedure described in section 2.4, that is, alternative models are 
tested, and the survivors and new candidates are scrutinised again.  
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Generally, experimenters are interested in studying relationships between the 
mean value of a response y, like quantity, quality or effectiveness, and the 
values or alternatives of a number of variables x1, x2, ..., xk, like time, number of 
team members, complexity, etc. The relationship can be abbreviated as η=ƒ(x1, 
x2, ..., xk)=ƒ(x), where x refers to all the variables x1, x2, ..., xk. 

The phenomenon under study is sometimes well known and a functional form 
can be written from the theoretical considerations. This is very common in 
sciences like physics, where the physical laws required are often expressed as 
differential equations. Another example of a discipline in which the phenomena 
are well known is chemistry. Take, for example, a chemical reaction in which 
substance A is the reactant and B the product, and the kinetic laws of the first 
order are applicable, then the rate of formation of B at any time is proportional 
to the amount of A that has not yet reacted. If the mean value of the 
concentration of B at time x is denoted as η, the relationship between η and x 
can be expressed as  smaller. This equation is the result of 

solving a differential equation that expresses the sentence "the rate of formation 
of B is proportional to the concentration of A that has not yet reacted" in 
mathematical terms. This equation is called a mechanistic or theoretical 
model, because it is based on an understanding of the mechanistic theory that 
governs the process: the theory of chemical kinetics in this case. 

)1(1
2xe ββη −−=

A mechanistic or theoretical model is tantamount to a fundamental step forward 
in the basic knowledge of a reality. However, a scientist cannot usually come up 
with a mechanistic model until there is enough background knowledge of the 
discipline. Centuries passed before physicists were able to relate the distance 
travelled with speed or force and mass by means of a mechanistic or theoretical 
model. These theoretical models are what are known as physical laws, of which 
the law of the lever, the law of buoyancy (or Archimedes' principle), Galileo's 
law of uniform acceleration of falling bodies, Kepler's laws of planetary motion 
and Newton's laws of motion, Coulomb's law of electrostatic attraction or the 
law of ideal gases are key examples. 

Often, and this is the case of software construction, the mechanism governing a 
process is not well enough known or is too complex for an exact model to be 
postulated on the basis of theoretical considerations. An empirical model can 
be useful under these circumstances. These investigations are much less 
ambitious than theoretical research. Their preliminary aim is to arrive not at a 
mechanistic model but at an understanding of the phenomenon under particular 
conditions (that is, the model is not general and, therefore, cannot be 
extrapolated). It is then a matter of building empirical or experimental models of 
the results of a series of experiments. These experimental models are usually 
represented as equations that relate a particular region of the variables under 



42 The Role of Experimentation in Scientific and Technological Research 

study (this is the reason why the relationship is limited and cannot be 
generalised). 

An understanding of the difference between theoretical and experimental studies 
can be gained by means of an analogy with physics. Suppose we were in the age 
when the relationship between the speed of a body and the distance travelled 
was unknown (incredible as it may seem, humankind was ignorant of this 
relationship for millenniums). An experimental study like the one discussed 
above would involve the following. We would decide on the road to be 
travelled, select times at which temperature and humidity conditions were 
similar, we would take the same body (which means the same shape and weight, 
etc.), which would be given a different momentum (this is the variable). Note 
that we use the factor momentum and not the factor speed, because if we already 
knew how to measure speed quantitatively, we would probably know how to 
calculate it. We would stop the two objects after the same length of time and 
measure the distance travelled (response variable). The analysis of the data 
collected from these two experiments (evidently, if more were performed, the 
results would be more reliable) would tell us that a longer distance is travelled 
when the value of the variable momentum is high than when it is low. So, the 
conclusion is that the greater the momentum, the longer the distance travelled. 
This knowledge, which establishes a correlation between speed and distance 
only, could have a multitude of uses, and we could even predict that a given 
distance would never be travelled at a given momentum. However, we would 
still not know the exact relationship (function, formula or law) that relates speed 
and distance. This relationship could be arrived at by two routes (and preferably 
both at the same time): by amassing a huge number of experiments or through 
theoretical deduction. Only when the law relating space and distance is known 
can all the causes influencing a particular distance travelled (speed, friction, 
weight, etc.) be confirmed. An example of the empirical model in SE are the 
equations used by some estimation techniques, like COCOMO, of the kind 
(effort = a (size)b), where the coefficients of the above equation are yielded by 
analysing the relationship between effort and size in a series of projects. 

Experimental research usually aims to elucidate certain points of relationships 
among variables. The objectives and sophistication of these investigations can 
vary widely. Different sorts of experimental design and data analysis techniques 
will be used for each kind of study. New knowledge is gained from the 
following three levels of investigation: 

1. Survey inquiries, whose objective is to distinguish which of many variables 
appreciably affect another or other variables. Note that, in the case of SE, 
surveys would supply knowledge of what development variables affect 
certain characteristics of the process or of the products. For example, a 
survey inquires after whether age, nationality and sex influence developer 
productivity. This knowledge, which is fundamental in any discipline, is still 
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not available in SE. Nothing needs to be known about the phenomenon 
under study (as in the case of SE) to run surveys. All you have to do is to run 
a lot of experiments, varying all the possible development variables and 
studying their impact on a particular characteristic. These are tedious, but 
systematic inquiries that would supply SE with very valuable knowledge. 

2. Empirical inquiries, whose objective is to discover an empirical model that 
describes how certain variables affect another or others. Once the variables 
that affect another or others (survey) are known, the next step is to find out 
what influence they have depending on the values of the variables. In the 
case of SE, this sort of empirical studies would mean that alternatives could 
be compared to select the best value of particular variables for optimising a 
given response. For example, if the variables that influence design 
productivity were known to be developer experience, system complexity and 
technique employed, we would run an empirical study to ascertain which of 
two given design techniques output better productivity values. 

3. Mechanistic inquiries, aimed at producing a mechanistic or theoretical 
model that can explain why the variables affect the response in the observed 
manner. This is the deepest level of knowledge of a discipline, as it answers 
the question why. For this sort of inquiries, the discipline already needs to 
have theoretically founded knowledge, on the basis of which to continue to 
build the edifice of theoretical knowledge of the discipline with the aid of 
experiments. 

A mechanistic model, supposedly backed by the nature of the system under 
study and verified by means of experimentation, is a much stronger position 
than a model obtained empirically and not backed by the theory of the 
phenomenon. An extensively tested mechanistic model does much more than 
simply comply with the data, it confirms that the knowledge of the phenomenon 
has been verified by experimentation. Additionally, although it can adequately 
represent what occurs in the region under study, an equation, which is the 
typical form of an empirical model, does not provide a solid basis for 
extrapolation to other regions. Thus, its predictive capability is confined to the 
conditions under study. On the other hand, a mechanistic model can more 
accurately suggest sets of experimental conditions that are worth investigating. 
The mechanistic model provides a better basis for extrapolation, because it is the 
mechanism and not a new empirical function that is extrapolated, and this 
mechanism is based on the verified knowledge of the system. Therefore, 
theoretical or mechanistic models can: 

a) contribute to the scientific understanding of a phenomenon 
b) provide a basis for the extrapolation of the model to situations other than 

studied 
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c) provide a stricter representation of the response function than would be 
obtained empirically (usually polynomial functions). 

Despite the advantages of mechanistic models, there does not appear to be 
enough background knowledge of software construction yet to develop general 
theoretical models by means of which to predict what will occur on the basis of 
specific development conditions. Until this time comes, we can use empirical 
models to make local statements about the particular conditions under which a 
given theory (technique, model, etc.) works and similar claims. These empirical 
models are developed by running experiments focused on the particular 
variables and parts of the development project under study. Remember that 
these experiments should usually be performed at the three levels described in 
Chapter 1: controlled or laboratory experiments, case studies and surveys. This 
is the sort of experimentation addressed in this book, although we will focus on 
controlled or laboratory experiments. As has happened in other sciences and 
engineering disciplines, empirical studies are a means towards the scientific 
ideal of theoretical models that lead to a practically full understanding of a 
phenomenon. 



3 HOW TO EXPERIMENT 
3.1. INTRODUCTION 

This chapter aims to put the remainder of the book, that is, Parts II and III, into 
context. For this purpose, it focuses on describing the steps to be taken to run an 
experiment, the most important of which will be described in the other parts of the 
book. Beforehand, section 3.2 examines what sort of relationships among variables 
can be outputted by an experiment. Having described these relationships, the 
process of stepwise refinement involved in any experimentation process is 
described in section 3.3. Each cycle of this process involves running a given 
experiment, the process to be followed is described in section 3.4. We will see that 
this process is composed of the phases of goal definition, design, execution and 
analysis. All these phases are essential for the success of the experiment. However, 
experimental design and analysis call for special attention. Therefore, Parts II and 
III of the book focus on these two phases, respectively. Finally, section 3.5 
describes what can be deduced at the end of these stages and what role statistics 
plays in determining the above conclusion. 

3.2. SEARCHING FOR RELATIONSHIPS AMONG VARIABLES 

In Chapter 2, we said that a discipline is formed as the body of validated knowledge 
grows. But, what sort of knowledge can be gained from experimentation? What we 
look to discover are relationships among the variables involved in the phenomenon. 
If we had a wealth of truthful knowledge in SE, we would be able to predict the 
impact of any actions that we were to take on development. For example, we would 
be able to answer questions like how will the use of programming language X affect 
system reliability? Or if the project analysis stage has taken 50% longer than 
expected, what effects will it have on the remainder of the project? The planning of 
the other stages may have to be reconsidered and increased by 50%; the problem 
may be confined to analysis alone and the planning still be valid for the other 
phases; or as the analysis stage has taken longer, the need has been better 
understood and fewer errors will occur in the remainder of the project (this means 
that the extra time spent on analysis can be recuperated, because the other stages 
will be completed in less time than planned). What would we need to know to be 
able to answer these questions? For example, for the first question, we would need 
to know what relationship there is between software reliability and programming 
languages. For us to be able to use the above relationship to predict reliability, we 
must also know what other project variables influence reliability (for example, 
developer experience, system complexity, etc.), as well as the interrelationships 
among all these variables that influence reliability. In other words, these will 
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certainly be complex relationships in which reliability depends on a host of 
circumstances and not just on the language. For the second question, we would 
need to discover similar complex relationships between the amount of deviation in 
one phase and its effect on the other development phases. Knowledge of which set 
of variables influence another variable and how they influence this variable could 
be used to predict the results of development. 

There are several levels of relationships among variables depending on how much 
is known about the relationship in question: 

1. Descriptive relationship. When the relationship among variables is unknown, 
but certain behavioural patterns can be described after observing several 
development projects. For example, if analysis takes longer, the other 
activities usually take longer. In other words, the best we can do is give a 
description of the relationship without stating under which circumstances it 
does and does not occur (we can go no further than to say "usually"), and we 
cannot say how big the increase is either; that is, whether the total 
development time increases in proportion to the increased time spent on 
analysis, whether the increase is equivalent to the extra time spent on the 
analysis phase or whether the two increases are related in any other way. 

2. Correlation. The relationship among variables can be explained by means of 
a function. So, apart from description, it can be said that the above relationship 
has certain proportions, as well as that there are interactions among several 
variables to influence a third. This knowledge captures evidence about 
causation, although not necessarily based on an underlying theory. We can 
observe correlations among variables, but we cannot distinguish between 
cause and effect. Some examples of correlation are given later. 

3. Causal relationship. This is the highest possible level of knowledge about the 
relationship among several variables. If variables A and B are said to be the 
causes of the variations in C, this means that C would vary only depending on 
A and B or, alternatively, that there is no other variable of influence. 
Therefore, all the parties to the relationship are known. 

Causality of this sort is known as deterministic causality. Every time we 
invoke a particular cause, we get the expected effect. According to Pfleeger 
(1999), in terms of software, “if we can find out what causes good software in 
terms of process activities, tools, measurements, and the like, we can build an 
effective software process that will produce good software the next time”. This 
approach is borrowed from physics. There is also probabilistic causality, 
where there is a given likelihood  of less than 100% of the relationship 
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between cause and effect occurring. This probabilistic causality appears to be 
better suited to software engineering than fully deterministic causality. 

We are not going to discuss here the philosophical problem of causality as an 
effect of the human mind, where some authors claim that causality is merely a 
correlation 1 between two variables, defending that the effects are not 
deducible from the causes. An example of this is given later in this chapter.  

These three types of relationship between variables coincide to a certain extent with 
the investigations discussed in Chapter 2. The theoretical models of phenomena 
usually explain causal relationships, whereas empirical models are nothing more 
than correlational relationships. Surveys of variables usually output descriptive 
relationships. 

3.3. STRATEGY OF STEPWISE REFINEMENT 

At first glance, it might seem reasonable to take an exhaustive approach to 
exploring a relationship among variables, in which each variable is examined at 
length. The resulting experiments could contain all the combinations of several 
values of all the variables. This is an inefficient manner of organising the 
experimental programme when the elementary experiments can be run in successive 
groups. This situation reflects the paradox that the best time for designing an 
experiment is when it has finished and the worst at the beginning, when less is 
known. If an experiment were fully designed at the start, we would have to assume 
that we know what variables are the most important and what value should be 
considered. The researcher is better able to answer these questions as the 
experiment progresses. 

An experimenter is like someone who is trying to map out the seabed by 
prospecting only a few sites. If there is a theory on what the seabed in one region is 
like, based perhaps on geological considerations or the examination of currents and 
tides, the experimenter may be able to work with a defined theoretical model, in 
which the values of only a few variables are unknown. Where there is no developed 
theory, however, the strategy would be quite different. This book focuses primarily 
on situations in which there is no well-defined theory and an empirical approach has 
to be taken, that is, the case of SE. 

All the above underlines the advisability of performing a sequence of experiments 
of moderate size and evaluating the results as they become available. Thus, as an 
empirical investigation is being carried out, it may happen that: 
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1. A decision is made to change the region of the experiment, that is, the values 
according to which the variables are being examined are varied. For example, 
if we are running experiments with the variable Experience of the Team of 
Developers and the values None and Much, we may decide to also examine the 
values Little, Some and Fair. 

2. Some of the variables considered originally are discarded and others are 
added. Note that, at the start of the investigation, experimenters use the 
variables considered influential (for example, programmer experience and 
language as variables influencing the reliability of the software output). 
However, some of the variables considered may be found not to have a 
significant influence or, if they do, another source of variation that is not being 
explored may be shown up by the experimental investigation. In these cases, 
experimenters may decide to include other variables in the investigation (for 
example, software size). 

3. The objective of the research is altered (digging for silver, we may strike gold, 
and no such discovery can ever be overlooked). 

As a general rule, no more than 25% of the experimental effort (budget) must be 
invested in the first round of experiments. Of course, there are exceptions, as a huge 
variety of research is conducted under extremely wide-ranging circumstances. As 
our everyday experience shows, however, it is not very intelligent in most situations 
to plan an experiment exhaustively from the beginning. At the end of the first part 
of an investigation, experimenters will be far more acquainted with the problem 
and, therefore, will be much better able to plan the second part, which again will 
serve to improve the plan for the third and so on. 

After reflecting on the first experiments conducted, one is often jarred at the end of 
an investigation by (and even a little ashamed of) how pathetic they were. The 
wrong variables may have originally been examined or important variables may 
have been investigated, though far outside the right region. It is like watching a film 
about a swimmer, who now somersaults from the springboard, when he was only a 
small boy learning how to swim. It would be ridiculous to start by doing 
somersaults and neurotic to say "if I cannot somersault from the springboard now, I 
prefer not to learn to swim". Researchers must learn from the swimmer, who was 
ready to put his foot in the water and not afraid of getting wet. 

 

3.4. PHASES OF EXPERIMENTATION 

Any experimentation with any degree of formality can be divided into the following 
activities: 
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1. Definition of the objectives of the experimentation 
2. Design of the experiments 
3. Execution of the experiments 
4. Analysis of the results/data collected from the experiments. 

Figure 3.1 illustrates this process together with the products output by each activity. 
In the following, we will describe these activities in more detail. 

O bjective
D efinition D esign E xecu tion A nalysis

H ypothesis
for testing

E xperim enta l
D esign

  Experim ental
R esults

H ypothesis
T ested

Figure 3.1. Process of experimentation in SE 

Experimentation is based on the examination of phenomena. Experimentation, as 
considered in this book, is rooted in detecting quantifiable changes as a means of 
comparing one experiment with another in search of the difference between them 
and, hence, the reason for the changes. A comparison based on quantifiable changes 
is objective and, therefore, conclusions can be drawn from their investigation. 

The term quantifiable can be considered in a broad sense as a synonym of rateable; 
that is, numerical and measurable factors are obviously preferable in 
experimentation, although factors having another type of value can be considered 
acceptable, provided they are perceptible. For example, values like team 
experience, design method employed, operating system type, etc., are admissible 
provided the difference is perceptible and there is agreement thereon. The kind of 
experiments with which we are concerned in this book demand quantitative results, 
that is, the variable that is to describe the improvement caused by the new idea must 
be quantitative (reliability, productivity, size, etc.) or, in other words, measurable. 
(Remember that there are other studies known as qualitative research.) 

During the definition of objectives, the general hypothesis is transformed into a 
hypothesis defined in terms of what variables of the phenomenon are going to be 
examined. For example, suppose we have an experiment in which we aim to 
examine how good two individual testing techniques are at detecting one particular 
error type. An experimenter can take this idea to define a quantifiable hypothesis, 
like, for example: technique A is capable of detecting more type-1 errors than 
technique B. This is a quantifiable hypothesis in the sense that it is measurable, that 
is, an objective procedure can be provided to determine the above number of errors. 
The number of errors could be measured in different ways or, alternatively, by 
means of different metrics (errors measured in a total time t, errors measured by a 
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unit of time t', etc.). The metric to be used will be described during the experimental 
design phase, whereas the important thing during objective definition is to assure 
that we can define a quantitative procedure for evaluating the hypothesis. 

Design involves making a sort of plan according to which the experiment is to be 
run. The plan will be made by determining under exactly what conditions the 
experiment is to be conducted. This involves determining which variables can affect 
the experiment (in the above example, for instance, we have the variable inspection 
technique with two possible values -technique A and technique B-, who is going to 
participate in the experimentation, how many times it is to be repeated, etc.). The 
elements to be considered during experimental design and the different types of 
designs that can be defined depending on the variables involved, respectively, are 
detailed in Chapters 4 and 5. 

The objective of a good experimental design is to get as much information, better 
still knowledge, as possible from as few experiments as possible. This saving is one 
of the basic differences mentioned above between experimentation and mere 
observation.  

In the execution stage, elementary experiments are run as indicated by the selected 
design. Once the experiments have been performed, it is time to analyse the results, 
that is, analyse the data collected during the experiments. This analysis seeks to find 
relationships between the study results, that is, type of relationship identified 
between the variable under examination (as discussed in section 3.1): descriptive, 
correlational or causal. 

Descriptive relationships are discovered by carrying out informal analyses of the 
data (the experimenter examines the data and detects whether there are behavioural 
patterns between the variables under study). The data collected during an 
experimentation are analysed by means of data analysis techniques to detect well 
justified correlational and causal relationships, which involves making statistical 
inferences on the data. A statistical inference (or decision rule) responds to the 
question: what can I affirm in view of this data set? Different inferences/statements 
can be made depending on what statistical conditions of the data are examined. 
However, theoretical models and a mass of empirical studies are usually required to 
be able to detect causal relationships. 

One of the classes of statistical inference most commonly used in experimentation is 
known as significance testing. Significance testing responds to the question of 
whether the variations observed in the data collected are statistically significant. 
This means that:  
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− If there is no statistical significance, the variation observed can be put down to 
chance or to another variable not considered in the experiment 

− If there is statistical significance, the variation observed is due to the fact that a 
certain level (or combination of values of different variables) causes 
improvements. 

The most commonly observed variations of this type are usually: variations in the 
means of the variable under study, variations in variances, variations in proportions 
and variations in frequencies. The meaning of the study of the different variations 
can be illustrated by a short example. In an experimentation, we want to know 
which option, A or B, of variable F improves the variable V. Several experiments 
are performed, six to be exact, in three of which F=A and in the other three F=B. 
The resulting V is measured in each one. So far we have designed and performed 
the experimentation. The analysis of the experimentation would consist of making 
one or more statistical inferences, depending on what we want to know. As what we 
said we wanted to find out was which value of F gives a better V, we are interested 
in the mean value of the V yielded in the three experiments with F=A and the mean 
value of the V yielded in the three experiments with F=B. We want to know 
whether the difference (or variation) observed between these two means is 
statistically significant. However, we could be interested in the variability of the 
alternatives of F in the variance of V, if we wanted to find out which alternative, A 
or B, output the most stable results of V. Or we could carry out an experimental 
analysis based on frequencies or on proportions, etc. Despite this range of statistical 
inferences, the most commonly used experimental analysis is usually performed on 
the variable means, as this is the aspect related to “improving V”. 

There are a series of statistical tests (t-test, F-test, χ2 test, etc.) that answer the 
questions concerning which value of a variable provides improvements or which 
combination of variables is the best, etc. All these analysis-related issues are studied 
in Part III of this book.  

3.5. ROLE OF STATISTICS IN EXPERIMENTATION 

Any experimenter is faced with two difficult tasks: 

− Discover and understand any complex relationships between variables; 
− Achieve this objective even if the data are contaminated by error. 

Over seventy years ago, the pioneering work of Sir Ronald Fisher showed how 
statistical methods, and particularly experimental design and data analysis, could 
help to solve these problems. Since they started to be used in agriculture and 
biology, these techniques have been further developed and began to be used in the 
physical and social sciences, engineering and industry. More recently, their catalytic 
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effect on research and learning processes was spectacularly evidenced by the 
important role that they played in the Japanese-led industrial quality and 
productivity revolution. 

The three sources of difficulty up against which experimenters generally come are: 

1. Experimental error (or noise) 
2. Confusion between correlation and causality 
3. Complexity of the effects under examination. 

As we will see below, the branch of statistics known as experimental design and 
data analysis is an aid for tackling these difficulties. Let's outline these three sources 
of difficulty. 

As we will see in the next chapter, one of the most important difficulties is the 
variation caused by both known and unknown distortional factors, called 
experimental error. Normally, only a small portion of this error can be attributed 
to measurement. Important effects can be covered up completely or partly by 
experimental error. On the other hand, researchers may be misled by experimental 
error into believing in non-existent effects. 

The harmful effects of experimental error can be very much reduced by appropriate 
experimental design and analysis. Moreover, statistical analysis provides 
measurements of the accuracy of the quantities under examination (such as 
differences in means or rates of variation) and, particularly, makes it possible to 
judge whether there is strong empirical evidence for attributing the observed 
differences among experiments to given reasons. The net effect is to increase the 
probability of the investigator taking the right rather than the wrong path. 

With regard to the confusion between correlation and causality, this can be 
illustrated by means of an example taken from Box (Box, 1987). Figure 3.2 shows 
the population of the town of Oldenburg at the end of each of seven years (from 
1930 to 1936) as a function of the number of storks observed in the same year. 
Although few people are likely to establish the hypothesis that population growth is 
a direct function of or caused directly by the number of storks (save any who 
sustain that babies are brought by storks from Paris, for whom the hypothesis "the 
more storks there are, the more trips to Paris will be made and, therefore, the more 
births there will be" makes sense), researchers often make this type of mistake. Two 
variables X and Y are often correlated because both are associated with a third 
factor W. In the example of the storks, as the population Y and the number of storks 
X both grow in time W throughout the above period of seven years, it is reasonable 
for a correlation to appear if they are both represented together, one as a function of 
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the other. This means that the third factor, time in this case, is not considered in the 
inquiry. 

Another more evident confusion between correlation and causality could occur 
between thunder and lightning, which always appear together in a storm. If we did 
not know that they are both manifestations (one luminous and the other acoustic) of 
the same phenomenon (discharge of electricity), we might think that lightning is the 
cause of thunder, whereas they are actually two variables between which there is a 
correlation 1 and, therefore, the cause of both lightning and thunder is the discharge 
of electricity. 
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Figure 3.2. Graph of the population of Oldenburg at the end of each year as a 
function of the number storks observed in the same year (1930-36) 

The reliable scientific principles of experimental design and, specifically, 
randomisation, can be used to generate data of higher quality for inferring causal 
relations. 

Let's now illustrate the complexity of the combinations between the effects of 
several variables on a third variable by means of an example. Consider an 
experimental examination of the effects of alcohol and coffee on the response times 
of car drivers seated at a simulator. Suppose we have found that (a) if no coffee has 
been ingested, a drink of liqueur increases the response time by an average of 0.45 
seconds and (b) if no alcohol has been ingested, a cup of coffee reduces the 
response time by 0.20 seconds on average. 
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The effects of several glasses of liqueur and several cups of coffee and their 
combined effect would be much easier to evaluate if both effects were linear and 
additive. If they were linear, two glasses of liqueur would increase the response 
time by 0.90 seconds [2(0.45)=0.90] and three cups of coffee would reduce it by 
0.60 seconds [3(-0.20)=-0.60]. If the effects were additive, a glass of liqueur and a 
cup of coffee would increase the response time by 0.25 seconds [0.45-0.20=0.25]. 
Finally, if they were linear and additive, 10 glasses of liqueur and 23 cups of coffee 
would reduce the response time by 0.10 seconds [10(0.45) + 23(-0.20)=-0.10]. 

It is much more likely, however, that the effect of one more glass of liqueur will 
depend on: (a) the number of glasses of liqueur already drunk (the effect of alcohol 
is not linear) and (b) the number of cups of coffee ingested beforehand (there is an 
interactive effect between alcohol and coffee). There are experimental designs that 
generate data in such a manner as not only the linear and additive effects, but also 
the interactive and non-linear effects can be estimated with the least possible impact 
of experimental error. 



 

4 BASIC NOTIONS OF 
EXPERIMENTAL DESIGN 

4.1. INTRODUCTION 

This chapter focuses on the basic concepts to be handled during experimental 
design. Before addressing design, we need to study the terminology to be used. This 
is done in section 4.2. Sections 4.3 and 4.4 focus on the application of this 
terminology to the particular field of SE. In those sections we suggest possible 
variables for SE experiments as an aid for novice experimenters. However, the 
variables proposed here are only a suggestion and SE experimenters can work with 
an alternative set depending on their particular goals. Additionally, we will also 
examine some variables used in real SE experiments, going beyond a merely 
theoretical discussion. 

Remember that experimental design has been referred to as a crucial part of 
experimentation, hence the importance of this and the next chapter, which details 
different kinds of designs. 

4.2. EXPERIMENTAL DESIGN TERMINOLOGY 

Before software engineers can experiment, they must be acquainted with 
experimental design terminology. These are not difficult concepts and are basically 
related to the provoked variations that distinguish one experiment from another. The 
most commonly used terms in experimental design are discussed below. 

• Experimental unit: The objects on which the experiment is run are called 
experimental units or experimental objects. For example, patients are 
experimental units in medical experiments (although any part of the human body 
or any biological process is equally eligible), as is each piece of land in 
agricultural experiments. SE experiments involve subjecting project 
development or a particular part of the above development process to certain 
conditions and then collecting a particular data set for analysis. Depending on 
the goal of the experiment, the experimental unit in a SE experiment can then be 
the software project as a whole or any of the intermediate products output during 
this process. For example, suppose we want to experiment on the improvement 
process followed by our organisation, we could compare the current process 
with a process improved according to CMM recommendations. Both processes 
would be assessed after application to the development of the same software 
system and data would be collected on the productivity of the resources or the 
errors detected. Thus, the experimental unit would, in this case, be the full 
process, as this is the object to which the methods examined by this 
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experimentation (process improvement) are applied. However, if we wanted to 
study process improvement in one area only, say requirements, the object and, 
therefore, the experimental unit would be the requirements phase. Now suppose 
we aim to compare the accuracy of three estimation techniques, the experimental 
unit would be the requirements to which the techniques are applied. If we 
wanted to compare two testing techniques, the experimental unit would be the 
piece of code to which the techniques are applied. Thus, the experimental unit 
would be a process or subprocess in the first example, whereas it would be a 
product in the latter two. 

• Experimental subjects: The person who applies the methods or techniques to 
the experimental units is called experimental subject. In the above process 
improvement example, the experimental subject would be the entire team of 
developers. In the estimation example, the subjects would be the estimators who 
apply the estimation techniques. And in the testing techniques example, the 
subjects would be the people applying the testing techniques. Unlike other 
disciplines, the experimental subject has a very important effect on the results of 
the experiments in SE and, therefore, this variable has to be carefully considered 
during experiment design. Why? Suppose, for example, that we have an 
agronomy experiment aimed at determining which fertiliser is best for the 
growth of a seed. The experimental subjects of this experiment would be the 
people who apply the different fertilisers (experiment variables) on the same 
seed sown on a piece of land (experimental unit). The action of different subjects 
is not expected to affect the growth of the seed much in this experiment, as the 
manner in which each subject applies the fertiliser is unlikely differ a lot. Let’s 
now look at the experiment on estimation techniques in SE. The subjects of this 
experiment would be software engineers who apply the three estimation 
techniques on particular requirements (experimental unit). As the estimation 
techniques are not independent of the characteristics of the estimator by whom 
they are applied (that is, the result of the estimation will depend, for example, on 
the experience of the estimator in applying the technique, in software 
development and even, why not, on the emotional state of the estimator at the 
time of running the experiment), the result can differ a lot depending on who the 
subjects are. Similarly, the result of the application of most of the techniques and 
procedures applied in SE happens to depend on who applies them, as the above 
procedures are not, so as to say, automatic and independent of the software 
engineer who applies them. Therefore, the role of the subjects in SE experiments 
must be carefully addressed during the design of the experiment. As we will see 
in Chapter 5, there are different points related to the subjects that will have an 
impact on the final design of the experiment. Particularly, if we are running 
experiments in which we do not intend to study the influence of the subjects, it 
will be a good idea to select a  design that cancels out the variability implicit in 
the use of  different developers. Paying special attention to the subjects is typical 
of what are known as the social sciences, like psychology or SE, as opposed to 
other sciences, like physics or chemistry, where the result of the application of 
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the variables does not, in principle, necessarily depend on who applies them. 

•  Response variable. The outcome of an experiment is referred to as a response 
variable. This outcome must be quantitative (remember that this book focuses on 
laboratory experiments during which quantitative data are collected). The 
response variable of an experiment in SE is the project, phase, product or 
resource characteristic that is measured to test the effects of the provoked 
variations from one experiment to another. For example, suppose that a 
researcher proposes a new project estimation technique and argues that the 
technique provides a better estimation than existing techniques. The researcher 
should run an experiment with several projects, some using the new technique 
and others using existing techniques (experimental design would be an aid for 
deciding how many projects would be required for each technique). One 
possible response variable in these experiments would be the accuracy of the 
estimate. The response variable in this example, accuracy, can be measured 
using different metrics. For instance, we could decide to measure accuracy in 
this experiment as the difference between the estimate made and the real value. 
However, if the researcher claims that the new method cuts development times, 
the response variable of the experiment would be development time. Therefore, 
the response variable is the characteristic of the software project under analysis 
and which is usually to be improved. Other examples of response variables and 
metrics will be given in section 4.4. Each response variable value gathered in an 
experiment is termed observation, and the analysis of all the observations will 
decide whether or not the hypothesis to be tested can be validated. 

The response variable is sometimes called dependent variable. This term comes 
not from the field of experimental design but from another branch of 
mathematics. As we discussed in section 3.2, the goal of experimentation is 
usually to find a function that relates the response variable to the factors that 
influence the variable. Therefore, although the term dependent variable is not 
proper to experimental design, it is sometimes used. 

• Parameters. Any characteristic (qualitative or quantitative) of the software 
project that is to be invariable throughout the experimentation will be called 
parameter. These are, therefore, characteristics that do not influence or that we 
do not want to influence the result of the experiment or, alternatively, the 
response variable. There are other project characteristics in the example of the 
estimation technique that could influence the accuracy of the estimate: 
experience of the project manager who makes the estimate, complexity of the 
software system under development, etc. If we intend to analyse only the 
influence of the technique on the accuracy of the estimate, the other 
characteristics will have to remain unchanged from one experiment to another 
(the same level of experience, same complexity of development, etc.). As we 
discussed in section 2.4, the parameters have to be set by similarity and not by 
identity. Therefore, the results of the experimentation will be particular to the 
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conditions defined by the parameters. In other words, the facts or knowledge 
yielded by the experimentation will be true locally for the conditions reflected in 
the parameters. The knowledge output could only be generalised by considering 
the parameters as variables in successive experiments and studying their impact 
on the response variable. Section 4.3.4 lists other examples of parameters used in 
real experiments. 

• Provoked variations or factors. Each software development characteristic to be 
studied that affects the response variable is called a factor. Each factor has 
several possible alternatives. Experimentation aims to examine the influence of 
these alternatives on the value of the response variable. Therefore, the factors of 
an experiment are any project characteristics that are intentionally varied during 
experimentation and that affect the result of the experiment. Taking the example 
of the estimation technique, the technique is actually the factor and its possible 
alternatives are: new technique, COCOMO, Putnam’s method, etc. Other 
examples of factors used in real experiments will be given in section 4.3.4. 

Factors are also called predictor variables or just predictors, as they are the 
characteristics of the experiment used to predict what would happen with the 
response variable. Another term, taken from mathematics and used for the 
factors, is independent variables. 

• Alternatives or levels. The possible values of the factors during each 
elementary experiment are called levels. This means that each level of a factor is 
an alternative for that factor. In our example, the alternatives would be: the new 
technique, COCOMO and Putnam’s method, that is, the alternatives used for 
comparison. 

The term treatment is often used for this concept of alternatives of a factor in 
experimental design. This term dates back to the origins of experimental design, 
which was conceived primarily with agricultural experimentation in mind. The 
factors in this sort of studies used to be insecticides for plants or fertilisers for 
land, for which the term treatment is quite appropriate. The term treatment is 
also correct in medical and pharmacological experimentation. A similar thing 
can be said for the term level, which is very appropriate for referring to the 
examination of different concentrations of chemical products, for example. The 
terms treatment and level in SE, however, can be appropriate on some occasions 
and not on others. So, we prefer to use the term alternative to refer to the values 
of a factor in this book. The alternatives of the factors of the experiments 
addressed in this book, such as COCOMO or Putnam’s method, for example, are 
qualitative, as discussed above. Remember, though, that the response variables 
gathered in these experiments are quantitative. The aim of these experiments 
then is to determine the quantitative effect of some alternatives. Other 
quantitative experiments aim to find relationships between quantitative 
variables, such as, for example, the relationship between years of experience and 
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productivity. As mentioned in Chapter 1, we are not going to address this sort of 
designs as there are many examples in the SE literature. However, experiments 
in which the values of the factors are qualitative are less common, and their 
results can go a long way towards expanding the body of knowledge of a 
discipline, particularly SE, which explains why they are the focus of this book. 

Figure 4.1 shows the relationships among parameters, factors and response variables 
in an experimentation. 
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 p1  = v1
 p2  = v2
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Experimental Unit 1
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– Generalise the results

START
experimentation

 

Figure 4.1. Relationship among Parameters, Factors and Response Variable in an 
Experimentation 

• Interactions. Two factors A and B are said to interact if the effect of one 
depends on the value of the other. The interactions between the factors used in 
the experiments should be studied, as this interaction will influence the results of 
the response variable. Therefore, the experimental designs that include 
experiments with more than one factor (factorial designs discussed in Chapter 5) 
examine both the effects of the different alternatives of each factor on the 
response variable and the effects of the interactions among factors on the 
response variable. 

• Undesired variations or blocking variables: Although, we aim to set the 
characteristics of an experiment that we do not intend to examine at a constant 
value, this is not always possible. There are inevitable, albeit undesired 
variations from one experiment to another. These variations can affect several 
elements of the experiment: the subjects who run the experiment (not enough 
subjects with similar characteristics can be found to apply the different 
techniques); the experimental unit (it is not possible to get very similar projects 
on which to apply the different alternatives); the time when the experiment is run 
(each alternative has to be applied at different points in time), etc. In short, these 
variations can affect any conditions of the experiment. These variations are 
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known as blocking variables and call for a special sort of experimental design, 
called block design (examined in Chapter 5). 

• Elementary experiment or unitary experiment: Each experimental run on an 
experimental unit is called elementary experiment or unitary experiment. This 
means that each application of a combination of alternatives of factors by an 
experimental subject on an experimental unit is an elementary experiment. Thus, 
in the example of the estimation techniques, the application of each new 
technique on the requirements by a particular subject is an elementary 
experiment. As we have three techniques applied to the same requirements, this 
experiment is composed of three elementary experiments. 

• External replication: As we said in Chapter 2, external replication is performed 
by independent researchers. Judd et al. (Judd, 1991) provide the following 
definition of external replication: “other researchers in other settings with 
different samples attempt to reproduce the research as closely as possible. If the 
results of the replication are consistent with the original research, we have 
increased confidence in the hypothesis that the original study supported”. We 
also said in Chapter 2 that exact replication is not possible in SE, as it is not 
possible to find identical subjects, identical units, etc. So when replicating 
experiments, it is very important to categorise the differences between the 
original experiment and the replication. Basili et al. (Basili, 1999) divided the 
types of external replications into three groups:  

1. Replications that do not alter the hypothesis:  

(1.a) Replications that repeat the original experiment as closely as possible.  

(1.b) Replications that alter the manner in which the first experiment was run. 
For example, suppose we have an experiment that calls for the subjects 
to be trained in the techniques to be used and the subjects are sent a 
document describing the above techniques beforehand, a second 
experiment could be run giving subjects classroom training. 

2. Replications that alter the hypothesis: 

(2.a) Replications that alter design issues, such as, for example, the detail 
level of the specifications of a problem to be estimated. 

(2.b) Replications that alter factors of the setting of the experiment, such as 
the type of subjects who participate (students, practitioners, etc.), the 
problem domain addressed, etc., for example. 

3. Replications that reformulate the goals and, hence, the hypothesis of the 
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experiment: for example, suppose we have an experiment finding that a 
particular testing technique detects more errors of omission than commission. 
The goal of a possible replication of the above experiment would be to 
distinguish which sort of errors of omission or commission are best detected 
by the above technique. Thus, we could determine whether the technique is 
better at detecting errors of omission irrespective of the error type or whether 
the technique fails to detect omissions better than commissions for a 
particular error, etc. 

 Of these replications, the aim of group 2 is to generalise the results of the 
experiments, seeking to extend their applicability. Group 3 analyse the study in 
more detail, that is, can be used examine the survey in more depth getting more 
specific results from the experiments. On the other hand, group 1 replications 
serve only to reinforce the results of the original experiment, as they neither 
extend more modify the original hypotheses. 

 Examples of the three categories of replicated experiments will be mentioned 
throughout the book. 

• Internal replication. As mentioned in Chapter 2, the repetition of all or some of 
the unitary experiments in an experimentation is referred to as internal 
replication. If, for example, all the experiments of a study are repeated three 
times, it is said to be an experiment with three replications. As discussed in 
section 2.5, replication increases the reliability of the results of the 
experimentation. In our example, we may decide that we need six elementary 
experiments (equal to the combination of factors): two for each estimation 
technique and each of the above two with a large or small value for project size. 
This means that the values of the two identified factors are: new, COCOMO and 
Putnam’s method for the estimation technique, and large and small for project 
size. So, we will test COCOMO on a large and a small project, and we will do 
the same with the other two techniques. Finally, as a question of confidence in 
the results, we may decide to replicate each experiment three times in order to be 
able to be sure about the values measured for the response variable. Remember 
that, as mentioned in Chapter 2, replication is based on similarity in SE. Hence, 
if we replicate each elementary experiment three times, we would then have to 
work on three similar small projects, it being practically impossible to find three 
exactly identical software projects. Similarly, we would have to find some 
similar large projects to carry out the replication. So, we would have 18 
elementary experiments to be run by the experimental subjects. The ideal thing 
would be to assign a different subject to each of the 18 experiments, by means of 
which we could avoid undesired effects, as we will see in Chapter 5.  

Since the effect of the subjects who apply the factors to the experimental units in 
SE can, as mentioned above, be very significant, there is also the possibility of 
running the replication on the subjects. Our example was originally composed of 
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six elementary experiments (two per each estimation technique). As discussed in 
Chapter 5, we should ideally have six subjects with similar characteristics to run 
one elementary experiment each. Each elementary experiment could be 
replicated using two similar subjects (that is, two subjects applying the same 
technique to the same program) to assure that the characteristics of the subjects 
have as little effect as possible on the experiment. Nonetheless, a better design 
would be to run the replication using subjects and programs, that is, have each 
elementary experiment replicated by two people, as in the above case, but 
adding a second large and a second small project. In this case, we would have 24 
elementary experiments, run by 24 subjects, 12 subjects experimenting on one 
large and small program and another 12 on another large and small program.   

The number of replications to be run in each experiment has to be identified 
during the design process. Certain statistical concepts have to be applied and 
knowledge of some characteristics of the population on which the experiment is 
run is required to calculate this number. Indeed, Chapter 15 will discuss how to 
know a minimum number of replications depending on how sure we need to be 
about the findings of the experiment. 

• Experimental error. Even if an experiment is repeated under roughly the same 
conditions, the observed results are never completely identical. The differences 
that occur from one repetition to another are called noise, experimental 
variations, experimental error or simply error. The word error is used not in a 
pejorative but in a technical sense. It refers to variations that are often inevitable. 
It is absolutely blame free. There are, therefore, several possible sources, the 
most self-evident of which are errors in the measurement of the values of the 
response variable. However, the most interesting cause from the experimental 
viewpoint are the unconsidered variations. This means that, by studying the 
experimental errors, a decision can be made on whether there is a source of 
variation in the experiments that has not been considered (either as a factor or as 
a blocking variable). This is a means of learning about the software development 
variables and their influence on the project results. Note that if an unknown 
variation of this sort is detected, it invalidates the results of the experimentation, 
which has to be repeated considering this new source of variation. This is what 
we called stepwise approach to experimentation in section 3.1, that is, the 
experiments will be run in successive round where what has been learnt in one 
group of experiments will feed the following group. 

The fact that they are not trained to deal with situations in which experimental errors 
cannot be ignored has been a mighty obstacle for many researchers. Caution is not 
only essential with regard to the possible effects of experimental error on data 
analysis, its influence is also a consideration of the utmost importance in 
experimental design. Therefore, an elementary knowledge of experimental error and 
associated probability theory is essential for laying a solid foundation on which to 
build the design and analysis of experiments. Part III of the book will detail how to 
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measure this error and its effects on experiments. 

4.3. THE SOFTWARE PROJECT AS AN EXPERIMENT 

4.3.1. Types of Variables in a Software Experiment 

As we have mentioned, the goal of running experiments in SE is to improve 
software system development. This improvement will have to be set at some point 
or under some circumstance within the development project. We can consider that 
the basic components of the development project are: people (developers, users and 
others), products (software system and all the intermediate products), problem (need 
raised by the user and point of origin of the project) and process (set of activities 
and methods that implement the project from start to finish). 

It is evident that the software project depends on more than one factor (for example, 
the people involved, the activities performed, the methods used for development, 
etc.). A proper study of software development calls for the effects of each factor to 
be isolated from the effects of all the other factors so that significant claims can be 
made, for example, technique X speeds up the development of Y-type software.  

Below, we suggest variables that may have an impact on the outcome of software 
development and which, therefore, can be taken into account when experimenting 
with software development. These variables can be selected as parameters, blocking 
variables or factors, depending on the goal of the experiment.  

Another point remains to be made concerning the suggested variables. This point is 
related to the selected experimental unit. As mentioned earlier, an experimentation 
in SE can be run on the whole or any part of the project. The same variable may 
play different roles (as a factor or response variable, for example) depending on 
what the experimental unit is. For example, suppose we want to determine the size 
of the code for implementing one and the same algorithm using two different 
programming languages. In this case, the algorithm to be developed would be the 
experimental unit and code size would be the response variable in question. 
However, if we chose to do another experiment to test two testing techniques, the 
experimental unit in this case would be the piece of code, and size would be a 
possible parameter or factor, as the result of the experiment could vary depending 
on its value. 

Therefore, if we take part of a development project as an experimental unit in our 
experiment, some of the possible factors and parameters will be the result of earlier 
phases of development, whereas if we take the entire project, these very same 
factors and parameters could be considered as response variables. 

4.3.2 Sources of Variation in a Software Project 
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The origins of variables (parameters, factors, blocking and response variables) of a 
SE experiment may be distinct, that is, their sources may differ. It may, therefore, be 
of interest to study the sources of variables that can affect the software project in 
order to identify possible experimental parameters, factors and response variables. 
For this purpose, we recommend the use of two different perspectives to address the 
software project: internal (inside) and external (outside) to the software project. 
Different sources of parameters, factors and response variables are identified for 
each perspective.  

• External perspective. The software project is seen as a black box and we 
examine only the variables affecting it from the outside. These variables cannot 
be modified or adjusted from within the software project, as they are 
predefined, so they will have to be considered parameters of the experiment. 
Figure 4.2 shows the different sources that can influence a software project 
from the external perspective. User characteristics can affect the development 
process, as well as the characteristics of the problem that we are trying to solve, 
the sources of information, some characteristics of the organisation at which the 
software is being developed, and customer constraints. Therefore, these are the 
sources of possible parameters and response variables in an experiment.  

 

Figure 4.2. External parameters 

• Internal perspective. The software project is viewed as a white box and we 
examine only variables affecting it from the inside. These variables are 
configured at the start of or during the project. Depending on the goal of the 
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experiment these variables could be selected as parameters, factors of even 
response variables. Figure 4.3 shows the different sources that can influence a 
software project from the internal perspective. These internal sources are 
processes (composed of activities), methods, tools, personnel and products. 

 

Figure 4.3. Internal parameters 

So, having identified the possible focus of influence in the software project, we can 
start to analyse and then identify possible parameters for a SE experiment. An 
extensive list of possible sources of variables for a software project is given in 
Annex I. Although we have sought to be exhaustive so as to aid readers with their 
experiments, this should not be taken to mean that the list is comprehensive or that 
readers cannot select other variables apart from those listed in this annex. Therefore, 
readers who are using this book to prepare a particular SE experiment can make use 
of this information to select given parameters. Some of the factors and parameters 
used in real SE experiments are referred to below.  

4.3.3. Parameters and Factors Used in Real SE Experiments 

Table 4.1 shows some examples of factors and parameters used in real experiments. 
With regard to parameters, it has to be said that it is difficult to find an accurate 
description of this sort of variables in the experimental SE literature, as many are 
not described explicitly in the references. Moreover, this makes it difficult to 
replicate the experiments since the conditions of the experiments are not 
exhaustively described. Therefore, Table 4.1 describes the parameters that have 
been mentioned explicitly in some experiments. This does not, however, mean that 
these were the only ones taken into account.  

As far as the factors shown in the table are concerned, note that factor selection 
depends on the goal of the experiment in question. They are not unique, however. 
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So, two experiments, which may share the same overall goal, may use different 
factors and parameters. This choice also depends on the conditions and possible 
constraints (time, subject, development conditions, etc.) subject to which each 
experiment is run. 

Table 4.1. Examples of factors and parameters in real experiments 

GOAL FACTORS PARAMETERS REFERENCE 
Studying the effect of 
different testing 
techniques on the 
effectiveness of the 
testing process 

• Software testing 
techniques (code 
reading, functional 
testing, structured 
testing) 

• Program types: three 
different programs 

• Subject level of 
expertise (advanced, 
intermediate, junior) 

• Testing process (first 
training, then three 
testing sessions and 
then a follow-up 
session) 

• Program size 
• Familiarity of subjects 

with editors, terminal 
machines and programs 
implementation 
language (good 
familiarity) 

• High-level language for 
implementing programs 

(Basili, 1987) 

Studying the effect of 
testing techniques on the 
effectiveness and 
efficiency at revealing 
failures 

• Inspection technique 
(code reading, 
functional testing, 
structured testing) 

• Program types (three 
different programs) 

• Subjects (six groups 
of similar subjects) 

• Order of applying 
techniques 

• Order in which subjects 
inspect programs (first 
program 1, then 
program 2, and then 
program 3). 

• Implementation 
language (C)   

• Problem complexity 
(low) 

• Subjects from a 
university lab course 

(Kamsties, 1995) 

Studying the ease of 
creating a program using 
an aspect-oriented 
approach and an OO 
approach 

• Programming 
approach (Aspect J, 
Java) 

• Problem complexity 
(low) 

• Application type 
(program with 
concurrence) 

• Subjects from a 
university course 

(Murphy, 1999) 

Studying the 
effectiveness of methods 
for isolating faulty 
modules 

• Method 
(classification tree 
analysis, random 
sampling, largest 
module) 

• Modules with a specific 
kind of fault 

• Modules domain 
(NASA environment) 

• Implementation 
language (Fortran) 

(Porter, 1992) 

Studying the quality of 
code produced using a 
functional language and 
an OO language 

• Programming 
language (SML, C++)

• Problem domain (image 
analysis) 

• Specific development 
process 

• Subjects experienced in 
both programming 
languages 

(Harrison, 1996) 
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Studying the effect of 
cleanroom development 
on the process and on the 
product 

• Development process 
(cleanroom, non-
cleanroom) 

• Subjects from a 
university course 

• Similar professional 
experience, academic 
performance and 
implementation 
language experience 

• Problem description (an 
electronic message 
system) 

• Implementation 
language (Simpl-T) 

• Development machine 
(Univac 1100/82) 

(Selby, 1987) 

Studying the best way of 
assessing changeability 
decay 

• Approaches to 
assessing 
changeability decay: 
benchmarking, 
structure 
measurement, change 
complexity analysis 

• Problem description 
(commercial project for 
an airline) 

• Visual Basic 6 
implementation 
language  

(Arisholm, 1999) 

Studying whether 
organisational structure 
has an effect on the 
amount of effort 
expended on 
communication-between 
developers 

• Organisational 
distance (close: all 
participants report to 
the same manager; 
distant: at least one 
participant from a 
different management 
area) 

• Physical distance 
(same corridor, same 
building, separate 
building) 

• Present familiarity 
(degree of interaction 
among participants) 

• Past familiarity 
(degree to which a set 
of participants have 
worked together on 
past projects) 

• Specific part of the 
development process 
(process inspection) 

• Implementation 
language (C++) 

• Problem description (a 
mission planning tool 
for NASA) 

• Number of participants 
in the inspection 
process (around 20) 

• Use of a specific 
approach for 
inspections described in 
the paper 

(Seaman, 1998) 

4.4. RESPONSE VARIABLES IN SE EXPERIMENTATION 

As we have already mentioned, response variables reflect the data that are collected 
from experiments. They are, therefore, variables that can only be measured a 
posteriori, after the entire experiment (the software project or the respective phase 
or activity) has ended. Remember that the response variables with which we are 
concerned in this book must provide a quantitative measure that will be studied 
during the process of analysis. These variables have to represent the effect of the 
different factor alternatives on the experimental units in question. For example, 
suppose that we want to evaluate the accuracy of two estimation techniques; the 
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response variable has to measure accuracy. Alternatively, for example, if we want 
to quantify the time saving when using as opposed to not using a code generator, 
the response variable to be measured would be the time taken with both alternatives 
to program certain specifications. Note then that the response variable of an 
experiment depends mainly on the goal and hypothesis of the experiment in 
question, whereas more than one response variable can be gathered for one and the 
same experiment, as shown in Table 4.6. This will involve running several analyses, 
one for each response variable. 

The possible response variables that we can identify in software experiments can 
measure characteristics of the development process, of the methods or tools used, of 
the team or of the different products output during the above development process. 
Table 4.2. shows some of the response variables related to each component. 

Special measures or, alternatively, special metrics have to be used to get the 
individual values of these response variables. The relationship between these two 
concepts is discussed in the following section. 

 

Table 4.2 Examples of response variables in SE 
experiments 

Development process Schedule deviation, budget 
deviation, process compliance 

Methods Efficiency, usability, 
adaptability 

Resources Productivity 
Products Reliability, portability, 

usability of the final product,  
maintainability, design  
correctness, level of code  
coverage 

4.4.1. Relationship between Response Variables and Metrics 

The response variables of an experiment are closely related to the concept 
of metric used in software development. Indeed, as mentioned earlier, metrics 
applied to the products or deliverables that are output during development, the 
development process or any of its activities and the resources involved in the above 
development are used to measure these variables.  

Response variables can be likened to what are referred to as product, process or 
resource attributes in the literature on software metrics (Fenton, 1997). Here, 
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Fenton and Pfleeger class these attributes as internal and external attributes. Table 
4.3 shows some product-, process- or people-related attributes arranged according 
to this classification. The internal attributes of a product, process or resource are 
what can be measured purely in terms of the product, process or resource. In other 
words, an internal attribute can be measured by examining the product, process or 
resource as distinct from its behaviour. On the other hand, the external attributes of 
a product, process or resource are what can be measured solely with regard to how 
the product, process or resource is related to its environment. In other words, the 
behaviour of the process, product or resource is more important than the entity 
itself. 

Consider code, for example. An internal attribute could be its size (measured, for 
example, as the number of lines of code) or we could even measure its quality by 
identifying the number of faults found when it is read. However, there are other 
attributes that can only be measured when the code is executed, like the number of 
faults perceived by the user or the user’s difficulty in navigating from screen to 
screen, for example. Table 4.3 shows other internal and external attributes for 
products and resources. 

Table 4.3 also shows some metrics that could be applied to evaluate the respective 
attributes for response variables in terms of SE experimentation. This table is not 
designed as a comprehensive guide to software metrics. It simply provides readers 
with some examples that can be used to measure given attributes (or response 
variables). Note that the table includes no response variables or metrics related to 
the methods or tools for use, for example. However, some response variables used 
to evaluate a finished product, like usability, efficiency, etc., can be applied for this 
purpose. 

The metrics included in Table 4.3 actually depend on the (entity, attribute) pair, 
where some products, separate parts of the process or of resources are represented 
under the entity column. More than one metric can be applicable to the same (entity, 
attribute) pair, such as the (code, reliability) pair, which can be measured by the 
number of faults in time t or by means of the mean time between failure, for 
example. This table is far from being a full list of metrics for application in software 
development, it simply gives examples of some of these measures. 

When working with metrics, we need to consider the different sorts of measurement 
scale. The most common scale types are: nominal, ordinal, interval and ratio 
(Fenton, 1997) (Kitchenham, 1996). 

a.  Nominal scales are actually mere classifications dressed up as numerical 
assignations. The values assigned to objects have neither a quantitative nor a 
qualitative meaning. They simply act as mere classes of equivalence of the 
classification. 
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b.  Ordinal scales are actually mere relationships of comparison dressed up as 
numerical assignations. In this case, the values assigned to the objects do not 
have a quantitative meaning and act as mere marks that indicate the order of 
the objects. 

c.  Interval scales represent numerical values, where the difference between each 
consecutive pair of numbers is an equivalent amount, but there is no real zero 
value. On an interval scale, 2-1 = 4-3, but two units are not twice as much as 
one unit. 

d.  Ratio scales are similar to interval scales, but include the absolute zero. On a 
ratio scale, two units are equivalent to twice the amount of one unit. 
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Table 4.3. Examples of software attributes and metrics 

 Entities Internal Attributes Metrics External Attributes Metrics 
Products  Specifications Size • number of classes 

• number of atomic process 
 

Comprehensibility hours that an external analyst 
takes to understand the 
specifications 

  Reuse number of classes used without change Maintainability person.months spent in making a 
change 

  Functionality number of function points   
  Syntactic correctness number of syntactic faults   
  Designs Size number of modules Maintainability number of modules affected by a 

change in another one 
  Reuse number of modules used without 

change 
  

  Coupling number of interconnections per 
module 

  

  Cohesiveness number of modules with functional 
cohesion/total number of modules 

  

  Code Size Non-comment lines of code (NCLOC) Quality defects/LOC 
  Complexity • number of nodes in a control flow 

diagram 
• McCabe’s cyclomatic complexity 

Usability hours of training before 
independent use of a program 

    Maintainability days spent in making a change 
    Efficiency execution time 
    Reliability • number of faults in a time t 

• mean time between failures 
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Processes Overall

Process 
Time months from start to finish of the 

development 
Schedule deviation estimated months/real months 

 Constructing
specifications 

 Effort person.months from start to finish of 
the activity 

Stability of 
requirements 

number of requirements changes 

 Testing Time months from start to finish of the 
activity 

Cost-effectiveness number of detected defects/cost 
of the testing activity 

  Effort person.months from start to finish of 
the activity 

Quality number of detected 
defects/number of existing 
defects 

Resources Personnel Cost $ per month Productivity number-of-function-points- 
implemented/person-month 

    Experience years of experience 
  Teams Size number of members Productivity number-of-function-points- 

implemented/team-month 
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Table 4.4 shows examples of these scales both inside and outside SE. This table 
also shows some constraints on the mathematical operators that can be applied to 
each one. As discussed in Chapter 6, this scale is important insofar as it determines 
the sort of method of data analysis to be applied to get the respective conclusions.   

Table 4.4. Measurement type scales 

Name Examples outside SE Examples inside SE Constraints 
Nominal Colours: 

1.  White 
2.  Yellow 
3.  Green 
4.  Red 
5.  Blue 
6.  Black 

Testing methods:  
• type I (design  
inspections) 
• type II (unit testing) 
• type III (integration  
testing) 
• type IV (system 
      testing) 
Fault types: 
• type 1 (interface) 
• type 2 (I/O) 
• type 3 (computation) 
• type 4 (control flow) 

Categories cannot be used 
in formulas even if you 
map your categories to 
integers. 
We can use the mode and 
percentiles to describe 
nominal data sets. 

Ordinal The Mohs scale to detect 
the hardness of minerals 
or scales for measuring 
intelligence. 

Ordinal scales are often used for 
adjustment factors in cost models 
based on a fixed set of scale 
points, such as very high, high, 
average, low very low.  
The SEI Capability Maturity 
Model (CMM) classifies 
development on a five-point 
ordinal scale. 

Scale points cannot be 
used in formulas. So, for 
instance, 2.5 on the SEI 
CMM scale is not 
meaningful. We can use 
the median and 
percentiles to describe 
ordinal data sets. 

Interval Temperature scales: 
-1 degree centigrade 
0 degrees centigrade 
1 degree centigrade 
etc. 

If we have been recording 
resource productivity at six-
monthly intervals since 1980, we 
can measure time since the start 
of the measurement programme 
on an interval scale starting with 
01/01/1980 as 0, followed by 
01/06/1980 as 1, etc. 

We can use the mean and 
standard deviation to 
describe interval scale 
data sets. 

Ratios Length, mass, length The number of lines of code in a 
program is a ratio scale measure 
of code length. 

We can use the mean, 
standard deviation and 
geometric mean to 
describe interval data 
sets. 

4.4.2. How to Identify Response Variables and Metrics for a SE Experiment 

The identification of response variables and metrics in an experiment is an essential 
task if the experiment in question is to be significant. The concept of response 
variable is often used as interchangeable with the concept of metric in the literature 
on SE experiments, that is, when the response variables of an experiment are 
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mentioned, the metrics that will be used are sometimes directly specified, and the 
two terms are thus used as synonyms. 

This is the approach proposed by Basili at al. (Basili, 1994), called Goal-Question-
Metric (GQM), that has been successfully used in several experiments (Shull, 2000) 
(Basili, 1987) (Lott, 1996) (Kamsties, 1995) for identifying response variables 
(which are directly metrics). This approach involves defining the goal of the 
experiment. We then have to generate a set of questions whose responses will help 
us to determine the proposed goal and, finally, we have to analyse each question in 
terms of which metric we need to know to answer each question.  

Let’s take a look at an application of GQM in a real experiment to show how useful 
it is for choosing the metrics of an experiment. Kamsties (1995) and Lott (1996) 
applied this approach to get the metrics of an experiment that aims to study several 
testing techniques. In Table 4.5, we describe the goals defined by the authors, as 
well as the questions and response variables considered. Note that one and the same 
response variable can be useful for answering different questions, like, for example, 
the experience of the subjects, which is used in questions Q.1.2, Q.2.2, Q.3.2 and 
Q.4.2. Thus, the GQM provides a structured and gradual means of determining the 
response variables to be considered in an experiment, where the choice of the above 
variables is based on the goal to be achieved by the above experiment. 

4.4.3. Response Variables in Real SE Experiments 

In this section we present some response variables found in SE experimentation 
literature. As we said before, in the case of a software experiment, the response 
variables, which will be assessed by means of the metrics under consideration, 
depend on the goal of the experiment in question, the size of the resources available 
for running the experiment, the conditions under which the experiment is run, etc. 
Thus, for example, Table 4.6 shows some response variables (in this case, metrics 
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Table 4.5. Examples of GQM application to identify response variables in an experiment 

Goal G.1. Effectiveness at revealing 
failures 

G.2. Efficiency at revealing 
failures 

G.3. Effectiveness at isolating 
failures 

G.4. Efficiency at isolating faults 

Questions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               Metrics 

Q.1.1.What 
percentage of 
total possible 
failures did
each subject 
reveal and
record? 

 

 

Q.1.2. What 
effect did the 
subject’s 
experience 
with the
language or 
motivation 
for the
experiment 
have on the 
percentage 
of total 
possible 
failures 
revealed and 
recorded? 

 

 

Q. 2.1. How 
many unique 
failure classes 
did the subject 
reveal and
record per
hour? 

 
 

Q.2.2. What 
effect did the 
subject’s 
experience 
with the
language or 
motivation 
for the
experiment 
have on the 
number of 
unique 
failure 
classes 
revealed and 
recorded per 
hour? 

 

 

Q.3.1. What
percentage of 
total faults
(that 
manifested 
themselves in 
failures) did
each subject
isolate? 

 

 

 
 

Q.3.2. What 
effect did the 
subject’s 
experience 
with the
language or
motivation for 
the experiment 
have on the 
percentage or 
total faults 
isolated? 

 
 

Q.4.1. How
many faults did 
the subject
isolate per
hour? 

 

 
 

Q.4.2. What 
effect did the 
subject’s 
experience with 
the language or 
motivation for 
the experiment 
have on the 
number of faults 
isolated per 
hour? 

Number of different, possible 
failures 

*        *

Subject’s experience with the 
language (estimated on a scale 
from 0-5) 

        * * * *

Subject’s experience with the 
language (measured in years of 
working with it) 

        * * * +
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Subject’s mastery of the technique 
(estimated on a scale from 0-5) 

* * * *

Number of times a test case caused 
a program’s behaviour to deviate 
from the specified behaviour 

*        * * *

Number of revealed deviations that 
the subject recorded 

*        * * *

Amount of time the subject 
required to reveal and record the 
failures 

        * *

Number of faults present in the 
program 

        * *

Number of faults that manifested 
themselves as failures 

        * * * *

For all faults that manifested 
themselves as failures, the number 
of those faults that were isolated 

        * * * *

Amount of time the subject 
required to isolate faults 

      * * 
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directly) employed in real experiments alongside the goal pursued by each 
experiment. This illustrates how the response variables depend on the above goal. 
Note how it is possible to measure several response variables for just one 
experiment. This will involve an independent analysis for each one, and a joint 
interpretation of the separate analyses in order to give some response about the 
defined goal (remember that data analysis will be examined in Part III of this book).  

Table 4.6. Examples of response variables in real SE experiments 

Goal Response Variable Experiment 
Studying the effect of three 
testing techniques on the 
effectiveness of the testing 
process 

• No. of faults detected 
• Percentage of faults detected 
• Total fault detection time 
• Fault detection rate 

(Basili, 1987) 

Studying the effectiveness of 
different capture-recapture 
models to predict the number of 
remaining defects in an 
inspection document 

• RE=(estimate_no._defects-
actual__defects)/actual_no._defects 

(Briand, 1997) 

Studying the performance of 
meeting inspections compared 
to individual inspections 

• Meeting gain rate: percentage of defects first 
identified at the meeting 

• Meeting loss rate: percentage of defects first 
identified by an individual but not included in 
the meeting report  

(Fusaro, 1997) 

Studying the degree of 
inheritance in friend C++ 
classes 

• Depth of inheritance tree: maximum level of the 
inheritance hierarchy of a class 

(Counsell, 
1999) 

Studying the performance 
advantage of interacting groups 
over average individuals 

• Number of true defects: defects that need 
rework 

• Number of false positive defects: defects that 
require no repair 

• Net defect score: number of true defects-number 
of false positives 

(Land, 1997) 

Studying performance between 
individuals performing tool-
based inspections and those 
performing paper-based 
inspections 

• Number of defects found after a given time 
period 

(Macdonald, 
1998) 

Studying the effect on the 
productivity of the development 
team on projects with accurate 
cost estimation 

• TP= (SLC/EFT) 
• SLC:size of delivered code 
• EFT: total amount of effort needed in the 

development(person.month) 

(Mizuno, 
1998) 

Studying the impact on the 
number of faults for those 
projects that have correctly 
applied specific guidelines 
provided by a software 
engineering process group.  

• ρreview/total = (Faults detected during the design 
phase) /     (Faults detected during the design 
phase + Faults detected during the debug phase 
+ Faults detected during six months after code 
development) x 100 

 
• ρtest/total = (Faults detected during the debug 

phase) / (Faults detected during the design phase 
+ Faults detected during the debug phase + 
Faults detected during six months after code 

(Mizuno, 
1999) 
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development) x 100 
Studying the accuracy of the 
analogy-based estimation 
compared with the regression 
model-based estimation 

• ((actual effort - estimated effort) / actual effort) 
x 100 

(Myrtevil, 
1999) 

Studying the quality of 
structured versus object-
oriented languages on the 
development process 
 
 
 
 
 
Studying the quality of 
structured versus object-
oriented languages on the 
delivered code 

• Number of known errors found during execution 
of test scripts 

• Time to fix the known errors 
• Number of modifications requested during code 

reviews, testing and maintenance 
• Time to implement modifications 
• Development time 
• Testing time 
 
• Number of non-comment, non-blank source 

lines 
• Number of distinct functions called 
• Number of domain specific functions called 
• Depth of the function call hierarchy chart 

(Samaraweera, 
1998) 

Studying the effect of 
Cleanroom development on the 
product developed 
 
 
 
 
 
Studying the effect of 
Cleanroom development on the 
development process 
 

• Test cases passed 
• Number of source lines 
• Number of executable statements 
• Number of procedures and functions 
• Completeness of the implementation as a 

function of compliance of certain requirements 
 
• Efficiency with which subjects think that they  

applied off-line software review techniques(1)

• CPU time used by subjects 
• Number of deliveries 

(Selby, 1987) 

Studying the effect of using a 
predefined process versus let 
developers use a self-defined 
process on the size of the 
systems 
 
Studying the effect of using a 
predefined process versus let 
developers use a self-defined 
process on the defects in the 
execution of the process 

• Number of tables in the database 
• Number of modules in the structure chart 
 
 
 
 
• Number of activities included in the process and 

not executed 
• Number of deliverables expected and not 

produced 
• Number of activities executed incorrectly 

(Tortorella, 
1999) 

(1)The authors indicate that this response variable can be somewhat subjective. 

4.5. SUGGESTED EXERCISES 

4.5.1.  An aeronautics software development laboratory aims to identify the best 
two of four possible programming languages (Pascal, C, PL/M and 
FORTRAN) in terms of productivity, which are to be selected to implement 
two versions of the same flight control application so that if one fails the 
other comes into operation. There are 12 programmers and 30 modules 
with similar functionalities to flight control applications for the experiment. 
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The individual productivity of each programmer differs, which could affect 
the experiment productivity. Specify what the factors, alternatives, 
blocking variables, experimental subjects and objects, and parameters of 
this experiment would be. What would a unitary experiment involve?  

Solution: factor: programming language; 
alternatives: Pascal, C, PL/M and FORTRAN; 

blocking variable: 12 programmers; 
subjects: 12 programmers; 

experimental objects: 30 modules; 
response variable: mean productivity in terms of months/person, for example; 

parameters: flight control domain modules, similar complexity; 
a unitary experiment would involve the implementation of one of the modules 

 by one of the subjects in a given language. 

4.5.2. An educational institution is considering justifying whether the deployment 
of an intelligent tutoring system to teach OO would improve the quality of 
instruction in the above discipline. For this purpose, it decides to compare 
the result of a test on this subject taken by students who have used this 
intelligent tutor with the result of the same test taken by students who have 
used traditional printed material. None of the students will be acquainted 
with the domain; the instructors will not interact with students, which 
means that the subject matter will not be explained by the instructors in 
question; all the students will be of the same age; they will all be given the 
same time to do the test; the test will be the same; and the motivation will 
also be the same, that is, none of the students will receive anything in 
return. What are the factors and parameters of the experiment, blocking 
variables, experimental subjects and objects and response variable? What 
would a unitary experiment involve?  

Solution: factor: system of instruction 
parameters: students unfamiliar with the domain; 

same test; same time; same motivation; same age; 
no interaction with instructors; 

block: none; 
subjects: students; 

experimental objects: test; 
response variable: test grade; 

unitary experiment: a student is taught according to a particular system of 
instruction and takes the test in question. 



5 EXPERIMENTAL 
DESIGN 

5.1. INTRODUCTION 

As discussed in Chapter 4, experimental design decides which variables will be 
examined and their values, which data will be collected, how many experiments 
have to be run and how many times the experiments have to be repeated. In other 
words, a decision is made on how the experiment will actually be arranged. This 
chapter examines the different kinds of experimental design there are and the 
circumstances under which each one should be used. 

Before going on to discuss the different kinds of experimental design in detail, let’s 
make a parenthesis and note that experimental design is the phase of the 
experimental process that best distinguishes an experiment from an observation or 
survey. As mentioned earlier, observers do not modify the real world during an 
observation, they merely “look at it” and collect data from it. On the other hand, 
experimenters arrange the real world before observing it. What primarily 
differentiates experimentation from observation is this prior interference with the 
real world. The “pre-treatment” of the real world, as required by experimentation, is 
what is called experimental design. 

This chapter examines a range of ways that can be used in controlled experiments 
“to modify the real world”. Sections 5.2 to 5.8 contain several kinds of experimental 
designs. After reading Chapter 4 and the above-mentioned sections of this chapter 
and having gained an overview of experimental design, sections 5.9 and 5.10 
immerse readers in the general questions of experimental design. Section 5.9 lists 
the steps to be taken to design experiments, whereas section 5.10 describes some 
potential problems encountered during experimental design in SE and their possible 
solutions. 

5.2. EXPERIMENTAL DESIGN 

5.2.1. Kinds of Experimental Design 

In experimental design, we first have to decide (based on the goals of the 
experiment) to what factors and alternatives the experimental units are to be 
subjected and what project parameters are to be set. We will then examine whether 
any of the parameters cannot be kept at a constant value and account for any 
undesired variation. Finally, we will choose which response variables are to be 
measured and which the experimental objects and subjects are to be. These steps 
will be described in more detail in section 5.9.  
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Having established the parameters, factors, blocking variables and response 
variables, it is time to choose a kind of experimental design. The type of 
experimental design establishes how many combinations of alternatives unitary 
experiments have to deal with. 

There are different experimental designs depending on the aim of the experiment, 
the number of factors, the alternatives of the factors, the number of undesired 
variations, etc. Table 5.1 gives a brief summary of the most commonly used 
experimental designs. 

Table 5.1. Different experimental designs  

Categorical
Factors
    and

Quantitative
Experimental
Response

One factor of
interest
(2 or n alternatives)

All other project parameters
can be fixed

K  factors of interest
(2 or n alternatives)

- One-factor experiment
- Paired comparison

Block Design

There are desired
variations (of factors) only

Blocked
Factorial Design

- Factorial Design
- Nested Design

Fractional
Factorial
Design

less than nk

experiments

n k   experiments

CONDITIONS OF THE EXPERIMENT EXPERIMENTAL DESIGN

There are undesired variations

There are undesired variations{ {

{ {
 

The remaining sections discuss the designs shown in Table 5.1. However, before 
moving on to study each kind of design, it is important to understand a fundamental 
concept that must be taken into account in any of these designs: randomisation. 

5.2.2. Randomisation in Experimental Design 

Randomised design means that the factor alternatives are assigned to experimental 
units in an absolutely random order. As far as SE is concerned, both the factor 
alternatives and the subjects have to be randomised, as the subjects have a critical 
impact on the value of the response variable. For example, suppose we have an 
experiment in which there is only one factor of interest. Imagine that we have four 
similar development projects that differ only in the use of four CASE tools for 
comparison. Consequently, we are working with the factor CASE tool that has four 
alternatives. We have to examine how the above tools perform on projects to assess 
the effect of the tools, and we have eight subjects with similar characteristics for this 
purpose. How are the tools and the subjects assigned to the projects? Experimental 
design theory says that if anyone were to deliberately assign tools to projects, they 
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would be quite likely to bring in undesired sources of variation, that is, the reason 
behind the assignment. The assignment should be done completely at random to 
prevent this problem, for example, by putting four numbers for the four tools in one 
bag, eight numbers for the eight subjects in another and four numbers for the four 
projects under development in another. Factor alternatives and subjects must always 
be assigned at random to experiments, irrespective of the sort of design chosen in 
Table 5.1. Note that we are referring to the assignment of alternatives to 
experiments, not the combination of factor alternatives, which is what is actually 
established by the experimental design (Table 5.1). As we will see in section 5.5.2. 
for example, if we have two factors (A and B) each with two alternatives (A1, A2, 
B1, B2,), the alternatives have to be combined as follows: A1B1, A1B2, A2B1, A2B2. 
This combination of alternatives is specified by the sort of experimental design 
chosen. However, these four combinations must be assigned at random to projects 
and subjects. 

As we will see in section 5.10., it is not always possible to fully randomise 
experiments. This section details these circumstances and gives “tips” on how 
randomisation should be addressed in these cases. Whether or not an experimental 
design is randomised is important insofar as it determines the method of analysis 
that is to be employed, as we will see in Part III of the book. 

5.3. ONE-FACTOR DESIGNS 

5.3.1. Simple Randomised Designs: One Alternative per Experimental Unit 

When a series of experiments are run, the simplest means of comparing the response 
variable for each alternative of just one factor is to use each alternative in a given 
number of experimental units. Remember, however, that the assignment of the 
alternatives to experiments has to be randomised in order to assure the validity of the 
data analysis. As we have seen, experiment randomisation involves applying all the 
alternatives to the respective projects (and subjects) randomly rather than 
systematically. 

For example, suppose that we intend to compare two analysis techniques, A and B. 
For this purpose, we will use the two in a total of 10 projects. Techniques A and B 
will be randomly assigned to one of the 10 projects. In other words, we do not mean 
to use A in the first five projects and then B in the remainder, A and B alternatively 
or any other option that implies any sort of order. We want the use of A or B in a 
project to have been decided arbitrarily. 

This random use cannot be assured by means of a human assignment, which is 
believed to have an underlying cause (as there may be subconscious implications 
that jeopardise the randomness of the assignment). Therefore, some sort of genuine 
system of random selection will be used, like, for example, throwing a dice, taking 
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cards out of a pack, etc. In this case, the experimenter took 10 cards, five red and 
five black, from the pack; the red cards would correspond to the use of A and the 
black ones to the use of B. The experimenter shuffled the cards and placed each one 
face up, yielding the following succession: the first card that came out was red, the 
second was red, the third was black and so on. As mentioned above, a similar project 
must also be used to assign experimental units and techniques to subjects. 

Project/Experimental Unit 1 2 3 4 5 6 7 8 9 10 

Technique applied A A B B A B B B A A 

This sort of simple design in which each experimental unit is assigned to a factor 
alternative is equally applicable for examining two or n alternatives. All we have to 
do is assign the n alternatives randomly to the unitary experiments (for example, the 
four suits of cards can be used to randomise four alternatives). The analysis of those 
designs are shown in sections 7.2. and 7.3. of Chapter 7, when the factor has two 
alternatives, and in Chapter 8 when the factor has more than two alternatives. 

When the factor has only two alternatives there is another alternative design which 
is examined in the following section. 

5.3.2. Randomised Paired Comparison Designs: Two Alternatives on One 
Experimental Unit 

There is another way of designing experiments to find out which is the better of two 
factor alternatives in respect of a given response variable. These are paired 
comparison designs. These designs increase the accuracy of the subsequent analysis 
that is to be conducted on the experimental results. This sort of design involves 
applying the two alternatives to the same, instead of two different experimental 
units, as specified in the preceding section. Remember that the experimental unit in 
SE will be a development project or a specific part of it. Applying the two 
alternatives to the same experimental unit means that each alternative must be 
applied to the project in question or part of it. As it is not advisable for the same 
team to carry out the same project twice (as its members will be much more 
knowledgeable the second time round, and the situation could not be considered 
similar), the same project will be completed by two different, though similar teams. 

The alternative to be applied by each team in each project is assigned randomly. 
This means that the same team does not always apply the same alternative, nor is 
this varied systematically. 

If the above experiment to examine the analysis techniques A and B were to be run 
by means of a paired comparison design, an experiment could be designed as 
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follows: 

Project/Experimental Unit Team 1 Team 2
1 
2 
3 
4 
5 

A 
A 
B 
B 
A 

B 
B 
A 
A 
B 

This design has a shortcoming, which is discussed in section 5.10 and concerns 
team learning. This characteristic can be briefly described by saying that the fact 
that the same team applies the same technique more than once can lead to the 
members of the team then becoming more acquainted with the technique. As 
mentioned earlier, situations of this sort will be described in detail in section 5.10, 
alongside some suggestions on how they can be dealt with.  

Section 7.4 in Part III of the book shows how to analyse the data collected 
according to this design. 

5.3.3. Real SE Experiments with One-Factor Designs 

5.3.3.1. Design for Examining the Effect of Cleanroom Development 

Examples of one-factor experimental designs can be found in the literature. For 
example, Selby, Basili and Baker (Selby, 1987) ran an interesting experiment to find 
out the effect of cleanroom development on the delivered product, the software 
development process and the developers. This inquiry was conducted working with 
15 groups of three subjects, computer science students, who developed versions of 
the same software system. Of these groups, 10 worked with the cleanroom 
development approach and five took a traditional approach. This design thus yields 
a one-factor (development approach) design with two alternatives (cleanroom, non-
cleanroom). Remember that some of the response variables dealt with in this 
experiment are number of source lines, number of executable statements or number 
deliveries; although all response variables used in this experiment are given in Table 
4.6. The results of this experiment are discussed in section 14.4.1.  

 

5.3.3.2. Design to Compare Structured and Object-Oriented Methods for Embedded 
Systems 

Another interesting one-factor design is described in the controlled experiment 
(Houdek, 1999) comparing structured and object-oriented methods for embedded 
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systems performed by graduate computer science students. The authors selected two 
development methods for embedded systems to explore this goal, structured 
analysis/real time (SA/RT) (as the structured method) and Octopus (as the object-
oriented method).  

The experiment was divided into two parts. The first considered the analysis phase 
of software development and the second continued with the design and 
implementation phases. Figure 5.1 shows the experimental design used for the first 
part of the study. The participants were divided into six teams. Each team was asked 
to build two objected-oriented analysis (OOA) and two SA/RT models out of a 
given natural language specification document (which implies replicating each 
experiment twice). For instance, team 2 built the microwave and an automatic teller 
machine (ATM) system using SA/RT, and a parking garage gate and a heating 
control using OOA. After the second and the fourth modelling part, the participants 
were asked to review the models developed by other groups. In-between, there were 
accompanying lectures and exercises (A,B,C). At the end, one student reworked the 
defects found.  
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Figure 5.1. Design of the first part of the study 

Figure 5.2 shows the second part of the experiment, where each participant was 
asked to build an object-oriented design (OOD) or structured design (SD) document 
out of a given OOA or SA/RT model, respectively. In the implementation phase, 
they were asked to use the design models to build C++ or C code. 
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Figure 5.2. Design of the second part of the study 

The only factor considered in this design is the development method, which means 
that the authors can collect data on all the technical activities (analysis, design and 
coding) and also reorganise these data to gather information about constructive 
(analysis, design and implementation), analytical (reviewing process) and corrective 
(error removal) activities. The response variables used in this experiment include: 
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effort required in each activity, size of the models developed or quality (measured as 
the number and type of defects). This experiment yielded interesting results, such as 
no significant differences were detected in the effort needed to address the 
development phases between either of the two methods or no significant differences 
in quality (measured as number and type of defects) were detected in either method. 
This means that there is no experimental basis for being able to claim that either of 
the two methods is better than the other as far as quality or productivity are 
concerned. 

5.3.3.3. Design to Compare Structured, Data and Object Methodologies 

Another experiment related to the study of development methods, in which a one-
factor design was used, was run by Vessey and Conger (Vessey, 1994) to 
investigate the performance of process, data and object methodologies in aiding 
novice analysts to learn how to specify information requirements. The 
methodologies investigated were: structural techniques, Jackson system 
development and Booch’87 object-oriented approach. This experimental design is, 
therefore, a one-factor design with three alternatives. Six students with similar 
knowledge of the methodologies were randomly assigned to each methodology. 
Each student specified three applications and the process followed was traced using 
protocol analysis (technique applied in building expert systems and proposed by 
Ericson and Simon (Ericson, 1984) to acquire expert knowledge). The results of this 
experiment showed that object orientation is not the natural approach to system 
requirements, unlike what is often heard in the world of software development. 
These results cannot be considered conclusive, especially for experienced 
practitioners. Nevertheless, they indicate a direction for further research. 

5.3.3.4. Design to Compare Fourth Generation Languages against Third 
Generation Languages 

One-factor designs were built by Misra and Jalics (Misra, 1988) and by Matos and 
Jalics (Matos, 1989) in order to study the benefits of fourth versus third generation 
languages in the implementation of simple business system applications. The 
alternatives studied in the first experiment were actually dBase III, PC-Focus and 
COBOL. The response variables considered in the experiment were the 
development effort, the size of the code generated and the performance measured in 
execution time. The results of this experiment showed that even though code sizes 
were smaller with both fourth generation languages, the third generation COBOL 
was clearly superior in performance. On the other hand, it took longer to develop the 
solution in COBOL than in dBaseIII but less time than in PC-Focus. The authors 
conclude from this experiment that being a fourth-generation language per se does 
not mean faster development. The experiment described in (Matos, 1989) is an 
extension of the above, in which more alternatives were used (COBOL, Oracle, 
Informix-4GL, Condor, Paradox, dBase, Rbase and PC-Focus). The results showed 
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that COBOL performance was better overall than 4GL systems, but there are some 
specific kind of queries in which 4GL perform better than COBOL, for example, 
relational union or join.  

5.3.3.5. Design to Compare the Comprehensibility of Structured and Object-
Oriented Models 

To conclude the examples of one-factor experiments, let’s discuss the experiment 
run by Agarwal and De Sinha (Agarwal, 1999) to examine the comprehensibility of 
models generated with an object-oriented and a process-oriented approach (the 
models used were actually object class diagrams and DFDs, respectively, so they 
worked with two alternatives). For this purpose, the authors ran two experiments on 
two different problems. In the first, 18 subjects analysed each model and in the 
second, 18 subjects evaluated OO and 17 the structured model. The 
comprehensibility was evaluated by means of a questionnaire on the models. The 
result of this experiment shows that the process-oriented model was found to be 
easier to understand than the OO model for complex questions on the meaning of the 
models. 

5.4. HOW TO AVOID VARIATIONS OF NO INTEREST TO THE 
EXPERIMENT: BLOCK DESIGNS 

As discussed in Chapter 4, it is not always possible to set all the characteristics of 
the project/experiment at a particular value. When this happens and there are 
undesired but irremediable variations, we have to resort to a special sort of 
experimental design, known as block designs. 

What happens in these cases is that while we aim to find out the influence of a 
particular factor A on the response, there is another factor B that also influences the 
values of the response variable. The problem, then, is as follows: as there are two 
variables that influence the response, we are unable to ascertain to which factor the 
differences found in the result are due. As we are not concerned with factor B, what 
we would like to do is eliminate its influence on the response and assure that the 
variations observed in the response variable are due only to the factor. In this case, 
we are concerned with factor A. 

For example, suppose we have an experiment on programming languages and code 
errors. Programmer experience is to be expected to influence the number of errors. 
Nevertheless, we do not intend to study the issue of programmer experience; we aim 
to focus only on any possible influence of the programming languages on code 
errors. So, the ideal thing would be to remove the variability due to programmer 
experience. But, how can this be done? 

Can focal points of undesired variability be removed from an experiment? Yes, 
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using experimental block design. A block design is a carefully balanced design 
where the uninteresting variable has an equal chance of influencing all the 
alternatives of the factor under examination, and the above bias is thus cancelled out 
(there are also non-balanced block designs, where this condition cannot be 
completely satisfied; however, they are not addressed in this book, as their analysis 
is quite complicated and they are not very common designs; interested readers are 
referred to the work of Montgomery, et al. (Montgomery, 1991) for more details).  

There are pre-established experimental designs for two, three, four and more 
sources of uncontrolled variation, known as Latin, Greco-Latin or Hyper-Greco-
Latin square designs. Depending on the number of alternatives of the factor and 
blocking variables we can have 3x3, 4x4, 5x5 and so on Latin, Greco-Latin or 
Hyper-Greco-Latin square designs. These designs combine the alternatives so that 
each one is used once and only once per block. All these designs are examined 
below. 

5.4.1. Design with a Single Blocking Variable  

For example, suppose that the uninteresting factor (called UF) has two options and 
the interesting factor (called IF) another two. A balanced design, where the 
uninteresting factor has the same influence on the two alternatives of the interesting 
factor, calls for the two alternatives of the uninteresting factor to appear the same 
number of times paired with each alternative of the interesting factor. 

For example, the following 2×2 (number of alternatives of the interesting variable) 
matrix meets the above conditions. 

UF1 UF2 
IF1 
IF2 

IF2 
IF1 

This matrix tells us that we need at least four experiments to rule out any bias 
caused by the uninteresting variable, where the values of both variables for each 
experimental unit are: one experiment with UF1 and IF1, another with UF1 and IF2, 
another with UF2 and IF2 and finally one with UF2 and IF1.  

Randomisation will be assured if the meanings of alternatives UF1 and UF2 and of 
IF1 and IF2 are assigned at random, for example, by tossing a coin, as remarked 
upon in the discussion on the need to randomise experiments irrespective of the 
design type, and the order in which the interesting variables are applied together 
with each uninteresting variable is determined at random. The above matrix shows a 
possible order within each uninteresting variable. Nevertheless, there are four 
possible ways of running these experiments (2x2). 
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Suppose now that the interesting factor has four alternatives. Imagine that we come 
up against the example described above in which we aim to examine four 
programming languages (A, B, C, D) and we intend to eliminate the variable due to 
development team experience. Now suppose that we have four development teams 
(T1, T2, T3, T4). In order to eliminate the variability and for each team to perform the 
experiment the same number of times (at least once) using each alternative of the 
interesting variable, a possible design could be as shown in the following matrix. 

T1 C B A D 
T2 A B D C 
T3 B C D A 
T4 A D C B 

This design tells us that we would need 16 experiments to eliminate the bias of the 
undesired variation (development team). This means that each alternative of the 
factor under examination (A, B, C, D) is assigned once to each alternative of the 
undesired variation (T1, T2, T3, T4). Each row of the matrix (or value of the 
undesired variable) is called a block. The number of experiments per block, given 
here by the respective columns, is what is called block size. In this case, the size of 
the block is four. The order of assignment is random, that is, team E1 can use the 
language A in one of its four projects. However, the decision as to which one must 
be made randomly, which is why the above matrix shows only one possible design. 

Therefore, a single undesired variation can be eliminated by making all the 
alternatives of the factor in question coincide with each alternative of the blocking 
variable. In the examples discussed above, the number of alternatives of the 
blocking variable and of the factor was the same, but this is not necessarily always 
the case. There are designs with a blocking variable in which each variable has more 
or fewer alternatives than the factor, like the two matrixes below, for example, 
where we have two alternatives for the blocking variable and three for the factor and 
four alternatives for the blocking variable and three for the factor, respectively. 

T1 A B C 
T2 C B A 
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T1 C B A 
T2 A B C 
T3 B C A 
T4 A B C 

In any case, the most important thing is for each factor alternative to be applied with 
each alternative of the blocking variable. 

In the designs described above, block size means that all the factor alternatives can 
be tested. Thus, for example, the size of the block is three in the above matrixes and 
we need to test three factor alternatives. These are referred to as full designs. It can 
also happen, however, that not all the alternatives of the factor can be tested. These 
designs are called incomplete designs and will be studied in section 5.4.4. The 
analysis of the data collected in both designs will be studied in Chapter 9. 

Where there is more than one factor under examination, a single blocking variable 
can be eliminated by making each possible combination of the alternatives of the 
factors coincide with each alternative of the blocking variable. Chapter 13 discusses 
how this sort of designs can be analysed.  

Finally, we can produce balanced designs where the influence of a blocking variable 
is divided equally between all the factor alternatives (for single-factor designs) or 
between all the combinations of alternatives (for more than one factor designs). 

5.4.2. Two Sources of Undesired Variability 

Now suppose that we have two blocking variables. For example, we know that team 
experience and project size influence the response variable. However, we intend to 
examine neither. The effect with which we are concerned is the object orientation 
notations: A, B, C and D that we want to compare. The following matrix shows the 
16 experiments to be run. 

  Team 
  T1 T2 T3 T4 
 Very small A B C D 
Project type Small D A B C 
 Large C D A B 
 Very large B C D A 

These designs have the characteristic of each alternative of the desired factor (A, B, 
C, D) occurring once in each row and once in each column, that is, occurring only 
once for each possible combination of the two blocking variables. This arrangement 
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of experiments is called Latin square, because it is described using Latin letters (A, 
B, C, D). 

Another possible arrangement of a 4x4 Latin square is as follows. 

 T1 T2 T3 T4

VS D B C A 
S B D A C 
L C A D B 
VL A C B D 

Note that both designs are balanced by sharing out the influence of each blocking 
variable equally among all the factor alternatives.  

A series of Latin squares are shown in Annex 2 for k= 3, 4, ...., 9 block and factor 
alternatives. As applies to designs with a single blocking variable, it is important 
that these designs are correctly randomised. This is done by picking any Latin 
square design whatsoever, some of which are shown in Annex 2, and assigning the 
row, column and letter at random. 

5.4.3. More Than Two Undesired Sources of Variability 

Greco-Latin or Hyper-Greco-Latin squares can be used to eliminate more than two 
sources of variability. A Greco-Latin square is a kxk structure by means of which k 
alternatives of a factor under study can be examined simultaneously with three 
different blocking variables. 

Take, for example, the 4x4 Greco-Latin square for three blocking variables: I, II and 
III, each with four alternatives. The alternatives for I are I1, I2, I3, I4; the alternatives 
for II are II1, II2, II3, II4; the alternatives for III are A, B, C, D and the alternatives 
for factor F are α, β, γ, δ. The design would be: 

      Blocking variable I 
  I1 I2 I3 I4

 II1 Aα Bβ Cγ Dδ 
Blocking variable II II2 Bδ Aγ Dβ Cα 
 II3 Cβ Dα Aδ Bγ 
 II4 Dγ CδI Bα Aβ 

Greco-Latin squares are built by superposing two different Latin square designs. 
The following Latin square designs were superimposed for the example described 
above: 
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 A B C D α β γ δ 
 B A D C δ γ β α 
 C D A B β α δ γ 
 D C B A γ δ α β 

Another arrangement of a 4x4 Greco-Latin square would be: 

Bγ Aβ Dδ Cα 
Aδ Bα Cγ Dβ 
Dα Cδ Bβ Aγ 
Cβ Dγ Aα Bδ 

This experimental design is called Greco-Latin square because it is described using 
Latin and Greek letters. The requirements to be met by a design of this sort are: each 
Latin letter appears only once in each row and each column (Latin square); each 
Greek letter appears only once in each row and in each column (Latin square) and, 
additionally, each Latin letter must appear once and only once with each Greek 
letter. 

K treatments with more than three blocking variables can be studied by means of a 
kxk Hyper-Greco-Latin square. This is obtained by superposing three different Latin 
square designs. If we superimpose a third alternative Latin design on the original 
Greco-Latin square: 

 A B C D 
 C D A B 
 D C B A 
 B A D C 

it would yield the following Hyper-Greco-Latin square: 

      Blocking variable I 
  I1 I2 I3 I4

 II1 αA1A2 βB1B2 γC1C2 δD1D2

Blocking variable II II2 γB1C2 δA1D2 αD2A2 βC1B2

 II3 δC1D2 γD1C2 βA1B2 αB1A2

 II4 βD1B2 αC1A2 δB1D2 γA1C2

 Blocking variable III with alternatives A1, B1, C1, D1
 Blocking variable IV with alternatives: A2, B2, C2, D2

 Factor F with alternatives: α,β,γ,δ 

Readers are referred to Annex 2 for other Greco-Latin squares for 3, 4, ..., 9 
alternatives. 

5.4.4. Incomplete Block Design 
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As you will have noted, the block designs discussed so far call for the size of the 
blocking variable to be the same as the number of alternatives of the factor studied. 
Let’s say that this is the simplest means of automatically getting a balanced design, 
in which the influence of the blocking variable or variables on the response variable 
is eliminated. Nevertheless, the size of the blocking variables and the number of 
alternatives per factor are not necessarily always the same. Designs of this sort are 
called incomplete block designs. 

For example, suppose that we have an experiment in which the blocks represent four 
classes of individuals who are to test four development tools. Suppose that each 
individual only has time to test three of the four tools under examination.  

In this case, we would have a single blocking variable, with four alternatives (the 
four kinds of individuals) and one factor with four alternatives (the four CASE 
tools), but the block size is k=3 (each individual only has time to apply three of the 
four tools). This number is too small to accommodate the four alternatives of the 
factor within each block. What we need is a design that eliminates the influence of 
the blocking variable. Any such design must balance out as far as possible the 
number of times that the different factor alternatives appear with each blocking 
variable alternative. In this case, as each block can only be applied with three 
alternatives, there will be an alternative that is not tested in each block. The 
balanced design will tell us that this alternatives must be different in each block. For 
example, in the design shown in the following matrix, individual 1 would not test 
tool D, individual 2 would not test C, individual 3 would not test B and individual 4 
would not test A.    

   Factor 

    A B C D 
  1 X X X 
 Blocks 2 X X  X 
  3 X  X X 
  4  X X X 
    

Therefore, four blocks of experiments are needed with a total of 12 experiments. 
The randomisation in this design must make it possible to select randomly which 
alternative is not tested in each block and the order in which the other alternatives 
are tested within each block.   

Generally, these designs have the property of each pair of alternatives occurring the 
same number of times together in a block. This number is two in the above design; 
that is, A occurs twice with B, twice with C and twice with D and the same applies 
to B, C and D. 
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5.5. EXPERIMENTS WITH MULTIPLE SOURCES OF DESIRED 
VARIATION: FACTORIAL DESIGNS  

5.5.1. Designs with One Variation at a Time 

Simple designs, called designs with “one variation at a time”, deal with all the 
factors to be studied in an experiment sequentially. In simple designs, we start with a 
standard experimental configuration (that is, the software project with all the 
parameters and factors set at a given value). Then, one factor is varied each time to 
see how this factor affects the response variable. 

Going back to the example of the estimation technique discussed in Chapter 4, one 
possible configuration would be: a problem of average complexity in the insurance 
domain, solved algorithmically by an expert user, where the process is immature, 
automation is average, team experience is average and the COCOMO technique is 
used for estimation, etc. The experiment will be run (that is, a project with the above 
characteristics will be estimated and completed) and the response variable (time and 
budget spent and comparison with the estimated time and budget) measured. Then 
another two experiments will be run, where all the parameters and factors are set, 
and only the estimation technique is varied. This will make it possible to decide 
which technique is best in this situation. Then, the factor estimation technique will 
be set with the technique that produced the best result. Afterwards, the following 
factor, size, will be varied, and the estimation technique will be set. Note that 
technique A, which behaved better originally, may not be the best with the other 
values of the other factors. That is, as this simple design is conceived, not all the 
combinations of factors are explored. Given k factors, where the ith factor has ni 
alternatives, a simple design calls for N experiments: 

 
N =1+ (ni

i=1

k

∑ −1)
 

For example, four experiments will be run for three factors, each with two 
alternatives. The better of the above two alternatives will be chosen by varying the 
two possible alternatives of the first factor; the two alternatives of the second factor 
will be varied, while the first factor is set at its optimum alternative, which is the 
result of the first two experiments; as factor two would be set at one alternative in 
the first two experiments, all we need is one experiment by means of which to assess 
its second alternative; having chosen the best alternative of the second factor, the 
third will be varied to its only remaining alternative. 

Expressed more formally, let F1, F2, F3 be the three factors and Vi1, Vi2 the values of 
the factor Fi. Thus, the experiments to be run following the “one variation at time” 
design could be: 
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 E1 ⇒ F1 = V11; F2 = V21; F3 = V31

 E2 ⇒ F1 = V12; F2 = V21; F3 = V31
 Note that we have fixed the alternatives of F2 and F3
 From E1 and E2, we get the optimum value of F1, suppose it is V12
  
 E3 ⇒ F1 = V12; F2 = V22; F3 = V31
 Note that alternative V11 has not been studied together with alternative V22.  
 From E2 and E3, we get the optimum value of F2, suppose it is V21
  
 E4 ⇒ F1 = V12; F2 = V21; F3 = V32

 Note that neither V11 nor V22 has been studied in an experiment together  
 with V32. 
 From E2 and E4, we get the optimum value of F3, suppose it is V31 
 

Hence, the experiment would indicate that the optimum values of the factors are E2 
(V12, V21, V31). However this design has not covered all the possible combinations of 
alternatives so we do not know what happens to the response variable in situations 
where F1= V11, F2= V22, and F3= V32, which means that the study is not complete. 
Four experiments were needed for this simple design (which can also be calculated 
according to the general-purpose formula seen above).  

This sort of experimental design is not generally recommendable when more than 
one factor is under examination, because these studies are incomplete. The factorial 
designs discussed in the following section overcome this shortcoming. 

5.5.2. Factorial Designs: Studying Interactions 

A factorial design uses every possible combination of all the alternatives of all the 
factors. An experiment with k factors, where the ith factor has ni alternatives, calls 
for N experiments: 

N = nii=1

k
∏  

In the three-factor example taken from the previous section, each with two levels, 
we need: 

 N = (2 levels of F1) × (2 levels of F2) × (2 levels of F3) = 8 experiments 

The tree in Figure 5.3 illustrates this experiment with its eight unitary experiments: 

 

F3 = V32⇒ E2: V11, V21, V32

F3 = V31⇒ E3: V11, V22, V31

F3 = V32⇒ E4: V11, V22, V32

F3 = V31⇒ E5: V12, V21, V31

F3 = V32⇒ E6: V12, V21, V32

F3 = V31⇒ E7: V12, V22, V31

F3 = V31⇒ E8: V12, V22, V32

F2 = V21

F2 = V22

F2 = V21

F2 = V22

V11

V12

F1

F3 = V31⇒ E1: V11, V21, V31
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Figure 5.3. Three-factor factorial design and two alternatives per factor 

Factorial design has the advantage of exploring all the possible combinations. It, 
thus, discovers the effects of each factor and its interactions with the other factors. 
The main drawback of this design type is that it is more or less impregnated with 
what is known as the combinatorial curse that raises the cost of the experimental 
inquiry. It is evident that it can take a lot of time and money to run all the 
experiments called for by a large number (which, on the other hand, is usually the 
case) of factors and alternatives, especially considering the possibility of repeating 
each experiment (internal replication) to assure that the response variable 
measurement is reliable. The analysis to be followed for this kind of designs will be 
studied in Chapter 10. 

The strategy of stepwise approaches discussed in Chapter 3 is applied to reduce the 
number of experiments. This strategy translates into three tactics for reducing the 
number of experiments (and, hence, the cost of the experiment): 

− Reduce the number of alternatives per factor, 
− Reduce the number of factors, 
− Use fractional factorial designs. 

The reduction of the number of alternatives per factor is especially recommendable, 
as the type of experimental design for two levels per factor (known as 2k, for k 
factors) is very easy to analyse. Therefore, experiments with a lot of factors are 
usually run as follows: first, run a 2k experimental inquiry, where the k factors have 
been reduced to two alternatives; then, after examining the influences of the factors 
on the response variable, the factors with little influence can be removed (applying 
the tactic of reducing the number of factors), thus reducing the number of factors (to 
f, for instance), and, finally, run an inquiry with n alternatives per factor (known as 
nf). If, to save time and cut costs, we decide to opt for the tactic of fractional 
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factorial designs instead of complete designs, we will be sacrificing information for 
the sake of saving time. This design is discussed in more detail in section 5.7.  

Going back to the subject of randomisation discussed in preceding sections, the 
assignment of the values of the alternatives and subjects shown in Figure 5.3 to the 
experimental unit must be random. This means that they must not be assigned 
systematically as shown in the figure (from E1 to E8). One mode of randomising 
would be, for example, to enter the values of the alternatives shown in the figure on 
cards and pick a card at random to decide the order in which the experiments should 
be executed. 

5.5.3. Real Examples of Factorial Designs 

5.3.1. Design to Compare Defect Detection Techniques and Program Types 

One of the issues for which quite a lot of empirical studies can be found in the 
literature concerns the quality of the software products and quality-building 
techniques. Thus, for example, an experiment comparing three defect detection 
techniques is presented in (Wood, 1997). This experiment is a replication of an 
experiment run originally by Basili and Selby (Basili, 1981) and replicated later by 
Kamsties and Lott (Kamsties, 1995).  

The experiment combined three programs and three defect detection techniques, 
leading to a 3x3 factorial design. The design yielded six groups, balanced in terms of 
study ability, who participated in the experiment as shown in Table 5.2 (P refers to 
program, and x indicates that the groups’ members applied that combination of 
technique and program). 

Table 5.2. Replications of each combination of factors 

 Code Reading Functional Testing Structural Testing 
 P1  P2  P3 P1  P2  P3 P1  P2  P3 
Group 1 x    -     -    -    -     x    -     x     -    
Group 2 -     x     - x    -     - -    -     x 
Group 3 -    -     x -     x     - x    -     - 
Group 4 x    -     -    -    -     x    -     x     -    
Group 5 -     x     - x    -     - -    -     x 
Group 6 -    -     x -     x     - x    -     - 

Another point to be made about this experiment is that once a program has been 
used in the experiment it becomes public and other subjects may have access to it. 
For this reason, all the groups worked first with program 1, then with program 2 and 
then with program 3. Note then how the order of applying the programs has not been 
randomised, but the assignment of groups to techniques and the order of application 
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of the techniques has. Table 5.3. shows the factor combination undertaken by each 
group organised by time (C represents Code Reading, F Functional Testing and S 
Structural Testing). 

The response variables collected in this experiment include data on the number of 
defects observed, the number of defects detected, time taken to observe defects and 
time taken to detect the cause of the defect in the code. Section 10.6.1 examines the 
analysis of this experiment and the results arrived at by the authors of the study. 

Table 5.3. Temporal distribution of the 
observations 

 Week 1 
P1 

Week 2 
P2 

Week 3 
P3 

Group 1 C S F 
Group 2 F C S 
Group 3 S F C 
Group 4 C F S 
Group 5 S C F 
Group 6 F S C 

5.5.3.2. Design to Compare the Perspective from which a Code Inspection is Run in 
Different Problem Domains 

Another factorial design was run by Laitenberger and DeBaud (Laitenberger, 1997) 
in order to study whether a particular technique of perspective-based-reading 
inspections, when applied to code, is more effective than ad hoc or checklist-based 
reading. In this experiment, the above authors worked with two factors: problem 
domain (generic, specific to the company for which the people who run the 
experiment work) and perspective from which the inspection is run (analyst, module 
test, integration test). As a response variable, they considered the number of defects 
found by each subject divided by the total number of known defects.  

The objectives of this experiment aimed to answer the following question: “Do the 
different perspectives and/or the application domain of the documents have an 
influence on individual results?” 

Laitenberger and Debaud divided this question into the following hypotheses related 
to the main effects and interaction: 

Hd0:  There is no significant difference between subjects reading documents from 
their domain and subjects reading documents not from their domain with 
respect to their mean defect detection rate. 

Hd1:  There is a significant difference between subjects reading documents from 
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their domain and subjects reading documents not from their domain with 
respect to their mean defect detection rate. 

Hp0:  There is no significant difference between subjects using the analyst, 
module test and integration test perspective with respect to their mean 
defect detection rate. 

Hp1:  There is a significant difference between subjects using the analyst, module 
test and integration test perspective with respect to their mean defect 
detection rate. 

Hdp0:  There is no significant difference between subjects reading documents from 
their domain and not from their domain using the analyst, module test and 
integration test perspective with respect to their mean defect detection rate. 

Hdp1:  There is a significant difference between subjects reading documents from 
their domain and not from their domain using the analyst, module test and 
integration test perspective with respect to their mean defect detection rate. 

The subjects who ran the experiment were professional software developers working 
at a specific company. As indicated by the experimenters, they tried to use code 
within two domains of similar complexity, a similar number of errors (between 10 
and 15 for the organisation-specific code and between 12 and 16 for the generic 
modules).  

The design employed is thus a 2x3 factorial design in which there are six 
replications per cell and two developers who review three documents belonging to 
each domain. The analysis related to this design will be shown in section 10.6.3. 

5.6. WHAT TO DO WHEN FACTORIAL ALTERNATIVES ARE NOT 
COMPARABLE: NESTED DESIGN 

One particular case of designs with more than one factor occurs when the 
alternatives of some of the factors are meaningful only in conjunction with just one 
of the alternatives of another factor. For example, suppose we have two factors A 
and B. If each alternative of B occurs in conjunction with an alternative of A, then B 
is said to be nested with A and is described as B(A). B is the nested factor and A is 
the nest factor. Designs of this sort are called hierarchical or nested designs. 

Pfleeger (1995) uses an illustrative example. Suppose we want to analyse two 
development methods and we want to study their efficiency when used with or 
without a CASE tool. In principle, we might opt for a factorial design as shown in 
Table 5.4, where Pi indicates the identifier randomly assigned to a development 
project. 

Table 5.4. Possible factorial design 

 Method A Method B 
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With tool P1,P2 P5,P6 
Without tool P3,P4 P7,P8 

However, if we go into the question in more detail, we will realise that this design 
would only be suited if the same tool were to be applied in both methods. Suppose 
that this is not the case, and we have one tool for working with method A (called 
Tool A) and a different one for working with method B (called Tool B). 
Accordingly, the alternatives of the tool factor would not be comparable for both 
methods. The correct design would be as shown in Table 5.5. 

Table 5.5. Nested design 

Method A Method B 
With Tool A Without Tool A With Tool B Without Tool B 
P1,P2 P3,P4 P5,P6 P7,P8 

Designs of this sort do not study the interactions among factors. In this case, 
however, this is not a problem, as such interactions are meaningless because not 
every alternative A appears with every alternative B. 

These designs can be generalised to more than one factor and even combined with a 
factorial design. However, their conception and analysis is more complicated, and 
they are not very commonly used in experiments run in SE. 

The analysis steps to be followed for this design will be studied in Chapter 11. 

5.7. HOW TO REDUCE THE AMOUNT OF EXPERIMENTS: 
FRACTIONAL DESIGNS 

A full factorial design sometimes calls for too many experiments. Remember the 
curse of combinatorial explosion mentioned above. This happens when there is a 
large number either of factors or of alternatives. When time or budget constraints 
rule out full factorial designs, a fraction of the full factorial design can be used. 
Fractional designs save time and money but provide less information than the full 
designs. For example, we may get some but not all of the interactions between the 
factors. On the other hand, if some interactions between factors are known to be 
negligible, then this is no drawback. Therefore, the cost of a full study would not be 
justified.  

Fractional factorial designs are based on the fact that when there are quite a number 
of variables in an experiment it is very likely that not all the variables have an 
influence on the response variable, and only interactions between two or at most 
three variables have significant effects on the response variables. The higher order 
interactions (over three variables) are not usually very important and this, what is 
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known as the principle of effect dispersion, is the basis for using fractional factorial 
designs. 

Fractional factorial designs are useful for studying a lot of variables and 
investigating which have a significant effect on the response variable. In other 
words, this is a broad-based experimental strategy that aims to account for a high 
number of variables. After analysing the fractional experiments and getting clues 
about which variables are influential, these factors can be examined by means of 
factorial experiments. In other words, an in-depth strategy is then adopted that 
covers only a few variables, whereas it examines all their interactions. Thinking 
back to Chapter 3, readers will realise that this manner of experimenting is what was 
termed strategy of stepwise refinement. 

Chapter 12 examines how to analyse this sort of design. 

5.8. EXPERIMENTS WITH SEVERAL DESIRED AND UNDESIRED 
VARIATIONS: FACTORIAL BLOCK DESIGNS 

5.8.1. Defining Factorial Block Designs 

Section 5.4 showed how to deal with undesired variations in experiments where 
there is one factor. But what happens when we intend to investigate more than one 
variable? As there is more than one factor, a factorial design must be used, which, as 
discussed earlier, will deal with all the possible combinations between the 
alternatives of all the factors. However, if we have undesired variations in a factorial 
design experiment, the blocking philosophy can be applied to cancel out the effects 
of the undesired variable on the response variable; that is, guaranteeing that the 
undesired variable effect will be the same in all the combinations of factors. 

The simplest (also the most common) situation is that the factors have only two 
alternatives and that the number of blocks is a multiple of two. This means that the 
experiments called for by the factorial design can be dealt with using blocks. For 
example, a factorial design of two factors (A and B) and two alternatives (a1, a2 and 
b1, b2 ) calls for four experiments: 

 a1, b1 
 a1, b2 
 a2, b1 
 a2, b2 

If we were to have a blocking variable C with two alternatives (c1 y c2) in this 
experiment and we wanted to eliminate its effects according to the blocking 
philosophy, the two alternatives of A and two of B would both have to appear with 
c1 and with c2. However, if the four unitary experiments of the 22 factorial design are 
carefully assigned to c1 and to c2 , we do not need any more experiments to assure 
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the above circumstance. For example, in the following design, both alternatives a1 
and a2 appear once with c1 and once with c2. The same can be said for b1 and b2:  

 a1, b1 c1 
 a2, b2 
 a1, b2 c2 
 a2, b1 

This means that the same number of experiments yields a factorial design and the 
design can also be blocked. Unfortunately, this is not a fair exchange, and 
information is lost in respect of the pure factorial design, particularly, information 
about the interaction between the factors A and B. This is because not all the 
combinations of A and B have been examined after exposure to the two alternatives 
of the blocking variable (c1 and c2). This leads to some of the effects observed in the 
response variable being confounded. Indeed, technically it is said that the effect of 
the interaction between A and B is indistinguishable or is confounded with the 
blocked effect. 

This concept of confounding can be illustrated by examining the case in question in 
more detail. Suppose that we are examining A and B without a blocking variable, 
that is, the four elementary experiments are run under the same circumstances. 
Suppose, too, that we are measuring the response variable RV. Imagine the three 
possible results obtained in the experiment shown in the columns of Table 5.6, 
labelled case 1, case 2 and case 3. 

Table 5.6. Three hypothetical results of the experiment with A and B to study 
RV 

Alternatives of A and B RV Case 1 RV Case 2 RV Case 3 Blocking 
a1b1 10 10 15 c1   
a1b2 10 15 10 c2
a2b1 15 10 10 c2
a2b2 15 15 15 c1

What could we state about case 1? A mere look at the values of RV could lead us to 
suspect that A influences the RV and that the alternative of A that increases the 
value of the RV is a2. However, we will see how to formally analyse the result of an 
experiment in Part III of this book and that this statement cannot be made just like 
that without running any checks. However, this intuitive analysis is accepted here 
for the sake of illustrating the concept of confounding. 

What could we state about case 2? That B (but not A) influences RV and that b2 is 
the value of B that optimises RV. 

 

What could we state about case 3? The value of neither A nor B improves the RV, 
and it is a combination of A and B that increases the RV, namely, the combinations 
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a1b1 and a2b2 . In this case, and as we will see in more detail in Part III of the book, 
A and B are said to interact. 

Now, if we had the undesired variable C and were to build the blocked factorial 
design as instructed above (and this was the only means of eliminating the bias of C 
with 4 experiments), the result would be that when the value of C is c1, RV=15 and 
when the value of C is c2, RV=10. In this case, we cannot distinguish whether the 
above variation in RV is due to C or to the interaction between A and B. The only 
means of preventing this would be to run eight experiments, where all the possible 
combinations between A and B occur when the value of C is both c1 and c2. Hence:  

 a1, b1  a1, b1 
 a1, b2 c1 a1, b2    c2   
 a2, b1  a2, b1  
 a2, b2  a2, b2   

where if both circumstances of C yielded case 3, we could assure that the variation 
of RV is due to the interaction between A and B; and if case 3 occurred only with 
one alternative of C (for instance, c1), then the variation in the RV would be due to 
C because the design will be equally divided between all the combinations of A and 
B. Actually, when calculating the value of the RV for each combination of A and of 
B as the mean of the two results obtained for the above combination (one for c1 and 
another for c2), the values of the RV for all the combinations have the same 
influence on c1 and on c2 (50%), so the differences observed in the RV for a given 
combination will be the fruit of the values of A and of B only and not of the values 
of C. 

However, there is often little interaction between factors, and confounding can be 
exploited to build a blocked factorial design with the same number of experiments as 
the respective factorial design, for which data analysis is much simpler (as we will 
see in Chapter 13).  

This same philosophy of experimental saving and ease of analysis can be applied to 
designs with 3, 4 or more factors and 2 alternatives. The effects of the blocking 
variable and the effects of the interactions are always confounded in these cases. If 
there is a blocking variable with two alternatives, only the interaction between all 
the n factors (called interaction at level n) will be confounded. However, if the 
blocking variable has 4, 6 or more alternatives both the interaction at level n and the 
interaction at lower levels (between n-1 factors, for example) will be confounded. 
For example, if we have three factors A, B, C and a blocking variable D: 

• If D has two alternatives, the level 3 interaction is confounded: ABC 
• If D has four alternatives, the level 2 interactions are confounded: AB, AC and 

BC. 

  
A design assuring that all the alternatives of each factor appear in each block for this 
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second situation of four blocks and three factors would be as follows:  

 a1 b1 c1  d1  
 a2 b2 c2  
 
 a1 b1 c2  d2  
 a2 b2 c1  
 
 a1 b2 c1  d3  
 a2 b1 c2
 
 a2 b1 c1  d4
 a1 b2 c2  
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Table 5.7. Suggested block design for the 2k factorial design 

Number of 
factors, k 

Number of 
blocks, 2p

Block size, 
2k-p

Combinations chosen to generate 
blocks 

Confounded interactions between blocks 

3 
 
4 
 
 
5 
 
 
 
6 
 
 
 
 
 
7 

2 
4 
2 
4 
8 
2 
4 
8 
16 
2 
4 
8 
16 
 
32 
2 
4 
8 
16 
 
32 
 
 
 
64 

4 
2 
8 
4 
2 
16 
8 
4 
2 
32 
16 
8 
4 
 
2 
64 
32 
16 
8 
 
4 
 
 
 
2 

ABC 
AB, AC 
ABCD 
ABC, ACD 
AB, BC, CD 
ABCDE 
ABC, CDE 
ABE, BCE, CDE 
AB, AC, CD, DE 
ABCDEF 
ABCF, CDEF 
ABEF, ABCD, ACE 
ABF, ACF, BDF, DEF 
 
AB, BC, CD, DE, EF 
ABCDEFG 
ABCFG, CDEFG 
ABC, DEF, AFG 
ABCD, EFG, CDE, ADG 
 
ABG, BCG, CDG, DEG, EFG 
 
 
 
AB, BC, CD, DE, EF, FG 
 

ABC 
AB, AC, BC 
ABCD 
ABC, ACD, BD 
AB, BC, CD, AC, BD, AD, ABCD 
ABCDE 
ABC, CDE, ABDE 
ABE, BCE, CDE, AC, ABCD, BD, ADE 
All the interactions of 2 and 4 factors (15 combinations) 
ABCDEF 
ABCF, CDEF, ABDE 
ABEF, ABCD, ACE, BCF, BDE, CDEF, ADF 
ABE, ACF, BDF, DEF, BC, ABCD, ABDE, AD, ACDE, CE, BDF, 
BCDEF, ABCEF, AEF, BE 
All the interactions of 2, 4 and 6 factors (31 combinations) 
ABCDEFG 
ABCFG, CDEFG, ABDE 
ABC, DEF, AFG, ABCDEF, DCFG, ADEG, BCDEG 
ABCD, EFG, CDE, ADG, ABCDEFG, ABE, BCG, CDFG, ADEF, 
ACEG, ABFG, BCEF, BDEG, ACF, BDF 
ABG, BCG, CDG, DEG, EFG, AC, BD, CE, DF, AE, BE, ABCD, 
ABDE, ABEF, BCDE, BCEF, CDEF, ABCDEFG, ADG, ACDEG, 
ACEFG, ABDFG, ABCEG, BEG, BDEFG, CFG, ADEF, ACDF, 
ABCF, AFG 
All the interactions of 2, 4 and 6 factors (64 combinations)) 
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Nevertheless, the loss of information causes some concern in this case, as the higher 
level interactions do not usually have much influence on the response variable, 
while the lower level interactions do. Therefore, unless there are more than four 
factors, the literature on experimentation recommends that no more than two blocks 
be used so that the lower level interactions (between two factors) are safeguarded, 
as are the level 3 interactions whenever possible. 

Table 5.7 shows all the cases for up to seven factors. Column four of this table aims 
at block formation. This can always be done manually applying the strategy that 
both alternatives of all the factors must appear the same number of times in each 
block. However, when there are a lot of factors, an algorithm is an aid. Column four 
of Table 5.7 is the result of this algorithm. This block formation algorithm uses the 
sign table technique (which is also used for other experimental analysis questions, 
as we will see in Part III). The sign table of an experimental design is built as 
follows: 

• Assign the sign + to one of the alternatives of each factor and the sign - to the 
other. It does not matter which alternative is chosen for each sign. 

• Build a table with one column per factor and another column per combination of 
factors. The table rows are as follows. 
– For the one-factor columns, every row corresponds to a given combination 

of + and - values for the respective alternatives. The set of all the rows 
contain all the combinations of the alternatives of all the factors. (These 
tables are also termed decision tables in logic.) 

– For the factor-combination columns, every row corresponds to the 
multiplication of the signs of the one-factor columns for the combination 
specified by the column. For example, each row in column AB will be filled 
in by multiplying the sign of A and the sign of B that appear in the same 
row under column A and column B. 

Table 5.8 shows the sign table for two factors and Table 5.9 shows the sign table for 
three factors 

Table 5.8. Sign table of a 22 experiment with two blocks of 
size 2 

A B AB Blocks 
- - + C1
+ + + C1
- + - C2
+ - - C2



110 Experimental Design 

  

Table 5.9. Sign table for the 23 design with two blocks of size 4 

A B C AB AC BC ABC Blocks 
- - - + + + - C1
- + + - - + - C1
+ - + - + - - C1
+ + - + - - - C1
+ - - - - + + C2
- + - - + - + C2
- - + + - - + C2
+ + + + + + + C2

The blocks are generated automatically by grouping signs of given combinations. 
For example, the value + in column AB of Table 5.8 generates the first block and 
the value – the other block; that is, we will use the combinations of alternatives 
corresponding to the - sign for factor A and the - sign for factor B and to the + sign 
for factor A and + sign for factor B in the first block. We can identify the 
combination of alternatives for the second block similarly. Provided we want no 
more than two blocks, we will do the same thing with Table 5.9, taking the sign of 
the combination ABC as a guide, as shown in Table 5.7. 

Hence, the column “combinations selected to generate blocks” in Table 5.7 indicates 
what combinations should be used to generate blocks. For example, if we intend to 
form four blocks in the three-factor experiment in Table 5.9, Table 5.7 tells us that 
the signs of the columns AB and AC must be used as a guide, that is, the 
experiments that have the same signs in AB and AC should be grouped in the same 
block. The result would be: 

 
AB AC A B C  
+ + - - -  
+ + + + + Block 1 
- - - + +  
- - + - - Block 2 
- + + - +  
- + - + - Block 3 
+ - + + -  
+ - - - + Block 4 

which evidently matches the decision on blocks that we made earlier without the 
algorithm. These were: 
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 a1 b1 c1  

 a2 b2 c2 Block 1 
 
 a1 b1 c2  

 a2 b2 c1  Block 2 
 
 a1 b2 c1  

 a2 b1 c2 Block 3 
 
 a2 b1 c1  

 a1 b2 c2  Block 4 

Other blocked factorial designs could be built similarly using Table 5.7. 

Finally, it is important to stress that what we are talking about here is using a pure 
factorial design to cancel out a blocking variable without increasing the number of 
experiments. However, if we have the chance of running more experiments, one or 
more blocking variables can always be cancelled out by repeating the pure factorial 
design for each alternative of the blocking variable. All the interactions between 
factors can be examined this way and no information about the interactions is lost. 

5.8.2. Real SE Experiments with Several Factors and Blocks 

Moving on to real experiments, Basili et al. (Basili, 1996) ran a series of studies 
about inspection techniques. One of these studies is aimed to compare the 
perspective-based reading (PBR) technique with the inspection technique usually 
used in the NASA Software Engineering Laboratory (SEL) on requirements 
documents. One of the objectives of this experiment was to answer the question: “if 
individuals read a document using PBR, would a different number of defects be 
found than if they read the document using their usual technique?” 

A two-factor experiment was designed in order to answer this question, these being 
the reading technique (with the alternatives: PBR, usual technique) and the 
document reviewed (with the alternatives: generic document, NASA/SEL 
document). The response variable selected was the defect detection rate, particularly 
the percentage of true defects found by a single reviewer with respect to the total 
number of defects in the inspected document. 

The subjects involved in this experiment were software developers from the 
NASA/SEL. As the subjects are a source of undesired variation, the experiment was 
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designed by selecting the group as a blocking variable. Thus, the subjects were 
assigned in two blocks of size two, that is, within any block only two alternative 
combinations appear instead of the four possible alternative combinations. This is 
therefore a 2x2 factorial design in blocks of size 2. Besides, the experiment was 
done with internal replication, the repeated measures are obtained using different 
problems from the two domains addressed. Two problems were actually used for 
the generic domain (automatic teller machine -ATM- and parking garage control 
system - PG-; and two flight dynamics problems -NASA_1 and NASA_2- for the 
NASA domain were used.  

As discussed above, the cost of the reduction in block size is the loss of some 
information on interactions. In this case, the technique X document interaction is 
totally confounded with the group effect, that is, Group 1 applied the usual 
technique to the ATM document and the PBR to NASA_2 document, while Group 
2 applied the usual technique to NASA_2 document and PBR to the generic_1 
problem. On the other hand, Group 1 applied the usual technique to NASA_1 
document and PBR to the generic_2 problem; while Group 2 applied the usual 
technique to the generic_2 document and PBR to NASA_1 document. Table 5.10. 
shows this design, where each row shows a repetition within each block. As 
mentioned earlier, this design means that it is not possible to estimate the two-factor 
interaction separately from the blocking variable (group) effect. 

Table 5.10. 2x2 factorial experiment with repeated 
measures in blocks of size 2 

Group 1 Group 2 
usual/ATM 
PBR/NASA_2 

usual/NASA_2 
PBR/ATM 

usual/NASA_1 
PBR/PG 

usual/PG 
PBR/NASA_1 

Table 5.11 shows how this same design can be represented for each domain. 

Table 5.11. Another representation of the design in Table 5.9 

Generic Domain NASA Domain 
Group 1 Group 2 Group 1 Group 2 
Usual/ATM Usual/PG Usual/NASA_1 Usual/NASA_2 
 PBR/PG PBR/ATM PBR/NASA_2 PBR/NASA_1 

 

Thus, the hypotheses of this experiment were specified as follows: 
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Htd0: There is no difference between subjects in Group 1 and subjects in Group 
2 with respect to their mean defect rate scores. 

Htd1: There is a difference between subjects in Group 1 and subjects in Group 
2 with respect to their mean defect rate scores. 

Ht0: There is no difference between subjects using PBR and subjects using 
their usual technique with respect to their mean defect rate scores. 

Ht1: There is a difference between subjects using PBR and subjects using their 
usual technique with respect to their mean defect rate scores. 

Hd0: There is no difference between subjects reading the ATM document (or 
NASA_1 document) and subjects reading the PG document (or NASA_2 
document) with respect to their mean defect rate scores. 

Hd1: There is no difference between subjects reading the ATM document (or 
NASA_1 document) and subjects reading the PG document (or NASA_2 
document) with respect to their mean defect rate scores. 

The analysis of this experiment and the results obtained are described in section 
13.5. 

5.9. IMPORTANCE OF EXPERIMENTAL DESIGN AND STEPS 

Experimental design is a critical activity that determines the validity of an inquiry. 
Firstly, the design must be consistent, that is, it must be defined so that the 
hypothesis can be tested. Secondly, the design must be correct; that is, it must 
consider the undesired sources of variation, it must consider whether or not 
randomisation is possible, it must select the significant metrics for the response 
variables under analysis, etc. In other words, the design is carefully made on the 
basis of the circumstances surrounding the experiment.  

Some of the best-publicised studies have subsequently been challenged on the basis 
of inappropriate experimental design. For example, Shneiderman (Shneiderman, 
1977) attempted to measure how flowcharts affect comprehension. He and his 
colleagues found that there were no differences in comprehension using flowcharts 
and code, in particular Fortran code. As a result, flowcharts were shunned in the 
software-engineering community and textbooks declined the use of flowcharts as a 
way to represent algorithms. Some years later Scanlan (Scanlan, 1989) 
demonstrated that structured flowcharts are preferable to pseudocode for program 
documentation (this experiment will be described in Part III of the book). Thus, 
Scanlan exposed a number of experimental design flaws that explain the radically 
different conclusions about the techniques. The flaws included: (1) that the response 
variable was inappropriate; Scanlan claims that the result of the experiment should 
have measured the time required to understand the algorithm using flowcharts and 
Fortran instead of allowing subjects to take as much time as they needed to fill in 
the comprehension test; (2) the comprehension test was not objective and clearly 
benefited students working with Fortran, as some of the test questions could only be 
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answered by expressing the algorithm in this manner and not in pseudocode; and 
finally (3) the algorithm used was too simple and tests should have been run with 
more complex algorithms before blindly confiding in the result of this experiment.  

Another example of an incorrectly designed experiment, which, therefore, yielded 
unreliable results was run by Korson and Vaishnavi (Korson, 1986) to investigate 
the benefits to maintenance of using modular code against non-modular (monolithic 
code). The results of this experiment determined that a modular program could be 
maintained significantly faster than an equivalent monolithic version. Nevertheless, 
this experiment was later criticised and externally replicated by other authors (Daly, 
94), who found from the replication run that there were no significant differences in 
maintainability between the two program types. Daly et al.’s criticisms of the 
original experiment include the fact that the experimental units used for both cases 
(that is, the two programs) was not actually objective in the sense that the use of the 
modular program included a series of comments that favoured application 
maintainability, whereas this facility did not exist in the monolithic program. The 
authors also argue that the activities to be completed to carry out the maintenance of 
the programs proposed by Korson was not a normal work process performed by a 
programmer to modify a program. For example, programmers had to manually 
search the code to be modified in the experiment, whereas a text editor is usually 
used to perform this job.  

The design can thus invalidate empirical studies. Therefore, the experimental design 
process is critical if results yielded by the experiment to be reliable. This being the 
case, remember briefly the steps to be taken to design experiments. For this 
purpose, we assume that the goals of the experiment and the hypotheses to be tested 
have been previously defined. The next section discusses some of the specific 
points that must be taken into account in SE experiments when taking some of these 
steps. 

Step 1. Identify the factors, that is, the methods, techniques or tools 
to be studied. All factors and alternatives must be explicitly 
specified, alongside their respective alternatives. Be sure that all 
requirements for the application of the factors are available (for 
example, training, equipment, etc.). The alternatives to be taken into 
account will depend on the goals of the experiment and the 
constraints imposed on time, cost, etc. 

Step 2. Identify the response variables, that is, the characteristics of 
the software process or the products on which the factors under 
examination are expected to have an effect. Remember that, as 
discussed in Chapter 4, one and the same response variable can be 
measured using different metrics. These metrics must be specified 
during experimental design, and care must be taken that they do 
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actually measure what is to be studied. 

Step 3. Identify the parameters, that is, the variables that can affect 
the response variables under examination and which can be 
controlled. These variables have to be kept at a constant value to 
assure this control, otherwise they should be used as blocking 
variables.  

Step 4. Identify the blocking variables, that is, the variables that can 
affect the response variables considered but which cannot be 
controlled during the experiment. 

Step 5. Determine the number of replications, that is, how many 
times each elementary experiment is to be repeated. As mentioned in 
Chapter 4, we have not yet examined how to calculate the number of 
replications of an experiment because some familiarity with the 
statistical concepts discussed in Part III of the book is needed to 
determine this. Therefore, we will go back to this question in 
Chapter 15, although it is noteworthy that this is an issue for 
consideration during design. 

Step 6. Select, as described in earlier sections, the kind of 
experimental design, that is, decide whether to use factorial, block, 
nested designs, etc. 

Step 7. Select the experimental objects, that is, decide, on the basis 
of the goals of the experiment, whether software projects, or part of 
them are to act as experimental units, and which ones. 

Step 8. Select the experimental subjects, that is, the people who are 
to run the experiments. Differences in ability can be ruled out if they 
can be randomly chosen from a bigger population and/or randomly 
assigned to the experimental teams. Remember that the subjects play 
a fundamental role in software development, as different subjects 
can give rise to completely different results applying the same 
software artefact to the same experimental unit. This is what we 
referred to as the social aspect of SE in section 2.3. One alternative 
worth considering to try to minimise the impact of this characteristic 
on SE experiments is to consider the subjects as blocking variables 
when they have different characteristics and are, therefore, 
distinguishable. Note that this situation can condition the type of 
design selected in step 6. 

Step 9. Identify the data collection process, that is, the procedures to 
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be followed to collect the values of the response variables. 

Although all these steps may appear to be straightforward, they are not in practice, 
as we will see in the next section. 

 

5.10. SPECIFIC CONSIDERATIONS FOR EXPERIMENTAL DESIGNS IN 
SOFTWARE ENGINEERING 

The experiments run in SE are often characterised by a group of subjects 
performing all or some of the activities related to software development. These 
activities are not usually the result of an automatic process, they depend on the skill, 
psychological circumstances and other characteristics of the subjects who apply the 
above process. This situation is not specific to SE and is shared by many other 
sciences, generally known as social sciences.  

Special care is therefore needed to design SE experiments. Below, we will discuss 
some points related to the social factors and software development-specific 
characteristics to be taken into account when designing SE experiments.  

• Technique learning effect: one of the most important points when running 
experiments in SE is what is known as the learning effect. This means that 
after having applied the technique more than once, a person who re-applies 
a technique several times will not do things the same way as he or she did 
the first time. In other words, the subject learns how to apply the technique 
over time. This implies that the effect caused by learning on the response 
variable would be confounded with the application of the technique. This 
problem can be solved if the technique is re-applied by different rather than 
the same subjects. This is not always possible, as the number of subjects 
involved in an experiment is often limited, and can also cause an undesired 
effect due to subject heterogeneity. Subject heterogeneity can be ruled out 
by blocking according to subject types, selecting subjects at random or 
increasing the number of replications using different subjects. Section 
10.6.4 discusses how this effect can be detected. 

• Object learning effect: the same point can also be made concerning the 
experimental units or objects handled in an experiment. In other words, if a 
subject has to apply different modelling techniques on one and the same 
problem, for example, it is very likely that the subject will learn more 
about the problem each time he or she applies the techniques to it. So, as 
the application of the modelling technique actually depends on problem 
understanding, the result of applying the last technique may be better than 
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the first, simply because the subject knows more about the problem and not 
because the technique is better. Something similar will happen if the 
experimental unit is a product and the knowledge of the product influences 
the application of the factor. In other words, it will generally occur every 
time we use the very same object with the same subject in several unitary 
experiments in which the learning of the object can influence the results of 
the experiment. One possible way of detecting such an effect is to analyse 
the experiment considering the sequence in which the problems are given 
to the subjects as a factor. In section 10.6.4, we will describe how this 
analysis was carried out in some real experiments. The solution to this 
problem would again be based on different subjects applying different 
techniques to the same object, another solution is to slightly modify the 
object, assuring that not much is learnt from one to another.  

• Boredom effect: the opposite effect to the learning effect is what is known 
as the boredom or tiredness effect where subjects become bored or tired 
with the experiment over time and put less effort and interest into running 
the experiment as time passes, thus outputting worse results as the 
experiment progresses. Therefore, it is not very recommendable to run 
experiments over long periods of time. If this is essential, one solution that 
can minimise the tiredness effect problem is to leave at least one day free 
between two days of experiment. Another possible action could be to 
motivate the subjects who run the experiment with some sort of benefit to 
keep their interest up. 

• Enthusiasm effect: this is the opposite to the boredom effect. We 
previously remarked on the importance of the motivation of the subjects 
who participate in an experiment. One motivation-related point can arise 
when a new technique is to be tested against a traditional technique in SE. 
It can happen that the subjects who apply the traditional technique are not 
motivated to do a good job, whereas those who apply the new technique 
are more inspired and motivated about learning something new. Therefore, 
it would be best for subjects not to be acquainted with either the 
formulated hypotheses or the goals of the experiment and ideally even with 
the source of the techniques used, not stressing the novelty of the 
techniques to be applied at all. Used in medicine, this sort of tactic is 
referred to as blind experiments. 

• Experience effect: another related situation occurs when a new technique is 
compared to an existing technique. If the subjects are experienced in the 
existing technique, the results will always be better with this technique 
than with a new one. Therefore, it would be a good idea for both 
techniques to be applied by subjects with no experience in either technique 
and, later, check how generalised the results are by replicating this with 
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subjects experienced in the existing technique. 

• Unconscious formalisation: another point related to the learning effect, is 
the unconscious formalisation, which arises when one and the same subject 
applies two or more techniques with differing degrees of definition or 
formality. Suppose that we have two testing techniques, one fully defined 
(that is, there is a clear procedure to be followed for its application), and 
the other informal or ad hoc (that is, no particular guidelines are provided 
for its application). If subjects applied first the formal and then the 
informal technique, they would be likely to apply, albeit unconsciously, 
ideas taken from the first to the second technique, which would mean that 
the technique would not be as informal as it really is. The solution to this 
problem is usually based on applying the least, followed by the most 
formal technique. This means that the experiment is not fully randomised. 
The implications of this are discussed at the end of this section. 

• Assurance concerning the procedure implemented by the subjects: also 
with regard to the accuracy with which the SE techniques or process are 
applied, we have to take into account that although a subject is supposedly 
going to apply a particular process (marked by the SE technique or method 
under study in the experiment), there is really no guarantee that the process 
has been applied exactly as defined. Therefore, we have to be careful when 
drawing conclusions about the experiments and take into account this fact. 
One possible alternative for analysing the process followed by the subjects 
uses the protocol analysis technique. The application of this technique for 
experimentation in SE involves subjects explaining out loud the process 
that they are following in each experiment. This explanation can be 
recorded so that experimenters can check whether or not the process 
coincides with the one that should be applied.  

• Setting effect: Finally, remember that as the emotional state of the subjects 
participating in the experiment are actively involved in SE experiments, as 
many variables as possible that can directly or indirectly affect the mind 
and emotions of these subjects should be kept constant. For example, if an 
experiment has to be run over several days, make sure that they are all 
similar, that is, do not run part of the experiment on the afternoon or day 
before a holiday or a special day on which some event or other is 
scheduled to take place. The idea is thus to keep the sort of day on which 
all the elementary experiments are run homogeneous. 

Several experiments in which some of these points have explicitly been taken into 
account can be found in the literature (Basili, 1999), (Shull, 1998), (Basili, 1996), 
(Porter 1995). Interested readers are referred to the above references that illustrate 
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their application to a range of individual cases. 

Note that having to take into account some of these questions to counteract the 
subject learning or the novelty effect of some alternatives can affect the 
randomisation required in experimental design, for example. As discussed earlier, 
this has an impact on the method of analysis that has to be used to draw conclusions 
about the data gathered from the experiments. We are not going to focus on this 
question in this chapter, as this activity of the process of experimentation is detailed 
in Part III of the book. However, there is one general point that we can make here 
and this is that there are two major groups of methods of analysis, parametric and 
non-parametric, and that randomisation is, among other criteria, the one that 
determines which sort of methods are applied. Theoretically, randomisation is an 
essential requirement for the application of parametric methods (Part III examines 
several tests used to check for randomisation). However, there are experiments in 
the literature that do not fully meet this requirement and still apply parametric 
methods. Although this is discussed in more detail in Chapter 6, this book 
recommends that both types of method be applied in these cases to provide more 
assurance about the conclusions yielded by the experiments. As we will see in Part 
III of the book, it does not take an awful lot of effort to apply two analysis 
techniques, as the most costly thing about experimentation is running the 
experiment and collecting the data. On the other hand, getting the same results 
using two analysis techniques rules out uncertainties about the validity of the 
conclusions of the experiment. 

 

5.11. SUGGESTED EXERCISES 

5.11.1. What is the difference between a randomised block design and a two-
factor design? 

Solution: The blocking variable is of no interest to the experiment 
in a block design; that is, we do not intend to examine 
its effect on the response variable. Both variables are 

of interest in a two-factor design and, therefore, we 
intend to examine its effect on the response variable. 

5.11.2. Specify what the words block, incomplete and balanced mean in a block 
design. 

Solution: Block is a variable that can influence the response variable, 
whose effect we do not intend to examine; 

Incomplete means that not all the factor alternatives can be 
tested against each blocking variable alternative; 
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Balanced means that the blocking variable has the same probability 
of influencing all the factor alternatives 

5.11.3. How many elementary experiments are needed in a 3x4x2 design? How 
many factors are considered? 

Solution: 24; 3 

5.11.4. How many elementary experiments are there in a 26 design? What if it is 
replicated twice? How many factors are there? How many alternatives are 
there per factor?  

Solution: 64; 128; 6; 2 

5.11.5. Is the following block design correct? 

 

Block Factor 
1   2   3 

I +   +    - 
+    -   + 

II -    +    - 
-     -   + 

III -    -    - 
-    +   + 

IV +   -    - 
+   +   + 

 

Solution: No, because the effect of factor 1 is confounded 
with differences between blocks 

5.11.6. If we aimed to analyse the efficiency of two code generators for two 
different languages. What would be the right sort of design? 

Solution: Nested Design: Generator (Language) 

5.11.7 Going back to exercise 4.5.1, what would be the right sort of experimental 
design if each programmer were to work with four languages? And what if 
each programmer was to work with only two of the four languages?  

Solution: complete block design; 
incomplete block design 



6 BASIC NOTIONS OF 
DATA ANALYSIS 

6.1. INTRODUCTION 

Having designed the experimentation, each unitary experiment is run as prescribed 
by the design. Measurements of the response variable are taken during the 
experiments. So, after completing the unitary experiments, experimenters have a 
collection of data, called the results of the experimentation. By examining or 
analysing these data, experimenters will arrive at conclusions about the relationships 
between factors, the influence of factors on the response variables and the 
alternatives that improve the values of the response variables. The data analysis 
branch of statistics provides the techniques for examining the experimental results. 
These are statistical methods that are used to analyse the data output by experiments 
and are explained in this, the third part of the book.  

As mentioned in Chapter 1, this book deals with quantitative experiments in which 
the response variable is, therefore, numerical. One word of advice at this point: 
experimenters should not jump in at the deep end, without first making what we 
could call an informal analysis of the experimental results. This informal analysis 
means that software engineers look at and think about the data they have gathered 
from the experiments in search of any apparent trend, whether there is any obvious 
relationship or whether they can see any influence; that is, they make an attempt at 
explaining the data collected. Although this informal examination of the data is by 
no means a substitute for a statistical and formal analysis, it can give clues as to the 
variables under consideration or errors made during the experiments, ideas for 
directing future experiments and even suggestions about the experiments. In other 
words, we recommend that, rather than proceeding unthinkingly, experimenters stop 
at certain points of the experimentation (when planning the inquiry to be conducted, 
before and after designing the experiments and before and after analysing the data) 
and use the knowledge they have about SE to reason out the facts that have emerged 
from the experimentation. 

Having advised experimenters never to disregard their knowledge of SE and their 
intuitions about the subject, let's move on to see how statistics can be of assistance 
in this job of extracting information from experimental data. 

Several statistical concepts have to be applied for data analysis. These concepts are 
described in this chapter (section 6.2. to 6.5.) so as to acquaint readers with the 
terminology used in subsequent chapters.  

Readers familiar with the rudiments of statistics (sample, population, probabilistic 
distributions, such as normal, Student's t distribution, etc.) can go directly to section 
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6.6 of this chapter, titled "Readers' Guide to Part III", which describes the 
organisation of Part III of the book, to gain an overview of this part of the book 
before plunging into the details. 

6.2. EXPERIMENTAL RESULTS AS A SAMPLE OF A POPULATION 

An experimental result or datum is usually a numerical measurement obtained in an 
elementary experiment. For example, the datum of interest in a SE experiment 
aiming to detect the percentage of errors there are in a program applying a particular 
testing technique is precisely the percentage in question. Thus, for example, 10 
(elementary) experiments run under supposedly identical conditions could have 
output the following data, measured as percentage errors detected: 

66.7 64.3 67.1 66.1 65.5 69.l 67.2 68.l 65.7 66.4 

The total set of data that could conceptually occur as a result of a certain experiment 
is called the population of observations. For example, the population of observations 
in the above example would be the percentage error of all existing projects. This 
population should sometimes be thought of as infinite. For practical purposes, 
however, it will be considered in this book to be finite, of size N, where N is very 
large. The data (not usually many) that we have collected as a result of the 
experimentation are considered to be a sample of the above population. For 
example, the sample of the previous experiment would be formed by the 
percentages over ten. 

One important characteristic of the sample is its mean, which is represented by x . 
For the above 10 experimental results, this will be: 

10

4.66...3.647.66
x

+++
=  

Generally, we can write for a sample of n experimental results, 
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Suppose we have a hypothetical population with a very high number N of data, we 
use the Greek letter mu, µ, to refer to the respective mean of the population, such 
that: 
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The mean of the population is also called, expected value of x (where x is any 
observation whatsoever). It is written E(x). Hence, µ=E(x). 

We can get a better understanding of a population using some measure of the 
dispersion of the population data. The most commonly used measure is the variance 
of the population, which is represented by the sign σ2. This is calculated considering 
a measure of the distance of a given observation from the mean of the population: x-
µ. The variance is the mean value of the squares of the above deviations taking into 
account the whole population: 

N

2)(x2)E(x2 ∑ −
=−=

µ
µσ  

One measure of dispersion is σ, the positive square root of the variance. It is called 
standard deviation. 

N

2)(x2)E(x ∑ −
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µ
µσ  

As far as samples are concerned, the sample variance provides a measure of the 
dispersion of the sample. The sample variance is calculated as:  
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where the square root of this value is the sample standard deviation: 
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In statistics, a quantity directly associated with the population, like the mean µ, or 
the variance σ2 is called a parameter. On the other hand, a quantity calculated on 
the basis of a data set, often considered as a sort of sample of the population, like x  
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or s2, is called a statistic. Parameters are often denoted with Greek letters and 
statistics with Latin letters. Briefly, we have: 

                   Population                 Sample 
Description A very large set of N observations from 

which we can imagine the sample has been 
taken. 
 

Small group of available 
observations. 
 

Mean 

n

x
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Variance 
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Standard Deviation 
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As the hypothetical population contains all the possible values output as a result of 
an experiment, any set of observations gathered is some sort of sample of the 
population. A sampling statistic can be employed to approximately calculate the 
respective parameter of the population. So, x  can be used to estimate µ or s2 as an 
estimator of σ2. 

6.3. STATISTICAL HYPOTHESES AND DECISION MAKING 

When we have to make decisions concerning a population on the basis of 
information taken from samples, we are said to be making a statistical decision. For 
example, when we want to decide whether or not a coin is a fake, tossing it several 
times for the purpose. The population would in this case be infinite and would be 
composed of all the tosses; the sample on which the decision must be based are the n 
tosses we actually make. Depending on the value of n, the decision will more or less 
likely to be true. For example, only one toss (n=1) does not supply enough 
information to make a decision with any likelihood of success. 

As we discussed in the preceding section, an experimentation (set of unitary 
experiments) must be considered as a sample for the purpose of results analysis. The 
result of a unitary experiment, the datum taken as a result of an experiment, will be 
termed observation. Now, the population would be the total set of observations that 
could conceivably occur after running a given unitary experiment. The observations 
that we have gathered are considered as a sample of the above population. 
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6.3.1. Statistical Hypotheses 

When trying to make a statistical decision, it is useful to try to construct hypotheses 
(or conjectures) about the population concerned. Such hypotheses, which can be 
either true or false, are called statistical hypotheses. In an experimental process, 
these are the hypotheses output by the experiment goal definition process, described 
in Chapter 3. 

We often formulate a statistical hypothesis solely for the purpose of having it 
rejected or refuted. Thus, if we want to decide whether a coin is a fake, we formulate 
the hypothesis that the coin is not a fake. Similarly, if we want to decide whether 
one alternative is better than another is, we formulate the hypothesis that there is no 
difference between the two alternatives, that is, that any difference observed is due 
merely to fluctuations in the sampling of the same population. Such hypotheses are 
usually called null hypotheses and are denoted as H0. Any hypothesis that differs 
from a given one will be called an alternative hypothesis. An alternative hypothesis 
to the null hypothesis will be denoted as H1. 

Suppose we have an experiment run for the purpose of deciding which is the better 
of two alternatives. Note that if a given alternative is actually better than another, the 
observations about each alternative must be samples from different populations. In 
other words, the results that are going to be obtained when applying the better 
alternative come from a population that contains better results than the population of 
the other alternative. The results obtained whenever the better alternative is applied 
are an improvement on when the other alternative is applied because the results in 
the first case come from a population that contains better values for the data than the 
source population of the values of the second alternative. 

Some null hypotheses were examined in Part II of this book. Table 6.1 contains 
other examples of null and alternative hypotheses applied to real experiments. Note 
how the alternative hypothesis could simply indicate a difference with respect to the 
samples under examination or can go even further, indicating the sign of the above 
difference as shown in (Counsell, 1999). 

6.3.2. Decision Rules and Significance Level 

If we suppose a particular hypothesis to be true, but find that the results observed in 
a random sample (result of the experimentation) differ considerably from the 
expected outcomes pursuant to the above hypothesis, then we will say that the 
observed differences between the expected outcome and the experimental results are 
significant, and we would be inclined to reject the null hypothesis (or at least not 
accept it in face of the evidence obtained). 

The procedures by means of which we are able to determine whether the observed 
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samples differ significantly from the expected results are called significance tests or 
decision rules. Therefore, these tests are an aid for deciding whether we accept or 
reject hypotheses. 

Table 6.1. Examples of null and alternative hypotheses 

Null Hypothesis Alternative Hypothesis Experiment 
H0: there is no difference in 
defect detection rates of 
teams applying the PBR 
inspection technique as 
compared to teams applying 
the usual technique 

H1: the defect detection rates of 
teams applying PBR are higher 
compared to teams using the 
usual technique 

(Basili, 1996) 

H0: classes declared as 
friends of other classes have 
the same inheritance as other 
system classes 

H1: classes declared as friends of 
other classes have less 
inheritance than other system 
classes 

(Counsell, 1999) 

H0: there is no difference 
between the different 
inspection techniques with 
respect to the team scores on 
defect detection rate 

H1: there is a difference between 
the various techniques with 
respect to the team scores on 
defect detection rate 

(Fusaro, 1997) 

H0: there is no difference in 
intervals neither in number of 
defects detected between 
inspections with large teams 
and with smaller teams 

H1: inspections with large teams 
have longer intervals, but find no 
more defects than smaller teams 

(Porter, 1997) 

H0: there is no difference in 
effectiveness in teams who 
begin an implementation 
using an existing example 
and in teams who begin 
implementing from scratch 

H1: teams who begin an 
implementation using an existing 
example for guidance are more 
effective than those who begin 
implementing from scratch are 

(Shull, 2000) 

If we reject the null hypothesis when it should be accepted, we will say that a type I 
error has been made. On the other hand, if we accept the null hypothesis when it 
should be rejected, we will say that a type II error has been made. An error of 
judgement has been made in both cases. For decision rules (or significance tests) to 
be good, they must be designed so as to minimise errors of judgement. This is not a 
simple matter, because any attempt at reducing one error type in any sample size is 
usually accompanied by an increase in the other type. The only means of reducing 
both at once is to increase the sample size, which is not always possible. Sample size 
can be increased (and, hence, the probability of error, particularly type II error 
probability can be reduced) by the internal replication of experiments. 
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When testing a given hypothesis, the maximum probability with which we are 
prepared to run the risk of making a type I error is called the level of significance 
for the test. The level of significance is commonly 0.05 or 0.01 in practice, although 
other values are used. If, for example, we choose the level of significance 0.05 (or 
5%) when designing a decision rule, then there are 5 chances in 100 of rejecting the 
hypothesis when it should have been accepted; in other words, we have a confidence 
of 95% of having made the right decision. In this case, we say that the hypothesis 
was rejected at the level of significance 0.05, which means that the hypothesis has a 
probability of 0.05 of being false. This level of significance is often represented by 
the Greek letter α. 

On the other hand, the type II error is represented by β and depends on several 
factors: 

1.  On the size of the sample n: the larger the sample, the easier it will be to 
discover a difference between two populations for a given level of 
significance α. 

2.  On the value of the difference between the observations of the different 
alternatives being tested. This difference is represented by  δ. 

3.  On the property of a test termed the power of a statistical test. The power 
of a test is defined as the probability of a statistical test correctly rejecting 
the null hypothesis and is represented by 1-β. The power of a test can also 
be interpreted as the possibility of the effect of a particular factor alternative 
being detected if it causes a significant change in the response variable. For 
example, a power level of 0.4 means that if an experiment is run ten times, 
an existing effect will be discovered in only four out of the ten experimental 
runs. 

The lower the probability β (probability of making a type II error) for a 
given α (level of significance), all the more accurately H0 and H1 will be 
distinguished. A test is said to be powerful, when it has a relatively high 
power of resolution compared with other possible tests. Where H0 is true, 
the maximum power of a test is α. Then given a very small α, statistically 
significant results will only be able to be obtained for very large values of n 
or a very large difference δ. Therefore, we often have to accept a level of 
5% (there are 5 chances out of a 100 of the null hypothesis being rejected 
when it should have been accepted) and a power of at least 70% (if the 
experiment is performed 100 times, a possible effect on the result will be 
detected at least 70 times). The only thing you can do to increase the power 
at random is increase the sample size. These ideas will be used to determine 
how many times an experiment should be replicated, as we will see in 
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Chapter 15. 

Experimentation usually intends to compare the alternatives of one or several 
factors. This being the case, we need data analyses that test the differences of some 
statistic of the data collected as the response variable. The most commonly used tests 
in experimentation are known as tests of difference between samples and are used 
to compare statistics. The statistic compared is usually the mean between the sample 
for alternative A and the sample for alternative B. In this case, the test is known as 
the test of differences between means. The mean value of the response variable for 
alternative A and alternative B will tell us which alternative improves the response 
variable. However, proportions or any other statistic may be used, depending on the 
objective of the experimentation. We then use the test of difference of proportions. 
A similar sort of test is used for two or more alternatives of more than one factor. 

6.4. DATA ANALYSIS FOR LARGE SAMPLES 

All the concepts discussed here can be used equally, irrespective of the size of the 
sample (number of observations obtained or unitary experiments run). However, one 
distinction has to be made before we go any further. Data analyses are much easier 
(and reliable) for what are known as large samples. A sample is considered large if it 
contains over 30 observations. This is a high number for a controlled experiment, 
but not for observations of a large population (that is, when we are conducting a 
survey rather than an experiment). When the size of the sample is under 30, it is 
known as a small sample. The statistic that governs these cases is called small-
sample theory and this is what is usually applied in experimentation. This is what 
will be discussed throughout Part III of this book. Note that the small sample 
technique is also applicable to large samples, let us briefly discuss how to address 
large samples, however, so that readers appreciate the difference between the modus 
operandi with large samples and small samples. We will then examine how small 
sample theory is also be applicable to large samples.  

Suppose we want to use a test of difference between means to test whether a given 
alternative (alternative A) is better than another (alternative B). Let x1 and x2 be the 
sample means obtained in large samples of sizes n1 and n2 obtained from 
populations, having means µ1 and µ2 and standard deviations σ1 and σ2, respectively. 
Let us consider the hypothesis that there is no difference between the means of the 
populations (that is, µ1 = µ2), which is equivalent to saying that the samples have 
been taken from the same population and that, therefore, there are no improvements 
in the response variable due to the use of alternatives A or B. 

The benefits of having large samples is that for large numbers of observations (n ≥ 
30), the sampling distribution of means is approximately normal with mean xµ and 
standard deviation xσ , irrespective of the population. This means that we can use 
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the sample means and sample standard deviations (which can be calculated from the 
sample obtained from the experiments) as estimates of the means and standard 
deviations of the populations. This is a very useful and easy means (as we will see) 
of being able to find out things about the population using the sample data. 

We use the decision rule of difference between means to ascertain whether the 
difference between 1x  (mean of the observations using alternative A) and 2x (mean 
of the observations using alternative B) is significant. If the difference is significant, 
this means that the alternative whose mean is greater is effectively better, as it 
produces higher response variable values, which results in a greater mean. If the 
difference is not significant, it means that neither alternative is better than the other 
(with respect to the response variable x), as both alternatives produce a similar mean 
(the difference between 1x  and 2x is close to 0, and there is practically no 
difference between the values of the response variables obtained using alternatives 
A or B). In other words, if the difference is not significant, the differences observed 
can be put down to chance but not to the influence of the alternatives on the 
response variable. 

The question of whether or not the difference between the sample means is 
significant can be settled using a variable called z, which is defined as: 
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deviation s1 and s2 can be used as an estimator of σ1 and σ2. 

Hence, we are using the variable z to test the null hypothesis (there is no difference 
between alternatives) against the alternative hypothesis (there is a difference 
between the alternatives under examination) at an acceptable level of significance. 

Generally, we can use the standardised variable z to run the test on the sampling 
distribution of any statistic S (mean, variance, etc., of the sample), if we define z as: 
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where µS and σS are the mean and the standard deviation, respectively, of the above 
statistic.   

The distribution of the standardised variable z is the canonical normal distribution 
(mean 0 and variance 1), as shown in Figure 6.1. 

0.95

Critical Region : 0.025
Critical Region : 0.025

Z=-1.96 Z=+1.96

 

Figure 6.1. Distribution of the z statistic 

The graph shown in Figure 6.1 shows a symmetric curve centred at 0, where the 
total area under the curve is 1 or, alternatively, the area from 0 to either of the ends 
will be 0.5. The abscissa axis represents all the possible values of the variable z. 
These values are used to determine the area under the curve at the above points, 
which represents a particular level of significance.  

For example, let's look at how we get the values of z for a level of significance of 
5%. What we are looking for are two symmetric values (one positive and one 
negative) such that the area of the curve outside the numerical range formed by the 
above pair is 0.05 (this area would be the grey area under the curve in Figure 6.1). 
This means that the area of the curve within the above range will be 0.95, as the total 
area is 1. These values can be taken from Table III.1 in Annex III. This table shows 
the area under the curve bordered by any positive value of z and z=∞. This value of 
z is obtained by combining the values of the column and the row labelled z. The 
column shows the unit and first decimal of and the row the second decimal of z. As 
the curve is symmetric, all you have to do is look for a value of z for which the tail 
area is 0.025 (0.05/2). This value is given in Table III.1 of Annex III. The value of z 
is 1.9 under the column labelled z and 0.06 in the row labelled z. Hence, the value of 
z is 1.96. This means that the tail area at point z=1.96 is 0.025, and we can say that 
the tail area at point z=-1.96 will be 0.025, as the curve is symmetric. Therefore, the 
total area of the tails will be 0.05, which is the level of significance we were looking 
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for. Since the total area under the curve is 1, the area within the range (-1.96, 1.96) 
will be 0.95. The set of z outside the range -1.96 to 1.96 is what is termed the critical 
region of the hypothesis. 

What we need to know now is how to interpret these results to find out whether our 
particular hypothesis can or cannot be accepted. For this purpose, we have to 
calculate the respective value of z. If this value is from –1,96 to 1,96, the hypothesis 
can be accepted. However, if z is outside this range, we have to conclude that we 
have a confidence of only 5% of the hypothesis being true. We will then say that this 
z differs significantly from what would be expected according to the hypothesis, and 
we would be obliged to reject the hypothesis.  

When we intend to test merely whether two processes are different, then we have to 
examine the value of z at both sides of 0 (that is, in the two tails of the distribution). 
These tests are termed two-tailed or bilateral tests. Often, however, we will be 
interested in only one of the extreme values at one side of the mean (that is, at one 
side of the distribution tail), as is the case when testing the hypothesis that one 
alternative is better than another is. Such tests are termed unilateral or one-tailed 
tests. In these cases, the critical region is a region located at one side of the 
distribution that has an area equal to the level of significance. 

Table 6.2 shows the critical values of z for one- or two-tailed tests at several levels 
of significance. These values were taken from Table III.1 of Annex III. For 
unilateral tests, the value of z shows the point at which the area under the curve is 
equal to the level of significance (0.1, 0.5, 0.01, 0.005 or 0.002, respectively). As 
the curve is symmetric, there are two points in the graph (one positive and one 
negative) for which the area under the curve is equal to the above values. 

 

 

 

Table 6.2. Critical levels of the normal distribution for unilateral and bilateral tests 

Level of significance α 0.10 0.05 0.01 0.005 0.002 

Critical values of z for 
unilateral tests 

-1.28 

 or 1.28 

-1.645 

 or 1.645 

-2.33 

or 2.33 

-2.58 

or 2.58 

-2.88 

or 2.88 

Critical values of z for -1.645 -1.96 -2.58 -2.81 -3.08 
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bilateral tests and 1.645 and 1.96 and 2.58 and 2.81 and 3.08 
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As the alternative hypothesis is that there is a difference between the two means (it 
does not indicate whether the difference is for the better or for the worse), we will 
apply the two-tailed test. According to Table 6.2., we would not reject H0 at a level 
of 0.05, for example, if z were between –1.96 and 1.96. Hence, we conclude that 
there are significant differences between the two classes (as z is not within the 
specified range). 

If H1 were: µ1<µ2  (the grades of the first group are worse than the grades of the 
second), then we would apply the one-tailed test and, at the level of significance 
0.05, we would say that the grade of the second group is significantly better than the 
grade of the first if z < -1.645, which is actually the case. 

 

 

6.5. DATA ANALYSIS FOR SMALL SAMPLES 

In the above section, we have taken advantage of the fact that the sampling 
distributions of many statistics are approximately normal for samples of size n ≥ 30, 
called large samples, where the approximation is all the better the greater n is. For 
samples of a size of less than 30, called small samples, the above approximation is 
not good and is worse the smaller n is. Therefore, some adjustments are required. 

As we said before, the study of the sampling distribution of statistics for small 
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samples is called small-sample theory. However, a better name would be exact 
sampling theory, as it can be used to analyse both small and large samples. 

The usual distributions used to analyse the data obtained from a small sample and 
apply decision rules on the significance of the results are: the t (called Student's) 
distribution and F (called Snedecor’s) distribution and the chi-square distribution. 
The t distribution is used as a reference for analysing the difference between means; 
the F-distribution is employed to analyse the difference between variances; and the 
chi-square distribution is used to analyse differences between frequencies. 

6.5.1. Hypothesis Testing with the Student’s t Distribution: Mean of a 
Population and Differences between Means (assuming homogeneity of 
variance)  

We define the t statistic as: 

1−
−

= n
s

xt µ

 

This statistic is applied when we work with normal or almost normal populations 
(several tests for checking this constraint are examined throughout the book). So, 
considering samples of size n taken from a normal or almost normal population 
having mean µ and calculating t using the sample mean x and the sample standard 
deviation s yields the sampling distribution for t, shown in Figure 6.2. 
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Figure 6.2. Student's t distribution for several values of ν 

The Student’s t distribution is very similar to the normal distribution. Like the 
normal distribution, it is continuous, symmetrical and bell-shaped. However, this 
distribution depends on the value ν, that is, the number of degrees of freedom, that 
is, the more degrees of freedom there are, the closer the distribution is to normal. 
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The property that determines how pointed a distribution is is called kurtosis. The 
kurtosis of a normal distribution is zero, and the kurtosis of a t distribution tends to 
be increasingly negative as the degrees of freedom fall. 

The number of degrees of freedom of a statistic is defined as the number n of the 
sample size (observations of which the sample is composed) less the number K of 
population parameters (that is, the mean of the population, the standard deviation of 
the population, etc.), which are unknown, and must be estimated from the sample 
observations to calculate the statistic. 

The fewer the degrees of freedom, the further removed the respective curve will be 
from the normal and the flatter it will be (the values 0.4, 0.3, etc., in Figure 6.2. 
illustrate how the curve flattens). When the number of degrees of freedom is high, 
the Student’s t distribution is confused with a normal distribution. Like the normal 
distribution, the values of the X-axis represent the values of the t for which the area 
under the curve has a specific value. 

In the case of the t statistic, the number of observations of the sample is n. 
Remember that t is defined as: 

1−
−

= n
s

xt µ

 

In the above formula, x  and s are sample statistics and can be calculated from our 
sample data. However, µ is the parameter of the population, its mean. As the 
population is unknown, µ has to be estimated from the samples. Therefore, K=1, and 
the degrees of freedom of the t are ν=(n-k)=(n-1). 

The degrees of freedom, as we will see later, must be used to deal with small 
samples to find out the limitations of our estimates for each statistic. 

Returning to Figure 6.2, the curve Y is given by: 
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where Y0 is a constant that depends on n, such that the total area under the curve is 
1. The distribution Y is called Student's t in honour of W.F. Gossett, who published 
his work under the pseudonym of Student at the beginning of the 20th century. 
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For high values of n, and certainly for n ≥ 30, the curves in Figure 6.2 are very close 
to the canonical normal curve, and the t analysis is then equal to the analysis 
discussed in section 6.4. for the difference between means in large samples. 

As for the normal distribution, intervals of confidence of 95%, 99% or others can be 
defined using Table III.3. Student’s t-distribution in Annex III to estimate the mean 
of the population within specified limits. 

The hypothesis or significance tests or decision rules we examined for large samples 
are easily extended to small samples. The only difference is that the z statistic is 
replaced by the t statistic. 

For example, we use the t statistic to examine the mean of the population µ, that is, 
to test the hypothesis H0: 

1−
−

= n
s

xt µ

 

where x is the mean of a sample of size n and s is the standard deviation of the 
sample. 

Suppose that a research group develops an estimation technique for software 
projects, which they claim provides an accuracy of 15% after the requirements have 
been defined. This technique is applied to 10 projects to test this assertion, yielding 
a (sample) mean accuracy of 15.9% and a standard deviation of 0.9%. Thus, we can 
define H0: µ =15% and H1: µ ≠15%. This calls for a two-tailed test, in which we will 
calculate the value of the t using the following parameters. 

15.9x = ; µ=15; n=10 and s=0.9. Then: t=3 

We can use Table III.3 of Annex III to get the values within the range of which the t 
statistic must fall to accept H0 at 95%. These are –t0.975 and t0.975, which are values 
for which 2.5% of the area is in each Student’s t distribution tail. Running along the 
row for 9 degrees of freedom (the 10 projects in the sample less 1 for the unknown 
population parameter µ), we find that the respective value of t that leaves an area of 
0.025 under the distribution tail is 2.26. As the curve is symmetric, the value of -
2.26 will also leave an area of 0.025 under the curve. Consequently, the area of the 
curve between -2.26 and 2.26 is 0.95. As the value for this example t is 3 and is 
outside this range, we can reject the null hypothesis, claiming with 95% confidence 
that the data obtained about these projects would satisfy the condition specified by 
the research group: the new technique provides an accuracy of 15% once the 
requirements have been defined. 
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We can also use the t statistic to examine the difference between means in a small 
sample. Suppose we take two random samples of sizes n1 (n1 experiments with 
alternative 1) and n2 (n2 experiments for alternative 2) of normal populations whose 
standard deviations are equal (σ1=σ2). Let 1x  and 2x  be the means of the two 
samples and s1 and s2 be the sample standard deviations. To test the hypothesis H0 
that the samples come from the same population (that is, µ1=µ2 and σ1=σ2 and, 
therefore, there is no improvement in the response variable when either is used as an 
alternative), we use the t statistic for the distribution of the differences between the 
means of the two samples, which is defined as: 
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The use of this equation is plausible, provided σ1=σ2=σ in the equation that 
represents the distribution of z, discussed in section 6.4. 
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The resulting distribution is a Student's t distribution with ν=n1-n2-2 degrees of 
freedom. For the first sample, its size would be n1 and we would have to estimate σ1, 
hence the degrees of freedom for this first sample would be n1-1. Similarly, the 
degrees of freedom would be n2-1 for the second sample, which leads to a 
distribution having ν=n1-n2-2 degrees of freedom.  

For example, suppose two different code inspection techniques are applied to 24 
programs of similar size (each technique is applied to 12 projects). The mean 
number of errors detected per time unit is 4.8 with a standard deviation of 0.4 for the 
first technique and of 5.1 with a deviation of 0.36 for the second. We would like to 
know whether the observed difference in the response variable, number of errors 
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detected per time unit using the second technique is significant. Hence, we can 
define H0: µ1=µ2 , and H1:µ1<µ2 . 

The values for calculating t are as follows: 

n1= 12; n2= 12; 4.85.1 21 x;x == ; s1= 0.36; s2= 0.4 
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If we consider a level of significance of 0.01, for example, we would reject H0 if t is 
greater than t0.99 (that is, the value for which the area under the tail is 0.01) for 
n1+n2-2=22 degrees of freedom. From Table III.2 the value for t0.99 is 2.50, hence 
we cannot say that there is a significant difference with regard to the number of 
errors detected per time unit by the two techniques.  

The application of this distribution is part of the data analysis for a one-factor design 
with two alternatives discussed in Chapter 7. The distributions used in data analysis 
are discussed in this chapter so that readers can understand them separately and then 
find it easier to understand the analysis process as a whole. 

6.5.2. Hypothesis Testing with the F Distribution: Difference between Variances 

As we have seen, it is important to find out the sampling distribution of the 
difference between means ( 21 xx − ) of two samples in experiments. Similarly, we 

could use the sampling distribution of the difference between variances ( ). 

However, this is actually a complicated distribution, and the statistic 
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considered instead. This statistic supplies information equivalent to the difference 
between variances, as a large or small quotient indicates a big difference, whereas a 
quotient close to 1 specifies a small difference. The sampling distribution of this 
quotient of variances is called the F- distribution in honour of Snedecor. 

Indeed, let 1 and 2 be two samples of size n1 and n2, taken from two normal (or 
almost normal) populations having variances  and . The following statistic 2

1σ 2
2σ
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is defined: 
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Then the sampling distribution of F is called an F distribution, having 111 −= nν  

(K=1, as the parameter σ1
2 needs to be estimated) and 122 −= nν  (for the same 

reason K=1, but for population 2) degrees of freedom. This distribution is given by 
the function Y: 
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where C is a constant that depends on 1ν  and 2ν  such that the total area under the 
curve is 1. The curve is shaped as shown in Figure 6.3, although this shape can vary 
considerably depending on the values of 1ν  and 2ν . 
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Figure 6.3. Snedecor’s F distribution 

Tables III.5, III.6 and III.7 of the Annex III give percentile values of F for which the 
right-hand tail areas are 0.1, 0.05 and 0.01, denoted F0,90, F0,95 and F0,99, respectively. 
Representing the levels of significance of 10%, 5% and 1%, these can be used to 
determine whether or not the variance of sample 1 is significantly greater than 

 of sample 2 (in practice the sample with the larger variance is chosen as sample 
1). 

2
1s

2
2s

For example, suppose two samples have been taken during an experimentation. 
Sample 1, for example, contains the results of 9 experiments in which alternative 1 
is used; sample 2 contains the results of 12 experiments in which alternative 2 was 
used. Suppose that the response variable development effort was measured in this 
experimentation. The experimental results yielded can be viewed as samples of two 
normally distributed populations having respective variances of 16 and 25 in respect 
of development effort. Assuming that the sample variances are 20 and 8, we would 
like to determine whether the first sample has a significantly greater variance than 
the second at the level of significance 0.05.  

For the two samples 1 and 2, we have n1 = 9 and n2 = 12, σ1
2 = 16, σ2

2 = 25, s1
2=20 

and s2
2= 8. Hence  
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The degrees of freedom for the numerator and denominator of F are ν1= n1-1=8 and 
ν2 = n2-1 = 11. In Table III.6 of Annex III, F0.95=2.95 for 8 and 11 degrees of 
freedom in the numerator and denominator, respectively. As the calculated F=4.03 is 
greater than 2.95, we can conclude that the variance of the sample 1 is significantly 
greater than that of sample 2 at the level of significance 0.05. This means that 
alternative 1 causes a greater variance than alternative 2 on the response variable 
development effort. 

This distribution will be used as part of the analysis process designs with a single 
factor and several alternatives, several factors and blocks, therefore, it will be 
reviewed in Chapters 8 to 13 of the book. 

6.5.3. Hypothesis Testing with the Chi-square Distribution: Difference in 
Frequencies  

 



144  Basic Notions of Analysis 
 

The χ2 statistic, owed to Pearson, can be used in experiments designed to examine 
the number of times a given event occurs rather than the value of the response 
variable; that is, it is neither the mean nor the variance, it is the frequency of the 
response variable that is examined. Indeed, the χ2  distribution is useful for 
calculating discrepancies between two sets of frequencies of the same variable, for 
example, the expected and observed frequencies. Thus, a measure of the 
discrepancy existing between both frequencies is provided by: 
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where oi is the observed (or empirical) frequency of the event Ei, and ei is the 
expected (or theoretical) frequency of the above event and k is the number of events 
considered. For example, we could use the expected frequency in relation to the null 
hypothesis for our experiments. The null hypothesis used in our experiments claims 
that there is no difference between the different alternatives. So, according to this 
hypothesis, the frequencies expected by the use of the different alternatives would 
be identical and they could be compared with the empirical or observed frequencies 
for each alternative. An example is given below. 

The χ2 sample distribution very closely approximates a chi-square distribution  

21/2)(2v
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0 eYe)2(YY χχ −−−− == χχ  

where ν is the number of degrees of freedom and Y0 is a constant that depends on ν 
such that the total area under the curve is 1. The chi-square distribution for several 
values of ν is shown in Figure 6.4. 
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Figure 6.4. Chi-square distribution for several values of ν 

We can use the following rule to calculate the number of degrees of freedom: 

• ν=k-1 if the expected frequencies can be calculated without having to estimate 
the parameters of the population on the basis of sample statistics. 

• ν=k-1-m if the expected frequencies can be calculated only by estimating m 
parameters of the population on the basis of sample statistics. 

In practice, the expected frequencies are calculated on the basis of a hypothesis H0. 
If, according to the above hypothesis, the value calculated for χ2 is greater than any 
critical value (such as χ2

0.95, χ2
0.90, which are the critical values of the levels of 

significance 0.05 and 0.01, respectively, and can be taken from Table III.8 of Annex 
III), we have to conclude that the observed frequencies differ significantly from the 
expected frequencies and we will reject H0 at the respective level of significance; 
otherwise, it will be accepted (or at least will not be rejected). This procedure is 
called the chi-square hypothesis or significance test. 

Let's look at how this test is used in an experiment. Suppose a total of 200 modules 
have been identified on which to run code inspections. This inspection is conducted 
on 100 of the modules with the aid of a tool (group A) and is performed manually 
on another 100 (group B). An inspection is considered to have been successful if it 
detected at least 85% of the existing errors. According to the null hypothesis H0 that 
the tool has no effect, we would expect the amount of successful inspections to be 
the same with and without the tool, that is, according to Table 6.3, at least 85% of 
the errors would be detected in 70 of the 100 inspections. The observed success 
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values, however, are shown in Table 6.4. Can we really say from these data that the 
use of the tool improves the success of the inspections? 

Table 6.3. Expected frequencies according to H0 (there 
is no difference between tool use or otherwise) 

 Success Failure Total 
Group A (with tool) 70 30 100 
Group B (without tool) 70 30 100 
Total 140 60 200 

Table 6.4. Observed frequencies 

 Success Failure Total 
Group A (with tool) 75 25 100 
Group B (without tool) 65 35 100 
Total 140 60 200 

We will apply the χ2 test to answer this question. For this purpose, we will use the 
following values: 

 o1=75; o2=65; o3=25; o4=35;  

 e1=70; e2=70; e3=30; e4=30 

 k=2 (with tool, without tool);  
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According to the above-mentioned rules for calculating degrees of freedom, as no 
population parameter needs to be estimated to calculate χ2, ν = k-1=2-1=1. 

If we look up the value χ2 with 1 degree of freedom in Table III.8 of Annex III, we 
find that χ2

0.95, which is the value of χ2 for which the tail area is 0.05, is 3.84. As 
3.84 > 2.38, we conclude that we cannot reject H0 at the level of 0.05 and, therefore, 
on the basis of our data, we cannot affirm that the tool has a significant effect. 

We will come back to this distribution in Chapter 14, which addresses the methods 
of analysis classed as non-parametric tests. 

The distribution of χ2 is also useful for identifying relationships between non-
numerical characteristics of individuals or objects. These characteristics are known 
 



Basics of Software Engineering Experimentation 147 
 

as attributes and the degree of dependency between the different characteristics is 
called correlation of attributes. 
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is defined as the coefficient between attributes, where n is the total sample size and k 
is the number of attributes whose possible relationship is under examination, as in 
Table 6.4, for example. This coefficient is between 0 and 1. The values close to 1 
indicate a strong relationship between the attributes examined, whereas the values 
close to 0 imply a weak relationship. 

For example, for Table 6.4, suppose we want to get the correlation between the 
success of an inspection and the use or not of the tool. The value of r is calculated as 
follows 
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where k = 2 (with tool, without tool) which indicates that there is little correlation 
between the two variables, that is, the use of the tool has little influence on the 
success of an inspection. 

6.6. READERS' GUIDE TO PART III 

So far we have outlined some brief notions of statistics to give SE experimenters an 
idea of the sort of data analysis to be conducted on the results yielded by the 
experiments. Readers should not allow themselves to be discouraged by the 
formulas and other tiresome notation, since, as we shall see in the following 
chapters, simple techniques have been developed in tabular format. These can be 
used to make quick calculations and test the results fairly effortlessly. Also, there are 
a host of tools (BMDP, SSPS, etc.) on the market where all these data analyses are 
automated. However, it is essential to understand the concepts applied by the above 
tools  so as to get significant results from the analyses conducted. As discussed 
earlier, it is no good for experimenters to conduct analyses blindly guided by a 
method or still worse by a tool without employing their knowledge of the subject 
and the foundations of statistics. Blind analyses can lead to errors in both the 
analysis procedure and the results interpretation.  

In the following chapters, we are going to focus on questions likely to be posed by 
experimenters and on how to analyse the data to answer these questions. Statistics 
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takes second place in these chapters, as it is subordinated to its use within the 
experimental process. However, an introduction had to be given to these notions in 
this more purely statistical chapter to assure that the terminology used in the 
remainder of part III does not demoralise readers and that they understand the 
underlying concepts.  

Next, let’s consider a brief outline of how the remainder of part III of this book. As 
already mentioned, this part describes how to analyse experiments, that is, how to 
examine the data collected from the experiments in order to draw certain 
conclusions. As detailed below, there are different analysis techniques depending on 
the characteristics of the data collected (that is, the response variable of an 
experiment) and on the design applied. The methods of analysis can roughly be 
divided into two major blocks, parametric and non-parametric methods. 

In Chapter 4 we said that the most common scale types for a quantitative response 
variable are: nominal, ordinal, interval and ratio. In that chapter we mentioned that 
the scale type determines which procedure to be used during the analysis. Figure 6.5 
shows the sorts of methods applicable in each case. Thus, when the response 
variable scale is nominal or ordinal, the methods to be used during analysis fall into 
the non-parametric group. When the response variable is measured on an interval or 
ratio scale, then parametric or non-parametric methods will be applied, depending on 
whether these data meet certain restriction, like randomisation constraints, for 
example.  

Nominal scale
Ordinal scale

Non-parametric
     methods

  Model
restrictions
  satisfied

   Parametric
     methods

Yes No

No Yes

 
Figure 6.5. Methods of analysis applicable according to the characteristics of the 

response variables 

Parametric tests are statistically more powerful (Miller, 1994) (Briand, 1996) than 
non-parametric methods. Remember that this means that a type II error is less likely 
to occur. This means that it is more difficult for a non-parametric test to detect a 
significant effect in the response variable in face of the same the results, thus leading 
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to the acceptance of the null hypothesis when a parametric test would have 
recommended rejecting the hypothesis in question. Hence, parametric tests should 
ideally be applied to analyse the data collected from the experiments. The problem 
lies in the fact that the application of parametric methods calls for the data to meet a 
set of constraints, like randomisation. The chapters that address this sort of methods 
discuss a range of tests to which the results of the experiments can be subjected in 
order to examine whether or not the restrictions required are met. If these tests are 
not conclusive, then we would have to resort to the application of non-parametric 
tests, although they are a little less statistically powerful. 

The power of no parametric tests could be raised, without increasing the Type I error 
(the probability of rejecting the null hypothesis when it is true), by increasing the 
number of replications of an experiment (remember that Chapter 15 examines how 
to calculate the minimum number of replications for a particular experiment with a 
given α and β, probabilities of type I and type II error, respectively). However, this 
is not always possible in SE experiments where time and resources are limited.  

One difficulty arising when choosing the type of test to be applied is that it is often 
not easy to determine the scale type of a measure in SE. One example mentioned by 
Briand et al (Briand, 1996) is as follows: what is the scale type of cyclomatic 
complexity? Can we assume that the distances on the cyclomatic complexity scale 
are preserved across all of the scale and that therefore the scale is an interval?.  

One possibility when it is unclear whether parametric methods can be applied 
(remember that these conditions are based on the response variable scale and the 
constraints met by the data) is to apply statistics for both test types, that is, apply a 
parametric and a non-parametric test. If the two procedures output the same 
conclusions we can safely reject or accept the null hypothesis. If, on the other hand, 
the two procedures generate different results, we would have to trust the result of the 
non-parametric test, as it would not be possible to assure that the conditions called 
for by the parametric tests are met. Note that the result of the tests would be to reject 
the null hypothesis with the parametric test and accept it with the non-parametric 
test.  

According to Table 6.5, parametric methods are examined in Chapters 7 to 13 
depending on the sort of design used for the experiment. On the other hand, non-
parametric methods are described in Chapter 14. The techniques to be applied in 
both sorts of methods rely on the t, F and chi-square distributions described in this 
chapter.  

Table 6.5. Structure of the remainder of part III 

Factors Parametric Methods Non-Parametric Methods 
1 factor   
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Chapter 14 

These chapters describe in detail the essential activities to be performed in data 
analysis, based on short examples that illustrate the reasoning to be followed. 
However, real experiments will be described at the end of each chapter in which the 
analysis techniques described in the chapter have been applied in order to show their 
applicability in practice. 

Before moving on to the following chapters, remember that the experiments with 
which this book is concerned focus on the use of qualitative factors and quantitative 
response variables. Thus, the analysis techniques that we will examine aim to 
establish relationships between these factors and the response variables. If the 
factors under examination were quantitative, we could establish another type of 
analysis applying techniques of regression analysis to determine the mathematical 
function that relates the factor and the response variable (this means adjusting 
points, that is, response variable values, to least square curves, for example). This 
part is not included, as these are unusual conditions for SE experiments, which tend 
to compare non-quantitative alternatives (methods, tools, etc.). Additionally, 
regression analyses are covered by basic mathematics courses and books, and 
readers can be expected to be acquainted with them, even if they have never applied 
them to further their understanding of software development. 

Within the analyses that we are going to examine, we will specifically focus on the 
methods used to detect differences between the means of the response variable. This 
is the most common sort of analysis in SE. Differences between other statistics, like 
frequencies, medians, etc., can also be used. However, they are not considered in 
this book, which merely aims to offer readers an introduction to the world of 
experimentation in SE and does not intend to make them experts. Readers who are 
acquainted with the method of analysis for studying differences between means will 
find it easy to understand and use the methods of analysis for other statistics, as they 
are similar. For more details about these other analyses, readers are refered to 
Chapter 5 of (Box, 1978). 

Finally, we will also focus on problems for which the factor alternatives have been 
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fixed a priori, as this the case in most SE experiments. In this sort of experiments, 
the factor alternatives with which we work are selected specifically by the 
experimenter and the conclusions are only applicable to the alternatives in question 
and are not extendible to similar alternatives that have not specifically been 
considered. This sort of experiments call for the use of what are known as fixed-
effects models during analysis. On the other hand, the factor alternatives could be a 
random sample of a larger population of alternatives. In this case, it would be 
desirable to generalise the conclusions to all the alternatives, whether or not they 
have been explicitly considered in the analysis. This sort of experiments are unusual 
in the early stages of a SE experiment. They are, therefore, not considered in this 
book. Readers interested in this sort of experiments are referred to the classic books 
on experimental design and analysis, such as Chapter 7 of (Montgomery, 1991). 

It remains to say that Part III of this book focuses on the analysis of individual 
experiments. However, one could go a step further and integrate and compare 
individual experiments that have been designed and executed independently but that 
address a common hypothesis. A statistical approach for integrating multiple studies 
is called meta-analysis (Glass, 1981). This approach is not addressed in this book, 
whose aim is to introduce readers to the field of experimentation. Interested readers 
are referred to the above-mentioned reference to further their knowledge of this 
subject. 

6.7.  SUGGESTED EXERCISES 

6.7.1. The mean value for keeping to the preliminary schedule yielded by 50 
applications developed applying given process improvement procedures 
was 68.2% with a standard deviation of 2.5. Another 50 applications 
developed without the above procedures provide a mean of 67.5% with a 
standard deviation of 2.8. Test the hypothesis that the applications in which 
the improvement procedures were applied keep closer to the schedule at a 
level of significance of 5%. 

Solution: No (z=1.32) 

6.7.2. The mean rating awarded by 12 users to an application developed using 
usability techniques was 5.1 with a standard deviation of 0.4. Another 12 
users assessed another application in which the above techniques had not 
be used, giving a mean rating of 4.8 with a standard deviation of 0.36. Can 
we conclude that there was an improvement as a result of the application of 
usability techniques at 1% and 5%? 

Solution: t=1.85  
No (α=0.01); 
No (α=0.05) 
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6.7.3. Suppose that we have two samples of 8 and 10 projects of normal 
populations distributed with variances 20 and 36 respectively. A different 
programming language has been applied in each sample. What probability 
is there of the variance of the first sample being double that of the second? 

Solution: 0.01 < P < 0.05 

6.7.4. Of a sample of 200 developers, 115 preferred to use methodology A and 85 
preferred to use methodology B. Test the hypothesis that methodology A is 
preferred to B at the levels of significance 0.05 and 0.01. 

Solution: χ2=4.5 
Yes (α=0.05); 
Yes (α=0.01) 



7 WHICH IS THE BETTER OF 
TWO ALTERNATIVES? 
ANALYSIS OF ONE-FACTOR 

DESIGNS WITH TWO 
ALTERNATIVES 

7.1. INTRODUCTION 

One-factor experiments are used to compare more than one possible alternative for 
just one factor. For example, an experiment of this kind could be used to find out 
which is the best of six CASE tools or which is the best of two code inspection 
techniques. There is no limit on the number of alternatives for using this sort of 
analysis. However, this chapter focuses on the analysis of an experiment intended 
to assess which is the better of two possible alternatives; whereas we will study 
how this analysis can be generalised for k alternatives in the following chapter. 

The results of an experiment designed to study which of two alternatives improves 
the response variable are analysed differently depending on whether or not there 
are any historical data. An organisation will have historical data if it regularly 
measures the response variable. This historical data set can be taken as a reference 
to check whether the use of the new alternative (reflected in the results of the 
experiments) has improved the response variable as compared with the usual 
alternative (reflected in the historical data). 

We are first going to examine the analysis using historical data (section 7.2) and 
then the analysis of experimental results when no historical data are available, and 
all we have are the data yielded by the experiments (section 7.3). This chapter also 
presents the analysis of a particular case of one-factor experiments: paired designs  
(section 7.4). We conclude the chapter (section 7.5) by reviewing some real 
experiments run with this single-factor design with two alternatives. 

7.2. STATISTICAL SIGNIFICANCE OF THE DIFFERENCE BETWEEN 
TWO ALTERNATIVES USING HISTORICAL DATA 

In this section, we are going to examine how to determine when the changes in the 
selected response variable can be considered to be due to a change between 
alternative 1 and 2 of the factor under examination (or whether, on the other hand, 
they should be put down to chance), supposing that we have historical data that 
can be used for reference purposes. The sort of analysis carried out is the study of 
statistical significance discussed in Chapter 6. 

Let’s have a look at a common case taken from everyday life that Box et al. (Box, 
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1987) use to detail the statistical techniques that we will use. This will give us an 
idea of how the real difference among the factor alternatives can be studied. 

A family moves to another town. When they arrive at the new town, they intend to 
buy a house. They start to look at prices and discover that they are nothing like the 
house prices in the town they had just left. This means that when a seller gives 
them the price of a house, they have no idea whether it is expensive or cheap 
within its class, whether it is a bargain or costs a fortune. In other words, the 
family has no point of reference to be able to decide on the house price. 

The family conceives the following strategy to solve this reference problem. They 
make quick visits to a lot of the available houses, thus forming a reference set. 
Once they have this reference, they start to take a closer look at the houses they 
like best. When they get a price, they compare it with the reference set and can 
determine whether the house is very expensive, very cheap or its price is average. 

The method of statistical inference termed significance testing or also hypothesis 
testing (discussed in Chapter 6) is comparable to the above process. Suppose a 
researcher has altered an organisation’s standard software process. When the 
researcher runs an experiment according to the modified software process, he or 
she gets a result (let’s say the reliability of the software built). What he or she 
needs to know is whether the result is clearly explained by a mere chance variation 
or is exceptional, demonstrating the effectiveness of the modification. This is a 
fairly straightforward decision if the researcher has historical data on the reliability 
of the software obtained in earlier projects (all of which were carried out according 
to the unmodified software process established by the organisation). Thus, the 
software engineer has a reference set that represents the typical set of results that 
would occur if the modification had no effect. The result obtained in the 
experiment can be compared with the historical reference set. If, after comparison, 
the result is found to be exceptional, it is declared statistically significant. This 
means that the variation in the response variable (reliability of the software built) 
is due to the modification made to the software process and did not occur by 
chance. In other words, if the reliability is higher, this is due to the process 
modification, and the modified process can be said to output more reliable 
software than the standard process. 

We are going to take an example in which the usual software process of an 
organisation (process A) is compared against a new software process (process B) 
in order to illustrate the analysis to be conducted. The objective of our experiment 
is to find out whether the change in the process improves the reliability of the 
projects developed. So, the factor to be considered is the software process with 
two alternatives (A and B), and the response variable is the reliability of the 
software  measured as percentage success in the execution of the components (that 
is, a component reliability of 80% indicates that not one fault occurred 8 out of the 
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10 times it was executed). The null hypothesis is H0: “there is no difference in the 
reliability of the components produced using process A and process B”. 

We design our experiment to test this hypothesis, and we will apply process A to 
10 projects and process B to another 10. Imagine that the values of the response 
variable for the 20 projects are shown in Table 7.1.  

Table 7.1. Data on 20 projects (using process A and B) 
Order Process Reliability 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 

89.7 
81.4 
84.5 
84.8 
87.3 
79.7 
85.1 
81.7 
83.7 
84.5 
84.7 
86.1 
83.2 
91.9 
86.3 
79.3 
82.6 
89.1 
83.7 
88.5 

Y A = 84.24 Y B = 85.54

Y B −Y A = 1.30
 

We can analyse the experiment to calculate the mean reliability with A (84.24) and 
the mean reliability with B (85.54) from these data. Therefore, the modified 
process B has improved process A reliability by 1.30 points.  

The question is whether this difference is really due to the improvements provided 
by process B or whether the reliability with process A would be better than the 
reliability with process B, if we repeated the experiments with other data.  

Going back to H0, this null hypothesis states that the change in the process has not 
produced any variation in the reliability of the projects. If this hypothesis is 
rejected, we can say that the new process produces a statistically significant 
improvement in the response variable. 
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Table 7.2 shows the 210 observations taken from the historical data collected 
about the standard process A. 

Table 7.2. Historical data from 210 projects 
observation observation observation observation observation observation 

85.5 
81.7 
80.6 
84.7 
88.2 

 
84.9 
81.8 
84.9 
85.2 
81.9 

 
89.4 
79.0 
81.4 
84.8 
85.9 

 
88.0 
80.3 
82.6 
83.5 
80.2 

 
85.2 
87.2 
83.5 
84.3 
82.9 

 
84.7 
82.9 
81.5 
83.4 
87.7 

 
81.8 
79.6 
85.8 
77.9 
89.7 

 

84.5 
82.4 
86.7 
83.0 
81.8 

 
89.3 
79.3 
82.7 
88.0 
79.6 

 
87.8 
83.6 
79.5 
83.3 
88.4 

 
86.6 
84.6 
79.7 
86.0 
84.2 

 
83.0 
84.8 
83.6 
81.8 
85.9 

 
88.2 
83.5 
87.2 
83.7 
87.3 

 
83.0 
90.5 
80.7 
83.1 
86.5 

 

80.5 
86.1 
82.6 
85.4 
84.7 

 
82.8 
81.9 
83.6 
86.8 
84.0 

 
84.2 
82.8 
83.0 
82.0 
84.7 

 
84.4 
88.9 
82.4 
83.0 
85.0 

 
82.2 
81.6 
86.2 
85.4 
82.1 

 
81.4 
85.0 
85.8 
84.2 
83.5 

 
86.5 
85.0 
80.4 
85.7 
86.7 

 

79.5 
86.7 
80.5 
91.7 
81.6 

 
83.9 
85.6 
84.8 
78.4 
89.9 

 
85.0 
86.2 
83.0 
85.4 
84.4 

 
84.5 
86.2 
85.6 
83.2 
85.7 

 
83.5 
80.1 
82.2 
88.6 
82.0 

 
85.0 
85.2 
85.3 
84.3 
82.3 

 
89.7 
84.8 
83.1 
80.6 
87.4 

 

84.8 
86.6 
83.5 
78.1 
88.8 

 
81.9 
83.3 
80.0 
87.2 
83.3 

 
86.6 
79.5 
84.1 
82.2 
90.8 

 
86.5 
79.7 
81.0 
87.2 
81.6 

 
84.4 
84.4 
82.2 
88.9 
80.9 

 
85.1 
87.1 
84.0 
76.5 
82.7 

 
85.1 
83.3 
90.4 
81.0 
80.3 

 

81.1 
85.6 
86.6 
80.0 
86.6 

 
83.3 
83.1 
82.3 
86.7 
80.2 
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85.4 
86.3 
80.7 
83.8 
90.5 

90.0 
77.5 
84.7 
84.6 
87.2 

86.7 
82.3 
86.4 
82.5 
82.0 

86.8 
83.5 
86.2 
84.1 
82.3 

79.8 
89.0 
83.7 
80.9 
87.3 

We have to examine the historical data and calculate how often there has been a 
difference in the reliability equal to or greater than 1.30 in successive groups of 10 
observations in order to define the significance of the change produced by process 
B. If the answer was frequently, we could conclude that the difference in reliability 
is due to random variations. If the answer was rarely, we could conclude that the 
change in the process has produced an improvement in reliability, and we could 
say that the difference between the means of A and B is statistically significant.  

Let’s represent the means of groups of 10 consecutive observations in Table 7.3. 

Table 7.3. Means of 10 consecutive components 

obs. mean 
10 
obs. 

obs. mean 
10 
obs. 

obs. mean 
10 
obs. 

obs. mean 
10 
obs. 

obs. mean 
10 
obs. 

obs. mean 
10 
obs. 

85.5 
81.7 
80.6 
84.7 
88.2 
 
84.9 
81.8 
84.9 
85.2 
81.9 
 
89.4 
79.0 
81.4 
84.8 
85.9 
 
88.0 
80.3 
82.6 
83.5 
80.2 
 
85.2 
87.2 
83.5 
84.3 
82.9 
 

 
 
 
 
 
 
 
 
 
 
83.94 
 
84.33 
84.06 
84.14 
84.15 
83.92 
 
84.23 
84.08 
83.85 
83.68 
83.51 
 
83.09 
83.91 
84.12 
84.07 
83.77 
 

84.5 
82.4 
86.7 
83.0 
81.8 
 
89.3 
79.3 
82.7 
88.0 
79.6 
 
87.8 
83.6 
79.5 
83.3 
88.4 
 
86.6 
84.6 
79.7 
86.0 
84.2 
 
83.0 
84.8 
83.6 
81.8 
85.9 
 

84.42 
84.70 
84.79 
85.30 
84.51 
 
84.90 
84.20 
84.40 
84.82 
83.73 
 
84.06 
84.18 
83.46 
83.49 
84.15 
 
83.88 
84.41 
84.11 
83.91 
84.37 
 
83.89 
84.01 
84.42 
84.27 
84.02 
 

80.5 
86.1 
82.6 
85.4 
84.7 
 
82.8 
81.9 
83.6 
86.8 
84.0 
 
84.2 
82.8 
83.0 
82.0 
84.7 
 
84.4 
88.9 
82.4 
83.0 
85.0 
 
82.2 
81.6 
86.2 
85.4 
82.1 
 

84.53 
84.09 
84.28 
84.51 
84.33 
 
83.61 
84.05 
83.94 
84.16 
83.84 
 
84.21 
83.88 
83.92 
83.58 
83.58 
 
83.74 
84.44 
84.32 
83.94 
84.04 
 
83.84 
83.72 
84.04 
84.38 
84.12 
 

79.5 
86.7 
80.5 
91.7 
81.6 
 
83.9 
85.6 
84.8 
78.4 
89.9 
 
85.0 
86.2 
83.0 
85.4 
84.4 
 
84.5 
86.2 
85.6 
83.2 
85.7 
 
83.5 
80.1 
82.2 
88.6 
82.0 
 

83.72 
83.89 
83.90 
84.50 
83.99 
 
83.71 
84.04 
83.88 
83.47 
84.26 
 
84.81 
84.76 
85.01 
84.38 
84.66 
 
84.72 
84.78 
84.86 
85.34 
84.92 
 
84.77 
84.16 
84.08 
84.40 
84.16 
 

84.8 
86.6 
83.5 
78.1 
88.8 
 
81.9 
83.3 
80.0 
87.2 
83.3 
 
86.6 
79.5 
84.1 
82.2 
90.8 
 
86.5 
79.7 
81.0 
87.2 
81.6 
 
84.4 
84.4 
82.2 
88.9 
80.9 
 

84.36 
84.54 
84.58 
84.33 
84.47 
 
83.98 
83.96 
83.34 
83.65 
83.75 
 
83.93 
83.22 
83.28 
83.69 
83.89 
 
84.35 
83.99 
84.09 
84.09 
83.92 
 
83.79 
84.19 
84.00 
84.67 
83.68 
 

81.1 
85.6 
86.6 
80.0 
86.6 
 
83.3 
83.1 
82.3 
86.7 
80.2 

83.68 
83.91 
83.53 
83.43 
84.06 
 
84.41 
83.82 
83.68 
84.26 
83.55 
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84.7 
82.9 
81.5 
83.4 
87.7 
 
81.8 
79.6 
85.8 
77.9 
89.7 
 
85.4 
86.3 
80.7 
83.8 
90.5 

83.44 
83.70 
83.59 
83.58 
84.33 
 
83.99 
83.23 
83.46 
82.82 
83.50 
 
83.57 
83.91 
83.83 
83.87 
84.15 

88.2 
83.5 
87.2 
83.7 
87.3 
 
83.0 
90.5 
80.7 
83.1 
86.5 
 
90.0 
77.5 
84.7 
84.6 
87.2 

84.18 
84.07 
84.82 
84.59 
84.90 
 
84.90 
85.47 
85.18 
85.31 
85.37 
 
85.55 
84.95 
84.70 
84.79 
84.78 

81.4 
85.0 
85.8 
84.2 
83.5 
 
86.5 
85.0 
80.4 
85.7 
86.7 
 
86.7 
82.3 
86.4 
82.5 
82.0 

83.82 
83.43 
83.77 
83.89 
83.74 
 
84.17 
84.51 
83.93 
83.96 
84.42 
 
84.95 
84.68 
84.74 
84.57 
84.42 

85.0 
85.2 
85.3 
84.3 
82.3 
 
89.7 
84.8 
83.1 
80.6 
87.4 
 
86.8 
83.5 
86.2 
84.1 
82.3 

84.21 
84.11 
84.08 
84.19 
83.85 
 
84.47 
84.94 
85.03 
84.23 
84.77 
 
84.95 
84.78 
84.87 
84.85 
84.85 

85.1 
87.1 
84.0 
76.5 
82.7 
 
85.1 
83.3 
90.4 
81.0 
80.3 
 
79.8 
89.0 
83.7 
80.9 
87.3 

83.54 
84.28 
84.58 
83.51 
83.62 
 
83.69 
83.58 
84.40 
83.61 
83.55 
 
83.02 
83.21 
83.18 
83.62 
84.08 

Table 7.4 shows the differences between the means of two consecutive groups 
taken from Table 7.3. For example, the first value, -0.43, was calculated by 
subtracting 83.94 (mean of projects 1 to 10) from 83.51 (mean of projects 11 to 
20). This calculation was repeated with the means of projects 2 to 11, 12 to 21 and 
so on. 

Table 7.4. Difference between means of 
consecutive groups 

 
 
 
 
 
 
 
 
 
 

-0.43 
 

-1.24 
-0.15 
-0.02 
-0.08 
-0.15 

 
-0.79 
-0.38 
-0.26 
-0.10 

-0.36 
-0.52 
-1.33 
-1.81 
-0.36 

 
-1.02 
0.21 

-0.29 
-0.91 
0.64 

 
-0.17 
-0.17 
0.96 
0.78 

-0.13 
 

0.30 
-0.34 
0.71 
0.68 

-0.32 
-0.21 
-0.36 
-0.93 
-0.75 

 
0.13 
0.39 
0.38 

-0.22 
0.20 

 
-0.37 
-0.16 
0.12 
0.80 
0.54 

 
0.08 

-1.01 
-0.55 
-0.05 

1.09 
0.87 
1.11 

-0.12 
0.67 

 
1.01 
0.74 
0.98 
1.87 
0.66 

 
-0.04 
-0.60 
-0.93 
0.02 

-0.50 
 

-0.51 
-0.67 
-0.78 
-1.15 

-0.43 
-1.32 
-1.30 
-0.64 
-0.58 

 
0.37 
0.03 
0.75 
0.44 
0.17 

 
-0.23 
0.97 
0.72 
0.98 

-0.21 
 

-0.81 
0.29 
0.49 

-0.58 
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0.82 
 

0.90 
-0.68 
-0.66 
-1.25 
-0.27 

 
0.13 
0.21 
0.24 
0.29 

-0.18 
 

0.43 
1.47 
1.33 
2.48 
1.01 

 
1.33 
0.29 
0.57 
0.95 

-0.42 

0.53 
 

1.01 
1.46 
0.76 
1.04 
1.35 

 
1.37 
0.88 

-0.12 
0.20 

-0.12 
 

-0.37 
-1.38 
-0.90 
-0.80 
-1.04 

 
-1.94 
-0.90 
-0.76 
-0.63 
-0.94 

-0.30 
 

0.33 
0.79 

-0.11 
-0.42 
0.30 

 
1.13 
1.25 
0.97 
0.68 
0.68 

 
-0.45 
-0.62 
-0.03 
0.54 

-0.43 
 

-1.24 
-0.64 
-0.86 
-1.10 
-0.16 

-1.07 
 

-0.30 
0.78 
0.95 

-0.17 
0.61 

 
0.74 
0.67 
0.79 
0.66 
1.00 

 
-0.11 
-0.40 
-0.45 
0.10 

-0.30 
 

-0.97 
-0.82 
-1.53 
-1.20 
-1.10 

-0.30 
 

-0.01 
-0.61 
0.40 

-1.06 
-0.13 

 
-0.52 
-1.07 
-1.40 
0.11 
0.46 

 
-0.01 
0.33 

-0.87 
-0.18 
0.51 

 
1.39 
0.61 
0.50 
0.64 

-0.53 

These subtractions provide a reference set against which we can compare the 
difference (1.30) that we got when we used process B.  

We can see that only 9 of the 191 differences are greater than 1.30. These are 
highlighted in bold type. So, we could say that there is a probability of 
9/191=0.047 of the observed difference in the means being statistically significant. 
This probability is less that 5% (5/100=0.05). Therefore, it is likely that there is a 
significant difference using process B. 

 This calls into question the null hypothesis, which assumes that the observed 
difference is the fruit of chance. In statistical terms, the experimenter could say 
that, with regard to these historical data and the reference set they form, the 
difference observed is statistically significant at the level of significance 9/191 = 
0.047. So, the modified process is likely to be better than the regular process, as it 
outputs more reliable software. 

So, the steps for answering the question of whether an alternative (A) improves the 
response variable with respect to another alternative (B), having historical data, 
can be summarised as follows:  
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1.  Calculate the differences between the different means using the data yielded 
by the new experiments (run by varying the factor under examination: m 
experiments with alternative A and m with alternative B). 

2.  Calculate the differences between the means of the historical data (groups of 
size m equal to the experiments). 

3.  Determine how often means greater than the experimental means are yielded 
by the historical data. If they are yielded frequently, then the differences will 
be due to chance, whereas the differences may be due to the change made to 
the factor in question if the frequency is low (under 5%). 

Supposing that we want to compare more than one new alternative using historical 
data, we will only be able to compare each new alternative with the alternative 
used historically by means of the above procedure. This sort of inquiry will be able 
to tell us whether each of the new alternatives is an improvement on the historical 
alternative. However, it cannot be used to compare the new alternatives. 

7.3. SIGNIFICANCE OF THE DIFFERENCE BETWEEN TWO 
ALTERNATIVES WHEN NO HISTORICAL DATA ARE AVAILABLE 

What happens when there are no historical data that can be used for comparison? 
In this case, the procedure to be followed involves using Student’s t distribution 
and comparing the results of the experiment against this. The Student’s t 
distribution used as a reference for differences between means was discussed in 
Chapter 6 (Table III.3 in Annex III). This process is only possible if the data 
behave like a random sample. This means that it is absolutely indispensable for the 
experiments to have been randomised, if Student’s t distributions are to be used as 
a reference distribution to check the statistical significance of the difference 
between the mean responses of two factor alternatives. As discussed in Chapter 5, 
this calls for the performance of the experiments in a completely random order 
(remember the bag or card procedures) rather than an order assigned by the 
researcher. 

Note, therefore, that if the concept of randomisation has not been applied to the 
experiments, it is impossible to use the Student’s t as a reference distribution, as 
we would be infringing the restrictions that validate statistical inference on the 
basis of t. 

Suppose we have an experiment to determine the better alternative of two 
programming languages (A and B) with respect to the number of errors detected 
when inspecting similar programs implemented using the above languages. The 
results of the experiment could be: 

ORDER 
LANGUAGE 
CORRECTNESS 

1 
A 

29.9 

2 
A 

11.4 

3 
B 

26.6 

4 
B 

23.7 

5 
A 

25.3 

6 
B 

28.5 

7 
B 

14.2 

8 
B 

17.9 

9 
A 

16.5 

10 
A 

21.1 

11 
B 

24.3 
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Table 7.5. Results of a random experiment for 
comparing alternative A and B 

LANGUAGE  A  LANGUAGE  B
29.9 
11.4 
25.3 
16.5 
21.1 

 
nA = 5 

∑YA =104.5 
 

 26.6 
23.7 
28.5 
14.2 
17.9 
24.3 

nB = 6 
∑YB = 135.2 

 

20.9
5

104.5
YA ==

 

22.53
6

135.2
YB ==

 
1.69YY AB =−  

The null hypothesis is that H0: the use of A or B has no effect on the results and, 
hence, on the mean. The alternative hypothesis establishes that H1: language B 
always outputs a higher mean than A. 

As discussed in section 6.5.1., t can be used as a reference distribution by 
consulting the quantity: 

 

BA

BAAB
0

n
1

n
1s

)()YY(t
+

−−−
=

µµ
 

in the Student’s t table with nA+nB-2 degrees of freedom, where µi are population 
means and s is the sample standard deviation. According to the random sampling 
hypothesis, s yields an estimate of σ with nA+nB-2=9 degrees of freedom (as we 
will see in Table 7.6, s is calculated as illustrated in section 6.5.1). The Student’s t 
table gives us the significance level, that is, the proportion of experiments that 
would yield a difference greater than 1.69 according to the null hypothesis. If 
there are a lot, the difference detected in the means is nothing exceptional and can 
be put down to chance. Therefore, the null hypothesis would be true, and the use 
of either A or B would provide no improvement. If, on the other hand, the 
proportion is small, the difference between the means that we have found is 
strange. Therefore, it is unlikely to have occurred by chance and can be attributed 
to language A actually providing more correctness than language B. 
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Table 7.6. t0 calculations 

)
5

1

6

1
39.73(

1.69

39.73
54

5(29.51)4(52.50)

1)(n1)(n

21)s(n21)s(n2s

29.51
5

47.5333

1n

2)Y(Y2s

52.50
4

209.9920

1n

2)Y(Y2s

1.6920.8422.53YY

0BA
0

BA

BA

B

BB

A

AA

AB

)(t

BA

B

A

+

−−
=

=
+

+
=

−+−

−+−
=

==
−

∑ −
=

==
−

∑ −
=

=−=−

µµ

 

where  is the low value of the null hypothesis. It will be zero 0)( AB µµ −
if there is no difference between applying B and applying A. 
t0 = 0.44 and Pr(t  ≥  t0) = 0.34 

Going back to the formula of t0. According to the null hypothesis, (µB-µA )0 is 
zero. The quantity t0 is (see Table 7.6 for operations): 

 
t 0 =

1. 69 − 0
3. 82

= 0.44
 

If we consult the value 0.44 in the t table with 9 degrees of freedom (see Table 
III.3 in Annex III), we find that the value 0.44 is between 0.260 and 0.697. The 
table tells us that the probabilities of a higher value being output are 0.4 for 0.260 
and 0.25 for 0.697. 

So, greater differences between the means than we have found (1.69) would be 
detected as often as 25% to 40% of the time. Therefore, the null hypothesis cannot 
be rejected, and we can state that the difference found is due to chance and not to 
either of the processes being effectively better and causing fewer errors. 

The null hypothesis is generally rejected when P(t≥t0)<5%. This probability value 
is also often termed p-value. 

7.4. ANALYSIS FOR PAIRED COMPARISON DESIGNS  
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There is a more precise means of comparing two alternatives of the same factor. 
This involves using each alternative in the same experimental unit instead of some 
experimental units being completed with alternative A and other experimental 
units with alternative B, as shown in the preceding section. If each alternative is 
used in the same project, two similar teams are required to carry out the task. As 
discussed in Chapter 5, this sort of experimental design is called paired 
comparison. 

Making comparisons within homogeneous pairs of experimental units can often 
raise the precision of the analysis. For example, this would be the case of one and 
the same application developed using different techniques or tools. One possible 
situation is depicted in Table 7.7, showing the estimate accuracy for two different 
techniques applied to 10 similar projects. This experiment was run after selecting 
subject pairs of the same characteristics (same development experience, same 
domain knowledge, etc.) and randomly assigning the project to be estimated by 
each pair and the order of application of both techniques over the project. 

Neither the projects nor the subjects can be considered to be identical. However, 
both techniques have been applied together to each project. Therefore, if we work 
with the ten B-A differences, let’s call them di (to stress that we are talking about 
differences between data), we can eliminate most of the differences among 
subjects.  

Table 7.7. Accuracy of the estimate for 10 similar projects 

Project Technique A Technique B d = B-A  
1 13.2 14.0 0.8 
2 8.2 8.8 0.6 
3 10.9 11.2 0.3 
4 14.3 14.2 -0.1 
5 10.7 11.8 1.1 
6 6.6 6.4 -0.2 
7 9.5 9.8 0.3 
8 10.8 11.3 0.5 
9 8.8 9.3 0.5 
10 13.3 13.6 0.3 
   Mean difference=0.41 

If we accept the random sampling hypothesis of the differences di of a normal 
population of mean δ, we could use the t distribution to compare d and δ. So, as 
shown in section 6.5.1., the following statistic will be used to determine whether a 
normal population has mean δ:  
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where n is the sample size and sd is the standard deviation of the differences. As 
mentioned earlier, this statistic is distributed like a t with n-1 degrees of freedom, 
where 
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According to the null hypothesis, δ is equal to zero (as it is the mean between the 
population and differences, it will be 0 if there is no difference between techniques 
A and B), so the respective reference distribution is a t distribution with nine 
degrees of freedom. The value of t0 associated with the null hypothesis δ=0 is: 

 
18.39

386.0

41.0
=

 

If we consult the t table with nine degrees of freedom (Table III.3 in Annex III), 
we get P(t≥3.18)≅0.004. Hence, we can reject the null hypothesis and consider 
that technique A is more accurate. 
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7.5. ONE-FACTOR ANALYSIS WITH TWO ALTERNATIVES IN REAL 
SE EXPERIMENTS 

7.5.1. Analysis for Examining the Relationship between Code Quality and 
Estimate Accuracy 

Mizuno et al. (1998) present a series of experiments run for the purpose of 
studying the truthfulness of the following hypotheses: 

“In projects with accurate cost estimation, the quality of the delivered 
code is high” and “In projects with accurate cost estimation, the 
productivity of the development team is high”. 

The factor considered for this project, then, is the accuracy of the estimation 
process. This factor is represented as RE and the authors describe an objective 
form of calculating it by means of the following expression: 

 x100
estCOST

estCOSTactCOST
RE

−
=  

where actCOST is the actual cost (measured by person-month) and estCOST is the 
estimated cost (measured by person-month). Based on this value, the projects can 
be classed into three groups, Co, C+, and C-. Co is the set of projects with -10% < 
RE <+10%, C+ is the set of projects with RE ≥ 10% and C- is the set of projects 
with RE ≤ -10%. Thus, we have a factor RE, with three alternatives, Co, C+ and 
C-. Although this is an experiment with three alternatives, the analysis is actually 
performed by comparing alternatives two by two (this procedure can be 
considered as a sort of trick for analysing experiments with more than two factors; 
however, we will look at how to do a full k (k>2) study in the following chapter). 

The experiments were run on 31 projects at one company. The response variables 
are detailed in Chapter 4, Table 4.6. Remember that they are FQ: quality of 
delivered code (FD/SLC) and TP (productivity of the team (SLC/EFT). 

Thus, µo was defined as the average of FQs of all projects which belong to Co, and 
µ+ and µ- as the averages of FQs of all projects in C+ and C-, respectively. 

The results of Co and C+ were compared by establishing the null hypothesis as 
H0: µ+ = µo (there is no difference in either code quality or team productivity for 
Co projects in which the range of the estimate deviation is from -10% to 10%) and 
the alternative hypothesis as H1: µ+ >µo  (both code quality and team productivity 
is greater in the projects whose deviation is from –10% to 10% than in projects in 
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which the deviation is greater than 10%). The authors applied the t-test to study 
these hypotheses statistically. They calculated the respective statistic according to 
the following formula (derived from the t-statistic examined in Chapter 6): 

 1.997

o

2
o

2

o

N
s

N
s

xxt =

+

−
=

+

+

+

 

The exact data of this analysis are confidential and the authors only show the 
result of the t-test. For a significance level of 95%, P(t>T)<0.05, which means that 
the null hypothesis can be rejected. This means that there is a significant 
difference in code quality, FQ, between Co projects (range of deviation from the 
estimate of from -10% to +10%), and C+ projects (deviation from the estimate of 
over 10%). 

However, after applying this same test, the authors did not identify any significant 
difference in the software quality between Co and C- projects. 

A similar analysis was performed by the authors to test development team 
productivity, outputting the result that there is a significant difference in 
productivity among Co projects (deviation of from -10% to +10%) and C+ 
projects (deviation of over +10%). However, this difference is not considered 
significant among Co and C- projects.  

So, one of the most significant results of their experiments is the assertion that if 
the cost estimate of a project is accurate, then the project code quality and 
equipment productivity is greater. 

7.5.2. Analysis for Examining the Relationship between the Application of 
SEPG Guidelines and the Defect Detection Process 

An example of an analysis of this kind was conducted by Mizuno and Kikuno 
(Mizuno, 1999). They ran several studies for the purpose of examining the 
development process implemented at a company, where a Software Engineering 
Process Group (SEPG) made several efforts at improving the review process. The 
goal of one particular study conducted was to prove the following assertion: 

 “The number of faults detected by the review increases in projects that 
have correctly applied the SEPG guidelines. Similarly, the number of 
faults detected in the debug & test phase decreases”. 

This investigation was really designed as an observation not as a controlled 
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experiment. It has been included in this section to show readers how the process of 
analysis is applicable in both cases. 

In this study there were one factor of interest (project type) and two alternatives 
(faithful project and unfaithful project). The authors consider a project to be 
faithful if, following SEPG guidelines, at least 15% of the total efforts for design 
and coding activities are assigned to reviews (document review and code review). 

The response variables considered for this study ρreview/total (ratio of faults detected 
in the review of the design phase) and ρtest/total (ratio of faults detected in the debug 
& test phase) have already been discussed in Chapter 4, Table 4.6. Table 7.8 
outlines the results of this study across a total of 23 projects. 

Table 7.8. Ratio of detected faults ρ 

 Faithful projects Unfaithful projects 
ρreview/total   78.4% 38.8% 
ρtest/total 21.1% 60.7% 

Applying the t-test at a confidence level of 95%, the authors confirmed a 
significant difference between the means for the response variables ρreview/total and 
ρtest/total  for the faithful and the unfaithful projects, thus corroborating the assertion 
under examination for this level of significance. 

7.5.3 Analysis for Comparing Structured Flowcharts and Pseudocode 

The t-test was also applied by Scanlan (1989). to find out if real differences in 
comprehension exist between structured flowcharts and pseudocode. So, he 
worked with one factor and two alternatives (flowcharts and pseudocode). For this 
purpose, algorithms of low, medium and high complexity were represented in both 
formats and shown to a group of students. The response variables considered 
were: the number of seconds the subjects viewed the algorithms when trying to 
answer a question, the percentage of questions answered correctly about the 
algorithms, the confidence level for answers to questions about the algorithms, the 
number of seconds the subjects viewed questions and spent answering questions 
about the algorithms, and the number of times an algorithm was brought into view. 

Some of the most significant results obtained from this experiment were as 
follows: 

• The subjects needed less time to comprehend structured flowcharts at all three 
levels of complexity. Table 7.9 shows the average number of seconds 
necessary to comprehend the algorithm for each kind of complexity. 
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 Table 7.9. Number of seconds subjects looked at algorithm when 
answering each question part 

Complexity 
level 

Factor Mean s t0 Degrees of 
freedom 

Pr (t≥
t0) 

Simple Flowcharts 7.83 5.09    
 Pseudocode 13.44 7.75 6.47 81 0.000 
       
Medium Flowcharts 6.19 3.02    
 Pseudocode 11.71 6.5 9.43 81 0.000 
       
Complex Flowcharts 6.33 2.37    
 Pseudocode 15.8 10.98 8.45 81 0.000 

• The subjects made fewer errors using structured flowcharts. The mean 
percentages of correct answers derived from flowcharts versus those derived 
from pseudocode, at all three levels of complexity, differed significantly in 
favour of structured flowcharts, as shown in Table 7.10. 

 Table 7.10. Percentage of correct answers to all question parts 

Complexity 
level 

Factor Mean s t0 Degrees of 
freedom 

Pr (t≥t0) 

Simple Flowcharts 97.97 8.5    
 Pseudocode 93.80 10.9 2.77 81 0.0035 
      
Medium Flowcharts 98.81 3.4   
 Pseudocode 94.92 10.3 4.05 81 0.000 
      
Complex Flowcharts 98.68 3.5   
 Pseudocode 91.71 14.4 4.82 81 0.000 

• The subjects had greater confidence using structured flowcharts. The mean 
confidence levels for answers derived from flowcharts versus those derived 
from pseudocode, at all three levels of complexity, differed significantly in 
favour of structured flowcharts, as shown in Table 7.11 (the confidence level 
was measured for each answer in a range from 1 to 4). 
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Table 7.11. Mean confidence level for each question part 

  Factor Mean s t0 Degrees of 
freedom 

Pr (t≥
t0) 

Simple Flowcharts 3.96 0.114   
 Pseudocode 3.85 0.315 3.36 81 0.006 
      
Medium Flowcharts 3.95 0.179   
 Pseudocode 3.81 0.368 3.86 81 0.001 
      
Complex Flowcharts 3.94 0.210   
 Pseudocode 3.71 0.469 4.81 81 0.000 

• The subjects needed less time to answer questions using structured flowcharts. 
The mean number of seconds subjects spent answering each question part 
when using flowcharts versus the time spent when using pseudocode, at all 
three levels of complexity, differed significantly for medium to complex levels 
only, as shown in Table 7.12. 

Table 7.12. Number of seconds subjects took to answer questions 

Complexity 
level 

Factor Mean s t0 Degrees of 
freedom 

Pr (t≥t0) 

Simple Flowcharts 9.5 6.93   
 Pseudocode 90.1 5.1 0.6 81 0.2755 
      
Medium Flowcharts 6.83 3.2   
 Pseudocode 7.47 3.67 1.94 81 0.0279 
      
Complex Flowcharts 7.25 2.03   
 Pseudocode 8.73 3.84 3.73 81 0.002 

• The subject viewed the algorithm fewer times using structured flowcharts. The 
mean number of times the subjects moved the test algorithm into the viewing 
area per question for flowcharts versus for pseudocode, differed significantly 
as shown in Table 7.13. 
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 Table 7.13. Number of times the algorithm was viewed when answering 
each question 

Complexity 
level 

Factor Mean s t0 Degrees of 
freedom 

Pr (t≥t0) 

Simple Flowcharts 1.30 0.275   
 Pseudocode 1.41 0.344 3.25 81 0.0008 
      
Medium Flowcharts 0.86 0.239   
 Pseudocode 0.92 0.289 2.84 81 0.0030 
      
Complex Flowcharts 0.72 0.229   
 Pseudocode 0.82 0.296 4.55 81 0.000 

7.5.4 Analysis for Comparing Object-Oriented and Structured Development 

The t-test was also applied (Lewis, 1992) to show, by means of different 
experiments and using the development paradigm (procedural represented by 
Pascal and object oriented represented by C++) as a factor, differences in 
productivity. 

The authors used different measures of productivity as a response variable for 
running this experiment. These are:  

Runs: number of runs made during system development and test 
RTE: number of runtime errors discovered during system development 
and testing 
Time: minutes to fix all run-time errors 
Edits: number of edits performed during system development and testing 
Syn: number of syntax errors made during system development and 
testing 

The authors describe the first three variables as main productivity measures and 
the other two as secondary productivity measures. 

The results of the analyses conducted by the authors to test some of the most 
prominent assertions are given below. As mentioned above, the analysis was 
conducted using the t-test, in this case with a confidence of 95%. 

Table 7.14 shows the results of the analysis that lead to the following claim: (a). 
“the object-oriented paradigm promotes higher productivity than the procedural 
paradigm”. 
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Table 7.14. Analysis of claim (a) 

 Means   
Response variable Procedural Object oriented P(t>t0) Significant? 
Runs 59.27 47.50 0.0066 Yes 
RTE 65.00 50.20 0.0078 Yes 
Time 354.41 261.70 0.0104 Yes 
Edits 271.55 263.65 0.3469 No 
Syn 183.67 202.40 0.8675 No 

Table 7.15 shows the results of the analysis that led to the following claim: (b). 
“there is no difference in productivity in the object-oriented paradigm and in the 
structured paradigm when programmers do not reuse”. 

Table 7.15. Analysis of the claim (b) 

 Means   
Response variable Procedural Object oriented P(t>t0) Significant? 
Runs 75.38 83.17 0.8909 No 
RTE 65.0081.25 87.17 0.7506 No 
Time 446.38 385.00 0.1607 No 
Edits 416.00 392.00 0.2360 No 
Syn 311.00 290.33 0.1733 No 

Table 7.16 shows the results of the analysis that led to the following claim: (c). 
“the object-oriented paradigm promotes higher productivity than the procedural 
paradigm when programmers reuse”. 

Table 7.16. Analysis of the claim (c) 

 Means   
Response variable Procedural Object oriented P(t>t0) Significant? 
Runs 50.07 32.21 0.0001 Yes 
RTE 55.71 34.36 0.0005 Yes 
Time 301.86 208.86 0.0153 Yes 
Edits 189.00 208.64 0.8380 No 
Syn 137.14 164.71 0.9767 No 

Table 7.17 shows the results of the analysis that led to the following claim: (d). 
“the object-oriented paradigm promotes higher productivity than the procedural 
paradigm when programmers are moderately encouraged to reuse”. 

 

Table 7.17. Analysis of claim (d) 
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 Means   
Response variable Procedural Object oriented P(t>t0) Significant? 
Runs 45.13 27.75 0.0023 Yes 
RTE 49.50 32.00 0.0178 Yes 
Time 264.25 196.13 0.1179 No 
Edits 192.13 189.50 0.4660 No 
Syn 142.25 146.75 0.5688 No 

7.5.5. Analysis for Examining the Efficiency of Group Interactions in the 
Review Process 

Land, Sauer and Jeffery (Land, 1997) also applied the t-test in some experiments 
to analyse the performance advantage of interacting groups over average 
individuals and artificial groups (jointly considering the results of some 
individuals) in technical reviews. Of the hypotheses studied by the authors, we 
might consider, for example:  

H.1: Interacting groups report more true defects than the average individual 
reviewer 

H.2: Interacting groups report more net defects than the average individual 
reviewer 

H.3: Nominal groups report more true defects than interacting groups 
H.4: Interacting groups report fewer false positive defects than nominal 

groups 

This experiment was performed with 101 graduate students, who were required to 
inspect the same piece of compiled code, first as an individual, then followed by a 
face-to-face group review. So the experimenters collected data from 101 
individual defect forms and 33 group defect forms. The response variables for 
consideration to validate the hypotheses were as follows: 

• Number of true defects: defects in need of repair 
• Number of false positives: these are non-true defects, that is, defects that 

require no repair 
• Net defect score: number of true defects – number of false positives. 

In order to test the above hypotheses, the authors applied the t-test and the result 
was that they were all considered true with a significance level of < 0.05. Thus, 
the authors demonstrated the effectiveness of the interacting groups over 
individuals in technical inspections, where the source of the performance 
advantage of interacting groups was not in finding defects, but rather in 
discriminating between true defects and false positives. 

7.5.6. Analysis for Examining the Use of a Framework-Based Environment 

Likewise, Basili, Lanubile and Shull (Basili, 1998) applied the t-test as part of an 
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experiment for studying the effectiveness of the maintenance process in an 
environment in which there was a repository of potential sources of reuse. So, they 
worked with one factor and two alternatives (adapting an existing application and 
developing from scratch). One of the most important findings of this study was 
that “for implementing a set of requirements in a framework-based environment, if 
a suitable example application can be found, then adapting that application is a 
more effective strategy than starting from scratch”. This hypothesis was tested 
yielding the t-test (t0=1.538) giving a probability P(t> t0=0.15). 

7.5.7. Analysis for Examining Meeting Performance in Inspections 

We have also discussed the paired t-tests in this chapter. One example of analysis 
of this kind is the experiment performed by Fusaro, Lanubile and Visaggio 
(Fusaro, 1997) as part of a broader experiment related to the study of meeting 
performance in inspections. The authors applied this analysis to compare the 
meeting gain rates (the percentages of defects first identified at the meeting) and 
the meeting loss rates (the percentage of defects first identified by an individual 
but not included in the report from the meeting). The paired t-test failed to detect 
significant differences between meeting gain rates and meeting loss rates. This 
result led the authors to determine that the defect detection rate is not improved by 
collection meetings. 

7.5.8. Analysis for Comparing the Accuracy of an Analogy- against a 
Regression-Based Estimate 

Another experimental analysis that used the paired t-test was run by Myrtevil and 
Stensrud (Myrtevil, 1999) in an experiment run to examine whether there is a 
significant difference in the accuracy of the estimate made with the aid of an 
analogy-based tool (first alternative) against the use of a tool based on a regression 
model (second alternative). For this purpose, 68 subjects, who were experienced 
personnel with acknowledged project manager skills and a minimum of 6 years of 
relevant practice, were asked to estimate different projects with both methods. The 
authors concluded that the application of the paired t-test with a confidence of 
90% did not show any difference among the two techniques. 

7.6.  SUGGESTED EXERCISES 

7.6.1. Table 7.18 shows the time taken to specify five similar algorithms using 
two formal specification techniques. What evidence is there to suggest 
that there is a difference in the time taken for each technique? 

Table 7. 18. Data of a paired design 

A   B A   B B   A A   B B   A 
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3   5 
 

  8    12 
 

11   4 
 

  2   10 
 

9   6 
 

Solution: P(t=t0)=0.014 

7.6.2. Taking into account the data of an experiment to calculate the time it 
takes five programmers to modify a program using two different 
languages (A and B): 

A B B A B 
3 5 5 1 8 

Calculate the probability P(t=t0) of finding differences between the means 
of A and B greater than yielded by the above data. Can the null 
hypothesis stating that there is no difference between languages A and B 
be rejected in respect of the time taken to modify programs? 

Solution: P(t=t0)=0.04; Yes 

7.6.3. Repeat the exercise with the following data: 

B A B A A A B B 
32 30 31 29 30 29 31 30 

Solution: P(t=t0)=0.01; Yes 



8 WHICH OF K ALTERNATIVES 
IS THE BEST? 

ANALYSIS FOR ONE-FACTOR DESIGNS 
AND K ALTERNATIVES 

8.1. INTRODUCTION 

We are now going to address the comparison of k alternatives for any one factor. 
The method of analysis examined in this chapter can also be applied for k=2 and is, 
therefore, an alternative procedure to the one discussed in Chapter 7. Again we are 
looking at one-factor experiments, in which the other parameters would either 
remain unchanged or, as remarked upon in Chapter 2, have similar values. The 
underlying philosophy and process is similar to the comparison of two means: the 
question is whether there are real differences between the results obtained for the 
different options or whether the differences observed are merely due to chance. 
Again, a standard distribution that will output the level of significance of the 
differences found will be used to answer this question. Once again randomisation is 
essential if this standard distribution is to be used as a reference. 

A series of steps can be identified that should be taken to analyse an experiment that 
aims to determine which is the best of k alternatives. As we will see in the 
following chapters, these steps are also applicable for analysing other classes of 
experiment, including factorial or block experimental designs. These steps are as 
follows. 

1. Identify the mathematical model that relates the response variable and the factor. 
This model will be used to conduct the analysis. 

2. Validate the model to assure that the data collected meet the model 
requirements. This is validated by examining the residuals or experimental 
errors. 

3. Calculate the factor- and error-induced variation in the response variable. 
4. Calculate the statistical significance of the effect of the factor. 
5. Establish consequences or recommendations on the alternative that provides the 

best response variable values. 

Let’s start with an example that will be a guide for the remainder of the chapter. 
Table 8.1 shows the results measured in terms of number of errors for 24 similar 
projects using four different programming languages: A, B, C and D. The use of 
language A was replicated four times, B and C six times and D eight times. The 
numbers in brackets in this table specify the project in which the language was 
used. The languages were assigned by means of the card technique to assure 
randomisation. 
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Table 8.1. Number of errors in 24 similar projects 

 Language Alternative 
 A B C D 
 62(20) 

60(2)

63(11)

59(10)

63(12)

67(9)

71(15)

64(14)

65(4)

66(8)

68(16) 

66(7)

71(1)

67(17)

68(13)

68(21)

56(23) 

62(3)

60(6)

61(18)

63(22)

64(19)

63(5)

59(24)

Mean per alternative 
Grand mean 

61 
64 

66 68 61 

Let’s consider the following question “is there enough evidence to suggest that 
there are real differences among the mean values of the different alternatives 
(programming languages)?” So, the null hypothesis to be tested is H0: the means of 
alternatives µA, µB, µC and µD are all the same. The alternative hypothesis H1 is that 
these means are different. Thus, we have an experiment in which we are 
considering one factor, the programming language, with four alternatives (A, B, C 
and D) and the response variable is the number of errors detected. 

The above-mentioned steps will be applied to complete the analysis of this example 
as we examine the theory in the following sections (sections 8.2. to 8.6). Finally, 
section 8.7 analyses some real SE experiments using the described method. 

8.2.  IDENTIFICATION OF THE MATHEMATICAL MODEL 

Experimental data are analysed using models that relate the response variable and 
the factor under consideration. The use of these models involves making a series of 
assumptions about the data that need to be validated rather than blindly trusting in 
the result of the analysis. Therefore, after identifying the mathematical model 
associated with the respective analysis, we need to check that the experimental data 
with which we are working comply with the assumptions required by the model 
(this test is examined in section 8.3). 

The model that describes the relationship between the response variable and the 
factor in a one-factor experimental designs is: 

 yij = µ + α j + eij  
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where yij is the value of the response variable in the i-th observation with the factor 
valued j (that is, the j-th alternative), µ is the mean response, αj is the effect of the 
alternative j, and eij is the error. The effect of an alternative of one factor is the 
change provoked by this alternative in the response variable. The reasoning for 
calculating such effects is as follows. 

Each observation in Table 8.1 fits this expression:   

  yij = µ + α j + eij

If we sum all these equations, we have:  

  

yij = Nµ + rjα j + eij
j =1

a

∑
i=1

rj

∑
j=1

a

∑
j =1

a

∑
i=1

rj

∑

where N is the total number of observations, rj is the number of observations (or 
replications) for the j-th alternative, and a is the number of alternatives of the factor. 

One of the hypotheses called for by the model is that the sum of the effects is 0 and 
that the sum of the errors is 0. Accordingly, the above equation is: 

  00Ny
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So, the mean of the observations is:  
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which is called the grand mean ..y  

This mean is different from the mean of each alternative (each column of Table 8.1) 
denoted by .jy : 
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If we replace yij by µ +α j + eij , we have:  

 
y. j =

1
rj

µ + α j + eij( )
i=1

r j

∑ =
1
rj

rj µ+ r j α j + eij
i=1

r

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = µ + α j

 

This equation tells us how to calculate the effect of every alternative (j) on the 
response variable: 

 .jjj .y-.y-.y == µα  

The bottom row in Table 8.2 shows the effect of each alternative on the response 
variable. The grand mean is 64 and is obtained by dividing the grand sum (1414) by 
24, which is the number of observations. 

Remember that, in this experiment, the factor is the programming language and the 
response variable is the number of errors, thus these effects can be interpreted as 
follows: the use of language A leads to an average of 3 errors less than the mean, 
whereas the use of language C, for example, leads to 4 more errors on average. 

Before trusting in these results, we have to check that these differences in the 
response variable are really due to the programming language and not to 
experimental errors, such as, for example, the fact that other variables have not been 
considered. 

Table 8.2. Effects of the different programming language 
alternatives 

 Language Alternative 
 A B C D 
 62(20) 

60(2)

63(11)

59(10)

63(12)

67(9)

71(15)

64(14)

65(4)

66(8)

68(16) 

66(7)

71(1)

67(17)

68(13)

68(21)

56(23) 

62(3)

60(6)

61(18)

63(22)

64(19)

63(5)

59(24)

Mean per alternative 
Grand mean 
Effect per alternative 

61 
64 
-3 

66 
 
2 

68 
 
4 

61 
 
-3 
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8.3. VALIDATION OF THE BASIC MODEL THAT RELATES THE 
EXPERIMENTAL VARIABLES 

Before making any further calculations, it is important to check that the data that are 
being used in the experiment comply with the requirements for the use of the model 
in question. Indeed, the model used is applicable if the data are random samples of 
normal populations of the same variance, albeit having different or equal means 
depending on the results of the experiment. According to this assumption errors eij 
must be distributed identically and independently with a normal distribution of 
mean zero and constant, albeit unknown variance. This assumption is termed NIID 
(Normal and Independent with Identical Distributions), in particular, NIID(0, σ2). 

Accordingly, if the hypothesis on the errors were correct, all the pertinent 
information would be supplied by the means of the k alternatives. If we could be 
sure that this hypothesis is right, we could assure that no more pertinent information 
remains in the original data after the means of the alternatives have been calculated, 
and we could, therefore, disregard the original data and focus all our attention on 
the interpretation of these means. 

In practice, it would be unwise to trust in these hypotheses without running further 
checks, as the data may contain valuable information not picked up by the 
mathematical model and, therefore, not considered when checking the statistical 
significance of the difference between means. 

Suppose that, in the example examined above, programmer experience in the four 
languages differs and experience has an influence on the number of errors. This 
variable (programmer experience in the language) is not specifically accounted for 
by the model as another factor of experimentation. However, the random 
assignment of languages to projects (and, therefore, to programmers) would assure 
that the errors arising from this systematic trend appeared randomly in the treatment 
groups. In other words, a particular language is not always assigned to programmers 
with a particular level of experience, which would indeed influence the results for 
the language concerned. Random assignment could validate the significance tests 
we examined earlier. However, the additional variation produced by programmer 
experience will reduce test sensitivity. This means that the differences in the 
number of errors will not be caused only by the language employed but also by 
programmer experience. Hence, as the latter variable is not considered in the 
conclusions drawn about the observations, the variability of such observations will 
be less sensitive to (will be less affected by) the programming language. 
Nevertheless, the graphic representation of the residuals (difference between the 
mean of one alternative and the grand mean) over time (the more projects 
programmers work on, the more experience they gather) or according to 
programmers would reveal the existence of such a trend. This is important, because: 
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− it reveals a previously unconsidered source of variation, which can be examined 
in future experiments. 

− it can lead, in this experimentation, to a more accurate analysis of the 
differences in the number of errors in which the experience trend is taken into 
account and not arbitrarily mixed up with the error term. 

The tests to be performed on the data are based on the examination of the residuals 
or errors. These errors or residuals can be defined as , that is, the difference 
between the measured and estimated value of the response variable. These residuals 
are the quantities remaining after removing the systematic contributions of the 
proposed model (in this case, the contributions of the means of the alternatives, that 
is, of the programming language). Discrepancies of many classes can be described 
by examining residuals. If the hypotheses related to the model are true, we expect to 
find that the residuals vary at random. If we discover that the residuals contain 
inexplicable systematic trends, the model will be suspect, and we should reflect on 
the causes of the variations. 

yij − ˆ y ij

Therefore, one indispensable requirement prior to undertaking any statistical 
analysis is to study the residuals. As we discussed above, we can compute this error 
by calculating the difference between each measured value and the estimated value 
that we ought to obtain. 

The estimated value of the response variable in our model can be calculated by: 
jj µ α+=ŷ , that is, the mean of each column. This mean is shown in Table 8.3.  

Table 8.3. Estimated values of  ijŷ

Language Alternative 
 
A B C D 
61 
61 
61 
61 

66 
66 
66 
66 
66 
66 

68 
68 
68 
68 
68 
68 

61 
61 
61 
61 
61 
61 
61 
61 

If we calculate the difference between each response variable value in Table 8.1 and 
the means of each column of Table 8.3, we get the values of the residuals shown in 
Table 8.4. 
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Table 8.4. Residuals associated with each 
observation  

Language Alternative
 
 A B C D
Residuals 1

-1
2

-2

-3
1
5

-2
-1
0

0
-2
3

-1
0
0

-5
1

-1
0
2
3
2

-2

The following tests have to be run on the residuals we have obtained. 

8.3.1. Testing for the Normal Distribution of Residuals 

First, a general inspection must be carried out by plotting the residuals on a point 
graph, as shown in Figure 8.1. 

-6
.

-4 -2 0 2 4

.. .
6

.. ......... .... .....
 

Figure. 8.1. Point graph for all residuals 

If the hypothesis concerning error normality is true, this graph will generally have 
the appearance of a normal distribution centred at zero (shaped as shown in Figure 
8.1, for example). If there are very few observations, significant fluctuations will 
appear, which means that the appearance of non-normality is not necessarily 
indicative of an underlying cause in this case. When very strong abnormalities 
appear, however, we have to look for the possible causes. 

The kind of discrepancy most commonly revealed by these graphs occurs when one 
or more of the residuals have a much bigger or much smaller value than the others. 
The most likely explanation for this value is usually an error of transcription or an 
arithmetic error. So, all the original data of the observations must be thoroughly 
examined. If no error of this sort appears, all the circumstances surrounding the 
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experiment that outputs such an apparently discrepant result have to be taken into 
consideration and investigated. The discrepant observation can be rejected if this is 
justified by the circumstances of the experiment. If no such justification is found, 
the possibility of the atypical observation having unexpected consequences worth 
following up must be investigated.  

The graph shown in Figure 8.1 gives no indication of this sort of abnormalities in 
the residuals of the numbers of software errors. Therefore, the experimental data do 
not violate the hypothesis on error normality and the model used would be valid so 
far. 

There is another equivalent graph that can be plotted to test error normality, which 
represents the residuals on normal probability paper. We will look at graphs of this 
sort in later chapters. 

8.3.2. Testing for Error Independence 

If the mathematical model is suitable and, therefore, the errors are independent and 
identically distributed, the residuals must not be related to the values of any 
variable. Indeed, they must not be related to the value of the actual response. This 
point can be investigated by plotting the residuals  as a function of the 
estimated values  as shown in Figure 8.2 for the data of the experiment 
described in the example, that is, residuals as a function of the estimated value for 
software error. 

yij − ˆ y ij
ijŷ

For the errors to be independent, there should be no obvious pattern in the graph 
resulting from Figure 8.2, as is the case. Consider the graph shown in Figure 8.3, 
for example. It shows that the errors have a curvilinear pattern. This type of graph 
leads us to suspect that the residuals are not independent and that, hence, the model 
constraints cannot be met. 

8.3.3. Testing for Constant Error Variance 

Variance sometimes increases as the response value rises. For example, if the 
experimental error of the number of software errors was not a constant percentage, 
the absolute values of the residuals would tend to grow as the value of the 
observations increased and the graph would be funnel shaped. This would indicate 
that the variance of the errors is not constant and, therefore, does not meet the 
requirements needed to make an analysis with the model in question. No such 
behaviour is observed in Figure 8.2, therefore, there is no question about the 
variance not being constant. 
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Figure 8.2. Residuals plotted as a function of estimated response variable values 
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Figure 8.3. Residuals graph with pattern 

Note how it differs from Figure 8.4, however, which depicts a clear tendency 
towards an increase in the variance of the residuals as the response variables rise, 
thus indicating that the variance of the residuals is not constant. 
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Apart from these three tests, other complementary checks can be run depending on 
each alternative and on time. Let’s look at a selection. 

..

.
.

0

.

.
.
..

Yij − Ŷij

Ŷij

 

Figure 8.4. Funnel-shaped graph of residuals versus estimated values 

8.3.4. Abnormalities Associated with Each Alternative 

The residuals of any one alternative can be found to behave abnormally. The 
residual graphs are plotted for each alternative to discover possible trends of this 
sort. Figure 8.5 shows the graphs for the software errors example. 

This sort of graphs can be useful, for example, for detecting excessive variations in 
the number of errors due to an individual programming language. This behaviour 
would be detected if the absolute values for errors in one language graph are much 
bigger than in the other graphs. In this case, the graphs do not suggest that the 
software errors associated with any of the programming languages behaves at all 
anomalously. 
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Figure 8.5. Residuals graph for each language 

 

8.3.5. Graph of Residuals as a Function of Time 

Graphs of this sort are useful for detecting situations, such as the experience of the 
individuals running the experiments sometimes increasing as the experiment 
progresses. Note that this test detects what was referred to in section 5.10 as the 
learning effect. Trends of this sort can be discovered by plotting a graph of residuals 
as a function of time, as shown in Figure 8.6. There does not appear to be any basis 
for suspecting an effect of this type for the software errors data. If this effect were 
to occur, the figure would show how the residuals approach zero as time passes; 
that is, the values of the observations (the number of errors made in this case) 
resemble each other more closely over time. 

In our example, the tests run indicate that the model requirements are met. 
Therefore, we can proceed with the data analysis according to the established 
model. If any of the above tests raised suspicions as to the experimental data 
breaching any model constraint, we could apply the data transformations discussed 
later and would have to resort to the non-parametric methods of analysis described 
in Chapter 14. 
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Figure 8.6. Graph of residuals as a function of time 

8.4. CALCULATING THE FACTOR- AND ERROR-INDUCED 
VARIATION IN THE RESPONSE VARIABLE 

Once the model has been validated, we can confidently proceed with the remainder 
of the analysis. Remember that our objective is to test whether the different 
alternatives under consideration provoke a significant change in the value of the 
response variable, in which case some of the alternatives could be considered better 
than the others with regard to response variable improvement. The total variation of 
the response variable has to be calculated as an intermediate step towards achieving 
this objective. This variation can be attributed to two sources: the factor and the 
errors. To perform our analysis, therefore, we first need to calculate what variation 
in the response variable is due to the factor alternatives under study compared with 
the variation provoked by the error. A high variation provoked by the factor could 
be indicative of a good experiment, whereas the opposite could lead us to discard 
the experiment in question, as we are usually more interested in studying the factors 
that have a bigger impact on the response variable. The calculation of this variation 
is used to determine the importance of a factor. This means that a factor is all the 
more important, the greater the variation it explains, and, therefore, the more weight 
it has on the response variable value or, in other words, the more influence it has on 
the response variable. Having calculated the variation provoked by the factor, we 
would have to proceed to examine the statistical significance of this variation, that 
is, whether, from a mathematical and formal viewpoint, the variation is due to the 
effect of the different alternatives or is simply due to chance. It is important to bear 
in mind that, as mentioned in Chapter 3, the final result of the analysis will be 
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output by calculating the statistical significance, by means of which we can also 
determine whether or not the null hypothesis can be rejected. This section deals 
with the intermediate step of calculating the variation in the response variable and 
studying how much of this variation is provoked by the factor, while the next 
section addresses the determination of the statistical significance of the above 
variation.  

The reasoning used to calculate the variation in the response variable is as follows.  

Firstly, we square both sides of the model equation examined in section 8.2: 

 yij
2

= µ
2

+ α j
2

+ eij
2

+ 2 µα j + 2 µeij + 2α je ij  

If we sum the terms for the N equations of which the model is composed, we get: 

   
products cross of termsey

ij
ij

2

ij ij

22

ij
ij

2 +++= ∑∑ ∑∑ αµ

The cross product terms all sum zero, because of the constraints on the effects 
summing zero (∑αj = 0) and the errors of each column summing zero (∑eij = 0). The 
above equation can be expressed in terms of sums of squares: 

 SSY = SS0 + SSA + SSE 

where SSY is the sum of squares of the response variable (y), SS0 is the sum of 
squares of the grand mean, SSA is the sum of squares of the effects and SSE is the 
sum of squares of the errors. Note that SS0 and SSA can be easily calculated as 
follows: 

SS0 = µ2

j =1

a

∑
i=1

r

∑ = N µ2

SSA= α j
2

j =1

a

∑
i=1

r

∑ = rjαj
2

j =1

a

∑
 

The total variation of y (SST) is defined as: 

 
SST = yij∑(∑ - y.. 2

= SSY-SS0=SSA+SSE)
 

Therefore, the total variation can be divided into two parts, SSA and SSE, which 
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represent the parts of the total variation explained (due to the factor) and not 
explained (due to error). If a high percentage of the variation were explained, this 
would indicate a good experiment. 

Returning to the example of the programming languages comparison: 

 SSY = 622 + 602 + ... + 592 = 98664 

 SS0 = Nµ2 = 24 × (64)2 = 98304 

 SSA = 4(-3)2 + 6(2)2 + ... + 8 (-3)2 = 228 

 SSE =∑
ji

ije
,

2 = 12 + (-1)2 + ... + (-2)2 = 112 

 SST = 228 + 112 = 340 

The percentage variation explained by the programming languages is (228/340) x 
100 = 67, that is, 67%. The remaining 33% of the variation in the number of errors 
is due to experimental errors and is referred to as unexplained variation. In this 
example, we can see that, although the unexplained variation is high (33%), the 
explained variation doubles the unexplained variation and is very close to 70%. 
Hence, it is interesting to examine this factor further, as, if the above variation is 
significant, we can select the best programming language and we will be less likely 
to make mistakes. Moreover, the higher the explained variation, the more likely the 
response variable is to improve if the best alternative is selected. If the unexplained 
variation were similar to, or greater than, the explained variation, then we could call 
the experiment into question and redesign it to try to find other variables not 
considered in this experiment that explains a greater proportion of the response 
variable. Note that experimental error means an error in the statement of the 
experimentation not in data collection. A high error rate would tell us that we have 
not taken into account important factors for the experiment in question and, 
therefore, should reflect on the possible causes of the experimental errors; they 
could be due to the differences between the different programmers used, to the 
diversity of problems dealt with, or other causes. 

The following point in the analysis is to determine whether or not the contribution 
of the different programming languages is statistically significant, that is, whether or 
not this factor is significant. This is dealt with in the following section. 

 

8.5. CALCULATING THE STATISTICAL SIGNIFICANCE OF THE 
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FACTOR-INDUCED VARIATION 

In the preceding section we used an approach to calculate the factor-induced 
variation in the response, which is very useful in practice. This approach considers 
any factor that explains a high percentage of variation to be important. Importance 
must be distinguished from significance, which is a statistical term. The importance 
of a factor indicates how much of the observed variation in the response variable is 
due to the factor in question, whereas the significance of a factor indicates whether 
or not the change caused in the response variable due to the factor alternatives is 
statistically significant. Thus, the determination of the statistical significance of the 
variation caused by a factor and, therefore, the effect of the factor will help us to 
answer the question of whether there are real differences between the mean values 
of the response variable with each alternative. If the effect of the factor is 
statistically significant, then the response to the question will be yes, and there will 
be an alternative that improves the value of the response variable. If the effect of the 
factor is not statistically significant, the response would be no. 

Therefore, in order to determine whether or not the above variation is statistically 
significant, that is, as discussed in Chapter 3, to find out whether there is really a 
cause-effect relationship between the factor (factor alternatives) and the response 
variable from an statistical and formal viewpoint, then the analysis has to continue 
and the techniques of statistical significance examined in the following need to be 
applied. 

Looking back to Chapter 7, when dealing with two alternatives of one factor, the 
study of statistical significance of the effect of the above factor was based on the 
difference between the means of the response variable with each alternative. In this 
case, as this procedure deals with several alternatives, it would involve comparing 
the means of all the alternatives of the factor in question pairwise. A simpler 
procedure is to study whether the discrepancy between the means of the alternatives 
is greater than the discrepancy that could be expected within the alternatives (this is 
due to experimental error and will be yielded by replications). From the statistical 
viewpoint, the calculation of the above discrepancies means getting an estimate of 
the variance of the means of the different factor alternatives and an estimate of the 
variance of the error. As discussed in Chapter 6, two variances can be compared by 
analysing the ratio between them, which is then compared against a reference 
distribution (the F distribution to be exact). This will tell us whether or not the ratio 
obtained is significant. If the ratio is statistically significant, then the variation 
between the alternatives is greater than within the alternatives and, therefore, the 
variation observed in the response variable is due to the fact that certain alternatives 
of the factor cause improvements in the response variable. This would also indicate 
that we can reject the null hypothesis (that there is no difference between the means 
of the different alternatives). If, on the other hand, the ratio is not statistically 
significant then the variation observed can be put down to chance or to another 
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variable not considered in the experiment and, therefore, the null hypothesis would 
be sustainable and no difference whatsoever could be determined among the 
alternatives.  

Note that a factor can be highly important (that is, can explain a large fraction of the 
variation), whereas the above variation is not necessarily statistically significant, 
and it cannot be said that any of its possible alternatives are better than another. For 
example, suppose a factor varies 15 units and this value accounts for 90% of the 
total variation in the response variable; however, these 15 units cannot amount to a 
significant difference so none of the alternatives of the factor would lead to a 
substantial improvement. Similarly, even if a factor does not explain a very large 
proportion of the response variable, the above variation can be statistically 
significant, that is, the above variation is really due to the effect of the different 
alternatives on the factor. This means that one of the alternatives is really better than 
others. However, as the factor is not very important, the effect observed in the 
response variable will be very small (the improvement would be negligible, as the 
factor has little impact on the response variable). Ideally, the experiment will be 
better if the factors under analysis explain a high proportion of the response variable 
(that is, they are important) and the above variation is statistically significant (that 
is, one or more alternatives really do improve the response variable). 

The statistical procedure for analysing the significance of one or several factors is 
termed analysis of variance. When the analysis of variance is applied for only one 
factor, it is also called one-way analysis of variance.  

To gain an understanding of the analysis of variance, consider the sums of squares 
(SSY, SS0, SSA and SSE). Each sum of squares has an associated degree of 
freedom. In this case, the number of degrees of freedom1 matches the number of 
independent values required to calculate the sum of squares. Thus, the degrees of 
freedom for the sums of squares are: 

 SSY = SS0 + SSA + SSE 

 N = 1 + (k-1) + (N-k) 

The sum SSY consists of a sum of N terms, where all the terms can be chosen 
independently. Therefore, this SSY has N degrees of freedom. The sum SS0 
consists of a single term µ2, which is repeated N times. SS0 can be calculated as 
soon as a value has been chosen for µ. Thus, SS0 has one degree of freedom. The 
sum SSA contains a sum of k terms α j

2( ), that is, the different alternatives studied, 

but only k-1 of these terms are independent, as αj must sum zero. Therefore, SSA 
has k-1 degrees of freedom. The sum SSE consists of N error terms, of which only 
k(rj-1) can be chosen independently. This is because the rj errors for the rj 
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replications of each experiment must sum zero. This is the same as saying that only 
N-k errors are independent. Note that the sum of the degrees of freedom on each 
side of the above equation is the same. This verifies that the degrees of freedom 
have been correctly assigned. 

What has this got to do with the procedure discussed above for testing the statistical 
significance of the variation caused by the factor under consideration, which, 
remember, involved comparing the estimate of the variance between the means of 
the alternatives with the estimate of the variance within the alternatives? Well, 
simply that the quotient SSA/νA  (where νA=k-1) represents the estimate of the first 
variation, whereas the quotient SSE/νB (where νB=N-k) represents the estimate of 
the second variation. Why? 

SSA represents the variation caused in the response variable by the different factor 
alternatives. If there were no real differences between the means of the alternatives, 
we could get an estimate of the variation of the means of the alternatives in respect 
of the grand mean. Indeed, this estimate is obtained by means of the quotient 
between SSA (calculated, as explained, on the basis of the effects of the alternatives 
or, alternatively, the difference between the mean per alternative and the grand 
mean) and the degrees of freedom between the alternatives νA. This quotient is also 
termed mean square of A (MSA) or mean square between alternatives. 

On the other hand, SSE represents the variation caused within all the alternatives 
(calculated, as explained above, on the basis of the square of the difference between 
the values of the response variable with each alternative and the grand mean). The 
grouped estimate of the variance within the alternatives or the variance of the error 
is calculated by means of the ratio SSE/νB, also termed mean square of error (MSE) 
or mean square within alternatives.  

According to the null hypothesis that there are no differences between the means of 
the alternatives, we have got two estimates of variance: MSA and MSE. Evidently, 
if the means of the alternatives really do vary from alternative to alternative, the 
estimate of this variation MSA will tend to increase in respect of MSE. The 
relationship between the two estimates can be objectively examined on the basis of 
the fact that the ratio (SSA/νA)(SSE/νB) has an F distribution with νA degrees of 
freedom in the numerator and νB in the denominator (remember that, as explained in 
Chapter 6, the F distribution is used to study differences between variance, which is 
what we are concerned with here). If the ratio calculated is greater than the quantile 
F

1−α ;V A ,VB[ ] taken from the F quantile table (see Annex III, Tables III.5, III.6 and III.7), 
SSA is considered to be significantly greater than SSE and, therefore, the factor is 
understood to explain a significant fraction of the variation. Therefore, the above 
variation provoked by the factor will be due to the differing effect of the alternatives 
of the above factor. The null hypothesis that the means of the alternatives are equal 
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can thus be rejected. 

Table 8.5 shows a tabular format that is very convenient for organising and running 
the analysis of variance tests. This table includes all the calculations required to 
apply this significance test. 

Taking up the programming languages example again, the analysis of variance for 
this example is shown in Table 8.6. If the null hypothesis were true in this case, the 
MSA/MSE ratio would follow an F distribution with 3 and 20 degrees of freedom. 
Consulting Tables III.5, III.6 and III.7 in Annex III, we will see that the significance 
points of the F distribution with 3 and 20 degrees of freedom greater than 10%, 5% 
and 1% are 3.10, 4.94 and 8.10, respectively. These values are less than the 
calculated F, which is 13.6. So, taking these data, the null hypothesis must be 
rejected, and it is better to believe that there are differences between the alternative 
means, that is, among the languages. Hence, we calculated that the factor 
programming language in the above section was important for the number of 
software errors (that is, that the above factor had a sizeable weight in determining 
the number of errors, as the explained variation was high). We have now reached 
the conclusion that the above variation is really significant, that is, there really are 
significant differences between some factor alternatives and others and that one or 
more of these especially improves the response variable. 
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Table 8.5. Analysis of variance table for one-factor experiments 
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Table 8.6. Results of the analysis of variance 

COMPONENT SUM OF 
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DEGREES OF 
FREEDOM 
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In the following, we will examine how to draw conclusions from the analysis that 
indicate which alternatives of the studied factor improves the response variable 
value. 

8.6. RECOMMENDATIONS OR CONCLUSIONS OF THE ANALYSIS 

We have seen that the data reject the hypothesis that the mean number of software 
errors was the same for all the programming languages. But, how much difference 
is there? Is any bigger than the other? Are the four different from each other? The 
procedures for making these comparisons are known as methods of multiple 
comparison. There are several techniques, including Duncan’s multiple intervals 
test (Duncan, 1955), the Scheffé test (Scheffé, 1959) or the procedure of paired 
comparison published by Tukey (Tukey, 1949). In this case, we are going to centre 
on an easy graphic device which is commonly used to compare the means of k 
alternatives and which can be of use for answering the above questions.  

If the differences between the means of the response variable k21 y,...,y,y  are due 
to chance and, therefore, the k alternatives has the same mean µ, then they match 
with k observations of the same shared quasi normal distribution with a scaling 
factor: 

n
σ  

where σ is the standard deviation of the population and n is the number of 
replications for each alternative, supposing that this number is the same for each 
alternative. The scaling factor is used, as we will see below, to determine the 
amplitude of the curve that represents the t distribution on the abscissa. Suppose we 
can build this distribution. The k observations must fit into any distribution we plot 
as random samples. For this example, σ is unknown and the number of replications 
of each alternative is not the same. More or less approximately, although useful in 
this example in which the number of replications is fairly similar, we will replace 
the normal distribution by a t distribution with a scaling factor: 

 
MSE

n = 5, 6
6 = 0, 97

 

where  

 

n =
na∑

k
= 6
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is the mean number of replications of the four alternatives. We will refer to this 
distribution, shown in Figure 8.7, as an approximate reference distribution by 
means jy . 

Let’s see how to plot the reference t distribution using Table III.3 given in Annex 
III. The ordinates of the distribution are entered in this table as a function of the 
different values of t and degrees of freedom ν. (For the procedure to be valid, there 
must be no fewer than 10 degrees of freedom). For our example, ν = 20 and the 
scaling factor 

n
MSE  is 0.97. Using ν = 20 to search Table III.3, we get: 

Value of t  0 0.5 1.0 1.5 2 2.5  3.0 
Ordinate of t 0.394 0.346 0.236 0.129 0.058 0.023 0.008 
t × 0.97   0 0.48 0.97 1.45 1.93 2.42 2.90 

In order to plot the reference distribution, we first choose a random source ρ in the 
proximity of the means for comparison (ρ = 67.05 was taken in this case). We then 
plot and draw a continuous line through the ordinates of the points ρ, ρ ± 0.48, ρ ± 
0.97, etc. 

Now consider the sample means against the approximate reference distribution 
shown in Figure 8.7. Imagine that the reference distribution can slide along the X-
axis. This means that we can analyse different hypotheses. Note that we cannot 
place the reference distribution at any point where it encompasses the four means 
and, hence, be able to say that they are typically random observations of these 
means (µA, µB, µC and µD). This result is the graphic equivalent of what we 
demonstrated formally with the F-test (that the observations for the four alternatives 
do not come from the same distribution or, in other words, there actually is a 
difference between the means). Additionally, however, the reference distribution 
clearly indicates that µB and µC are probably greater than µA and µD, which means 
that the languages A and D are the source of fewer errors than B and C. Note that 
owing to the type of response variable addressed in this example, the number of 
software errors, the best alternative will be the one that outputs the lowest response 
variable values.  

60

C
A
D B

mean of the alternatives

.
61 62 63 64 65 66 67 68 69 70

. . .
 

Figure 8.7. Sample means in relation to the reference t distribution 
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Figure 8.8 shows examples of other graphs. In Figure 8.8(a), for example, even if 
the reference distribution covers the points of the two means, it would be 
unreasonable for them to come from the same population (therefore, the variations 
between the two are the fruit of the alternatives and not of chance). In Figure 8.6(b), 
however, 16 means are compared and have been plotted, such that the maximum 
and minimum means coincide with those of the preceding figure. Note, however, 
that there is now no reason to think that these two means do not come from the 
same population (the differences between the means are due to chance not to the 
differences caused by the 16 treatments). The sixteen means considered as a full 
sample are of the sort that can be expected to all come from the specified reference 
distribution. 

.

-3.0 -2.0 -1.0 ..0 1.0 2.0 3.0..
a) Two discordant means in relation to their reference distribution

4.0

-3.0 -2.0 -1.0 ..0 1.0 2.0 3.0..
b) Sixteen means whose ends are shown in Figure 6.7a

4.0
. . .. .... . .. ..

 

Figure 8.8. Reference distribution 

The reference distribution is a picture of the data obtained from experiments, which 
not only shows the likelihood of the null hypothesis generally, but is also an aid for 
the researcher to form and evaluate other hypotheses. This means that it provides an 
easily understandable summary of the main conclusions of an experiment. 

Going back to Figure 8.7, intuitively we can see that there is not a big difference 
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between µB and µC or between µA and µD. If this were true, it could mean that 
languages B and C, on the one hand, and A and D, on the other, have similar error 
ratios. This claim can be tested formally by calculating the confidence interval for 
the difference between the means of two alternatives (let’s say the p-th and the q-th 
alternative, for example, B and C in our example). As we saw in Chapter 6, the 
variance of the difference between two means qp yy −  is , where 
σ is the standard deviation of the population, and n

)1/n(1/n qp
2 +σ

p and nq are the number of 
replications with each alternative (in terms of sample variables, these would be the 
sample size with each alternative). As we saw in Chapter 6,  is estimated as s2σ 2, 
where s is the standard sample distribution. Thus, the estimated variance of qp yy −  

is and a confidence interval for this unique difference is given by  )1/n(1/ns qp
2 +

 )(1/n)(1/nstyy qp2,qp +±− /v α  

where  are degrees of freedom associated with sRvv = 2. This interval defines a set 
of values including the difference between means for a given level of significance α
. For example, if α is 0.9, the above interval will show the values between which 
the mean is to be found 90% of the time. If the value 0 appears in the above 
interval, thus indicating that the value of the difference of means could be 0, then 
we can state that there would be no significant difference between the means of the 
alternatives. If, on the other hand, the value 0 does not appear within the above 
interval, then we will be able to say that there is a difference between the means of 
the alternatives at the specified level of significance. 

In our example, let’s analyse the difference BC yy − =68-66=2, with s2
R=5.6 (that 

is, the value of MSE), and ν=20 degrees of freedom, nC=6 and nB=6. The estimated 
variance for BC yy −  is 5.6(1/6+1/6)=1.87, according to the formula discussed 
above. Thus, the 95% confidence limits for the difference of means is 2±2.08 87.1 , 
that is 2±2.85, where 2.08 is the value of t for 20 degrees of freedom, which is 
exceeded positively and negatively a total of 5% of the time (Table III.3 in Annex 
III). As this interval includes the value 0, we have 95% confidence that there is no 
appreciable difference between these two languages with regard to the number of 
errors.  

This same procedure could be applied to the means of A and C or A and B to 
confirm that there is a significant difference among the above languages. This 
process is left as an exercise for the reader.  
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8.7. ANALYSIS OF ONE FACTOR WITH K ALTERNATIVES IN REAL SE 
EXPERIMENTS 

8.7.1. Analysis for Comparing Object-Oriented and Structured Development 

Briand et al. (Briand, 1997a) applied the one-way analysis of variance method for 
the purpose of testing some intuitive ideas about object-oriented and structured 
development held by developers. The hypotheses to be tested include: 

H.1. “Good OO design is easier to understand and modify than bad OO design” 
H.2. “Bad structured design is easier to understand that bad OO design” 
H.3. “Good OO design is easier to understand and modify than good structured 
design” 

In this case, the alternatives to be considered are good OO design and bad OO 
design for H.1.; bad structured design and bad OO design for H.2.; and good OO 
design and good structured design for H.3. The response variables used in this 
experiment were discussed in section 4.4.3, Table 4.6 Remember that Que_%: 
percentage of correct questions answered by subjects about their understanding of 
the design; Mod_%: percentage of places to be changed during the impact analysis 
of a change that were correctly found; and Mod_Rate: modification rate dividing 
the number of correct places found by the total time taken. 

Tables 8.6, 8.7 and 8.8 show the results of this analysis. As we can see in this case, 
the one-way analysis of variance was applied for two alternatives and is, as we said 
in section 8.1, an alternative procedure to the one described in Chapter 7. 

Table 8.7 gets significant results for Que_% and Mod_Rate. Thus, the authors 
consider that there is sufficient evidence to accept H.1, confirming the intuitive idea 
that a good OO design would be more easily understood than a bad OO design. 
Although the Mod_% is not significant, its effect was also in the direction of 
supporting the hypothesis. 

Table 8.7. Results for good versus bad OO 

Response Variable Effect Degrees of 
Freedom 

F-Computed F-Table (α=0.1) 

Que_% 1.487 12 6.67 3.23 
Mod_% 0.61 12 1.16 3.23 
Mod_Rate 1.48 12 7.34 3.23 

Table 8.8 presents the results for hypothesis H.2. A significant result is achieved for 
Que_%, indicating that subjects had a better understanding of the ‘bad’ structured 
design documents than of the ‘bad’ object-oriented design documents. Mod_% has 
a slight anomaly, as its value points go in the opposite direction to the stated 
hypothesis. However, the difference between the means is almost negligible. 
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Consequently, it seems there is little or no visible effect for modifiability. 

Table 8.8. Results for bad structured versus bad OO 

Response Variable Effect Degrees of 
Freedom 

F-Computed F-Table (α=0.1) 

Que_% 1.22 12 4.59 3.23 
Mod_% * 12 0.01 3.23 
Mod_Rate 0.22 12 0.15 3.23 

Finally, Table 8.9 shows the result for the third hypothesis. As you can see, this 
hypothesis cannot be confirmed, as there is no significant difference in the response 
variables. This result is particularly interesting, as it reveals that, in the context of 
this experiment at least, the belief that OO provides better results than the structured 
paradigm cannot be sustained by empirical data. 

Table 8.9. Results for good structured versus good OO 

Response Variable Effect Degrees of 
Freedom 

F-Calculated F-Table (α=0.1) 

Que_% 0.7 12 1.46 3.23 
Mod_% 0.54 11 0.02 3.29 
Mod_Rate 0.84 11 2.10 3.29 

8.7.2. Analysis for Comparing the Utility of a Reuse Model in a Particular 
Development Environment 

Another application of the one-way analysis of variance was performed by Browne, 
Lee and Warth in (Browne, 1990), where the authors experimentally investigate the 
effect of a particular programming environment on productivity and software 
quality, with and without a reusability help module. The experiment was conducted 
by 43 graduate students and undergraduate seniors in computer science. With 
regard to productivity, the response variable used was the development time 
employed to develop three applications. We do not have the individual data of the 
analysis, but the authors applied the analysis of variance for each application and 
discovered significant differences in development time at a level α = 0.01 and 
determined that the use of the programming environment with the reuse module 
provides a significant time saving. With regard to the quality of the software 
generated, the authors considered the number of errors detected in the final 
programs and found, after applying the analysis of variance, that the difference was 
significant for two of the applications at 0.1 and for the others at 0.05. Hence, the 
statistical analysis suggests that the use of the environment with the reuse module 
reduces the error rate, although this is nowhere near as clear as regarding 
development time. As stated by the above authors, these studies are an essential first 
step in the systematic evaluation of the programming environment with the reuse 
component. 
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8.7.3. Analysis for Comparing the Use of a Predefined Versus a Self-Defined 
Development Process 

Tortorella and Visaggio (Tortorella, 1999) also applied this sort of analysis of 
variance to study the effect of the use of a predefined development process as 
opposed to leaving the developer to apply a self-defined process. The response 
variables of this experiment are described in Table 4.6 in section 4.4.3. This 
analysis revealed no difference with regard to the size of the software system under 
development. However, it did reveal a difference with regard to the number of 
defects detected in the process execution, indicating that the degree of defectiveness 
during the execution of the self-defined process is less than during the pre-defined 
process. Indeed, at a level α = 0.10, the activities included in the process that were 
not executed were more in the pre-defined process, the deliverables expected and 
not produced were more in the pre-defined process. Consequently, the activities that 
were executed incorrectly due to the absence of all the input and all the output were 
more numerous in the pre-defined process. Interested readers are referred to the 
paper for the tables from this analysis. 

8.8.  SUGGESTED EXERCISES 

8.8.1. Table 8.10 shows the number of lines of code used by 15 programmers to 
implement a particular algorithm with three programming languages. At a 
level of significance 90%, is the difference in the number of lines of code 
due to significant differences between the languages or to experimental 
error? 

Table 8.10. Lines of code used with three programming languages 

R V Z 
144 
120 
176 
288 
144 

 

101 
144 
211 
288 
72 

 

130 
180 
141 
374 
302 

Solution: The difference is due 
to experimental error 

 (F-computed=0.7, F-table= 2.8) 

8.8.2. Repeat the above analysis considering that after measurement, it is 
discovered that three of the observations had not been done correctly and 
their data should not be used in the analysis. Of the three incorrect 
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observations, suppose one is the last observation for language V and two 
are the last observations for language Z. 

Solution: The difference is due 
to experimental error 

 (F-computed =0.26, F-table= 3.1) 

8.8.3. Suppose that the coded response variables of an experiment to compare the 
productivity of five development tools are as shown in Table 8.11 and 
significant differences have been detected. What we want to find out is 
which tool(s) provide(s) greater productivity. Which is it? 

Table 8.11. Productivity (coded) of 5 development tools 

Percentage of Observations Totals 
cotton 1 2 3 4 5  

15 
20 
25 
30 
35 

 

-8 
-3 
-1 
4 

-8 
 

-8 
2 
3 

10 
-5 

0 
-3 
3 
7 

-4 

-4 
3 
4 
4 
0 

-6 
3 
4 
8 

-4 

-26 
2 

13 
33 

-21 

Solution: Tool D 

8.8.4. Do the data in Table 8.11 satisfy the assumptions of the analysis of 
variance? 

Solution: Yes 

NOTES 

1 Note that both the degrees of freedom of a statistic and the number of available observations of a 
population less the number of parameters of the above population that were unknown and had to be 
calculated from the observations were defined in Chapter 6. Although this definition differs from the one 
given here, note that the concept is the same "extent of freedom for ascertaining any value" (the value 
referred to in Chapter  6 is the value of the statistic and here it is the value of the sum of squares). 



9 EXPERIMENTS WITH 
UNDESIRED VARIATIONS:  
ANALYSIS FOR BLOCK DESIGNS 

9.1. INTRODUCTION 

As specified in Chapter 5, there is an experimental design for dealing with variables 
whose effect on the response variable we are not interested in. Designs of this sort 
are known as block designs, and the variables whose effect is to be eliminated are 
known as blocking variables. This chapter discusses the process for analysing data 
collected from experiments designed thus. Firstly, we will address the case where 
there is one variable that is not of interest (section 9.2) and then go on to review the 
analysis process when there are several blocking variables (section 9.3, 9.4 and 
9.5). A somewhat special analysis has to be conducted when any of the response 
variables that should have been gathered are missing. We look at how to do this 
analysis in section 9.6. Finally, in section, 9.7, we will examine the case where the 
block size is smaller than the number of factor alternatives, which we referred to as 
incomplete block designs in Chapter 5. 

9.2. ANALYSIS FOR DESIGNS WITH A SINGLE BLOCKING VARIABLE 

One of the most characteristic blocking variables in SE experiments is the team of 
developers who are to work on the software projects or activities that constitute the 
experimental unit, that is, what we called experimental subjects in Chapter 4. 
Therefore, we are going to consider an experiment taking this blocking variable in 
order to show how to analyse the data yielded by designs with one blocking 
variable.  

Suppose then that we are going to work with the four programming languages 
mentioned in Chapter 8, for which we intend, in this case, to determine the 
efficiency of detecting errors of syntax by means of a reading process. Thus, we are 
going to consider the ratio between the number of errors detected and the time spent 
on reading as the response variable for this experiment.  

Note that we are working with one factor (programming language) and four 
alternatives (languages A, B, C and D). The systems to be developed with these 
four languages are going to be implemented by four different programmers. In this 
case, we have the feeling that the programmer variable will have an influence on the 
response variable because the programmers have different backgrounds. (Note that 
this point was not taken into account in Chapter 8, as all the programmers were 
similar and any undesired effects could be ruled out through randomisation. Now, 
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however, randomisation would not suffice because the subjects are evidently 
different.) Nonetheless, all we intend to account for is the effect of the 
programming language, and we do not aim to examine the variable programmer. 
Hence, we have to use a block design, as described in Chapter 5. We have four 
blocks, each one with four similar programs, and each block has been randomised 
by assigning each language to a program at random. Table 9.1 shows the data 
measured during this experimentation. 

Table 9.1. Data taken for the example of a design with one blocking 
variable  

Block Factor Alternatives 
(Programmer) A B C D 
I 9.3 9.4 9.2 9.7 
II 9.4 9.3 9.4 9.6 
III 9.6 9.8 9.5 10.0 
IV 10.0 9.9 9.7 10.2 

The steps to be taken to perform the analysis of these data are the same as we 
discussed in Chapter 8 for the analysis of one factor with k alternatives. Let’s recall 
these steps:  

1.  Identify the mathematical model according to which the analysis is to be 
conducted. 

2.  Validate the model by examining the residuals or experimental errors. 
3.  Calculate the factor- and error-induced variation in the response variable. 
4.  Calculate the statistical significance of the factor-induced variation. 
5.  Establish recommendations on the optimal values of the factor. 

As in the preceding chapter, the following sections discuss how these steps should 
be taken with the aid of an example. 

9.2.1. Identification of the Mathematical Model 

The observations in Table 9.1 can be described by means of a linear model 

 yij = µ + β i + αj + eij

This means that an observation yij can be represented as the sum of the mean µ, the 
blocking variable effect βi, the alternative effect αj and the error eij. Note that this 
model does not account for the possible interaction between blocks and alternatives. 
If any such interaction were to exist (which can be determined after validating the 
model), the block design would not be the ideal design for analysing this 
experiment, and the best suited approach would be a factorial design (this class of 
design is studied in Chapter 10). 



Basics of Software Engineering Experimentation 205 
 

Summing all the equations output by the above model, we could get the following 
decomposition: 

1. ..)y.y-.y- (y..)y-.y().y-.y(..y y j iij jj iij ++++=  

where ..y  represents the mean value of all the observations (what we called the 
grand mean in Chapter 8) and is represented in the model by µ; .yi represents the 
mean of the observations for each blocking variable and j.y  represents the mean 
value of the observations for each alternative. Thus ..)y-.y( i  represents the effect 
of the i-th block and ..)y-.y( j  represents the effect of the j-th alternative.  

It follows from the model that the last term ..y.y-.y-y j iij +  represents the 
residual or error, as it represents what remains after having taken into account 
differences in the mean, the block and alternatives. 

For the purposes of simplifying the calculations, we are going to code the original 
data by subtracting 9.5 from each observation and then multiplying the result by 10 
(to rule out decimals). Table 9.2 represents the effects of the blocks and alternatives 
for the language example. It follows from the above decomposition that the effect of 
block I is ..)y-.y( 1  = (-1)-1.25=-2.25. The other blocks would be obtained 
similarly, whereas the effect of alternative A is obtained from the expression 

..)y-.y( A  =0.75-1.25 =-0.5. The effect of the other alternatives is calculated 
similarly. 

Table 9.2. Effects of blocks and alternatives for our example 

Block Factor Alternatives   
(programmer) A B C D Block mean Block effect 
I -2 -1 -3 2 -1 -2.25 
II -1 -2 -1 1 -0.75 -2 
III 1 3 0 5 2.25 1 
IV 5 4 2 7 4.5 3.25 
Alternative mean 0.75 1 -0.5 3.75 1.25  
Alternative effect -0.5 -0.25 -1.75 2.5   

 

9.2.2. Model Validation 

The validation of this model involves examining several assumptions, such as there 
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must be no interaction between the factor and the blocking variable; the error 
distribution must be normal and the error variance in the blocks or alternatives must 
be equal. 

It is essential to examine whether there are interactions between the factor and the 
blocking variable in a block design. Before continuing with model validation, let’s 
pause for a moment to reflect on these interactions. 

The model associated with this analysis is an additive model. This means, for 
example, that if alternative A causes the estimated response to increase by 2 units (
α1 = 2) and if the first block raises the estimated response by 2 units (β1 = 2), then 
the estimated increase in the response of both alternative A and block I together is 
4, plus the error. For this case and on the basis of the model, alternative A can 
generally be said to always increase the estimated response by 2 units above the 
sum of the grand mean and the block effect. 

Despite the fact that this additive model is often useful, there are times when it is 
unsuitable. Suppose, for example, that we are comparing four estimation techniques 
using six problem domains, and the domains are considered as blocks. If the 
characteristics of one particular domain adversely affect some of the estimation 
techniques, resulting in extraordinarily low accuracy, whereas they do not affect the 
other techniques, then we say that an interaction has taken place among the 
techniques (or alternatives) and domains (or blocks). Similarly, an interaction 
among the alternatives and blocks can occur when the response is measured on an 
incorrect scale. Thus, a ratio that is multiplicative on the original scale, let’s say,  

 yij = µβ i αi  

is linear or additive on a logarithmic scale. For example,  

 log(yij)= logµ + logβ i + logαi  

thus converting the multiplicative model into an additive model. This model would 
be analysed like any other additive model. After analysis, we would have to 
calculate the antilogarithm of the effects obtained to calculate the multiplicative 
effects. 

Interactions could be divided into two categories: a) transformable interactions, 
which can be eliminated by analysing the logarithm, the square root or the inverse 
of the original data, for example, and b) non-transformable interactions, such as the 
estimation technique-domain interaction discussed above, which could not be 
eliminated in this manner. The analysis of residuals and other diagnostic procedures 
are useful for detecting situations where interactions of this sort occur. 
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The analysis of variance for blocking designs can be seriously affected and even 
invalidated, if there is an interaction. As a general rule, an interaction tends to 
increase the mean square error and negatively affect the comparison of the means of 
the alternatives. Factorial design should be used when both factors and their 
possible interaction are of interest. Analyses for these designs are presented in 
Chapter 10. 

We are now going to proceed with the analysis of residuals to test the hypotheses on 
which the model is based. In a randomised block design, the residuals are: 

 ijijij ŷye −=  , or alternatively, ..y.y-.y-ye j iijij +=  

The observations, estimated values and residuals for the coded data of the 
programming language are shown in Table 9.3. Thus, for example,  

5.125.175.01y
1.

y
.1

y
11

ŷ −=−+−=−+=  

and, therefore, e11=-2 + 1.5 = 0.5. The errors for each observation were calculated 
similarly. 

Table 9.3. Experiment residuals for our 
example 

ijy  ijŷ  ijijij ŷye −=  
-2.00 
-1.00 
1.00 
5.00 

-1.00 
-2.00 
3.00 
4.00 

-3.00 
-1.00 
0.00 
2.00 
2.00 
1.00 
5.00 
7.00 

-1.50 
-1.25 
1.75 
4.00 

-1.25 
-1.00 
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9.2.2.1. Testing for the Absence of Interactions 

The shape of the graph of residuals plotted against the estimated values is 
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sometimes curved. For example, there may be a trend towards the negative residuals 
occurring for low values of the estimated value, positive residuals occurring for 
intermediate values of the estimated value and negative values occurring for the 
high values of the estimated value. Behaviour of this sort suggests an interaction 
between the factor alternatives and blocks. If this pattern occurs, some sort of 
transformation must be used to try to eliminate or minimise the interaction.  

Figure 9.1 illustrates the graph of residuals plotted against estimated values for our 
example. No pattern of this sort is observed, that is, there is no relationship 
whatsoever between the size of the residuals and the adjusted values , which 
means any interactions are, in principle, ruled out, and, therefore, our additive 
model could be valid. 
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Figure 9.1. Distribution of residuals against estimated values for our example 

As far as non-transformable additivity is concerned, this can be easily detected 
informally if the values of the response variable for one of the factor alternatives 
with a given blocking variable differ a lot from the values of the other response 
variables. Remember that, as mentioned at the beginning of Chapter 6, it is 
important to also run informal analyses of the data beforehand to detect any trends 
that could be of assistance in performing the mathematical and formal analysis. 
Further tests for detecting additivity are given in section 10.3.1.2.4. Turkey 
(Turkey, 1949) proposed another statistical test for detecting additivity; interested 
readers are referred to this source for details.  

9.2.2.2. Testing for Residual Normality 
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As we discussed in Chapter 8, residual normality could be examined by plotting a 
bar chart of residuals. This also applies in this case. So, we are going to take 
advantage of this to study another alternative method. Indeed, when this bar chart is 
not very representative (see the reasons specified in Chapter 8), a more effective 
method is to plot the residuals on normal probability paper. If the points in this 
graph are not reasonably close to a straight line, we have grounds to question the 
normality of the residuals. Figure 9.2 shows the normal probability graph and a bar 
chart of these residuals for our example. A graph of this sort is the representation of 
the accumulated distribution of the residuals on normal probability paper. This is 
paper for graphs whose ordinates scale is such that the normal accumulated 
distribution is a straight line (this type of paper can be obtained from specialised 
statistics books and many analysis of variance computer programs are capable of 
preparing normal probability graphs). This graph is plotted by lining up the 16 
residuals in ascending order along the X-axis. In this example, the lowest residual is 
–1.00 and the greatest is 1.50. We can then consult Table III.2 in Annex III that sets 
out scales of accumulated probability for several values (15, 16, 31, 32, 63 and 64) 
to get the point of accumulated probability. In this case, as we have 16 residuals, we 
select 16 as the respective ordinate value and we plot the ordinate values taken from 
Table III.2 for each residual on the graph shown in Figure 9.2. Thus, we would start 
with the value for the first residual –1.00; according to Table III.2, the first ordinate 
value is 3. Hence, this would be the ordinate that we plot on graph 9.2 for this 
residual value. The following ordinate value in Table III.2 would be a value close to 
9. Hence, this would be the ordinate value of the next residual -0.75. We can plot 
the normal accumulated probability values (ordinates in Table III.2) similarly for 
the other residuals of our example. As shown in Figure 9.2, all the residuals are 
close to a straight line, which means there is no strong indication of non-normality, 
nor is there evidence to suggest any unusual residuals. This means that there is no 
reason to doubt that the assumption of normality of the residuals for this problem.  

9.2.2.3. Testing for the Independence of Errors 

Figure 9.1 represents the residuals against the estimated values. As specified in 
Chapter 8, there must be no relationship between the size of the residuals and the 
estimated values in these graphs. No pattern appears in Figure 9.1, which means 
that this graph reveals nothing unusual of interest and, therefore, we can assume 
that the errors in the experimental data yielded are independent, as called for by the 
model used. 

9.2.2.4. Testing for the Constant Variance of Errors 

Figure 9.3 shows graphs of the residuals by programming language (alternative) 
and by domain (block). These graphs are potentially very informative. If the 
residuals for one language in particular are more dispersed, this could indicate that 
more errors could be detected by means of this language than by others. In this case, 
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a greater dispersion in the residuals for a language in particular could indicate that a 
standard number of errors is not obtained from the above language.  
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Figure 9.2. Graph of normal probability of residuals for our example  

For our example, however, Figure 9.1 gives no indication of inequality of variance 
by alternative or by block, neither is there any indication of inequality in Figure 9.2 
with regard to the errors and expected values of the response variable. Therefore, 
the tests run have not detected any problems that could lead us to question the 
hypotheses on which the model is based. Thus, we can go ahead with the analysis. 
Remember that if we had detected a problem in this step, we would have to resort: 
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Figure 9.3. Graph of residuals by alternative and block for our example 

• to the analysis of a factorial design, if we detected non-transformable 
interactions 

• to the examination of possible model transformations, if the interaction is 
transformable 

• to the use of non-parametric methods, if the assumption of normality fails.  

Transformations have not usually been used in SE experiments, which means that it 
is not going to be considered in this book. Interested readers are referred to classic 
experimental design books, like (Box, 1978) or (Winer, 1962).  

9.2.3. Factor-, Block- and Error-Induced Variation in the Response Variable 

The variation in the response variable is calculated by means of the sum of squares 
SST, defined in a similar manner as in Chapter 8. Indeed for this model:  
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 SST= SSB+SSA+SSE = SSY-SS0, 

where SSB is the sum of squares of the block effects, SSA is the sum of squares of 
the factor (that is, its alternatives) effects and SSE is the sum of squares of the error; 
SSY is the sum of squares of the response variable and SS0 is the sum of squares of 
the mean. 
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In this expression, a is the number of factor alternatives and b is the number of 
blocks. Applying these formulas to our example, we get:  

SSA = 38.50,  SSB = 82.50,  SSE = 8,  SST = 129 

As explained in Chapter 8, the variation caused in the response variable by a factor 
shows how important this factor is in relation to the changes produced in the 
response variable. Thus, in this case, we find that the factor accounts for 29.8% 
(38.5 x 100/129) of the variation in the response variable, whereas the block 
accounts for 63.9%. Remember that in this sort of analysis for designs with 
blocking variables, we are actually concerned with the variation caused by the 
factor and not by the blocks, as these are of no interest to our experiment. However, 
if the blocks account for a high variation in the response variable, we have done 
well to approach the design and analysis of this experiment using the blocking 
technique, as our aim is to analyse the experiment omitting the variation caused by 
the above blocks and focusing on the variation produced by the factor. 

Remember that, as we discussed in Chapter 8, we have to resort to the analysis of 
variance, as shown in the following section, in order to examine whether or not the 
variation produced by the factor is significant. If the variation provoked by the 
factor is significant, this means that some of the alternatives of the factor will 
produce improvements in the response variable. If the variation is not significant, 
then all we can say is that the variation provoked by the factor was due to chance 
and not to any of the factor alternatives behaving significantly differently. Also 
remember that the ideal experiment will be one whose factor explains a high 
percentage of variation that turns out to be statistically significant. 

 

9.2.4. Calculation of the Statistical Significance of the Factor-Induced 
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[ ]1)1)(b(a1);(b;1 −−−−α

It may also be of interest to compare the means of the blocks, because if they are 
not separated by a big difference, a block design may not be necessary in future 
experiments. When analysing the expected values of the mean squares, one might 
think that the hypothesis that the effects of the blocks is equal to zero can be tested 
by comparing the statistic MSB/MSE with F . However, it is 

important to bear in mind that the randomisation was applied only to the alternatives 
within the blocks. In other words, there is no guarantee of the blocks being 
randomised. What effect does this have on the MSB/MSE statistic? There are 
different answers to this question. For example, Box, Hunter and Hunter (Box, 
1978) argue that the F test of the analysis of variance can be justified on the basis of 
randomisation alone without the need to use the assumption of normality. They 
conclude that this argument does not apply to the test for comparing blocks as a 
result of the randomisation constraint. However, if the errors are normally 
distributed with mean zero and constant variance, the MSB/MSE statistic can be 
used to compare the block means. On the other hand, Anderson and McLean 
(Anderson, 1974) argue that the randomisation constraint means that this statistic is 
useless for comparing the means of the blocks, and that the F statistic is actually a 
test of the equality of the means of the blocks, plus the randomisation constraint. 

Statistical significance is obtained by applying the analysis of variance table shown 
in Table 9.4. Note that this table is distinguished from the one included in Chapter 
8, as the block effect is considered here and was not in the preceding chapter. 
However, the underlying philosophy is the same as discussed in the preceding 
chapter for comparing means of several alternatives, that is, comparing the variation 
between the alternatives and within the alternatives (after having eliminated any 
variation caused by the blocking variable from this unknown variation, as discussed 
above). The results of the analysis of variance for our example are shown in Table 
9.5. If α = 0.05, the critical value of F is 3.86. As 14.44 > 3.86, the inference is that 
the programming language has a significant effect on the reading-based 
identification of errors of syntax. 

What should we do in practice then? As there is often a question mark over the 
assumption of normality, it is not generally a good idea to take MSB/MSE as an 
accurate F test. Therefore, this test is excluded from the table of analysis of 
variance. However, the examination of the MSB/MSE ratio can certainly be an 
approximate procedure for investigating the effect of the blocking variable. If the 
value of the above ratio is high, the blocking factor has a big effect and the 
reduction of the noise obtained by block analysis was probably useful, as it would 
have improved the accuracy of the comparison of the means of the factors. 

Variation 
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Table 9.4. Analysis of variance by one factor and one block variable 
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Table 9.5. Results of the analysis of variance for our example 

Component Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Square 

F- 
Computed 

F-Table 

Y  16    
..Y   1    

..YY −  129 16-1    
A 38.5 4-1 12.83 14.44 3.86 
B 82.5 4-1 27.5   
e 8 (4-1)(4-1) 0.89   

In our example, then, there also seems to be a significant difference between 
programmers (blocks) because the mean square of the blocks is relatively large 
compared with the mean square error. Therefore, we did well to use a block design 
to eliminate the programmer bias and thus better be able to examine the effect of the 
programming languages on the response variable. Additionally, this significant 
difference between programmers suggests that, if covered by the goals of our 
investigation, it is advisable to continue with experiments that account for 
programmer experience as a factor, that is, examine this variable. 

The results that we would have obtained if we had not opted for a randomised block 
design are worth mentioning. Let’s suppose that we had used four programmers, 
that the languages had been assigned randomly to each programmer and that we had 
accidentally obtained the same design as shown in Table 9.1. The incorrect analysis 
of these data using the one-factor design appears in Table 9.6. As F0.05,3,12 = 3.49, 
the null hypothesis of equality in the number of errors detected/time unit ratio for 
the four languages cannot be rejected, which leads us, mistakenly, to conclude that 
the effect of the programming languages on the number of errors detected is 
insignificant. Therefore, by selecting a design suited to the goals and circumstances 
of the inquiry (the randomised block design), the amount of noise has been 
sufficiently reduced and we can detect differences among the four languages. 

 Table 9.6. Incorrect analysis by means of a one-factor randomised design 

Component Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Square 

F- 
Computed 

F-Table 

Y  16    
..Y   1    

..YY −  129 15    
A 38.5 3 12.83 1.7 3.49 
e 90 12 7.54   

9.2.5. Recommendations on the Optimal Alternative of the Factor 
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Whenever the analysis indicates a significant difference among the means of factor 
alternatives, the experimenter will usually be interested in carrying out multiple 
comparisons to determine which is the best alternative, that is, the alternative that 
produces the best value for the response variable. 

Figure 9.5 illustrates multiple comparisons in the complete randomised block 
design, where the means of the four programming languages of our example are 
plotted against a t distribution scaled with a scaling factor MSE/b . This graph 
was represented according to the same procedure as discussed in Chapter 8. The 
graph specifies that languages A, B and C probably produce identical mean 
measurements of the response variable (ratio of the number of errors detected and 
reading time), whereas language D produces a much higher error ratio. This means 
that the practical recommendation from this experiment is based on the fact that 
more errors can be detected per time unit by language D than by the other languages 
under comparison. A subsequent analysis should lead experimenters to look for an 
explanation for this deduction, analysing the programming structures used in the 
languages in question, for example. This sort of analyses could be run by means of 
qualitative investigations, as mentioned in Chapter 1. 

Mean of errors

.
-1

C

0 1 2 3 4
. ..A B D

 

Figure 9.5. Significant language in a t distribution with the scaling factor 0.47 

9.3. ANALYSIS FOR DESIGNS WITH TWO BLOCKING VARIABLES 

As we saw in Chapter 5, the Latin square design is used to eliminate two 
problematic sources of variability. This means that it provides a systematic two-way 
blocking analysis. In this design, the rows and columns actually represent two 
constraints on randomisation. Generally, a Latin square for p factors, or a pxp Latin 
square, is a square that contains p rows and p columns. Each p2 cell contains one of 
the p letters for a treatment, and each letter appears only once in each row and 
column. See Annex II for some examples of Latin squares. 

The process of analysis for examining the data extracted from these experimental 
designs is similar to the one we discussed in section 9.2. We, therefore, have to 
identify the mathematical model, validate the model, calculate the variation in the 
response variable, calculate the statistical significance of the factor-induced 
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variation and establish recommendations, now considering the effect of two blocks 
instead of just one.  

The statistical model for analysing a Latin square design can be expressed as: 

 yijk = µ + αi + βi + τk + eijk

where yijk is the observation for the i-th row, the j-th column and the k-th 
alternative; µ is the grand mean, αi is the i-th effect of the row (effect of block i of 
the variable that forms blocks by rows), βj is the j-th effect of the column (effect of 
block j of the variable that forms blocks by columns), τk is the k-th effect of the 
alternative (effect of the alternative k of the factor) and eijk is the random error. The 
model is completely additive, that is, there is no interaction between the rows, 
columns and alternatives. Only two of the three subindexes i, j and k are required to 
specify one observation in particular, because there is only one observation in each 
cell. This is because each alternative appears exactly once in each row and in each 
column. 

We are going to analyse this design by applying it to a variation on the experiment 
described in section 9.2. The aim of this new experiment is to measure the effect of 
five programming languages (A, B, C, D and E) on the number of errors of syntax 
detected per unit of time by means of program reading. For this purpose, we are 
going to consider the five programmers who are to perform the inspection and the 
five program types to be inspected as blocking variables, because, although they 
have similar characteristics, a cautious experimenter may wish to eliminate the 
possible impact of program types. The design of this experiment is a 5x5 Latin 
square. 

Table 9.7 shows the coded observations for this experiment as well as the effects of 
the rows (blocking variable program) and columns (blocking variable 
programmers)1. 

Table 9.7. Coded data for 5x5 Latin square of our example 

 Programmers    
Program 1 2 3 4   5 Row 

mean 
Row 
effect 

1 A=-1 B=-5 C=-6 D=-1 E=-1 -2.8 -3.2 
2 B=-8 C=-1 D=5 E=2 A=11 1.8 1.4 
3 C=-7 D=13 E=1 A=2 B=-4 1 0.6 
4 D=1 E=6 A=1 B=-2 C=-34.5 0.6 0.2 
5 E=-3 A=5 B=-5 C=4 D=6 1.4 1 
Column mean -3.6 3.6 -0.8 1 1.8   
Column effect -4 3.2 -1.2 0.6 1.4 0.4  

The effects of the alternatives are presented below:  
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Alternative Alternative mean Alternative effect 
A y ..1  = 3.6 3.2 
B y ..2  = -4.8 -5.2 
C y ..3  = -2.6 -3 
D y ..4  = 4.8 4.4 
E y ..5  = 1 0.6 

As with any design problem, the experimenter should have investigated model 
suitability by inspecting and plotting the residuals. In a Latin square, the residuals 
are: 

 kijijkijk ŷye −= or, alternatively, ..... ..i..yye jijkijk yyy k +−−−=  

As for the single-block model, experimenters must assure that there are no 
interactions between factors and blocks and check for error normality and 
independence and constant error variance. The graph of residual distribution against 
estimated values of the response variable, the graph of normal probability and the 
graphs of residuals by alternatives and blocks must be plotted for this purpose, as 
we did in section 9.2.2. These graphs are left as an exercise for readers who will 
find when they plot these graphs that they show no sign of tending to reject the 
assumptions, which means that we can trust in the result of the analysis of variance.  

We then proceed with the analysis of variance by calculating the variation in the 
response variable. As we already know, this is yielded by calculating the sum of 
squares SST, which is obtained in this case as follows:  

 SST = SSRows+SSColumns+SSAlternatives + SSE 
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where p is the size of the Latin square, 5 for our example. 

We can then move on to the analysis of variance in a similar way as we did with one 
block variable. Table 9.8 summarises the result of the analysis of variance. From 
this table we can infer that there is a significant difference in the number of errors 
detected due to the five programming languages. There is also an indication of a 
difference among programmers. Therefore, the decision to control this variable was 
a sound one. On the other hand, there is no strong evidence of any difference among 
programs and, apparently, there was unnecessary concern in this experiment about 
this source of variability. However, it is never wrong to take precautions. Having 
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detected significant differences in the programming languages, we could proceed to 
determine which is the best language as far as number of detected errors is 
concerned. For this purpose, we could apply the multiple comparison technique as 
we did when studying one factor with a blocking variable in section 9.2.5. 

 Table 9.8. Results of the experiment with Latin squares in our example 

Component Sum of 
Squares

Degrees 
of 

Freedom 

Mean 
Square

F- 
Computed 

F-Table 

Y 
...Y  

...YY −  
Languages 

Programmers 
Programs 

Error 

 
 

676 
330 
150 
68 

128 

 
 

24 
4 
4 
4 

12 

 
 
 

82.5 
37.5 
17 

10.97 

 
 
 

7.73 
 

 
 
 

5.41 
 

9.4. ANALYSIS FOR TWO BLOCKING VARIABLE DESIGNS AND 
REPLICATION  

One drawback of small Latin squares is that they provide relatively few degrees of 
freedom for the error. For example, the error has only two degrees of freedom in a 
3x3 Latin square, six for a 4x4 Latin square and so on. When a small Latin square is 
used, it is often better to repeat it in order to increase the degrees of freedom of the 
error. 

This can be done in several ways. By way of an illustration, suppose that the 5x5 
Latin square used in the example is repeated n times. This can be done in any of the 
following ways: 

1.  Using the same alternatives for the programs and programmers in each 
replication, that is, each programmer uses the same alternative (language) on 
the same program in each replication. This option would not make much sense 
in our particular example. 

2.  Using the same programs and different programmers in each replication (or, 
alternatively, the same programmers and different programs). This means that 
the same programs are tested by other programmers in each replication (or, 
alternatively, the same programmers test different programs in each 
replication).  

3.  Using different programs and programmers. This means that both the programs 
and programmers are varied in each replication. 

The process of analysis would be similar to the one explained when there is no 
replication, although the form of calculating the sums of squares and, therefore, the 
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tables of analysis of variance differs. We are going to focus on this part of the 
analysis. 

The analysis of variance to be used depends on the method used to make the 
replications. Consider case (1), where the same alternatives are used for the 
blocking analysis of the rows and columns in each replication. Let yijkl be the 
observation for row i, column j, alternative k and replication l. There is a total of 
N=np2 observations. The analysis of variance is summarised in Table 9.9.  

Now, consider case (2), supposing that new programs are used with the same 
operators in each replication. Therefore, there are five new rows (generally, p new 
rows) in each replication. The analysis of variance is shown in Table 9.10. Note that 
the source of variation for the rows actually measures the variability between the 
rows within the n replications. 

Finally, consider case (3) in which as many new programs are used as new 
programmers in each replication. In this case, the variability produced by both the 
rows and columns measure the variation of these factors within the replications. The 
analysis of variance is shown in Table 9.11. 

9.5. ANALYSIS FOR DESIGNS WITH MORE THAN TWO BLOCKING 
VARIABLES 

Consider a p×p Latin square combined with a second Latin square, whose 
alternatives are designated by Greek letters. The two squares are said to be 
orthogonal if, when combined, they have the property of each Greek letter appearing 
only once with each Latin letter. As we saw in Chapter 5, this design is called 
Greco-Latin square. Table 9.12 shows a 4×4 Greco-Latin square for three blocking 
variables (I, II and III), each with four alternatives. The alternatives for I are I1, I2, 
I3, I4; the alternatives for II are II1, II2, II3, II4 and the alternatives for III are A, B, C, 
D. The alternatives of the factor would be α, β, γ, δ. 

The Greco-Latin square design can be used to systematically control three unusual 
sources of variability. In other words, it is used for three-way blocking analysis. 
Four variables (row, column, Greek letter and Latin letter) can be analysed by p2 
experiments. Greco Latin squares exist for every p ≥ 3, save if p=6. 
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Table 9.9. Analysis of variance of a replicated Latin square, with replication type (1) 

Source of 
variation 

Sum of squares Degrees of freedom Mean square F0
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Table 9.10. Analysis of variance of a replicated Latin square, with replication type(2) 

Source of 
variation 

Sum of squares Degrees of freedom Mean square F0
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N
 

n - 1 

 1p

SS nsReplicatio

−
 

 

Error Subtract
 

(p - 1)(np -1) 

1)1)(np(p

SSE

−−
 

 

Total 
yijkl

2∑∑∑∑ −
y....

2

N
np2 - 1   
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Table 9.11. Analysis of variance of a replicated Latin square, with replication type (3). 

Source of 
variation 

Sum of squares Degrees of freedom Mean squares F0

Columns y. j..
2

npj=1

p

∑ −
y....

2

N
 

p - 1 

1p

SSColumns

−
 

E

esAlternativ

MS
MS

F =0

Rows 

 
yi..l

2

pi=1

p

∑ −
y...l

2

p 2
l =1

n

∑
l=1

n

∑
 

n(p - 1) 

1p

SSRows

−
 

 

Alternatives y...kl
2

pk=1

p

∑ −
y... l

2

p2
l =1

n

∑
l =1

n

∑
 

n(p - 1) 

 1)n(p

SS esAlternativ

−
 

 

Replications y...l
2

p2
l=1

n

∑ −
y....

2

N
 

n - 1 

1)n(p

SS nsReplicatio

−
 

 

Error Subtract
 

(p - 1)[n(p - 1) -1] SSE

( p− 1)[n( p −1) −1]
  

Total 
yijkl

2

l
∑

k
∑

j
∑

i
∑ −

y....
2

N
 np2 - 1   
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 Table 9.12. Greco-Latin square 

      Blocking Variable I
  I1 I2 I3 I4
 II1 Aα Bβ Cγ Dδ 
Blocking variable II II2 Bδ Aγ Dβ Cα 
 II3 Cβ Dα Aδ Bγ 
 II4 Dγ CδI Bα Aβ 

The process of analysing the data collected from these experiments is similar to the 
process followed in sections 9.2 and 9.3 for one and two blocking variables. In this 
case, the statistical model for a Greco-Latin square block design is 

 yijkl = µ + θi + τj + ωk + ψl + eijkl

where yijkl is the observation for the row i, column l, Latin letter j and Greek letter k; 
θi is the effect of the i-th row; τj is the effect of the alternative j of the Latin letters; 
ωk is the effect of the alternative k of the Greek letters; Ψl is the effect of column l, 
and εijkl is the component of random error whose distribution is NIID(0, σ2). As for 
Latin square designs, only two of the four subindexes are needed to completely 
identify any observation. 

Suppose that we consider another additional variable in the experiment comparing 
the programming languages described in the example given in section 9.3, this being 
the time of the day when the programmers run the experiment. Thus, we are going 
to consider five times during the day at which experiments are performed, 
represented by the Greek letters α, β, γ, δ and ε. The resulting 5x5 Greco-Latin 
square is shown in Table 9.13. 

Table 9.13. Greco-Latin square design for programming languages 

 Programmers   
Programs 1 2 3 4 5 Row 

mean 
Row 
effect 

1 
2 
3 
4 
5 
 

Column 
mean  

Column 
effect 

Aα = -1 
Bβ = -8 
Cγ = -7 
Dδ = 1 
Eε = -3 

 
-3.6 

 
-4 

Bγ = -5 
Cδ = -1 
Dε = 13 
Eα = 6 
Aβ = 5 

 
3.6 

 
3.2 

Cε = -6 
Dα = 5 
Eβ = 1 
A γ= 1 
Bδ = -5 

 
-0.8 

 
-1.2 

Dβ = -1 
Eγ = 2 
Aδ = 2 
Bε = -2 
Cα = 4 

 
1 

 
0.6 

Eδ = -1 
Aε = 11 
Bα = -4 
Cβ = -3 
Dγ = 6 

 
1.8 

 
1.4 

-2.8 
1.8 
1 

0.6 
1.4 

 
0.4 

-3.2 
1.4 
0.6 
0.2 
1 
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The process of analysis is again as described above, that is, the model would have to 
be identified, validated, the response variable variation calculated, checking whether 
the above variation is significant (applying the analysis of variance) and, if any, 
looking for the best alternative for factor. In this section, we are going to focus on 
the calculations related to the response variable variation and the analysis of 
variance in order to find out what effect an additional blocking variable has on Latin 
squares analysis. The task of validating the model is left as an exercise for readers. 

The analysis of variance is very similar to a Latin square. The factor represented by 
the Greek letters is orthogonal to the rows, columns and alternatives of the Latin 
letter, because each Greek letter only appears once in each row, each column and for 
each Latin letter. Therefore, the sum of squares due to the Greek letter factor can be 
calculated using the effects of the Greek letter and, therefore, the experimental error 
is reduced by that amount.  

The effects of the languages (Latin letters) are: 

Latin letter Language effect 
A 
B 
C 
D 
E 

3.2
-5.2

-3
4.4
0.6

Note that the effects for the programs (rows), programmers (columns) and 
languages (Latin letter) are identical to those of the example given in section 9.3. 
Hence: 

 SSPrograms = 68.00 SSProgrammers = 150.00 and SSLanguages = 330.00 

The effects of the time of day (Greek letters) are: 

Greek letter Time effect 
α 
β 
γ 
δ 
ε 

y..1. = 2 
y..2. = - 1.2 
y..3. = - 0.6 
y..4. = - 0.8 
y..5. = 2.6 

Hence, the sum of squares due to the time is SSTime = 62 

The computational details are given in Table 9.14. The null hypotheses of equality 
between the rows, columns, Latin letter alternatives and Greek letter alternatives can 
be tested by dividing the respective mean square by the mean square error. The 
rejection region is the top edge of the distribution Fp-1,(p-3)(p-1). 
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Table 9.14. Analysis of variance for a Greco-Latin design 

Source of variation Sum of squares Degrees of 
freedom 

Latin letter 
alternative 

2

j
jL ....)...(pSS yy −= ∑  p-1 

Greek letter 
alternative 

2

k
kG ....)...(pSS yy −= ∑  p-1 

Row 2

i
iR ....)...(pSS yy −= ∑  p-1 

Column 2

l
lC ....)...(pSS yy −= ∑  p-1 

Error 2
lkjiijkl

lk,j,i,

....)y...y...y...y...y(y +−−−−∑  (p-3)(p-1) 

The full analysis is shown in Table 9.15. The languages are significantly different at 
1%. If we compare Tables 9.15 and 9.8, we find that the experimental error has been 
reduced by eliminating the variability in respect of the time at which the experiment 
was conducted. However, as the experimental error is reduced, the degrees of 
freedom also fall from 12 (in the Latin square design, illustrated by the example 
given in section 9.3) to 8. Hence, the error estimate has fewer degrees of freedom, 
leading to a less sensitive test; that is, the test is less likely to detect a change in the 
response variable due to the factor alternatives. 

Table 9.15. Results of the analysis of variance for the Greco-Latin square 

Component Sum of 
squares 

Degrees 
of 

freedom 

Mean 
square 

F- 
Computed 

F-Table 

....YY −  
Languages 

Programmers 
Programs 

Time 
Error 

676 
330 
150 
68 
62 
66 

24 
4 
4 
4 
4 
8 

82.5 
37.5 
17 

15.5 
8.25 

 
 

10 
 

 
 

7.01 
 

The concept of orthogonal pairs of Latin squares, which are combined to form 
Greco-Latin squares, can be extended. A pxp hypersquare is a design composed of 
three or more combined orthogonal pxp Latin squares. As a general rule, up to p+1 
factors can be analysed if we have a full set of p-1 orthogonal Latin squares. Such a 
design would use all the (p+1)(p-1)=p2-1 degrees of freedom, and, hence, calls for 
an independent analysis of the error variance. Of course, there must be no 
interactions among the factors when hypersquares are used.  
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9.6. ANALYSIS WHEN THERE ARE MISSING DATA IN BLOCK DESIGNS 

When a randomised block design is used, an observation may occasionally be 
missing from any of the blocks. This design is termed unbalanced design. This 
happens owing to carelessness and can be put down to mistakes by or grounds 
beyond the experimenter’s control. For example, let’s suppose that programmer II is 
unable to perform the experiment with language C in the example discussed in 
section 9.2. Suppose that the values of the response variable are as shown in Table 
9.16, in which the missing observation has been represented by means of an x. 

A missing observation brings a new problem into the analysis, as the alternatives 
cease to be orthogonal to the blocks, that is, not every alternative appears in each 
block. There are two general ways of solving the problem of missing values. The 
simplest is an approximate analysis that estimates the missing observation. Then, the 
usual analysis of variance is performed as if the estimated observation was a real 
datum, reducing the degrees of freedom by one. 

Table 9.16. Incomplete randomised block design 
for the programming language experiment 

       Block Factor Alternative 
 

Programmer A B C D 
I 
II 
III 
IV 

-2 
-1 
-3 
2 

-1 
-2 
-1 
1 

1 
x 
0 
5 

5 
4 
2 
7 

As a general rule, the total of all the observations with a missing observation will be 
represented by  and the totals of the alternatives and of the block with a missing 

datum as 
..y′

.jy′ and , respectively. Suppose that x is chosen to estimate the missing 
observation, such that it has a minimum share in the sum of square error. As 

i.y′

2a b
...j1i 1j i.ij )yyy(ySSE +−−=∑ ∑− −

, the foregoing is equivalent to choosing x, such 

that it minimises either: 
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ij
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or: 
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 Rx)y(
ab
1x)y(

a
1x)y(

b
1xSSE 2

..
2

.j
2

i.
2 ++′++′−+′−=   

where R includes all the terms that do not contain x2. From dSSE / dx = 0, we get: 

 
1)1)(b(a
yybya

x ...ji.

−−

′−′+′
=   

as an estimator for the missing observation. 

Taking the data of Table 9.16, we find that 17yy  6y 1,y ...32. =′=′=′ . Therefore, 

 1.22
(3)(3)

174(6)4(1)
yx 23 =

−+
=≡  

Then, the usual analysis of variance is performed, taking y23 = 1.22 and reducing the 
degrees of freedom of the error by one. This analysis is shown in Table 9.17.  

Table 9.17. Results of the approximate analysis of variance with a missing 
datum 

Source of variation Sum of 
squares 

Degrees of 
freedom 

Mean 
square 

F0

Programming 
Language 
Programmer (blocks) 
Error 
Total 

39.98 
79.53 

6.22 
125.73 

 

3 
3 
8 

14 

13.33 
26.51 

0.78 

17.12a

a Significant at 5% 

This same philosophy of minimisation can be applied when more than one datum is 
missing. For this purpose, several missing observations can be estimated by writing 
the sum of square error depending on the missing data, deriving with respect to each 
one, equalling to zero and solving the resulting equations. On the other hand, the 
equation by means of which x can be generated can be used iteratively to estimate 
the missing values. By way of an illustration of this approach, suppose that two 
values are missing. The first missing value is estimated at random, and this value is 
used, together with real data and the equation for estimating the second. Then, this 
equation is used to make a second estimation of the first missing datum. This is used 
again to estimate the second. This process continues until there is convergence, that 
is, until the estimates output for both missing data stabilise. For any problem of 
missing data, the number of degrees of freedom of the error is reduced by one for 
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every datum that is estimated. 

There is another more complex form of calculating the missing values by means of 
what is called exact analysis. This book does not address this technique in detail, but 
interested readers are referred to the work of Montgomery (Montgomery, 1991). 

9.7. ANALYSIS FOR INCOMPLETE BLOCK DESIGNS 

As discussed in Chapter 5, a balanced incomplete block design is a block design in 
which the factor has a alternatives, and only k (k<a) alternatives per block can be 
proven. Remember that each block is determined by a blocking variable value, that 
is, there will be as many blocks as there are blocking variable alternatives). For 
example, suppose we have an experiment in which the blocks represent four classes 
of individuals who are to test four development tools. Therefore, the individual type 
is the blocking variable and the development tool is the factor. Suppose that each 
individual only had time to test three of the four tools under examination. Block size 
is usually limited in SE by constraints on resources (time, budget, etc.) Table 9.18 
shows a possible response variable for this experiment representing the time spent 
on developing a small application. 

Table 9.18. Balanced incomplete block design for the tools 
experiment 

Block (Individual) 
Alternative 

(Tool) 
I II III IV yi.

 
1 
2 
3 
4 
 

y.j 
 

 
73 
- 

73 
75 

 
221 

 
74 
75 
75 
- 
 

224 

 
- 

67 
68 
72 

 
207 

 
71 
72 
- 

75 
 

218 

 
218 
214 
216 
222 

 
870 = y.. 

The analysis regarding designs of this kind uses a variation on the analysis of 
variance procedure. Let’s examine this. 

Suppose, as usual, that there are a alternatives and b blocks (although a=b in this 
case). Suppose, also, that k alternatives are tested in each block, that each alternative 
happens r times in the design (or is repeated r times) and that there is a total of N = 
ar = bk observations. Moreover, each pair of alternatives occurs  
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1a
1)r(k

−
−

=λ  

times in the same block. 

The parameter λ must be an integer. Let any alternative, for example 1, be 
considered to deduce the ratio of λ. As alternative 1 occurs in r blocks and there are 
another k-1 alternatives in each of the above blocks, there are r(k–1) observations in 
a block that contains alternative 1. These r(k–1) observations must represent the 
other a–1 alternatives λ times. Therefore, λ(a–1) = r(k–1). 

The statistical model is: 

 yij = µ + αi + β j +eij

where yij is the i-th observation of the j-th block, µ is the grand mean, αi is the effect 
of the i-th alternative, βj is the effect of the j-th block, and eij is the random error 
component NIID(0, σ2). The total variation in the data can be decomposed as 
follows: 

 SST = SSA(adjusted) + SSB + SSE 

where the sum of squares of the alternative is corrected to separate the effects due to 
the alternative and the effects due to the block. This correction is necessary because 
each alternative occurs in a different set of r blocks. This means that the differences 
between the uncorrected alternative totals y1, y2, …, ya are also affected by the 
differences between the blocks. 

The sum of squares of the corrected (or adjusted) alternative is: 

 
a

Qk
SSA

a

1i

i

(adjusted)

2

λ

∑
==  

where Qi is the corrected total of the i-th treatment, which is calculated by means of 

 ∑
=

−=
b

1j
jijii y.n

k
1.yQ  

and nij = 1 if the treatment i occurs in block j, and nij = 0 otherwise. Therefore, the 
second term of the subtraction is the average of the totals of the blocks in which the 
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alternative i is applied. The sum of the corrected alternative totals will always be 
zero. The SSA(adjusted) has (a – 1) degrees of freedom. The sum of square error is 
calculated by the difference 

 SSE = SST - SSA(adjusted) - SSB 

and has (N – a – b + 1) degrees of freedom. 

A summary of the analysis of variance for this type of designs is presented in Table 
9.19. Remember that, as explained above, before applying the table of analysis of 
variance, it is necessary to resort to the previous steps of defining and validating the 
model in order to determine whether the result of this analysis can be trusted. 

Table 9.19. Analysis of variance for the balanced incomplete block design 

 
Source of 
variation 
 

 
Sum of squares 

 
Degrees of 
freedom 

 
Mean square 

 
F0

 
Alternative 
(corrected) 
 
 
Blocks 
 
 
 
Error 
 
 
Total 

 

k Qi
2∑

λa  
yj

2

k∑ −
y2

N  

 
 

SSE(by difference) 
 

yn
2∑∑ −

y2

N  

 
a – 1 

 
 
 

b – 1 
 
 
 

N – a – b + 1 
 
 

N - 1 

1a
SSA(adjusted)

−
 

 
 

1−b
SSB

 
 

1+−− baN
SSE

 

SSE
MSA

F adjusted )(
0 =  

Table 9.20 shows the results of this analysis for the example whose data are 
specified in Table 9.18. This is a balanced incomplete block design where a = 4, b = 
4, k = 3, r = 3, λ  = 3 and N = 12. 

As F0>F0,05,3,5 = 5.41, we infer that the development tool employed has a significant 
effect on development time. These data can be used to find which of the 
alternatives, that is, which tool would be the best with regard to development time. 
For this purpose, we could apply the multiple comparison technique as discussed in 
section 9.5.2. 
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Table 9.20. Analysis of variance for the example in Table 9.18 

 
Source of 
variation 

 
Sum of 
squares 

 
Degrees of 
freedom 

 
Mean square

 
F0

 
Alternative 
(corrected) 
 
Blocks 
 
Error 
 
Total 

 
22.75 
 
 
55.00 
 
3.25 
 
81.00 

 
3 
 
 
3 
 
5 
 
11 

 
7.58 
 
 
- 
 
0.65 

 
11.66 

This same philosophy can be applied for more than one blocking variable. A 
particular example of this are Youden squares, which contain two blocking 
variables. Analyses of designs of this sort are not addressed in this chapter and 
interested readers are referred to classic books on experimental design, like (Box, 
1978) or (Montgomery, 1991). 

9.8.  SUGGESTED EXERCISES 

9.8.1.  Four test case generators have been used on five program types. Table 9.21 
sets out the probability with which the test cases generated served to detect at 
least 80% of the existing errors. Is there a significant difference between the 
four generators at 10% significance? 

Table 9.21. Probabilities of detecting errors in four test case  

 
Test Case Generators 

 
Block (Program) A B C D 
1 
2 
3 
4 
5 

89 
84 
81 
87 
79 
 

88 
77 
87 
92 
81 

97 
92 
87 
89 
80 

94 
79 
85 
84 
88 

Solution: No (F- computed = 1.24, F-table: 2.61) 

9.8.2. Table 9.22 shows the errors found in four programs (1, 2, 3, 4) when four 
programmers (I, II, III, IV) apply four different testing techniques (A, B, C, 
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D). At what level would the difference between the four testing techniques 
be significant? 

Table 9.22. Errors found in four programs 

   
Programs 

 

  1 2 3 4  
 I A 

             
21 

B 
             
26 

D 
             
20 

C 
             
25 

 

 II D 
             
23 

C 
             
26 

A 
             
20 

B 
             
27 

 

Programmers III B 
             
15 

D 
             
13 

C 
             
16 

A 
             
16 

 

 IV C 
             
17 

A 
             
15 

B 
             
20 

D 
             
20 

 

       

Solution: > 0.25 

9.8.3.  Suppose that we intend to examine the effect of seven programming 
languages on the number of lines of code yielded. For this purpose, we have 
seven algorithms that are thought to possibly introduce some variability. 
Consider that we can only implement each algorithm with three languages 
for reasons of time. Table 9.23 shows the results obtained. Is there any 
evidence at 1% of there being a significant difference between the seven 
languages? What percentage of the variation in the response variable is due 
to the languages? 
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Table 9.23. Number of lines of code generated 

Language Algorithm 
 1 2 3 4 5 6 7 
I 
II 
III 
IV 
V 
VI 
VII 
 

114 
126 
 
141 
 

 
120 
137 
 
145 

 
 
117 
129 
 
120 
 

 
 
 
149 
150 
 
136 

120 
 
 
 
143 
118 

 
119 
 
 
 
123 
130 

117 
 
134 
 
 
 
127 

Solution: Yes (F- computed =57.4); 80.9% 

NOTES 

1 Remember that as discussed at the beginning of this chapter, the effects are calculated by the difference 

between the mean of the observation for the variable in question ( k..y.,.y.,y ji. , respectively) and the 
grand mean (0.4) 

2 The derivative of a function is equalled to 0 to find out the minimum or the maximun; in this case the 
minimun. 



10 BEST ALTERNATIVES 
FOR MORE THAN 

ONE VARIABLE 
ANALYSIS FOR FACTORIAL 

DESIGNS 
10.1. INTRODUCTION 

As discussed in Chapter 5, the design to be used when all the factors involved in the 
experiment are of interest to the investigation, that is, we want to find out what 
impact they have on the response variable, is a factorial design. Designs of this sort 
study the effect of each factor individually, as well as any interactive influence 
some factors combined with others could have on the response variable.  

A factorial design generally involves the experimenter selecting a fixed number of 
alternatives for each factor and then running experiments with all the possible 
combinations. Remember that in Chapter 6 we mentioned that we would examine 
experiments with fixed effects, that is, where the alternatives were explicitly chosen 
at the beginning of the experiment, although there are other experiments where the 
alternatives are a random sample of a larger population of alternatives and are 
called random-effects models. If there are l1 alternatives for the first variable, l2 for 
the second ... and lk for the k-th, the set of all the l1×l2× ... ×lk experimental 
conditions is called a l1×l2× ... ×lk factorial design. For example, a 2×3×5 factorial 
design is composed of 2×3×5=30 unitary experiments, and a 2×2×2=23 factorial 
design includes 8 unitary experiments. 

One special case of factorial design arises when running experiments where the 
factors have only two alternatives. These experiments are usually used as a first step 
towards finding out whether the effect on the response variable is important enough 
to warrant an examination with more alternatives. It is reasonable to assume that if a 
factor has little influence on the response variable, time should not be wasted on 
examining a lot of alternatives. The use of this sort of designs will be an aid for 
implementing the strategy of successive refinement discussed in Chapter 3. 

We approach this chapter by firstly addressing the analysis of a general factorial 
design, in which several alternatives are studied for each factor involved (section 
10.2). We will then discuss designs where two alternatives per factor are studied 
(section 10.3), as the method of analysis is more straightforward than the general-
purpose method examined previously. As indicated in Chapter 5, these design types 
are termed 2k designs, where k is the number of factors for examination. This study 
commences with the analysis where k=2, that is, 22 designs, each with two factors 
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and two alternatives. We will then generalise the analysis for k factors, each with 2 
alternatives, that is 2kdesigns. In this chapter, we also look at how to analyse 
experiments with and without internal replication. The analyses discussed so far 
include replication, but we will also study the analysis for designs without 
replication for two-factor experiments (section 10.4). We will end by briefly 
outlining some “shortcuts” for conducting the analysis when the number of 
replications varies with each alternative combination (section 10.5). Finally, 
factorial analyses are described for a series of real experiments. 

10.2. ANALYSIS OF GENERAL FACTORIAL DESIGNS 

Consider the case of k factors, where each factor can have any number of 
alternatives. We will illustrate the analysis by means of an example. Suppose we 
have an experiment in which we aim to measure the accuracy of different estimation 
techniques on problems from different domains. Thus, we are dealing with two 
factors (domain and estimation technique). The first factor will have three 
alternatives and the second four alternatives. This arrangement is termed 3x4 
factorial design (three alternatives for one variable and four for another) and has, in 
this case, been repeated four times. Table 10.1 shows the results of the 
experimentation. The response variable considered is the percentage accuracy in 
respect of the real duration of the project against the estimate provided by each 
technique. 

Table 10.1. Data collected in a 3x4 experimental design  

 
Technique  

Domain R S T U 
I 
 
 
 
 
II 
 
 
 
 
III 

0.31 
0.45 
0.46 
0.43 

 
0.36 
0.29 
0.40 
0.23 

 
0.22 
0.21 
0.18 
0.23 

0.82 
1.10 
0.88 
0.72 

 
0.92 
0.61 
0.49 
1.24 

 
0.30 
0.37 
0.38 
0.29 

0.43 
0.45 
0.63 
0.76 

 
0.44 
0.35 
0.31 
0.40 

 
0.23 
0.25 
0.24 
0.22 

0.45 
0.71 
0.66 
0.62 

 
0.56 
1.02 
0.71 
0.38 

 
0.30 
0.36 
0.31 
0.33 

The null hypothesis of our experiment will be H0: “the fact that different estimation 
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techniques are used, the estimated problems belong to different domains and there is 
an interaction between techniques and domains makes no difference to the accuracy 
of the estimation”. A more detailed form of describing this hypothesis would be to 
divide it into several subhypotheses, one for each factor and another owing to the 
interaction: 

• H01: the fact that different estimation techniques are used makes no difference 
to the accuracy of the estimation; 

• H02: the fact that problems estimated belongs to different domains makes no 
difference to the accuracy of the estimation; 

• H03: the fact that different techniques are used with different problem domains 
makes no difference to the accuracy of the estimation. 

The analysis to be performed is equivalent to the one performed for the one-factor 
design and for the block design. These steps are summarised as follows:  

1.  Identify the mathematical model according to which the analysis is to be 
conducted. 

2.  Validate the model by examining the residuals or experimental errors. 
3.  Calculate the variation in the response variable due to factors, interactions 

and errors. 
4.  Calculate the statistical significance of the variation due to factors and 

interactions. 
5.  Establish recommendations on the best factor alternatives. 

We will proceed with this analysis below. However, we are going to put off model 
testing, that is, step 2 (which follows a similar process to the one-factor and block 
analysis) until the end of the process to show that even though we might get 
significant results, no results can be trusted unless the model is suitable and, if the 
model is unsuitable, the experiment has to be restated or other procedures of 
analysis applied (for example, non-parametric analysis, as we will see in Chapter 
14). 

10.2.1. Identifying the Mathematical Model 

As discussed in preceding chapters, the effect of a factor is defined as the change in 
the response variable caused by a change in the factor alternatives. This is often 
known as the principal effect in factorial designs, because it refers to the factors of 
primary interest in the experiment. Thus, we should study the effect of the problem 
domain and the estimation technique in our example. The effects due to factor 
interactions also have to be examined. As we have only two factors, we will work 
with a single interaction in the example in question, which is caused by the problem 
domain combined with the estimation technique. The effects of the interactions 
have on the response variable are called secondary effects (if two factors are 
involved), effects of order 3 (if three factors are involved), etc.  
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A factorial design with k factors generally contains k principal effects due to a 

single factor,  effects due to interactions of 2 factors,  effects due to 

interactions of 3 factors, and so on up to  effects of interactions among k 

factors. So, the mathematical model should include all these elements. For example, 
if we consider a three-factor design with a, b and c alternatives and r replications, 
the mathematical model that represents each observation would be: 

)k
2( )k

3(

)k
k(

 yijkl = µ + α i + βj + ωk + (αβij) + (αωik) + (βωjk) + (αβωijk)+ eijkl

  i=1, …a;         j=1, …b; k=1, …c;  l=1, …r 

For our two-factor example, the observations can be described by means of the 
linear statistical model 

 yijk = µ + α i + βj + (αβij) + eijk

where µ is the grand mean, αi is the effect of the ith alternative of the row factor 
(domain), βj is the jth level of the column factor (technique), αβij is the effect of the 
interaction between αi  and βj, and eijk is the error associated with the unitary 
experiment concerned with the ith and jth alternatives.  

Denoted in this manner, αi and βj are termed the principal effects of the estimation 
techniques and of the domains, respectively, and αβij is the interaction effect. The 
procedure for calculating the effects is similar to the one used in Chapter 8 for the 
one-factor design and in Chapter 9 for the block design. The values of the 
parameters of the model are calculated so as the mean error is zero. This means that 
the sum of the error along each row and each column is zero. So, 

.)(..)..(...).j.(...)..(.... ijijkijiij yyyyyyyyyy −++−−+−+−+= ..iy .j.y  

The calculation of the principal effects in our example is shown in Table 10.2. This 
table shows that: 

 0.150.470.62...y..y11 ==−= −α  

similarly,  

 0.150.470.32...y..y 11 −==−= −β  
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and so on. 

The effects calculated in Table 10.2 are interpreted as follows. The mean accuracy 
of the estimates produced by the four techniques for all the domains is 47%. For 
example, the estimation technique R can be said to be 15% less accurate against the 
mean, whereas technique S is 20% more accurate against the mean. With regard to 
the different domains, we find that the estimate is 15% more accurate in domain I, 
whereas it is 20% less accurate against the mean in domain III.  

Table 10.2. Principal effects of the technique and domain 

Technique 
Domain R S T U Row sum Row mean Row effect 
I 0.41 0.88 0.57 0.61 2.47 0.62 0.15 
II 0.32 0.82 0.38 0.67 2.19 0.55 0.08 
III 0.21 0.33 0.24 0.32 1.1 0.27 -0.2 

        

Column sum 0.94 2.03 1.18 1.6 5.74   
Column 
mean 

0.32 0.67 0.4 0.53  0.47  

Column 
effect 

-0.15 0.2 -0.07 0.06    

The effect of the interactions is calculated by subtracting µ+α i+βi  from each mean 
observation ijy . The effect of the interaction is shown in Table 10.3. These effects 
can be interpreted as, for example, applied to domain I problems, technique R being 
6% less accurate against the mean. 

Table 10.3. Effects of interactions αβ for 
our example. 

 R S T U 
I -0.06 0.06 0.02 -0.07 
II -0.08 0.07 -0.10 0.07 
II -0.13 -0.14 0.04 -0.01 

 

10.2.2. Calculating the Variation in the Response Variable 

As discussed in preceding chapters, the variation in the response variable is 
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calculated by means of the sum of squares total SST.  In a general factorial design, 
the SST will be obtained by calculating the sums of squares of each factor, the sums 
of squares of all the interactions and the sum of square error. In this example, as we 
are working with two factors and one interaction, SST is represented as: 

 SST= SSA+SSB+SSAB+SSE 

where: 
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Remember that a is the number of alternatives related to factor A, b is the number of 
alternatives of factor B and r is the number of replications. 

Specifically, for our example, the calculation of these values will be multiplied by 
1000 for ease of calculation. Thus, the values of these sums of squares are: 

 SSA (x 1000)  = 1033 
 SSB (x 1000) = 922.4 
 SSAB (x 1000) = 250.1 
 SSE (x 1000) = 800.7 
 SST (x 1000) = 3006.2 

The percentage variations in the response due to each factor and factor interaction 
can be obtained by: 

 A (Domain) = (1033/3006.2) x 100 = 34.35% 
 B (Technique) = (922.4/3006.2) x 100 = 30.74% 
 AB (Domain x Technique) = (250.1/3006.2) x 100 = 8.30% 
 Error = (800.7/3006.2) x 100= 26.63% 

 

In this experiment, we find that there is a percentage error of 26.63%, that is, 
26.63% of the variation in the response variable cannot be explained and could be 
due to other variables not considered in the experiment. Of the remaining explained 
variation, factors A and B explain over 65%, therefore, they merit further 
examination, as the value of these factors could improve the response variable in a 
substantial measure if the above variation were due to the alternatives (that is, the 
variation were statistically significant). The same cannot be said of the interaction 
AB, whose low share in the variation of the response variable (8.3%) is an 
indication that this interaction is not really important for the experiment. Let’s 
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continue investigating both the factors and the interaction, however. As in 
preceding chapters, the next step is to use the analysis of variance to determine 
whether the calculated variation is really due to the alternatives or can be put down 
to chance, that is, to determine whether or not the variation is significant. 

10.2.3. Statistical Significance of the Variation Due to Factors and Interaction 

Assuming that the model is suitable (a detailed validation of the model will be given 
later) and, in particular, that the errors are distributed independently and normally 
with constant variance, we can identify whether the calculated variation is 
statistically significant using the analysis of variance table shown in Table 10.4. 

Table 10.4 shows the analysis for a levels of factor A, b levels for factor B and r 
replications. The values of this analysis for our example are as shown in Table 10.5. 

Table 10.5. Result of the analysis of variance for our example 

Component Sum of 
squares 
(x 1000) 

Degrees of 
freedom 

Mean 
square 

 (x 1000) 

F- Computed F-Table 

Y 
..Y  

..YY −  
A 
B 

AB 
e 

 
 
 

1033 
922.4 
250.1 
800.7 

48 
1 

47 
3-1 
4-1 

(3-1)(4-1) 
12(4-1) 

 
 

 
516.5 
307.5 
41.7 

 
 
 

23.2 
13.8 
1.9 

 
 
 

≅ 5,30 
≅ 8.4 

≅ 3.34 

On the basis of this analysis, we can conclude that the effects of the estimation 
techniques and the problem domains are statistically significant at 99%, whereas the 
effect or the interaction is not statistically significant. This means that the variation 
produced by these two factors on the response variable is really due to the different 
alternatives under examination and not to chance. However, the variation caused by 
the interaction is due to chance. 

Thus, we could reject H01 (the fact that different estimation techniques are used 
makes no difference to the accuracy of the estimates) and H02 (the fact that problems 
estimated belong to different domains makes no difference to the accuracy of the 
estimates), but we cannot reject H03 (the fact that different techniques are used with 
different problem domains makes no difference to the accuracy of the estimates). 

Hence, we would like to know which of the estimation techniques and domains 
output the best values in the response variable, estimate accuracy. This question is 
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addressed in the following section. 

10.2.4. Recommendations on the Best Alternative of Each Factor 

This section is concerned with determining which alternatives improve the response 
variable. For this purpose, we have to study what effect the above alternatives have 
on the response variable. These effects can be represented graphically by what are 
known as principal effects and interactions graphs. These graphs represent the 
means of marginal response of the factor alternatives. 

It is important to take into account that the principal effect of a factor can be 
interpreted individually only when there is no evidence that this factor interacts with 
others. When there is evidence of one or more interactions, the factors that interact 
must be interpreted jointly. When there is no evidence there is no need for the 
interaction graphs. 

In our example, we have two principal effects (which have been shown to be 
significant) and one interaction (which has been shown to be insignificant). 
Therefore, we will focus on the graphs of principal effects (we will study the use of 
the interaction graphs in later sections of this chapter). The graphs of the principal 
effects for our example are shown in Figure 10.1.  

As our response variable is estimate accuracy, we are looking for the alternatives 
that provide the greatest value for this variable. Thus, from these graphs, we can 
determine that estimation is more accurate in domain I (Figure 10.1(a)); and that 
techniques S  and U are more accurate than the others (Figure 10.1(b)). 

As the interaction between domain and technique is not significant, we can add to 
the above deductions by saying that estimation in domain I is more accurate 
irrespective of the technique that is applied and that techniques S and U are more 
accurate irrespective of the domain which they are applied. If the interaction 
between technique and domain had been significant, then we could find, for 
example, that technique S is more accurate for a particular domain but not for 
another (examples of these interactions and the resulting graphs are examined in 
later sections). 
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Table 10.4 Analysis of variance table for two factors 
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Figure 10.1. Domain and estimation technique effects 

As already specified, these results are subject to model validity. Therefore, model 
validity is usually examined before calculating the variation and testing its statistical 
significance. This has been postponed in this case to teach readers how to work with 
k-factor experiments but also to illustrate how important it is to validate the 
mathematical model that represents the relationship between factors and the 
response variable. Let’s take a look at why it is necessary to test model validity 
before trusting the results. 

10.2.5. Testing Model Validity 

The above results will be valid provided that the model used is valid. Like the 
model discussed for the one-factor experiments, the model described in section 
10.2.1 is valid assuming that the errors eijk are distributed identically and 
independently with a normal distribution of mean zero and constant, albeit 
unknown variance NIID(0, σ2). This means that the observations are random 
samples of normal populations of equal variance, possibly having different means.  

Additionally, the model used represents an additive model, which means that the 
effects of the factors, their interactions and the errors are additive. As discussed in 
Chapter 9, additivity means that, for example, if an increase in the factor A causes 
an increase of 6 units in the response and an increase in factor B causes in increase 
of 1 unit and a particular value of the interaction causes an effect of 2 units, the total 
increase produced in the response will be 9 units.  
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There are a range of tests for testing these hypotheses. If any of them fail, the 
experimenter can resort to examining model transformations or to the use of non-
parametric methods.  

As in earlier chapters, the errors eijk have been represented as a function of the 
estimated response variable  in order to examine error independence and 

constant variance. In the factorial model, 

ijkŷ
.yŷ ijijk = , that is, the estimated response 

variable is equal to the average of each replication.  As shown in Figure 10.2, which 
shows the graph of residuals plotted against the estimated value, the cloud of points 
obtained is clearly funnel shaped. This suggests, contrary to the hypothesis, that the 
standard deviation grows as the response variable increases. Therefore, the results 
that we have extracted from the calculations made in the preceding sections are 
irrelevant, as they are based on a model that incorrectly represents that data yielded 
by the experiment. Hence the importance of validating the model before making any 
calculations and not blindly trusting in the results unless this validation has been 
completed. In the following sections, we will examine how to validate the other 
assumptions, including, for example, model additivity. 

..

-0.4

-0.2

0

0.2

...
.

0.4

..
......
......... ............... y ij.yijk − y ij.

0.1                0.3                0.5                0.7                0.9  

Figure 10.2. Graph of errors and estimated values of the response variable in the 
unreplicated 24 example  

In this section, we have described how to analyse a factorial design with any 
number of factor alternatives. We described an example with two factors. However, 
the same procedure can be applied for more factors, although the complexity of the 
analysis gradually increases. Therefore, most real experiments where there is a 
variable number of alternatives for each factor do not usually address more than two 
factors, as we will see in the real experiments discussed in section 10.7. 
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Below, we focus on the analysis of a special case of factorial designs, in which each 
factor has two alternatives.  

10.3. ANALYSIS FOR FACTORIAL DESIGNS WITH TWO 
ALTERNATIVES PER FACTOR 

In the above section, we considered the case in which each factor has a different 
number of alternatives. As outlined in Chapter 5, a special case of factorial designs 
arises when each factor has two alternatives. These are what are known as 2k 
factorial designs, where k is the number of factors under consideration. As they 
address only two alternatives, this sort of design simplifies the analysis. In this 
section, we are going to study how to undertake these analyses. We will start by 
analysing designs in which there are only two factors, that is 22 designs, and then 
generalise the analysis for k-factor designs, that is, 2k designs. 

10.3.1. Analysis for 22 Factorial Designs 

The steps to be taken generally to analyse a 2k design and, particularly, a 22 design 
are similar to those used to analyse a general factorial design. Remember that these 
steps are: 

1. Identify the mathematical model to be followed to conduct the analysis; 
2. Validate the model by studying the residuals or experimental errors; 
3. Calculate the variation in the response variable due to each factor and each 

factor interaction, and due to errors; 
4. Calculate the statistical significance of the variation due to each factor and 

factor interactions; 
5. Establish recommendations on the best alternative of each factor. 

As there are two factors for each alternative, however, these steps can be simplified. 
Consider the following example to illustrate this analysis. Suppose that we want to 
test a new development paradigm that is nothing like either the structured or the 
object-oriented paradigm. Our aim is to confirm that our innovation makes 
improvements to the development projects. In particular, we think that our 
innovation should have an impact on improving software correctness and 
maintainability, as our paradigm makes it much easier to detect errors and add or 
modify functionalities. There are many parameters that influence this response 
variable: problem complexity, problem type, process maturity, team experience, 
domain knowledge, integration with other software, etc. However, we are going to 
set all of these at an intermediate value, except domain knowledge about the 
problem in question and the development paradigm, which will be factors. In this 
first experimentation, we will focus on maintainability, measured as the effort 
(person/minute) involved in adding a small functionality to modify the application. 
This first experiment is going to address two factors (development paradigm and 
domain knowledge), each with two alternatives (new and OO, and knowledgeable 
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and unknowledgeable, respectively). The response variable in question will be the 
person/minutes spent on adding one and the same functionality to an application 
developed using the two paradigms. 

The null hypothesis of our experiment will be H0: “the fact that different approaches 
are used, whether or not developers have domain knowledge or there is an 
interaction between the two factors, makes no difference to the maintenance effort”, 
or: 

• H01: the fact that different approaches are used makes no difference to the 
maintenance effort; 

• H02: the fact that developers possess different domain knowledge makes no 
difference to the maintenance effort; 

• H03: the fact that different approaches are used with different domain 
knowledge makes no difference to the maintenance effort. 

Given that there are two factors each with two levels, we will need 22=4 unitary 
experiments to run a complete factorial design. Let’s consider three replications on 
three similar projects for each combination of alternatives. So, the total number of 
unitary experiments will be twelve. 

We run the twelve experiments using three similar projects and twelve similar 
subjects (all the parameters, except the factors, having the same or similar values), 
varying the factor alternatives. We measure the response variable at the end of each 
experiment. The observations of the response variable are set out in Table 10.6.  

 Table 10.6. Experimental response variables 

Paradigm Knowledge Y 
New 
OO 
New 
OO 

With 
With 

Without 
Without 

(15, 18, 12) 
(45, 48, 51) 
(25, 28, 19) 
(75, 75, 81) 

We are now going to go ahead with the analysis of the experiment according to the 
specified steps. 

10.3.1.1. Identification of the Mathematical Model 

In section 10.2.2, we examined the mathematical model that described the 
observations of a general factorial design, which was specified for a two-factor 
factorial design. Remember that this model is: 

 yijk = µ + α i + βj + (αβij) + eijk
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where µ is the grand mean, αi is the effect of the ith alternative of one factor βj is 
the jth alternative of the other factor , αβij is the effect of the interaction between αi  
and βj, and eijk is the error associated with the unitary experiment concerning the ith 
and jth alternatives. The analysis carried out in section 10.2.2 was based on this 
model, that is, we calculated the value of the effects, the variation in the response 
variable, etc., taking this model as a reference. Now let’s look at another form of 
representing the above observations and, therefore, a similar, albeit somewhat 
simplified, way of conducting the above analysis. 

The observations in Table 10.6 can also be represented by means of a linear 
regression model: 

 yijk= C0 + CAXAi + CBXBj + CABXAiXBj + eijk

where eijk is the experimental error of each observation, XAi is the i-th alternative of 
the factor A: development paradigm, XBj is the j-th alternative of the factor B: 
domain knowledge and Ci are the coefficients of the regression model.  

Generalised for all the observations, this model can be represented as: 

 Y= C0 + CAXA + CBXB + CABXAXB + e 

where e is the experimental error, XA  is the development paradigm, XB is the 
domain knowledge and Ci are the coefficients of the regression model.  

As each factor has only two alternatives, we can take a shortcut to solve this 
equation and conduct the analysis. This shortcut involves randomly assigning a 
value of –1 or +1 to each alternative. A possible assignation would be as shown in 
Table 10.7  

Table 10.7. Alternatives of the factors for our example 

FACTOR NAME ALTERNATIVE  -1 ALTERNATIVE +1 
Paradigm 
Domain Knowledge 

A 
B 

New 
With knowledge 

OO 
Without knowledge 

Hence, the value of XA and XB in the above equation would be –1 or +1 depending 
on the alternative in question. Thus, if we denote the means of the replications for 
each of the twelve unitary experiments as Y1, Y2, Y3, Y4 and substitute the four 
combinations from Table 10.6. in the model, we get: 

 Y1 = C0 - CA - CB + CAB
 Y2 = C0 + CA - CB - CAB
 Y3 = C0 - CA + CB - CAB
 Y4 = C0 + CA + CB + CAB
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Solving these equations for the Ci’s, we get: 

 C0 = 1/4 (Y1 + Y2 + Y3 + Y4) 
 CA = 1/4 (- Y1 + Y2 - Y3 + Y4) 
 CB = 1/4 (- Y1 - Y2 + Y3 + Y4) 
 CAB = 1/4 (Y1 - Y2 - Y3 + Y4) 

Note that C0 represents the mean of all the observations and that the expressions for 
CA, CB and CAB are linear combinations of the responses so that the sum of the 
coefficients is zero (for CA, for example, the sum of the coefficients that multiply Yi 
is: - 1 + 1 - 1 + 1 = 0). This type of expression is termed a contrast. Thus, if we 
substitute the value of the coefficients, we get: 

 C0 = 41 
 CA = 21.5 
 CB = 9.5 
 CAB = 5 

The calculation of the regression coefficients Ci is useful in two respects: (1) it will 
be used to calculate the sum of squares and (2) it is a way of calculating the effects 
of the factors. Actually, the regression coefficient is half the estimate of the effect 
because a regression coefficient measures the effect of a unit change in the variable 
X over Y , and the estimate of the effect is based on a change of two units in X 
(from -1 to +1).  

So, the calculation of the regression coefficients is a way of calculating the effects. 
All we have to do is multiply the coefficients related to the factors and interactions 
by two.  

But there is a simpler procedure for calculating the effects and, therefore, the 
regression coefficients, by means of what is known as the sign table. For a 22 
design, the effect of the factors can be easily computed in a 4x4 sign matrix, as 
shown in Table 10.8. 

The first column of the matrix is labelled I and contains all 1s. The next two 
columns, called A and B (after the two factors) contain all the possible combinations 
of 1 and –1. Column four, called AB, is the product of the entries in column A and 
B. The replicated observations are placed in the next column of the matrix. Column 
five contains the values of the response variable for the alternatives of each factor 
that appears in columns A and B. For example, the observations (15, 18, 12) 
correspond to alternatives –1 of the two factors A and B, that is, the new paradigm 
and with domain knowledge. Finally, another column is added that contains the 
mean of each replication.  

 Table 10.8. Sign table for the 22 design of our example 
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I A B AB Y Mean Y  
1 -1 -1 1 (15, 18, 12) 15 
1 1 -1 -1 (45, 48, 51) 48 
1 -1 1 -1 (25, 28, 19) 24 
1 1 1 1 (75, 75, 81) 77 
164 86 38 20  Total 
41 43 19 10  Total/Divisor 

The next step is to multiply column I by column Y entries and place their sum 
under column I. Column A entries are multiplied by the entries in Y and their sum is 
placed under column A. This column multiplication operation is also performed for 
columns B and AB. 

The sum placed under column I is divided by 2k, in this case four (note that this is 
the mean) of all observations, and the other three sums are divided by 2k/2. Note 
that these latter three sums correspond, respectively, to the value of effects A and B, 
and the interaction AB. This is a general-purpose method and can be applied to 
calculate the effects of any 2k factorial design, as we shall see later. By calculating 
these effects, we can determine, for example, that a change of 43 units takes place in 
the mean response by increasing factor A from –1 to 1. Or, alternatively, when we 
switch from the new approach to the OO approach, there is an increase of 43 in the 
average number of errors produced at the end of three months. The case of factor B, 
or domain knowledge, can be reasoned similarly. 

Note also that the coefficients of the Yi in the equation for CA, for example, are 
identical to the alternatives of Table 10.8. Therefore, CA can be obtained by 
multiplying columns XA  and Y  in Table 10.8. This is also true for CB and CAB, 
which can both be obtained by multiplying the respective level column with the 
mean response column. So, having obtained the principal effects and the effects of 
the interactions using the sign table, it is possible to calculate the regression 
coefficients by dividing the above effects by two.  

Let’s make a parenthesis to justify the use of the sign table for calculating the 
effects. As we have said, the effect of a factor is defined as the change in the 
response variable caused by a change in the factor alternative. As mentioned earlier, 
this is often known as the principal effect, because it refers to the factors of primary 
interest in the experiment. Thus, in our example, we would have to study the effect 
of the development paradigm and domain knowledge. Also, the effects due to the 
factor interactions have to be studied. As we have only two factors in the example 
in question, we will have just one interaction, produced by the paradigm and 
domain knowledge. 

The principal effects can be calculated as the difference between the mean response 
variable for the first and second alternatives of the factor under consideration. Thus, 
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the effect of factor A would be obtained as follows: 

 43
2

2415

2

4877
A =

+
−

+
=  

where 77, for example, is the mean of the response variable for the three 
observations, assuming that the value of A is –1 and the value of B is –1. The other 
numerators have been obtained similarly from the above expression. Note that this 
effect has the same value as calculated by means of the sign table procedure, as the 
signs of the numerators do indeed match the signs in column A of Table 10.8 and 
the divisor that we use in the above expression (2) matches the divisor used in the 
sign table method (22/2).   

The effect of factor B can be calculated in the same way: 
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7724
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+
=  

This effect is also the same as calculated using the sign table, as the numerators and 
denominator match those used in the latter procedure. 

Now, let’s study the case of the factor interactions. These occur when the difference 
in the response variable from one factor alternative to another is not the same for all 
the alternatives of the other factors. For example, the effect of A for B is equal to -1 
is: 

 A = 48-15 = 33 

whereas the effect of A for B is equal to 1 is: 

 A = 77-24 = 53 

We can see that factors A and B interact, because the effect of A depends on the 
selected alternative of B. In this case, the effect of the interaction AB can be 
calculated as follows: 

 01
2

1548

2

2477
AB =

−
−

−
=  

 

which is, again, the same value as obtained by means of the sign table. 

Let’s go back to the analysis process now. Briefly, what we have done during this 
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step of the analysis process is to define the respective regression model and 
calculate the value of the coefficients. These coefficients can be rapidly calculated 
using the sign table to calculate the effects and then dividing the above effects by 
two to get the value of the respective coefficients. These coefficients will be used in 
the following steps to simplify the analysis.  

 

Before continuing with the analysis, the model needs to be validated, as we already 

10.3.1.2. Examining Residuals to Validate the Model 

The fitness of the proposed model must be tested before we can trust in the results 

There are a range of tests for testing these hypotheses. As we know, if any of them 

As for one-factor, block and general factorial design, the main tool for validating 

know. The following section addresses this question. 

of the analysis with the above model. Like the model discussed for general factorial 
experiments, the model described in section 10.3.1.1 is valid assuming that the 
errors e are distributed identically and independently with a normal distribution of 
mean zero and constant, albeit unknown variance NIID(0, σ2). This means that the 
observations are random samples of normal populations of equal variance, possibly 
having different means. Additionally, the model used represents an additive model, 
which must also be justified. 

fail, the experimenter can resort to model transformations or to the use of non-
parametric methods. 

the model is residual analysis. As discussed in section 10.2, the residuals for the 
two-factor model are ijkijkijk ŷye −= , where the adjusted values are .yŷ ijijk =  
(the mean of each replication), so: 

.yye ijijkijk −=  

The residuals of the data from our example can be obtained using the above 

Table 10.9. Residual calculation for our example 

red Error 

formula, as shown in Table 10.9. 

Effects Estimated Measu
response response 

 I A B AB        
i 41 43 19 10 Y i y y y e e ei1 i2 i3 i1 i2 i3
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1 
2 
3 
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1 
1 
1 
1 

-1 
1 

-1 
1 

-1 
-1 
1 
1 

1
-1
-1
1

15 
48 
24 
77 

15 
45 
25 
75 

18 
48 
28 
75 

12 
51 
19 
81 

0
-3
1

-2

3 
0 
4 

-2 

-3 
3 

-5 
4 

Having obtained the residuals, let’s discuss some tests to validate the assumptions 
explained above. 

10.3.1.2.1. Testing for Normal Residual Distribution 

This test can be run by plotting a residual normal probability graph. Figure 10.3 
shows the normal probability graph for our development paradigm example. As 
discussed earlier, if this graph is linear, as shown in the example, we will not reject 
the assumption that the error distribution is normal. 
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Figure 10.3. Residual normal probability graph 

10.3.1.2.2. Testing for Error Independence 

Error independence can be tested by means of a graph that represents the residuals 
as a function of the estimated values, as shown in Figure 10.4. 

If the errors are independent, there should be no obvious pattern in the resulting 
graph, as shown in Figure 10.4. 
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10.3.1.2.3. Testing for Constant Error Variance 

From Figure 10.4 the error variance does not appear to grow as the response level 
increases, that is, the graph is not apparently funnel shaped. Therefore, in this 
respect, our model also appears to be suited for the data under analysis, revealing 
constant variance.  
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Figure 10.4. Graph of residuals plotted against estimated responses 

 

 

10.3.1.2.4. Testing for Model Additivity 

There are a variety of ways in which an experimenter could detect that an additive 
model does not represent the data for analysis. These include the following: 

• The first is experimenters’ intuition and knowledge of the domain. A computer 
scientist can sense whether or not the factors are additive. For example, let’s 
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suppose that we intend to compare the performance of processors on different 
workloads. If we have only two processors and two workloads, we can use a 22 
design. Suppose that the response variable yij represents the time required to 
execute a workload with wj instructions on a processor capable of executing vi 
instructions per second. Accordingly, if there were no interactions or errors 
knowledge of computer science would tell experimenters that the response 
variable is the result of a multiplication of factors: 

yij=viwj

The effects of the two factors are not additive, they are multiplicative. In this 
case, the additive model discussed can still be used, provided the logarithm, for 
example, is applied to both sides of the equation to make the model additive, as 
discussed in section 9.2.2. 

• Another test involves analysing whether there is a large range of values covered 
by y. For example, suppose that the values of the response variable were 
between 147.90 and 0.0118. The ratio ymax/ymin is 12,534. It is not representative 
to work with arithmetic means in this case. In our example, this ratio is 5.4 and, 
hence, there is no sign of there being any problems with the model. 

• Analysing the graph of residuals plotted against the response variable, non-
additivity can be detected if the order of magnitude of the errors is one or more 
degrees lower than the response variable. In the graph illustrated in Figure 10.4, 
we can see how the scale on the vertical axis is much lower than the scale of the 
ordinate axis. Hence, there is no sign of any problems with this test. 

10.3.1.3. Calculation of the Variation in the Response Variable Due to Each 
Factor, Factor Interactions and Errors 

In a design with multiple factors, the total variation in the response variable can be 
attributed to each factor, factor interactions and errors. The bigger the variation 
explained by a factor or interaction, the greater the impact of the above factor or 
interaction on the value of the response variable. As soon as we know the variation 
explained by each factor or interaction, we will proceed, as we did earlier, to 
determine the statistical significance of the above variations by means of an analysis 
of variance.  

Below, we are going to calculate the variation in the response variable due to each 
factor and combination of factors and to experimental error. For this purpose, we 
calculate the sum of square total, SST. This value can be calculated as follows, 
having recourse to the regression coefficients calculated in section 10.2.1: 
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 SST = SSA+SSB+SSAB+SSE = 22r CA
2 + 22r CB

2 + 22r CAB
2 + ∑

kji ,,

ei,j,k 2  

Note that it is much easier to calculate the SST this way than as for the general 
factorial design, explained in section 10.2.2. 

For our example, SST= 5,547 + 1,083 + 300 + 102 = 7,032 

Hence, factor A explains 78.88% (5,547/7,032) of the variation, factor B explains 
15.04% and the interaction AB explains 4.27%. The remainder of the variation, 
1.45%, is an unexplained variation and is, therefore, due to experimental error. 
Additionally, taking into account that there is very little error-induced variation, we 
can say that the experiment run is correct, as there do not appear to be variables not 
accounted for by the design or, if there are any, they have very little impact on the 
response variable (remember that experimental error includes not only measurement 
errors but also experimental design errors, such as, unexamined variables). 
Furthermore, we find that factor A is much more important than factor B. 
Therefore, if we intend to focus on improving the response variable, we would 
work on factor A rather than on factor B, as this has much less impact and the 
interaction is small. 

Moreover, taking into account the importance of A, it may be worthwhile (provided 
it is compatible with the goal of the investigation) to run more experiments with A, 
increasing the number of alternatives or considering other factors to examine 
possible interactions. So, in the context under examination, A is the main cause of 
the variation in the response variable, provided the above variation is statistically 
significant, which we will test for in the following section. 

10.3.1.4. Calculation of the Statistical Significance of the Variation Due to Each 
Factor and Factor Interactions 

If we want to know whether the above portions of variations are statistically 
significant, we need to apply the F-test-based analysis of variance. However, the 
conclusions of the F-test for a 2k design with replication are always identical to 
what we would get by calculating confidence intervals. So, we will first carry out 
the analysis of variance and we will then calculate the confidence intervals so that 
the readers can see how we reach the same results.  

Table 10.10 presents the calculations to be made to apply the analysis of variance 
for a 22 factorial design. Remember that r is the number of replications. Table 10.11 
presents the application of the analysis of variance to our example. As we can see 
from Table III.6 (Annex III), the F calculated is greater than the quantile taken from 
the table at a confidence level of 95%. This means that A, B and AB can be said to 
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be statistically significant at a confidence level of 95%. This means that the 
variation provoked by these factors and by the interaction are really due to having 
varied the alternatives and not to chance. Thus, although in the above section we 
said that factor B and the interaction were not very important, that is, explained 
little of the variation of the response variable, this small variation is not really due 
to chance but to the fact that one alternative improves the response variable. The 
same can be said of factor A, except that, as mentioned, this factor explains a larger 
proportion of the response variable and, therefore, the improvement in the response 
variable will be much more patent if the right alternative of A is chosen. 

Consequently, we could reject H0, or, alternatively, H01, H02 and H03.  
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Table 10.10. Analysis of variance table for 22 design 

Component Sum Of Squares Percentage 
Variation 

Degrees of 
Freedom 

Mean Square F- 
Computed

F-Table 

Y ∑= 2
ijYSSY  

 2     2r

..Y  22 r2SS0 µ=       1

..YY −  SS0SSYSST −= 100     22r-1

A 2
A

2 rC2SSA =  ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSA001  1 = SSAMSA

 

MSE
MSA  [ ])1(,1;1 −− rF α  

B 2
B

2 rC2SSB =  ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSB001  1 = SSBMSB

 

MSE
MSB  [ ])1(,1;1 −− rF α  

AB 2
AB

2 rC2SSAB = ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSAB100  1 =SSABMSAB  

MSE
MSAB  [ ])1(,1;1 −− rF α  

e SSE=SST-SSA-
SSB-SSAB ⎟

⎠
⎞

⎜
⎝
⎛

SST
SSE100  22(r-1) 

)1( −
=

r22

SSEMSE
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Component Sum of Squares Percentage 
Variation 

Degrees of 
Freedom 

Mean Square F- 
Computed

F-Table 

Y ∑= 2
ijYSSY  

     223

..Y  22 r2SSO µ=       1

..YY −  SSOSSYSST −=
 

100     

 

223-1

A 2
A

2 rC2SSA = ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSA001  1    5547 435 5.32

B 2
B

2 rC2SSB =
 

⎟
⎠
⎞

⎜
⎝
⎛

SST
SSB100  1    1083 84.9 5.32

AB 2
AB

2 rC2SSAB =
 

⎟
⎠
⎞

⎜
⎝
⎛

SST
SSAB100 1    

 

300 23.52 5.32

e SSE=SST-
SSA-SSB-

SSAB 
⎟
⎠
⎞

⎜
⎝
⎛

SST
SSE100

22(3-1)    12.75
 

Table 10.11. Results of the analysis of variance for our example 
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Another form of judging the significance of the effects and interactions is to 
calculate their confidence interval. This procedure involves calculating the standard 
error of the effects. This estimate is calculated by means of the variance of the 
above effects. The variance of each estimate of an effect can be calculated as 
follows: 

V(effect ) = V(Contrast
r2k−1

) = 1
(r 2k−1 )2

V(Contrast )
 

where r is the number of replications and k is the number of alternatives of the 
factors under consideration. Each contrast is a linear combination of 2k alternative 
totals, and each total consists of r observations. Hence, 

2kn2)V(Contrast σ=  

and the variance of an effect is: 

2

2k

2k
21k r2

1n2
)(r2

1V(effect) σσ
−− ==  

the estimated standard error would be found by replacing σ2 by MSE and 
calculating the square root of the above equation, that is,  

MSE
r2

1SE(effect) 2k−=  

In our example, the standard error or standard deviation of the effects is equivalent 
to 4.25. Hence, the confidence intervals for the estimates of the effects are 
calculated as: 

A= 43 ± 4.25 B=19±4.25 AB=10±4.25 

As none of these includes 0, we can deduce that both A, B and their interaction are 
significant. Note that if the confidence interval of any factor or interaction included 
0, then the effect of that factor could be 0, which means that it would not be 
significant for our experiment in which we aim to determine the factors that really 
do influence the response variable.  

10.3.1.5. Recommendations on the Best Alternative of Each Factor 

Finally, once we have determined that the factors and their interaction are 
statistically significant, conclusions should be drawn as to which factor alternatives 
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improve the response variable. As discussed in section 10.2.4, graphs of the 
principal effects and their interactions can be plotted for this purpose. Figure 10.5 
shows these graphs for our example. Remember that the principal effect of a 
variable must be interpreted individually only when there is no evidence that this 
variable interacts with others. When there is evidence of one or more interactions, 
the variables that interact must be interpreted jointly, as in the case of the example 
in question. Hence, our conclusions are based on Figure 10.5(c), which shows the 
effect of the interaction of the two factors on the response variable. 
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Figure 10.5. Graphs of effect and interaction for our example 

Let’s briefly remark on the graphs of the principal effects. Note that the two 
variables have a positive effect, that is, an increase in the variable raises the value of 
the response variable (Figure 10.5(a) and (b)). 

The interaction between the paradigm and domain knowledge is fairly small, as 
indicated by the fact that the slope of the two lines is similar in Figure 10.5(c). 
Thus, the graphs of interaction can also be used to graphically illustrate the 
interaction between two factors. Parallel straight lines indicates that the represented 
factors do not interact. See, for example, the graph of interaction shown in Figure 
10.6, which would indicate that the two factors do not interact. So, the bigger the 
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difference in the slope of the two lines, the bigger the interaction between the 
represented variables. 
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Figure 10.6. Graph without interaction between factor A and B, each with two 

alternatives 

Returning to our example, we are looking for the lowest possible response variable, 
and we need to analyse Figure 10.5(c) to get the best alternatives, as we found in 
the preceding section that there was a significant interaction between them. So, the 
conclusion drawn after this experiment would be that the maintenance effort is 
lower when the new paradigm is used and there is domain knowledge, although 
there is not really a big difference using the new paradigm either with or without 
background knowledge. 

Let’s finish this section with a comment on effects graphs. These graphs can often 
be useful for interpreting significant interactions and presenting results to managers 
with little knowledge of statistics. However, it must not be the only technique used 
to analyse the data, because its interpretation is subjective and its appearance can be 
deceptive. 

10.3.2. Analysis for 2k Factorial Design 

As we already know, a 2k design is used when we aim to determine the effect of k 
factors, each with two alternatives, on the response variable. The analysis 
techniques studied so far for 22 can easily be extended to a 2k design. As discussed 
above, given k factors, the analysis outputs 2k effects, of which k are principal 

effects due to a single factor, )  effects due to the interaction of 2 facto )k
3(   k

2( rs, 
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o (due to the interaction of 3 factors, and so on up t )k
k  effects of interactions among 

k factors. The sign table method is also valid for analysing this sort of experimental 
design. 

 

We are going to illustrate this analysis by considering the results of an 
experimentation performed to ascertain the best combination of: testing strategy, 
system size and time spent on testing in order to get the best reliability. 
Accordingly, we have three factors, each with two alternatives, and the response 
variable will represent the faults detected in time t. This approach gives rise to a 23 
design. The null hypothesis would be H0: “there is no difference in the number of 
errors found in time t, due to different validation strategies, different systems size or 
different time spent on validation or due to any interaction among these three 
factors”. Table 10.12 shows the alternatives of the factors. 

 Table 10.12 Alternatives for three factors in our example 

FACTOR NAME LEVEL -1 LEVEL 1 
Strategy 
Size 
Validation time 

A 
B 
C 

λ 
Large 
Long 

π 
Small 
Short 

Two replications of each observation were made for this experiment. Therefore, this 
design calls for 23x2 elementary experiments using two similar programs. Table 
10.13 represents the sign table of this experiment, reflecting the 16 observations. 

 Table 10.13. Sign table for a 23 design 

I A B C AB AC BC ABC  Y Y  
1 -1 -1 -1 1 1 1 -1 (59, 61) 60
1 1 -1 -1 -1 -1 1 1 (74, 70) 72
1 -1 1 -1 -1 1 -1 1 (50, 58) 54
1 1 1 -1 1 -1 -1 -1 (69, 67) 68
1 -1 -1 1 1 -1 -1 1 (50, 54) 52
1 1 -1 1 -1 1 -1 -1 (81, 85) 83
1 -1 1 1 -1 -1 1 -1 (46, 44) 45
1 1 1 1 1 1 1 1 (79, 81) 80
514 92 20 6 6 40 0 2
64.25 23 5 1.5 1.5 10 0 0.5

The statistical significance of these effects is calculated, as for a 22 design using the 
analysis of variance. A similar analysis to the one discussed in section 10.3.1 would 
have to be conducted. Accordingly, the mathematical model associated with this 
type of design is as follows:  
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Y = C0 + CAXA + CBXB + CCXC +  CABXAXB + CACXAXC + CBCXBXC + 
CABCXAXBXC + e 

This model is valid supposing that the errors e are identically and independently 
distributed with a normal distribution of mean zero and constant, albeit unknown, 
variance. As in the two-factor model, discussed in section 10.3.1.1, the residuals for 
the three-factor model are ijklijklijkl ŷye −= . As the adjusted values are 

.yŷ ijkijkl =  (the mean of each replication), 

.yye ijkijklijkl −=  

Hence, the residuals of the data of our example are shown in Table 10.14. 

Table 10.14. Residual calculation 

Effects Measured 
response 

Estimated 
response 

Errors 

A B C AB AC BC ABC yi1 yi2 y i ei1 ei2

-1 -1 -1 1 1 1 -1 59 61 60 -1 1 
1 -1 -1 -1 -1 1 1 74 70 72 2 -2 

-1 1 -1 -1 1 -1 1 50 58 54 -4 4 
1 1 -1 1 -1 -1 -1 69 67 68 1 -1 

-1 -1 1 1 -1 -1 1 50 54 52 -2 2 
1 -1 1 -1 1 -1 -1 81 85 83 -2 2 

-1 1 1 -1 -1 1 -1 46 44 45 1 -1 
1 1 1 1 1 1 1 79 81 80 -1 1 

23 -5 1.5 1.5 10 0 0.5   

Once the residuals have been obtained, the tests mentioned in section 10.3.1.2 have 
to be run. In this section, we are going to focus on the calculations for determining 
the significance of the effects, and the above tests are left as an exercise for the 
reader. 

Remember that the next step is to calculate the variation in the response. This 
variation is calculated by means of the sum of squares total SST. For the three-
factor model, this value is calculated as follows: 

 SST = SSA+SSB+SSAB+SSAC+SSBC+SSABC= 2kr CA
2 + 2kr CB

2 + 2kr 

CAB
2 +  2kr CAC

2 +2kr CBC
2  +2kr CABC

2 + ∑
lkji ,,,

ei,j,k,l 2  

Remember that the coefficients can be obtained by dividing the value of the 
respective effects by two. Thus, the SST can be calculated as: 

 



Basics of Software Engineering Experimentation 265 

 

2116
2699

SST = 232 (11.52+2.5 2+0.752+0.752+52+0+0.252) + 64 = 
2116+100+9+9+400+0+1+64=2699 

The portion of variation explained by each factor and its interactions are: 

 A (Strategy) : = 78%
100
2699

 

 B (System Size) : = 3.7%  

 C (Validation Time): 

%03.02699
1

:ABC%;0
2699

0
:BC%;14

2699
400

:AC%;3.0
2699

9
:AB

=
===  

From these data, we deduce that the factors that are really important in this 
experiment are A and AC and to a lesser extent B. Note that A explains 78% of the 
variation in the response variable, which means that if the above variation turns out 
to be significant, the choice of the best alternative of factor A can lead to an 
improvement in the above response variable. 

For the purpose of studying whether the variation produced by these factors is 
statistically significant, we have to continue with the analysis of variance. Table 
10.15 shows the analysis of variance for the 2k design with r replications, when 
k=3. Note that this table could be easily generalised for more than three factors.  

According to Table 10.16, which shows the result of the analysis of variance for the 
experiment under consideration, the effects that are statistically significant at 99% 
are A, B and the interaction AC. This means that the response variable variation 
they produce is really caused by having varied the alternatives and is not due to 
chance. 

The best values for these factors can be obtained by means of the graph of effects 
and interactions, shown in Figure 10.7. Figure 10.7(a) represents the effect of factor 
A, that is, the validation strategy. As indicated by the graph, the number of faults 
detected is greater with strategy π than with strategy λ. Figure 10.7(b) shows the 
effect of factor B, that is, size. Note how the straight line is almost parallel to the 
ordinate axis, depicting that the effect on the response is low, as indicated by the 
fact that the variation in the response caused by this factor was 3.7%. On the other 
hand, the graph shown in Figure 10.7(c) represents the effect of the interaction 
between the validation strategy and validation time. The fact that the lines cross 
means that there is an interaction and, hence, its impact on the response variable 
(14%). 

%3.0
2699

9
=  
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Table 10.15 Analysis of variance table for 2k fixed-effects model 

Component Sum of squares Degrees of 

freedom 

Means square F- Computed F-Table 

Y SSY = Yij
2∑

 
2kr    

Y ••  
2µ2krSS0 =  

1    

Y− Y ••  
SST = SSY-SS0 2k -1    

A = 2
AC2krSSA  1 SSAMSA =

 MSE
MSA

 [ ]1−F α; 1, 2k (r-1) 

B = 2
BC2krSSB  1 SSBMSB =  

MSE
MSB

 
[ ]1−F α; 1, 2k (r-1) 



Basics of Software Engineering Experimentation  267 

 

C 

 

= 2
CC2krSSC  1 SSCMSC =  

MSE
MSC

 
[ ]1−F α; 1, 2k (r-1) 

AB = 2
ABC2krSSAB 1 SSABMSAB =  

MSE
MSAB

 
[ ]1−F α; 1, 2k (r-1) 

AC = 2
ACC2krSSAC  

1 SSACMSAC =  

MSE
MSAC

 
[ ]1−F α; 1, 2k (r-1) 

BC = 2
BCC2krSSBC  

1 SSBCMSBC =  

MSE
MSBC

 
[ ]1−F α; 1, 2k (r-1) 

ABC = 2
ABCC2krSSABC 1 SSABCMSABC =

 MSE
MSABC

 
[ ]1−F α; 1, 2k (r-1) 

e ∑= 2
ijkeSSE  2k(r-1)    
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Table 10.16. Values of the analysis of variance for our example 
Component Sum of squares Degrees of 

freedom 
Mean square F- Computed F-Table 

Y SSY = Yij
2∑

 
16    

Y ••  
2µ2krSS0 =  

1    

Y− Y ••  
SST = SSY− SS0

 
15    

  

  

A = 2
AC2krSSA  1 MSA = 2116 

 
264.5 11.26

B = 2
BC2krSSB  1 MSB = 100 

 
12.5 11.26

C 
 

= 2
CC2krSSC  1 MSC = 9 1.125 

 
11.26 

AB = 2
ABC2krSSAB 1 MSAB = 9 1.125 11.26 

AC = 2
ACC2krSSAC  

1 MSAC = 400 50 11.26 

BC = 2
BCC2krSSBC  

1 MSBC = 0 0 11.26 

ABC = 2
ABCC2krSSABC 1     MSABC= 1 0.125 11.26

e ∑= 2
ijkeSSE  8 

8
8
64 ==MSE
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Figure 10.7. Effects of A, B and AC 

The findings of this analysis are that slightly better results are obtained, that is, 
more errors are detected, for small-size problems, and this happens irrespective of 
the alternatives of the other factors. On the other hand, it can be inferred that a 
better response is obtained for strategy π than for strategy λ, particularly if a lot of 
time is spent on validation. Note that the effects of the size and the strategy cannot 
be interpreted separately owing to the existence of the interaction AB. 

10.4. ANALYSIS FOR FACTORIAL DESIGNS WITHOUT REPLICATION 

The total number of combinations of alternatives in a factorial design is large even 
for a moderate number of factors. For example, a 25 design has 32 combinations of 
alternatives, a 26 design has 64 and so on. Resources are usually curbed, which can 
limit the number of replications of an experiment. Often there are only enough 
resources to run the experiment once, unless the researcher is prepared to disregard 
some factors.  

Error cannot be estimated when there is only one replication of the experiments. 
One approach to the analysis of a non-replicated factorial design is to suppose that 
some higher order interactions are negligible and use their mean squares to estimate 
the error. This is an application of the principle of effect dispersion. As mentioned 
in Chapter 5, the principle of effect dispersion says that most systems are dominated 
by some of the lower order principal effects and interactions, and most higher order 
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interactions are negligible. The problem lies then in determining which of these 
interactions are significant and which are not. Let’s look then at how to analyse 
factorial designs without replication. 

The steps for performing an analysis of this sort can be identified as follows: 

1.  Determine the significance of factors and interactions that will be considered 
in the analysis. 

2.  Validate the model using the residuals. 
3.  Establish recommendations on the best alternatives of the factors. 

These steps are addressed in detail in the following sections. In section 10.4.4, 
however, we will study an alternative procedure for conducting this analysis. 

10.4.1. Determining the Significance of the Factors and Interactions 

An approximate approach to determining which interactions are negligible and 
which are not is to plot the estimates of the effects on normal probability paper. The 
effects that are negligible are normally distributed with mean zero and variance σ2 
and tend to be positioned along a straight line of this graph, whereas the significant 
effects will have means other than zero and will not be positioned along a straight 
line.  

Let’s illustrate this method with an example. Suppose that we want to determine 
whether the number of errors detected using an inspection technique is greater when 
the inspection is performed by the team of developers or when performed by 
individuals who had nothing to do with that development. For this purpose, we are 
going to consider as factors the team of developers (factor A: in-house, external), 
development process maturity (factor B: high, low), developer experience (factor C: 
inexperienced, experienced) and problem complexity (factor D: difficult, simple). 
The response variable will, of course, be the number of errors detected. The null 
hypothesis is H0: “the number of errors is affected neither by the inspection team, 
nor by the development process, nor by developer experience, nor by problem 
complexity, nor by any interaction among these variables”. Hence, we have a 24 
design. Table 10.17 shows the data collected from this experiment. 

 

 

 

 Table 10.17. Results of the specimen 24 
experimental design 



Basics of Software Engineering Experimentation 271 

 

Factor  
A B C D Errors detected 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 

- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 

- 
- 
- 
- 
+ 
+ 
+ 
+ 
- 
- 
- 
- 
+ 
+ 
+ 
+ 

- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

45 
71 
48 
65 
68 
60 
80 
65 
43 

100 
45 

104 
75 
86 
70 
96 

The effects can be calculated using the sign table method. The signs for each 
experiment are shown in Table 10.18. From this table, we can get the effects of the 
factors and interactions using the procedure explained above, which are shown in 
Table 10.19. 
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Table 10.18. Sign table for a 24 design 

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 

- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 

+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 

- 
- 
- 
- 
+ 
+ 
+ 
+ 
- 
- 
- 
- 
+ 
+ 
+ 
+ 

+ 
- 
+ 
- 
- 
+ 
- 
+ 
+ 
- 
+ 
- 
- 
+ 
- 
+ 

+ 
+ 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
- 
- 
- 
- 
+ 
+ 

- 
+ 
+ 
- 
+ 
- 
- 
+ 
- 
+ 
+ 
- 
+ 
- 
- 
+ 

- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
- 
+ 
- 
+ 
- 
+ 
- 
- 
+ 
- 
+ 
- 
+ 
- 
+ 

+ 
+ 
- 
- 
+ 
+ 
- 
- 
- 
- 
+ 
+ 
- 
- 
+ 
+ 

- 
+ 
+ 
- 
- 
+ 
+ 
- 
+ 
- 
- 
+ 
+ 
- 
- 
+ 

+ 
+ 
+ 
+ 
- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 

- 
+ 
- 
+ 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
- 
+ 
- 
+ 

- 
- 
+ 
+ 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
- 
- 
+ 
+ 

+ 
- 
- 
+ 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
+ 
- 
- 
+ 

  

 Table 10.19. Effects of the factors and interactions of our 24 design 

Order (j) Effect 
 

Estimation (j - .5)/15 

15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

A 
AD 
D 
C 
ABD 
B 
BC 
ABC 
ABCD 
AB 
CD 
BD 
ACD 
BCD 
AC 

21.63 
16.63 
14.63 

9.88 
4.13 
3.13 
2.38 
1.88 
1.38 
0.13 

-0.38 
-1.13 
-1.63 
-2.63 

-18.13 

0.9667 
0.9000 
0.8333 
0.7667 
0.7000 
0.6333 
0.5667 
0.5000 
0.4333 
0.3667 
0.3000 
0.2333 
0.1667 
0.1000 
0.0333 
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Let’s start to analyse these data by plotting the estimates of the effects on normal 
probability paper. Figure 10.8 shows the respective graph. All the effects that are 
positioned along a line are negligible, whereas the large effects are at some distance 
from the line. The important effects that are discovered in this analysis are the 
principal effects of A (inspection team), C (developer experience), D (problem 
complexity) and interactions AC and AD.  

Thus, we will use the effects of the negligible variables and interactions to get an 
estimate of experimental error and thus be able to investigate the statistical 
significance of the non-negligible effects and interactions. 

.
.

95

90

80

70

50

30

20

10

5
AC

-20 -15 -10 -5 0 5 10 15 20 25

C
D

AD

A.
.............

. . ............

95

90

80

70

50

30

20

10

5

%%

 

Figure 10.8. Effect of the factors and interactions on normal probability paper 

 

10.4.2. Validating the Model 
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Before proceeding with this analysis, we have to apply the usual diagnostic tests 
described in section 10.3.1.2, for example. In this case, we have determined that the 
significant effects are A = 21.63, C = 9.88, D =14.63, AC = -18.13 and AD = 16.63. 
If this is true, the estimated response variable, that is, the number of errors detected 
in the inspections will be as follows: 

ˆ y = 70.06 + (
21.63

2
)XA + (

9.88
2

)XC + (
14.63

2
)XD − (

18.13
2

)XAC + (
16.63

2
)XAD  

where 70.06 is the mean response and the alternatives of the variables XA, XC and 
XD (related to the significant effects) are +1 and –1. Note that this expression does 
not account for the negligible effects of the factors and interactions, as shown in 
Figure 10.8. 

The residuals are calculated as usual by subtracting from each observed value y the 
respective estimated value . The residuals for the 16 observations of our example 
are shown in Table 10.20. Briefly, what we are doing is to use the effect of the 
negligible factors and interactions as a measure of experimental error e. 

ŷ

Table 10.20. Residuals related to the non-
replicated 24 design in question 

y 
 

ŷ  e = y -  ŷ

45 
71 
48 
65 
68 
60 
80 
65 
43 

100 
45 

104 
75 
86 
70 
96 

46.22 
69.39 
46.22 
69.39 
74.23 
61.14 
74.23 
61.16 
44.22 

100.65 
44.22 

100.65 
72.23 
92.40 
72.23 
92.40 

-1.22 
1.61 
1.78 
-4.39 
-6.23 
-1.14 
5.77 
3.86 
-1.22 
-0.65 
0.78 
3.35 
2.77 
-6.40 
-2.23 
3.60 

Figure 10.9 shows the graph of these residuals plotted on normal probability paper.  
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The points of this graph are reasonably close to a straight line. Furthermore, Figure 
10.10 shows the graph of residuals plotted against estimated values. There is no 
significant pattern in this graph, nor is it apparently funnel shaped. Again the errors 
are of a lower order of magnitude than the response variable and the ratio ymax/ymin 
is 2.41. Therefore, the results support our findings that A,C,D, AC and AD are the 
only significant effects and that they satisfy the underlying assumptions of the 
analysis. 

10.4.3. Recommendations on the Best Alternatives of the Factors 

The principal effects A, C and D are plotted in Figure 10.11 (a). The three effects 
are positive, and if we consider these three principal effects only, the alternative +1 
in each one would give us a higher number of detected errors. However, it is always 
necessary to examine the important interactions. Remember that the principal 
effects do not make much sense on their own when the factors that cause the above 
effects are involved in significant interactions.  

Figure 10.11(b) plots the interactions AC and AD. Note that, in the case of 
interaction AC, the team effect (in-house or external) is small when the developers 
are experienced and very large otherwise. This means that more errors are identified 
for inexperienced developers and an in-house development team. The interaction 
AD indicates that the source of the team has little effect when the problem is simple 
and has a big positive effect when the problem is complex. Having examined this 
analysis, the next section looks at another means of conducting the analysis of an 
unreplicated 2k design. 
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Figure 10.9. Normal probability residuals graph 
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Figure 10.10. Graph of residuals against estimated response 
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(b) Interaction
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Figure 10.11. Graphs of principal effects and interactions. 
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The same steps as discussed in section 10.3.2 for a 2k design, where k=3, would be 
taken to analyse this design. Thus, in this case, the mathematical model to be used 
would be: 

Y = C0 + CAXA + CCXC + CDXD +  CACXAXC + CADXAXD + CCDXCXD + 
CACDXAXCXD + e 

for which we would have to check the respective validity, calculate the variation in 
the response variable and determine the statistical significance of the above 
variation applying the analysis of variance. These calculations are left as an exercise 
for readers, who will find that the table of analysis of variance to be applied is as 
shown in Table 10.22.  

10.4.4. Model Mapping 

Alternatively, this analysis could be run by interpreting the data from Figure 10.8 
differently. Given that neither B (maturity) nor any interactions in which it is 
involved are significant, it can be discarded and the experiment then becomes a 23 
design (A, C and D) with two replications. Looking at columns A, C and D in Table 
10.17 only, you will see that the above columns form two replications of a 23 
design. Table 10.21 shows the values of the response variable for this example, as 
well as the expected response. 

Table 10.21. Residual calculation for our example 

 Measured 
 response 

Estimated  
response 

Errors 

A C D yi1 yi2 y i ei1 ei2

-1 -1 -1 45 48 46.5 -1.5 1.5
1 -1 -1 71 65 68 3 -3
1 1 -1 68 80 74 6 -6

-1 -1 1 60 65 62.5 2.5 -2.5
1 -1 1 43 45 44 1 -1

-1 1 1 100 104 102 2 -2
-1 1 1 75 70 72.5 -2.5 2.5
1 1 1 86 96 91 5 -5
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Table 10.22.Table of analysis of variance for our example 
Component Sum of squares Degrees of freedom Means square F- Computed F-Table 

A = 2
AC2krSSA  1 SSAMSA =

 MSE

MSA  [ ]1−F α; 1, 2k (r-1) 

C 
 

= 2
CC2krSSC  

1 SSCMSC =  

MSE
MSC

 

[ ]1−F α; 1, 2k (r-1) 

D 
 

= 2
DC2krSSD  

1 SSDMSD =  
MSE
MSD

 
[ ]1−F α; 1, 2k (r-1) 

AC = 2
ACC2krSSAC  

1 SSACMSAC=  

MSE
MSAC

 

[ ]1−F α; 1, 2k (r-1) 

AD = 2
ADC2krSSAD 1 SSADMSAD=  

MSE
MSAD

 
[ ]1−F α; 1, 2k (r-1) 

CD = 2
CDC2krSSCD  

1 = SSCDMSCD
 MSE

MSCD

 [ ]1−F α; 1, 2k (r-1) 

ACD = 2
ACDC2krSSACD 1 = SSACDMSACD  MSE

MSACD

 )1r(2
SSEMSE k −

=
 

e ∑= ijkle 2SSE
 

2k(r-1) 
)1r(2

SSEMSE k −
=    
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This is similar to the analysis of variance explained in section 10.3.2 for a 2k 
factorial design, not considering, however, the components related to factor B. 

The results of the analysis of variance are shown in Table 10.23. Note that by 
mapping the single replication of the 24 design to a replicated 23 design, we have an 
estimate of the interaction ACD and an estimate of the error based on the 
replication, which is useful. 

As a general rule, if you have only one replication of a 2k design and you find that 
the factors (h<k) are negligible and can be disregarded, the original data correspond 
to a factorial design with two levels and k-h remaining factors with 2h replications. 

Table 10.23. Analysis of variance for the replicated data of Table 10.21. 

Component Sum of 
squares 

Degrees of 
freedom 

Mean 
square 

F- Computed 

A 
C 
D 

AC 
AD 
CD 

ACD 
e 

1870.56 
390.06 
855.56 

1314.06 
1105.56 

5.06 
10.56 

179.52 
 

1 
1 
1 
1 
1 
1 
1 
8 

1870.56 
390.06 
855.56 

1314.06 
1105.56 

5.06 
10.56 
22.44 

 

83.36a

17.38 a

38.13 a

58.56 a

49.27 a

<1 
<1 

a Significant at 1% 

10.5. HANDLING UNBALANCED DATA 

Most of this chapter has focused on analysing balanced factorial designs, that is, 
cases in which the same number n of observations are gathered in each cell. 
However, it is not unusual to come up against situations in which the number of 
observations in the cells differs. These factorial designs can occur on several 
grounds. For example, the experimenter could originally have designed a balanced 
experiment, but some of the information may have been lost because of unforeseen 
problems during data collection. The end product is an unbalanced design. 
Moreover, some experiments are purposely designed as unbalanced, such as when 
some treatment combinations are more expensive and more difficult and fewer 
observations are made for these cells. Furthermore, the experimenter may be 
interested in certain alternative combinations, because they represent new or 
unexplored conditions. In this case, the investigator may opt to get additional 
replications in such cells. 
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The usual analysis of variance techniques cannot be applied in these cases. In this 
section, we briefly outline the methods for analysing unbalanced factorial designs. 
For the above-mentioned reasons, more emphasis will be placed on the two-factor 
model. The number of observations in the ijth cell is assumed to be nij and 

is the number of observations of the ith row (ith alternative of factor 

A),  is the number of observations of the jth column (the jth 

alternative of factor B), and  is the total number of 

observations. 

∑ == b
1j ij

n
i

n

∑ == a
1i ij

nnj

∑ =∑ == b
1j ij

na
1in

10.5.1. Proportional Data: A Simple Case 

One situation that includes unbalanced data and whose analysis is fairly 
straightforward is when the data are proportional. In other words, when the number 
of observations in the ijth cell is: 

 
..

.ji.
ij n

nn
n =  

That is, the number of observations in each cell must be equal to the product of the 
number of observations in the respective row and the number of observations in the 
respective column of the cell, divided by the total number of observations. This 
condition means that the number of observations in any pair of rows and columns 
are proportional.  

As an example of proportional data, consider an experiment in which we aim to 
evaluate the maintainability of OO software with differing degrees of inheritance (1, 
3 and 5 inheritance levels) by programmers with differing experience 
(inexperienced in object orientation, one year’s experience, over one year’s 
experience). The response variable in this two-factor design is the time spent on 
making a change to the code. These data are shown in Table 10.24 and are clearly 

proportional; for example, we have 4
20

10(8)
n
nn

n .11.
11 ===  observations in cell 

(1, 1). We have 2
20

5(8)
n
nn

n .22.
22 ===  observations in cell 2,2 and so on. 
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Table 10.24. Experiment on how long it takes to make a change yielding 
proportional data 

 Level of inheritance  
Experience 3 levels 2 levels 1 level  
Over 1 year n11 = 4 

130        155 
74       180 

n12 = 4 
34        40 
80       75 

n13 = 2 
 

70         58 

n1. = 10 
 

y1.. = 896 
1 year n21 = 2 

159        126
n22 = 2 

136        115 
n23 = 1 

45 
n2. = 5 

y2.. = 581 
Inexperienced n31 = 2 

138        160
n32 = 2 

150        139 
n33 = 1 

96 
n3. = 5 

y3.. = 683 
 n.1 = 8 

y.1. = 1122 
 

n.2 = 8 
y.2. = 769 

n.3 = 4 
y.3. = 269 

n.. = 20 
y.... = 2160 

 

Standard analysis of variance can be used when working with proportional data. All 
we have to do is to slightly amend the formulas for calculating the sum of squares 
as follows:
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The result of applying the usual analysis of variance to the data of Table 10.24 is 
shown in Table 10.25. Both the inheritance level and experience are significant.  

Table 10.25. Analysis of variance for the maintainability data in Table 10.23. 
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Source of variance Sum of squares Degrees of 
freedom 

Mean 
square 

F0

Experience 
Level of inheritance 
Interaction 
Error 
Total 

8,170.400 
16,090.875 

5,907.725 
8,981.000 

39,150.000 

2 
2 
4 

11 
19 

4,085.20 
8,045.44 
1,476.93 

816.45 

5.00 
9.85 
1.18 

10.5.2. Approximate Methods 

If the number of replications per cell are not proportional and provided the data are 
not very unbalanced, approximate methods can sometimes be used to convert this 
problem into a balanced problem. Of course, this is only a rough analysis. However, 
the analysis of the balanced data is so simple that there is often a tendency to use 
this method. In practice, we have to decide when the data are not far removed from 
a balanced case to assure that the degree of approximation introduced is 
insignificant. Some of these approximate methods are described below. Each cell is 
assumed to contain at least one observation (in other words, nij≥1). 

10.5.2.1. Estimation of Missing Observations 

If there are only a few different nij, one reasonable procedure is to estimate the 
missing values. Consider, for example, the unbalanced design shown in Table 
10.26, where the number of available observations is shown in each cell. A 
reasonable procedure in this case, where there is the same number of observations 
in all the cells, except (2.2), is to estimate the value missing from cell (2,2). We use 
a model in which the sum of square error should ideally be minimised in order to 
investigate the effect of the factors and the interaction. Thus, the estimation of the 
missing value for the ijth cell will be y ij . In other words, the missing value is 
estimated using the mean observations of the data available the cell in question. 

 Table 10.26. Values of nij for an unbalanced design. 

   Columns  
Rows  1 2 3 

1 
2 
3 

4 
4 
4 

4 
3 
4 

4 
4 
4 

The estimated value is dealt with as if it were an observed datum. The only change 
made to the analysis of variance is to reduce the degrees of freedom of the error by 
the number of missing observations estimated. For example, if the value missing 
from cell (2,2) in Table 10.10 is estimated, we have to use 26 instead of 27 degrees 
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of freedom of the error. 

10.5.2.2. Elimination of Data 

Consider the data from Table 10.27, which again represents the number of 
observations per cell. Note that cell (2,2) has only one more observation than the 
others. It is not a good idea to estimate the values missing from the other 8 cells, as 
this would mean estimating almost 18% of the end data. A reasonable alternative is 
to remove or eliminate one of the observations from cell (2,2), thus producing a 
balanced design with n=4 replications. 

Table 10.27. Values of nij for an unbalanced design 

  Columns  
Rows 1 2 3 

1 
2 
3 

4 
4 
4 

4 
5 
4 

4 
4 
4 

The observation to be eliminated must be selected at random. Moreover, instead of 
completely eliminating the above observation, it can be added again to the design in 
place of another observation and the analysis can be repeated. The interpretations of 
these two analyses should not be contradictory. If they are, the eliminated 
observation is likely to be a far-off residual or a datum with a serious collection 
error and must be dealt with in accordance with these circumstances. In practice, it 
is very unlikely for this problem to occur when a few data are removed and there is 
little variability from one cell to another. 

10.5.2.3. “Unweighted” Means Method 

According to this method, introduced by Yates (Yates, 1934), the means of the cells 
are considered as if they were data and they are subjected to a standard analysis of a 
balanced design to get the sums of squares of each row, column and interaction. 
The mean square error is determined by: 
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Then the MSE is used to estimate σ2, the variance of the individual observations 
yijk. However, the mean square error used in the analysis of variance must estimate 
the variance of the mean ijy , )y(V .ij , because it is the means of the cells that have 
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been analysed, and the variance of the mean of the ijth cell is . Hence, ij
2/nσ

 ∑∑
∑∑
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If the proportional MSE is used to estimate σ2, we get: 

 ∑∑
= =

=
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1i

b

1j ijn
1

ab
MSE

MSE'  

as the mean square error (with n-ab degrees of freedom), which must be used in the 
analysis of variance. 

This method is an approximate procedure, because the sums of squares of the row, 
column and interaction do not have a chi-square distribution. The main advantage 
of this method is the ease of calculation. However, the method of unweighted 
means often works reasonably well when there is not much difference between the 
nij. 

A related technique is the method of weighted mean squares, also proposed by 
Yates (Yates, 1934). This technique is also based on the sums of mean squares of 
the cells. However, the weighting of the terms of the sums of squares is inversely 
proportional to their variances. For further details on this procedure, see (Searle, 
1971) and (Speed, 1978). 

10.5.3. The Exact Method 

When approximate methods are unsuitable, for example, when there are empty cells 
(some nij = 0) or when there is a big difference between nij, the experimenter must 
use an exact analysis. The approach used to develop the sums of squares for the 
purpose of testing the principal effects and interactions involves representing the 
analysis of variance model by means of a regression model, adjusting this model to 
the data and using the general-purpose regression significance testing technique. 
However, there are different ways of doing this, and each method can output 
different results for the sums of squares. Additionally, the hypotheses that are 
proven are not always the same as in the balanced case, and the results are not 
always easy to interpret. For more information on this subject, see (Searle, 1971), or 
(Speed, 1976).  

10.6. ANALYSIS OF FACTORIAL DESIGNS IN REAL SE EXPERIMENTS 
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Research into software inspection techniques has given rise to a series of interesting 
experiments. In the following, we will take a look at the results from some of these 
yielded by the analysis techniques described in this chapter.  

10.6.1. Analysis for a 3x3 Factorial Design to Examine Different Inspection 
Techniques on Different Programs 

We described the 3x3 factorial design run by Wood et al. (Wood, 1997) for the 
purpose of examining the efficiency of three inspection techniques (code reading, 
functional testing and structural testing) on three different programs in Chapter 5, 
section 5.5.3.1. A summary of the analysis of variance for this design is given in 
Table 10.28, considering the percentage of faults detected as the response variable. 
This table shows a significant effect of factors (inspection techniques and program 
types) and interaction. An initial reaction to this might be to consider it as a flaw in 
the experiment, the three chosen programs were not similar enough. Considered at 
more length, a technique does not perform uniformly well over all programs. 
According to the above authors, the drawback of this result is that it is not possible 
to further investigate any possible significant differences between the defect-
detecting capabilities of the three techniques, as it is impossible to separate their 
effect from that of the program. The strong message that comes over is that no 
single technique is best and that, to obtain any real effectiveness, a combination of 
approaches would appear to be fruitful. Additionally, the experimenters suggest that 
other empirical investigations be run as an aid for classing programs and, perhaps, 
finding out the best technique for a given defect type. 

Table 10.28. Analysis of variance summary (Wood, 1997) 

Effect Sum of 
Squares 

Degrees of 
Freedom 

F- Computed Significance 
Level 

Program 17943.45 2 33.05 <0.01 
Technique 2993.17 2 5.51 <0.01 
Prog x Tech 7179.12 4 6.61 <0.01 
Errors 23889.6 88  

 

 

 

10.6.2. Analysis for a 3x2 Factorial Design to Examine Different Inspection 
Techniques with Different Software Requirements Specification Documents 
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An analysis of variance applied to a 3x2 design was completed by Porter (1995) to 
examine the effect of three inspection techniques (ad hoc, checklist and scenarios) 
using two different software requirements specification (SRS) documents. The 
results are shown in Table 10.29, from which it is clear that the principal effects are 
significant, whereas the interaction TechniquexSRS is not. The result of a more 
exhaustive study about which technique is the best is scenarios, providing a 35% 
improvement in the rate of fault detection. This same experiment was replicated by 
Porter et al. (1998) using practitioners instead of students as was the case in the 
preceding experiment. The findings of this replication were the same with regard to 
the significance of the techniques and documents. 

Table 10.29. Analysis of Variance of Inspection Technique and Specification 

Effect Sum of 
Squares 

Degrees of 
Freedom 

F-Computed Significance level 

Inspection 
Technique 

0.2 2 12.235 <0.01 

Specification 0.143 1 17.556 <0.01 
Technique x 
Specification 

0.004 2 0.217 0.806 

Error 0.212 26  

10.6.3. Analysis for a 2x3 Factorial Design to Compare the Perspective from 
which a Code Inspection is Run in Different Problem Domains 

Another analysis of variance for a 2x3 experiment (Laitenberger, 1997) was 
conducted according to the design described in section 5.5.3.2 aimed at studying 
whether the perspective-based-reading (PBR) technique in particular, when applied 
to code, is more effective than ad hoc or checklist-based reading inspections. 
Remember that in this experiment, the authors of the experiment work with two 
factors: problem domain (generic, specific to the company for which the persons 
who run the experiment work) and perspective from which the inspection is run 
(analyst, module test, integration test). As a response variable, the authors 
considered the number of defects found by each subject divided by the total number 
of defects that is known.  

The results of the analysis of variance applied to this experiment indicated that 
neither Hd0 (there is no significant difference between subjects reading documents 
from their domain and subjects reading documents not from their domain with 
respect to their mean defect detection rate), nor Hp0 (there is no significant 
difference between subjects using the analyst, module test and integration test 
perspective with respect to their mean defect detection rate) can be rejected. 
However, a significant effect is detected for the interaction, which means that the 
hypothesis Hdp0 can be rejected with α<0.01. This interaction is explained in the 
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paper by the fact that, for example, the PBR technique has not been tailored to the 
documents, i.e. including specific aspects of the application domain, specific 
characteristics of the specification step, like notation, or specific characteristics of 
the code, like coding standards. The experimenters also carried out a one-way 
analysis of variance separately for each domain, but the analysis did not turn out to 
be significant. 

10.6.4. Analysis for a Possible Learning Effect 

As explained in Chapter 5, one of the more critical questions in SE is what is known 
as the learning effect. This is the effect produced when the same subject applies the 
same technique in different unitary experiments. We could suspect that after 
applying the technique n times, the results will be more satisfactory than when it is 
applied the first time. Another possibility would be, for example, if the same subject 
applied different techniques to the same problem, this person would become more 
acquainted with the problem as time passed, and this could lead to better results. 
Effects of this sort are often detected by considering the order in which the 
experiments have been performed as a factor and designing a factorial together with 
the principal factor under examination. Designs of this kind were applied, for 
example, by Daly (1995) or by Macdonald and Miller (1998). The former examines 
the effect of inheritance on software maintainability. In this case, these authors 
work with code containing inheritance hierarchies and code that implements the 
same functionality without such hierarchies. To be sure that no learning effect was 
present, an analysis of variance test was done to discover if the sequence in which 
the subjects received the program version (flat first or inheritance first) had any 
effect on the maintenance task times. The results are presented in Table 10.30. The 
results do not show significance for a sequence effect or for an interaction effect 
between sequence and code. In that way the authors can conclude that if any 
learning effect was present, it was sufficiently weak that it has had an insignificant 
impact on the statistical analysis. Macdonald and Miller (1998) perform similar 
analyses to study the existence of a possible learning effect concerning the 
application of inspections manually and with the aid of a tool. This analysis also 
confirmed the absence of any such effect. 
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Table 10.30. Analysis of variance testing for sequence and interaction effects 

Component Sum of 
Squares 

Degrees of 
freedom 

Mean 
Square 

F-Computed F1,46,95

Sequence 82.04 1 82.04 0.17  
Code 1594.89 1 1594.89 3.31 4.05 
Sequence 
x Code 

30.24 1 30.24 0.06  

Error 22118.75 46 482.36   

10.6.5. Real Case of Model Mapping 

In section 10.4.4, we discussed the concept of mapping the model by increasing the 
number of replications in a factorial design when any factor has an insignificant 
effect. Lewis et al. (1992) also applied this idea of increasing the number of 
experiment replications by three factors (Language Paradigm, Managerial Influence 
and Task Performed), in which one of these (Task Performed) did not have a 
significant effect. The experiment was thus converted into a two-factor design with 
double the replications, and, hence, the statistical analysis was more powerful. The 
result of the analysis is not presented, as the above authors carried out a separate 
analysis for each factor. The results of this analysis were described in section 7.5.4. 

10.7.  SUGGESTED EXERCISES 

10.7.1.  Table 10.31 shows the improvement in productivity of 60 novice, fairly 
and very experienced developers using five different development 
methodologies. Which variables are significant at 90%? What percentage 
of the variation is explained by the interaction? 
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 Table 10.31. Improvement in productivity  
 with five methodologies 

 low medium high 
M1 

 
 
 

M2 
 
 
 

M3 
 
 
 

M4 
 
 
 

M6 

3,200 
3,150 
3,250 

 
4,700 
4,740 
4,660 

 
3,200 
3,220 
3,180 

 
5,100 
5,200 
5,000 

 
6,800 
6,765 
6,835 

 

5,120 
5,100 
5,140 

 
9,400 
9,300 
9,500 

 
4,160 
4,100 
4,220 

 
5,610 
5,575 
5,645 

 
12,240 
12,290 
12,190 

 

8,960 
8,900 
8,840 

 
19,740 
19,790 
19,690 

 
7,360 
7,300 
7,420 

 
22,340 
22,440 
22,540 

 
28,560 
28,360 
28,760 

 

Solution: All the factors  
and interactions are significant;  

16.8% 

 

10.7.2.  Table 10.32 shows the percentage of reuse for a given four-module 
application. What we aim to do is determine the significance of two 
reusable component construction techniques (I, J) applied by inexperienced 
and experienced developers. What effects are significant? What factor 
alternatives lead to improvements in the response variable? 

Table 10.32. Percentage of reuse in a given application 

Technique Inexperienced Experienced 

I 

J 

(41.16, 39.02, 42.56) 

(51.50, 52.50, 50.50)  

(63.17, 59.25, 64.23) 

(48.08, 48.98, 47.10) 
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Solution: The effect of experience and of the interaction 
is significant, whereas the effect of the technique is not; 

Technique I used by an experienced developer  

10.7.3. The effect of two modelling techniques (-A, +A), used by experienced and 
inexperienced people (-B, +B), working in two different domains (-C, +C), 
on small-sized problems (-D, +D) is to be examined. Table 10.33 contains 
a measure of the effort put into given development projects with these 
characteristics. What factors and interactions have significant effects? 

Table 10.33. Effort employed  

A B C D Effort 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 
- 
+ 

- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
- 
+ 
+ 

- 
- 
- 
- 
+ 
+ 
+ 
+ 
- 
- 
- 
- 
+ 
+ 
+ 
+ 

- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

471 
61 
90 
82 
68 
61 
87 
80 
61 
50 
89 
83 
59 
51 
85 
78 

Solution: technique, experience,  
problem size, experience X technique 



11 EXPERIMENTS WITH 
INCOMPARABLE FACTOR 

ALTERNATIVES 
ANALYSIS FOR NESTED 

DESIGNS 
11.1. INTRODUCTION 

Nested or hierarchical designs were described in Chapter 5 as particular cases of 
multiple-factor designs in which not all the alternatives of the factors can be studied 
together, as is the case in factorial designs.  

This chapter describes how to analyse the data collected from experiments of this sort. 
For the purpose of this chapter, we are going to use a set of observations gathered for 
the experiment explained in section 5.6., aimed at investigating two development 
methods (A and B) with and without tool use. As discussed in Chapter 5, this is a nested 
design with two factors, each with two alternatives. The tools to be applied to the two 
methods (tool A and tool B, respectively) differ, so the alternatives of the tool factor are 
not comparable. This chapter does not include a section describing real experiments, as 
none were found in the SE literature we reviewed. However, we thought it worthwhile 
to examine the analysis of these designs. 

Suppose that we carry out two projects for each possible combination of alternatives, as 
discussed in section 5.6., and that the response variable of this experiment is the 
development effort in each project measured as persons.hour. The design in question 
was outlined in Table 5.5. Table 11.1 shows the data collected after running this 
experiment. 

Table 11.1. Data gathered in a nested design 

Method A Method B 
With Tool A Without Tool A With Tool B Without Tool B 
10, 13 14, 17 13, 11 15, 12 

The process of analysis for this type of designs is similar to what we have described for 
one or multiple factors. The steps can be summarised as: 

1. Determine the mathematical model that explains the response variable. 
2. Validate the model examining residuals. 
3. Calculate the variation in the response variable due to the nested and nest factor, 

and error. 
4. Determine the statistical significance of the variation due to factors. 
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5. Establish recommendations on the best alternative of the factor. 

Note that we are not referring to possible interactions among factors in this case, since, 
as mentioned in Chapter 5, it is meaningless to study interactions among the alternatives 
of the two factors, as they are incompatible. 

11.2. IDENTIFICATION OF THE MATHEMATICAL MODEL 

The linear statistical model for a hierarchical design, where factor B occurs in 
conjunction with an alternative of A, is: 

  
yijk = µ + τ i + β j (i ) + e(ij )k

i = 1,2,...,a
j = 1,2,...,b
k =1,2, ...,r

⎧
⎨
⎪

⎩⎪

In other words, there are a alternatives of factor A and b alternatives of factor B, 
organised hierarchically under each level of A, and r replications. The subindex j(i) 
indicates that the jth alternative of factor B is nested under the ith alternative of factor 
A. The replications should be nested within the combinations of alternatives A and B. 
Thus, the subindex (ij)k is used for the error term. This is a balanced nested design, as 
there is the same number of alternatives of B within each alternative of A and all the 
alternatives are replicated the same number of times. This is the most common form of 
nested design, which explains why we focus on its analysis. As each alternative of B 
does not appear with each alternative of A, there is no interaction among A and B. 

11.3. VALIDATION OF THE MODEL 

For this model to be valid, the residuals must be NIID(0,σ2). Accordingly, the following 
step would be to validate the model by means of the analysis of residuals. For our 
hierarchical design, the residuals are: 

  
eijk = yijk − ˆ y ijk

and, as usual, the residuals are obtained from the expression: 

 
eijk = yijk − y ij .  

The observations, adjusted values and residuals for the effort data are shown in Table 
11.2. 

Table 11.2. Examples of residuals  
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Observed value  yijk eijk = yijk − y ij .  
10 
13 
14 
17 
13 
11 
15 
12 

-1.5 
1.5 

-1.5 
1.5 

1 
-1 

1.5 
-1.5 

The usual diagnostic tests that we discussed in earlier chapters can be run. These 
include normal probability graphs and graphs of residuals plotted against adjusted 
values. These graphs are left as an exercise for the reader, who will find that they reveal 
no sign of non-normality.  

Now, let’s move on to the next point, the calculation of the variation in the response 
variable. 

11.4. CALCULATION OF THE VARIATION IN THE RESPONSE VARIABLE 
DUE TO FACTORS AND ERROR 

The variation is obtained, as in earlier chapters, by means of the sum of squares total 
(SST). We get the following expression by applying the sum of squares to the 
mathematical model: 

 

(yijk − y ... )
2

k=1

r

∑
j=1

b

∑
i=1

a

∑ = br (y i .. − y ...)
2

i=1

a

∑ + r (y ij. − y i ..)
2

j=1

b

∑
i=1

a

∑
+ (yijk − y ij. )2

k=1

r

∑
j=1

b

∑
i=1

a

∑
  

This equation indicates that the sum of squares total in our nested design can be divided 
into a sum of squares due to factor A, a sum of squares due to factor B under the 
alternatives of A and a sum of squares due to error. That is:  

 SST = SSA + SSB(A) + SSE  

The values of these sums of squares are as follows: 
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So, for our example,  

 SSA= 2 x 2 x ((-0.375)2+(0.375)2)= 1.125 
 SSB = 2 x ((-2)2+ (2)2+ (-0.75)2+ (0.75)2 = 18.25 
 SSE = 15.5 

These results indicate that the variation in the response variable is mainly due to the use 
or non-use of the tools within each method. This variation actually amounts to 52% 
(18.25/(1.125+18.25+15.5)=0.52). This datum means that if the above variation were 
significant, as we will see in the next section, the response variable would improve 
considerably if the best alternative of the above factor were chosen. On the other hand, 
the low variation in the response variable due to the method, namely 3%, indicates that 
if this variation were significant, the choice of the best alternative for this factor would 
not improve the response variable very much. Note also that a high percentage of the 
variation (45%) is due to experimental error. This means that the variation produced by 
unknown causes not accounted for in this experiment is high and, if we wanted to gain 
a better understanding of the improvement in the response variable, we would have to 
identify other factors that affect this variable and have not been accounted for in this 
case. 

11.5. STATISTICAL SIGNIFICANCE OF THE VARIATION IN THE 
RESPONSE VARIABLE 

As usual, we will apply the variance procedure to determine this significance. Table 
11.3. shows the analysis of variance table to be applied. There are abr–1 degrees of 
freedom for SST, a–1 for SSA, a(b–1) degrees for SSB(A) and ab(r–1) degrees of 
freedom for the error. Note that abr–1 = (a–1) + a(b–1) + ab(r-1).  
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Table 11.3. Table of analysis of variance for the two-stage nested design 

Source of variation Sum of 
squares 

Degrees of 
freedom 

Mean 
square 

F- Computed F-Table 
(α=0.5) 

Methods 
Tool (within method) 
Error 
Total 

1.0125 
18.25 

15.5 
34.7625 

1 
2 
4 
7 

1.0125 
9.125 
2.21 

0.45 
4.12 

7.17 
6.94 

Table 11.4 contains the result of the analysis of variance for our example. These results 
show that neither the methods nor the use of the tool within each method are significant. 
This means that the variation observed in the response variable (52%) due to tool use is 
not the result of varying the alternatives of this factor and can be put down to chance. 
Therefore, the variation has to be explained by other possible factors not controlled in 
the experiment, such as project types or individuals who have worked on the projects. 

11.6.  SUGGESTED EXERCISES 

11.6.1. Suppose a company purchases hard disks from three different suppliers and 
intends to determine whether the disks of each supplier are equally reliable. 
Suppose that we have four disks from each supplier. The coded reliability data 
are given in Table 11.5. Is there a significant difference at 5% between the 
disks from different suppliers? And between the disks from the same supplier? 

Table 11.5. Reliability of disks from different suppliers 

 Supplier 1 Supplier 2 Supplier 3 
Disks 1 2 3 4 1 2 3 4 1 2 3 4 

 1 
-1 
0 

-2 
-3 
-4 

-2 
0 
1 

1 
4 
0 

1 
-2 
-3 

0 
4 
2 

-1 
0 

-2 

0 
3 
2 

2 
4 
0 

-2 
0 
2 

1 
-1 
2 

3 
2 
1 

Solution: No (F- Computed 0.97); 
Yes (F- Computed 2.94) 
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Table 11.4. Analysis of variance for the data of example 12.1 

Source of 
variation 

Sum of squares Degrees of 
freedom 

Mean square F- 
Computed 

F-Table 

 
A 
 

B within A 
 

Error 
 

Total 
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12 FEWER EXPERIMENTS 
ANALYSIS FOR FRACTIONAL 

FACTORIAL DESIGNS 
12.1. INTRODUCTION 

As the number of factors in a 2k factorial design increases, the number of 
experiments required to get a full replication soon exceeds the resources of most 
experimenters. For example, a full replication of a 26 design calls for 64 
experiments. Only 6 of 63 degrees of freedom correspond to principal effects in this 
design and only 15 to two-factor interactions; the other 42 correspond to 
interactions of three or more factors.  

If the experimenter can reasonably assume that some higher order interactions are 
negligible, the information on the principal effects and the lower order interactions 
can be obtained by running only a fraction of the full factorial experiment. As 
discussed in Chapter 5, designs of this sort are called fractional factorial designs.  
For example, for designs where all the factors have two levels, k factors with two 
levels can be analysed by means of a 2k-p fractional design. A 2k-1 design calls for 
half as many experiments than a 2k design does. Similarly, a 2k-2 design calls for 
only a quarter of the experiments required by a 2k design.  

The use of fractional factorial designs is based on the above-mentioned principle of 
effect dispersion. This principle states that when there is more than one variable, the 
response is likely to be influenced mainly by some of the principal effects and lower 
order interactions, whereas the higher order interactions will generally be less 
significant. 

Fractional designs are an aid for implementing the experimental strategy of step-
wise refinement addressed in Chapter 3. A lot of use is made of fractional factorial 
experiments at the start of an experimental cycle when it is not very clear which 
factors are involved in the experiment. Several factors can first be analysed using a 
fractional factorial design to identify which of those factors have an important effect 
on the response. These factors are then investigated in more detail in successive 
cycles of experimentation, when much fewer factors are examined, because the 
factors discarded in the first cycle are no longer considered, as they are unimportant.  

This chapter examines the process of analysis for experiments run according to a 
fractional factorial design. We will start by describing some concerns regarding the 
number of experiments involved in these designs (section 12.2.) and we will then 
look at how they are to be analysed (section 12.3.). This chapter does not include a 
section discussing real SE experiments, as we have not found any references to 
fractional factorial designs in the SE literature we have examined. 
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12.2. CHOOSING THE EXPERIMENTS IN A 2k-p FRACTIONAL 
FACTORIAL DESIGN

Only 2k-p elementary experiments are used in a 2k-p fractional factorial design of the 
2k that we would use in a full factorial design. Nevertheless, a 2k-p design is not 
unique. This means there are 2p possible fractional factorial designs for the same 
number of factors k and the same number of experiments 2k-p or, alternatively, 2p 
different ways of choosing the 2k-p unitary experiments that are part of the design. 
The question is how to choose the 2k-p experiments to ensure that the analysis of the 
observations provides us with meaningful information.  

12.2.1. Sign Table for 2k-P Design 

As mentioned earlier, sign tables are a key element in the analysis of factorial 
experiments. The procedure for building a sign table for a 2k-p design is as follows:  

1. Select k-p factors and prepare a full sign table for a factorial design with k-p 
factors as explained in Chapter 10. This table will have 2k-p rows and 2k-p 
columns;  the first column will be marked with I and will contain 1s; the next k-
p columns will be labelled with the selected k-p factors; the other columns are 
the products of these factors. 

2. Select p columns from the 2k-p-k-p-1 right-hand columns and label them with 
the p factors that were not selected in step 1. 

For example, suppose we have an experiment with seven factors (A, B, C, D, E, F, 
and G). As shown in Table 12.1 (a), a sign table for a 27-4 design can be built by first 
preparing a sign table for a 23 design with factors A, B and C (step 1). We then label 
the four columns furthest to the right with D, E, F and G (instead of AB, AC, BC 
and ABC). The result of this step 2 is shown in Table 12.1(b). 

Now let's prepare a sign table for a 24-1 design. Again we start with a sign table for a 
23 design. We select at random and label with factor D one of the four right-hand 
columns. Thus, we can get the designs shown in Tables 12.2, 12.3, 12.4 or 12.5. 

The alternatives of the factors to be considered in each of these experiments can be 
obtained by the respective combinations of +1 and –1, which are taken from the 
above tables. For example, the first row of Table 12.2 identifies an experiment 
where the value of the alternative of the factors A, B, C and D will be–1. Similarly, 
the second row of this table identifies a unitary experiment in which the alternatives 
of factors B and C are –1 and the factors A and D are 1. 

 Table 12.1(a). Sign table for a 23 Experimental Design 

I A B C AB AC BC ABC 
1 -1 -1 -1 1 1 1 -1 
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 Table 12.1(b). Sign table for a 27-4 Experimental Design 

I A B C D E F G 
1 
1 
1 
1 
1 
1 
1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
-1 
1 
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-1 
-1 
1 
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-1 
-1 
-1 
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1 

1 
-1 
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-1 
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-1 
1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
1 
1 

-1 
1 

-1 
-1 
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 Table 12.2. Sign table of a 24-1 design (option 1) 

I A B C AB AC BC D 
1 
1 
1 
1 
1 
1 
1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
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-1 
1 
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-1 
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-1 
-1 
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 Table 12.3. Sign table of a 24-1 design (option 2) 

I A B C D AB BC ABC 
1 
1 
1 
1 
1 
1 
1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

1 
-1 
1 

-1 
-1 
1 

-1 
1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
1 
1 

-1 
1 

-1 
-1 
1 

  

  

 Table 12.4. Sign table of a 24-1 design (option 3) 
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I A B C AB D BC ABC 
1 
1 
1 
1 
1 
1 
1 
1 
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 Table 12.5. Sign table of a 24-1 design (option 4) 

I A B C AB AC D ABC 
1 
1 
1 
1 
1 
1 
1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

1 
-1 
1 

-1 
-1 
1 

-1 
1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
1 
1 

-1 
1 

-1 
-1 
1 

The design that should be selected is the sign table with the D column furthest to the 
right. Section 12.2.3 explains why, but, beforehand, we will proceed to discuss how 
effects can be confounded when using fractional designs. 

12.2.2. Confounding of effects 

One problem with fractional experiments is that not all the effects can be 
determined. Only the combined influence of two or more effects can be calculated. 
This problem is known as confounding, and, as discussed in Part II of this book, the 
effects whose influence cannot be separated are said to be confounded or aliases. 
This is what happens in Table 12.1(b) with the effect of D and AB, and E or G and 
ABC or in Table 12.2 with D and ABC. 

Let’s examine, for example, the design shown in Table 12.2. If yi represents the 
observed response variable value, the effect A can be obtained by multiplying 
column A by column Y and dividing the sum by 4. Note that this is the same 
procedure as we used in Chapter 10 to calculate the effect of a factor by means of a 
sign table in a 23 design. Thus, 

 
4

yyyyyyyyl 87654321
A

−−+−+−+−
=  

Similarly, the effect of D is given by  
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4

yyyyyyyyl 87654321
D

+−−+−++−
=  

The effect of the interaction ABC would be obtained by multiplying the respective 
elements of columns A, B, C and Y. This means: 
 

 
4

yyyyyyyyl 87654321
ABC

+−−+−++−
=  

Note that the expressions for lD and lABC are identical. The expression would 
actually be neither the effect of D nor the effect of ABC, it would be the sum of 
both effects. In statistical terms, the effects of D and of ABC are confounded (or D 
and ABC are aliases). This is not a problem, especially if, according to the principle 
of effect dispersion, the interaction caused by ABC is considered to be small 
compared with the effect of D. In this case, the above expression is basically lD.  

Indeed, each column of this design represents the sum of two effects. There are 16 
effects (including column I) with four variables, each at two levels. Thus, only eight 
quantities can be calculated in a 24-1 design. Each quantity represents two effects. 
The full list of aliases is as follows: 

 A=BCD 
 B=ACD 
 C=ABD 
 D=ABC 
 AB=CD 
  AC=BD 
  AD=BC 

where I =ABCD is used to denote the confounding of ABCD with the mean. This 
design is called a I=ABCD design. The reason is that given one alias, the others can 
be identified by multiplying the two sides of the expression by the different factors 
and using two simple rules: 

1. The mean I is treated as 1. For example, I multiplied by A is A. 
2. Any term raised to 2 is disregarded. For example, AB2C is the same as AC. 

Let’s illustrate this in our example, where I=ABCD. Multiplying both sides by A, 
we have: 

 A=BCD 

Multiplying both sides by B, C, D and AB, we have: 

 B=AB2CD=ACD 
 C=ABC2D=ABD 
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 D=ABCD2=ABC 
 AB=A2B2CD=CD 

The polynomial I=ABCD used to generate the aliases for this design is called 
polynomial generator for this design. 

Generally speaking, 21 effects are confounded in a 2k-1 design; 2p effects are 
confounded in a 2k-p design.  

12.2.3. Using Design Resolution to Choose the Unitary Experiments 

The resolution of a design is R if none of the effects of p factors are confounded 
with another effect that has less than R-p factors. A Roman numeral is usually used 
as a subindex to indicate the design resolution. Thus, the design shown in Table 
12.2 and defined by I=ABCD is a 2IV k-1 design. In other words, not one effect of 
one factor is confounded with another that has fewer than 4-1 factors (A is 
confounded with BCD, B is confounded with ACD, C is confounded with ABD, 
and D is confounded with ABC). 

A quick way of finding out the resolution of a 2k-p design is to determine the least 
number of factors of the effects that are confounded with the mean response. In the 
example shown in Table 12.2, the polynomial generator is such that I=ABCD. Only 
one effect, ABCD, is confounded with the mean response. This effect is equivalent 
to the interaction of four factors and, therefore, the resolution of this design is IV. 

Fractional designs with the highest possible resolution should generally be used. As 
fractional designs are founded on the assumption that the higher order interactions 
are smaller than the lower order interactions, the assumptions concerning the 
interactions that must be disregarded to ensure that there is only one interpretation 
of the data are less restrictive at a higher resolution.  

Thanks to design resolution, we can determine which elementary experiments 
should make for a better design. For example, the design shown in Table 12.2 would 
be the best of the 24-1 designs illustrated in Tables 12.2, 12.3, 12.4 and 12.5. The 
resolution of this design is 4 (as its generator is I=ABCD), while the designs shown 
in Tables 12.3, 12.4 and 12.5 have a resolution of 3 (I=ABD, I=ACD and I=BCD, 
respectively). So, step 2 of the sign table construction procedure, explained in 
section 12.2.1, should read “select the p columns furthest to the right from the 2k-p-
k-p-1 right-hand columns” to get the best design. 

12.3. ANALYSIS FOR 2k-p DESIGNS 

The process for analysing a fractional factorial design is similar to the procedure we 
examined for the 2t design, where t is replaced by k-p. However, we have added a 
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preliminary step, which involves identifying the important factors, as described in 
section 12.1. Briefly, the steps to be taken in this analysis can be divided into: 

1.  Identify important effects to be further studied. 
2.  Identify and validate the mathematical model. 
3.  Determine the statistical significance of the important effects. 
4.  Establish recommendations on the best alternative of the factors. 

Let’s illustrate this analysis by examining how these steps would be taken for a 25-1 
design. Suppose we aim to determine whether the use of particular usability-related 
techniques increase user satisfaction with the end products. For this purpose, we are 
going to consider the degree of user satisfaction measured within a range of 0 to 100 
as the response variable of our experiment. This range is obtained through a 
questionnaire to which the above users respond once the product has been delivered. 
We will work with five factors in this experiment; A: use of usability techniques in 
the development process (without techniques, with techniques), B: interaction with 
the user during development (little, a lot), C: user experience in the use of computer 
systems (little, a lot), D: development process maturity (low, high) and E: quantity 
of documentation to be generated (without documentation, full documentation).  

In principle, this experimentation should be designed as a 25 factorial with 32 
elementary experiments. Let’s consider a 25-1 design by means of which we will 
perform only 16 experiments to try to ascertain which factors are important. 
Therefore, the null hypothesis that we aim to test is H0: “none of the five factors or 
their interactions have a significant effect on user satisfaction”. 

12.3.1. Identifying Important Effects 

The structure of the 25-1 designed is shown in Table 12.6. Note that the above 
structure involved writing the basic 16-experiment design (a 24 design in A, B, C 
and D), selecting ABCDE as the generator and establishing the alternatives of the 
fifth factor E=ABCD (column furthest to the right of the sign table of a 25 design). 

The effects of the variables and interactions are calculated according to the sign 
table procedure described in Chapter 10; that is, by multiplying each column by 
column Y and dividing the result by 8. The effects obtained are: 

A = 11.125  B = 33.875  C = 10.875 D = -0.875 E = 0.625  
AB=  6.875 AC = 0.375 AD = 1.125 BC = 0.625 BD = -0.125 
CD = 0.875 CE = 0.875 ABC = -1.375 ACD = -0.375 
BCD = 1.125 

 

 Table 12.6. 25-1 design 
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Figure 12.1. Normal probability graph of the effects of a 25-1 design 

As there are no replications, we will follow the procedure explained in section 
10.4.4 to identify which factors will form an explicit part of our mathematical model 
and we will use the remainder to estimate error. Remember that all the effects will 
have to be plotted on normal probability paper for this purpose. The effects that are 
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positioned on a straight line are not important, whereas the others are what really 
influence the response variable. Figure 12.1 shows the normal probability graph for 
the above effects. The principal effects, A, B, C and the interaction AB are relevant 
effects. Remember that, as there are aliases, these effects are really A+BCDE, 
B+ACDE, C+ABDE and AB+CDE.  

12.3.2. Identification and Validation of the Mathematical Model  

Now that the important effects are known, the model can be represented more 
concisely. The mathematical model by means of which the values of the response 
variable could be obtained is as follows: 

 Y = C0+ CAXA+CBXB+CCXC+CABXAB + e 

Note that only the variables related to the effects and interactions that turned out to 
be important are considered. 

This model is validated like factorial designs, by examining the residuals. The 
residuals are calculated as: 

 e = y -  ŷ
where = Cŷ 0+ CAXA+CBXB+CCXC+CABXAB , that is, 
 = 29.69+ (11.125/2) Xŷ A + (33.875/2) XB+(10.875/2)XC+ (6.875/2)XAB     

 = 29.69+ 5.625Xŷ A + 16.94 XB+5.44XC+ 3.4375XAB     

Figure 12.2 shows a normal probability graph for the residuals and Figure 12.3 
illustrates the graph of residuals plotted against the predicted values. Both graphs 
satisfy the constraints mentioned in earlier chapters, that is: (1) the points of Figure 
12.2 are close to a straight line; (2) the points plotted on the graph in Figure 12. 3 
neither obey a pattern, nor does the variance increase as the values of the response 
increase; and (3) the scale of the residuals is quite a lot lower than the response. 
Therefore, we can trust in the results yielded by this model.  
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Figure 12.2. Graph of normal probability of the 25-1 experiment residuals 
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Figure 12.3. Graph of residuals plotted against predicted values for the 25-1 design 
described 
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12.3.3. Significance of the Observed Variations 

The statistical significance of the effects of A, B, C and AB is obtained by means of 
the same sort of analysis of variance as discussed for factorial designs. Table 12.7 
shows the results for our example. Thus, we find that user interaction, user 
experience, and the interaction between the usability techniques and user interaction 
are significant in the variation caused by the use of usability techniques at 99%, and 
the null hypothesis can, thus, be rejected with 99% confidence. 

Table 12.7. Result of the analysis of variance for the example 25-1 design 

Source of 
variation 

Sum of 
squares 

Degrees of 
freedom 

Mean square F  
Calculated 

F 
Table 

A 
B 
C 
AB 
Error 
Total 

495.0625 
4590.0625 

473.0625 
189.0625 

20.1875 
5775.4375 

1 
1 
1 
1 

11 
15 

495.0625 
4590.0625 

473.0625 
189.0625 

2.5625 
 

193.20 
1791.24 

184.61 
73.78 

 

8.68 

The experimenter could use these data to run other experiments to further examine 
the results. The factors process maturity (D) and quantity of documentation (E) 
would not be investigated in these experiments, as, in this first round of 
experiments, they turned out to be factors without a significant influence on the 
response variable. On the other hand, other alternatives could be added to factors A, 
B and C by means of which they could be examined more thoroughly. 

12.3.4. Recommendations on the Best Alternatives of the Factors 

Figure 12.4 represents the effects of A, B, C and AB. Note how the principal effects 
are positive, that is, as the factor alternative increases, the response variable 
increases. As a recommendation on the experiment run, we can tell from the figure 
that users are more satisfied when they are experienced in the use of computer 
systems (Figure 12.4 (c)) and when usability techniques are used and there is a lot of 
interaction with the user simultaneously (Figure 12.4 (d)). Note that the factors A 
and B have to be interpreted jointly, as the interaction AB has a significant effect. 
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Figure 12.4. Graph of effects A, B, C and AB 

 

12.4.  SUGGESTED EXERCISES 

12.4.1. Table 12.8 shows the results of a 25-1 design detailing the number of errors 
detected in 16 programs in two different domains (-A, +A) that are either large 
or small (-B, +B), by programmers with 3 and 8 month’s experience (-C, +C), 
using two different testing techniques (-D, +D), employing modular or 
monolithic programming (-E, +E). What effects and interactions are significant? 
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 Table 12.8. Number of errors detected in 16 program 
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Solution: program size, testing technique, 
modular/monolithic programming, size X technique, 

technique X modular/monolithic programming 

12.4.2. Build a fractional factorial design for 31 variables at two levels with 32 
elementary experiments. This is a 2k-p design. What is the value of k and p?  

Solution: k=31, p=26 



13 SEVERAL 
DESIRED AND UNDESIRED 

VARIATIONS 
ANALYSIS FOR FACTORIAL 

BLOCK DESIGNS 
13.1. INTRODUCTION 

As mentioned in Chapter 5, it may not be possible to experiment with all the 
combinations of alternatives required by a factorial design under homogeneous 
conditions. This situation is managed using blocks. As discussed in preceding 
chapters, blocks can refer to the subjects running the experiment, the times at which 
they are run, variations in the projects used as experimental units or any other 
undesired variation that occurs from one unitary experiment to another. 

The use of blocks in factorial design indicates that fewer combinations of factor 
alternatives than the total number of combinations called for by the pure factorial 
design are used in each block. Remember that in these designs the number of 
combinations that can be made per block is called block size. We discussed how to 
design factorial block experiments in Chapter 5 taking into account block size. In 
this chapter, we will focus on the analysis of the data yielded by executing the 
experiments. 

The process of analysis is very similar to the one we examined for factorial designs. 
Remember that the steps to be taken are as follows: 

1.  Identify the mathematical model that describes the observations. 
2.  Validate the model using the residuals. 
3.  Calculate the variation in the response variable due to factors, blocks and 

error. 
4.  Determine the statistical significance of the variation. 
5.  Establish recommendations on the best alternatives of the factors. 

We are going to use the data taken from an experiment to illustrate this analysis. 
This experiment accounts for three factors: use of tool T during development, 
maturity of the development process and clarity of the requirements. Table 13.1 
shows the values of the alternatives for the above factors. 
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Table 13.1. Factor alternatives to be considered 

Factor Alternative -1 Alternative +1 
Tool Use of tool T Non-use 
Maturity Mature Immature 
Requirements Clear Ambiguous 

The response variable will be the number of days (six working hours) used to 
develop the same system. 

It is planned to replicate this experiment twice, which means a total of 16 subjects 
will be required (23x2). Suppose that the subjects of this experiment are a group of 
final-year computer science students from a particular university and that of the 16 
students 8 come from one class and 8 from another. These two classes were taught 
by different professors, which means that some variability among the subjects can 
be predicted. Hence, we will define a 23 design with two replications and two 
blocks. 

The design shown in Table 13.2 was defined with two blocks of size 4 to prevent 
the difference between groups affecting the main effects and second-order 
interactions. Remember that, as discussed in Chapter 5, the effect of these blocks is 
totally confounded with the interaction ABC in this design. The values of the 
response variable collected for each combination are also shown in this table. 

Table 13.2. Combination of alternatives related to 23 design with 
two blocks of size 4 

 A B C AB AC BC ABC  Y Y  
Block 1 -1 -1 -1 1 1 1 -1 (2, 3) 2.5 
 -1 1 1 -1 -1 1 -1 (18, 22) 20 
 1 -1 1 -1 1 -1 -1 (15, 25) 20 
 1 1 -1 1 -1 -1 -1 (4, 6) 5 
Block 2 1 -1 -1 -1 -1 1 1 (6, 14) 10 
 -1 1 -1 -1 1 -1 1 (10, 15) 12.5 
 -1 -1 1 1 -1 -1 1 (6, 9) 7.5 
 1 1 1 1 1 1 1 (8, 12) 10 

In the following sections, we are going to proceed to analyse the data collected in 
this experiment. 

13.2. IDENTIFICATION OF THE MATHEMATICAL MODEL 

The form of the mathematical model to be applied in this sort of analysis is: 

ijklmijkjkikijkjiijklm ey block +++++++++= )(αβγβγαγαβγβαµ
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which is similar to the model of a general factorial design in which the block effect 
also has to be considered. 

In this case, we are considering a 23 design, which means that we can calculate the 
effects of the factors and interactions by means of the simplified method of analysis 
that is based on the sign table and discussed in section 10.3.1.1. The effects for our 
example are shown in Table 13.3. 

This model has the same constraints on residual independence and normality as the 
factorial designs that we examined in Chapter 10 and are, therefore, not discussed 
again. Let’s just recall what the constraints are and what tests we can use to check 
that they are met: 

• Normal distribution of residuals: Use the normal probability graph of residuals 
and check that the residuals plotted are close to a straight line. 

• Independence of the residuals: Use the graph of residuals plotted against 
estimated values and check that there is no obvious pattern in the residuals 
plotted. 

• Constant variance of the errors: Use the graph of residuals plotted against 
estimated values and check that the graph is not apparently funnel-shaped. 

• Model additivity: Use the graph of residuals plotted against the response variable 
and check that the order of magnitude of the errors is not less than the response 
at 1 or more degrees. 

Table 13.3. Calculation of the effects in a 23 design 

 A B C AB AC BC ABC  Y Y  
Block 1 -1 -1 -1 1 1 1 -1 (2,3) 2.5 
 -1 1 1 -1 -1 1 -1 (18,22) 20 
 1 -1 1 -1 1 -1 -1 (15,25) 20 
 1 1 -1 1 -1 -1 -1 (4,6) 5 
Block 2 1 -1 -1 -1 -1 1 1 (6,14) 10 
 -1 1 -1 -1 1 -1 1 (10,15) 12.5 
 -1 -1 1 1 -1 -1 1 (6,9) 7.5 
 1 1 1 1 1 1 1 (8,12) 10 
 2.5 7.5 27.5 -37.5 2.5 -2.5 -7.5  Total 
 0.625 1.875 6.875 -9.375 0.625 -0.625 -1.875  Effect 

 

 

13.3. CALCULATION OF RESPONSE VARIABLE VARIABILITY 

 



316 Several Desired and Undesired Variations 

The variability in the response variable is obtained by calculating the sum of 
squares. The sum of squares of the main effects and interactions is obtained as 
shown in Chapter 10. Remember that a quick way of calculating the sum of squares 
for a factorial design with two alternatives per factor was to use the regression 
coefficients that had been explained as half of the respective effects, as follows: 

CA = ½ (0.625) = 0.3125;  CB = ½ (1.875) = 0.9375  CC = ½ (6.875) = 3.4375  
CAB = ½ (-9.375) = -4.6875;  CAC = ½ (0.625) = 0.3125  CBC = ½ (-0.625) = -0.3125 
CABC = ½ (-1.875) = -0.9375;    

Hence, we can get the sums of squares as follows: 

2605ySSY 2
ij =∑=  

61914.0r2SS0 23 == µ  
690.94SS0SSYSST =−=  

1.56rC2SSA 2
A

3 ==  

614.0rC2SSB 2
B

3 ==  

189.06rC2SSC 2
C

3 ==  

351.56rC2SSAB 2
AB

3 ==  

1.56rC2SSAC 2
AC

3 ==  

1.56BCrC2SSBC 23 ==  

614.0rC2SSABC 2
ABC

3 ==  

According to the mathematical model described in the preceding section, the within-
blocks sum of squares (in this case, the within-groups sum of squares, SSwithin-groups) 
has to be determined. This value is obtained by subtracting the between-blocks sum 
of squares (in this case, SSbetween-groups) from the total sum of squares. The between-
blocks sum of squares is obtained by summing the total squares of the values of the 
observations for each block in each replication as follows: 

100.19SSO
2

4

)1291514(

4

2
8)610(6
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6)2522(3

2
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+++
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Thus, 

75590.100.19690.94SSSSTSS groupsbetweengroupswithin =−=−= −−  
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559.40590.75ons)_interacti

_and_two_fin_effects(sum_of_mablockswithinblockswithin SSSSE

−=

Table 13.5 shows the result of applying the analysis of variance on the example 
considered in this chapter. Thus, the F-test does not determine significant 
interactions related to factor C (requirements ambiguity). It does, however, reveal 
one significant result, that is, C on its own is a significant factor, from which we can 
infer that the requirements are important irrespective of the process or the tools 
used. 

This value, divided by the number of respective degrees of freedom, is used as the 
F-test denominator to determine the significance of the effects within blocks, that is, 
the main effects and the double interactions. However, the sum of square error 
between blocks is used as the denominator to study the significance of the effect of 
the blocks or the interaction ABC. (This test is less powerful than the above for the 
reasons explained in Chapter 9 regarding the significance of the effect of blocking 
variables.) 

 

The sum of square error within blocks was calculated as:  

Table 13.4 shows the table of analysis of variance for k factors, each with two 
alternatives, one block with two alternatives and r replications. 

13.4. STATISTICAL SIGNIFICANCE OF THE VARIATION IN THE 
RESPONSE VARIABLE 

According to these calculations, it is the interaction AC (tool x requirements) that 
causes a greater variation in the response variable: 50.8% (351.56/690.94=0.508), 
followed by factor C, which produces a variation of 27.36%. Therefore, it would be 
these factors that would have to be taken into account to improve the response 
variable, provided the variation they caused turned out to be significant.  

Again, we will resort to the analysis of variance to determine whether the variations 
calculated are statistically significant. This analysis is shown in the following 
section. 

Note, on the other hand, that the variation produced by the blocking variable, 85.5%, 
is high. Therefore, we have done well to use a block design as a means of 
eliminating its impact. 

−−− = actor
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Component Sum of squares Degrees of 
freedom 

Mean square F- Computed F-Table 
(α=0.99) 

Between groups SS between—groups 3    
  Groups or ABC = 2

ABCC2krSSABC
 

1  MSABC=SSABC
groupsMSEbetween

MSABC
−

 
[ ]1−

F
α; 1, 2 

 
   Error SSEbetween-groups= Difference 2 

2

groupsSSEbetween
groupsMSEbetween

−
=−    

Within groups      
   A = 2

AC2krSSA
 

2kr-4   MSA= SSA
groupsMSEwithin

MSA
−

 
[ ]1−

F
α; 1, 2kr−10 

B = 2
BC2krSSB  

1 
 

MSB = SSB 
groupsMSEwithin

MSB
−

  

C = 2
CC2krSSC  

1 MSC = SSC 
groupsMSEwithin

MSC
−

  

AB = 2
ABC2krSSAB  

1   MSAB =SSAB
groupsMSEwithin

MSAB
−

  

AC = 2
ACC2krSSAC  

1 MSAC = SSAC 
groupsMSEwithin

MSAC
−

  

BC = 2
BCC2krSSBC  

1   MSBC= SSBC
groupsMSEwithin

MSBC
−

  

Error SSEwithin-groups= Difference 
 

2kr-10    

Table 13.4. Table of analysis of variance for k factors with two alternatives, one block with two alternatives and r replications 
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Table 13.5. Analysis of variance for our example 

Component Sum of squares Degrees of 
freedom 

Mean 
square 

F- Computed F-Table 
(α=0.01) 

Between groups
   Groups or ABC 
   Error  

100.19
   14.63
   85.56

3
1
2

14.63
42.78

0.34
 

21.2 

Within groups
   A 
   B 
   C 
   AB 
   AC 
   BC 
   Error  

590.75
   1.57

   14.06
 189.06
 351.57
    1.57
    1.57
  31.35

12
1
1
1
1
1
1
6

1.57
14.06

189.06
351.75

1.57
1.57
5.22

0.3
2.69

36.22
67.35

0.3
0.3

 
13.74 

On the other hand, a significant interaction between process maturity and tool use 
was identified. Figure 13.1 shows the graph of interaction between the two effects. 
As can be observed in immature processes, the use of the development tool has a 
negative impact on time, whereas the use of the tool significantly improved this time 
for the mature process. This experiment indicates, for example, that the efforts to 
improve development time must focus on properly defining the requirements and 
improving the process. The use of the tool would not be recommendable until the 
process had been defined. 

with tool without tool

20

15

10

5

mature process

immature process

 

Figure 13.1. Graph of interaction AB 

 



320  Several Desired and Undesired Variations   Se

This analysis can be generalised for more replications, more factors and other block 
sizes. For a very detailed explanation of this sort of analysis, see (Winer, 1992) for 
example.  

This sort of analysis could be used for more than one blocking variable. However, 
the calculations to be made are fairly complicated, which means experiments with 
more than one blocking variable and several factors are uncommon and we are, 
therefore, not going to focus on the analysis of these experiments. Readers 
interested in this subject are referred to the above-mentioned literature for more 
details. 

13.5. ANALYSIS OF FACTORIAL BLOCK DESIGNS IN REAL SE 
EXPERIMENTS 

In section 5.8.2, we described the experiment run by Basili et al. (Basili, 1996) as an 
experiment in which a 22 factorial design with two blocks of size 2 was chosen. The 
design of this experiment has been reproduced in Table 13.6. 

 

Table 13.6. Design of the experiment described in (Basili, 1996) 

Generic Domain NASA Domain 
Group 1 Group 2 Group 1 Group 2 
Usual/generic1 Usual/generic2 Usual/NASA1 Usual/NASA2 
PBR/generic2 PBRl/generic1 PBR/NASA2 PBR/NASA1 

Remember that the objective of this experiment was to determine the extent to 
which the use of the PBR reading technique produced improvements with regard to 
the defect rates compared with the usual technique used at NASA/SEL. Let us 
focus, for example, on the first of the experiments run by the above authors, called 
the pilot experiment. Six subjects were considered within each block in this 
experiment.  

For the purpose of answering the above question, the authors examined both 
problem domains separately. Thus, they performed two separate analyses each 
corresponding to a 2x2 factorial experiment with repeated measures in blocks of 
size 2. Tables 13.7 and 13.8 show the results of the analysis of variance for both 
domains, concluding that there is no significant difference between the techniques, 
between the documents or between the groups (techniquexdomain). Therefore, (1) it 
could not be confirmed that the PBR technique produced significant improvements 
with regard to the defect rates compared to the usual technique applied at the SEL; 
(2) neither was any significant difference observed with regard to the defect rate in 
the different problem domains; and (3) no interaction between the techniques and 
domains studied were detected.  
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Table 13.7. Results of the analysis of variance for the generic domain 
problems 

Component Degrees of 
freedom 

Sum of 
squares 

Mean 
Square 

F- Computed F-Table 
(α=0.99) 

Between Subjects
   Group (TechXDoc) 
   Error 

11
1 
10 

1205.50
    42.67
1162.83

42.67
1162.83

0.37
 

10.04 

Within Subjects
   Technique 
   Document 
   Error 

12
1 
1 
10 

803.01
112.01
  48.17
642.17

112.01
  48.17
  64.21

1.75
0.75

 
10.04 

Table 13.8. Results of the analysis of variance for the NASA problem 
domain 

Component Degrees of 
freedom 

Sum of 
squares 

Mean 
Square 

F- Computed F-Table 
(α=0.99) 

Between Subjects
   Group (TechXDoc) 
   Error 

11
1 
10 

1606.00
  337.50
1268.50

337.50
126.85

0.37
 

10.04 

Within Subjects
   Technique 
   Document 
   Error 

12
1 
1 
10 

744.01
    0.17
  10.67
733.17

  0.17
10.67

73.317

0.00
0.15

 
10.04 

13. 6. SUGGESTED EXERCISES 

13.6.1. Suppose we have an external replication of exercise 12.4.1, discarding the 
problem domain, as it did not turn out to be significant in the above-
mentioned experiment. The factors for consideration are: program size, 
large or small (-B, +B), programming without experience (under three 
months) and with experience (over three months), testing techniques (-C, 
+C) and monolithic/modular programs (-D, +D). Owing to design 
constraints, not all the elementary experiences can be run at the same time, 
and 8 elementary experiments have to be run on one day and the other 
eight on another day. A significant change in the organisation is scheduled 
between the two days, which could have an effect on the experiment, 
which means that the days on which the experiments are run are going to 
be considered as a size-8 blocking variable. The data collected are as 
follows: 
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Block 1 
       -A-B-C-D = 45 
          +A+B = 105 
          +A+C = 60 
           +B+C = 80 
          +A+D = 100 
          +B+D = 45 
          +C+D = 75 
+A+B+C+D = 105 
 

Block 2 
              +A = 71 
              +B = 48 
              +C = 68 
              +D = 43 
    +A+B+C = 100 
    +B+C+D = 70 
    +A+C+D = 86 
    +A+B+D = 104 
 

What effects and interactions are significant at 95%? 

Solution: program size, testing technique, 
monolithic/modular programming, 

size X technique,  
size X monolithic/modular programming 



14 NON-PARAMETRIC ANALYSIS 
METHODS 

14.1. INTRODUCTION 

As mentioned in Chapter 6, non-parametric tests are applicable in two 
circumstances: (1) when parametric tests cannot be used owing to the scale of the 
response variable, that is, the scale is nominal or ordinal, and (2) when, even when 
the scale of the response variable admits the use of parametric tests, that is, it is an 
interval or ratio scale, the observations gathered do not meet the constraints on 
normality called for by parametric tests. Remember that the methods of analysis that 
we discussed in earlier chapters (parametric methods) are subject to a series of 
constraints. Therefore, one of the steps taken in earlier chapters during the analysis 
process was to validate the mathematical model that explained the observations 
gathered from the experiment. An explanation of how to run these tests was given in 
these chapters. When these constraints are not met, the analysis of the data collected 
during experiments must switch to non-parametric methods. 

Non-parametric methods have the advantage of being independent of the population 
and of the parameters associated with the population (mean, variance, etc.). 
Therefore, the data for analysis are not subject to strict constraints. Nevertheless, as 
we already said in Chapter 6, they generally have the drawback of being statistically 
less powerful than parametric tests. Remember that, as discussed in Chapter 6, the 
statistical power of a test is related to type II error (β) and is represented as 1-β. 
Therefore, the lower the statistical power of a test, the more likely it is that a type II 
error will be made. Consequently, it would be more difficult to detect a significant 
effect on the response variable, leading to the acceptance of the null hypothesis 
when it should be rejected. The power of these tests could be raised, without 
increasing the type I error (the probability of rejecting the null hypothesis when it is 
true), by increasing the number of replications of an experiment. (The next chapter 
examines how to calculate the minimum number of replications for a particular 
experiment with a given α and β.) However, this is not always possible in SE 
experiments where time and resources are limited. Therefore, non-parametric tests 
should only be used when it is impossible to apply a parametric test. 

Remember also that Chapter 6 discussed one of the difficulties with which we are 
faced when selecting the method of analysis, namely, that it is often not easy to 
determine the scale type of a measure in SE. The example described by Briand et al. 
(Briand, 1996) regarding the scale type of cyclomatic complexity was mentioned. 
Can we assume that the distances on the cyclomatic complexity scale are preserved 
across all of the scale and that, therefore, the scale is an interval? 
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For the above reasons, Chapter 6 considered the application of both parametric and 
non-parametric tests when it was unclear whether parametric methods can be 
applied. Readers are advised to return to this chapter to recall the details of this 
discussion.  

This chapter presents some of the non-parametric methods that are likely to most 
often be used in SE experiments. These methods are divided into two groups, 
depending on whether they are used to search for significant differences in 
independent (section 14.2) or related (section 14.3) samples; that is, whether there is 
no relationship between the observations gathered or whether, on the other hand, the 
above observations are related in any way. Consider pairs of observations gathered 
by testing the same modules with two different techniques. Finally, we will present 
some non-parametric methods used in real SE experiments (section 14.4). 

14.2. NON-PARAMETRIC METHODS APPLICABLE TO INDEPENDENT 
SAMPLES 

Suppose we want to determine whether there are significant differences in 
development time among individuals working with different CASE tools. One 
possible experimental design might be to randomly distribute the tools among 
several subjects with similar experience and ask them to solve a particular problem. 
Thus, the same tool should be used by several subjects. The experimental analysis 
would involve determining whether there are significant differences in the mean 
development time per group of individuals who work on the same tool. Each group 
is a sample that is independent of the others, as randomness, in principle, rules out 
any sort of relationship among the individuals who apply the different tools. This 
experiment could have been designed differently. Suppose, for example, that one 
subject tested all the tools. In this case, the response variables collected from this 
subject would be related. In this section we will study how to analyse independent 
samples, whereas the following section focuses on dependent samples. Returning to 
our example, different non-parametric methods can be applied depending on how 
many tools we aim to evaluate. Basically, a distinction has to be made between the 
investigation of 2 samples and n>2 samples. In this book, we are going to consider 
the Mann-Whitney U, or U test, for 2 samples and the Kruskal-Wallis test, or H-test, 
for n>2 samples, as they are most often applied in the literature on SE 
experimentation. 

14.2.1. Mann-Whitney U or U Test 

The Mann-Whitney U, also known as the U test, is the non-parametric equivalent of 
Student’s test or the t-test for two samples discussed in Chapter 7, but it doesn’t 
define any restrictions about the normality of the data and is also applicable to 
response variables measured in ordinal scales. 
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The Mann-Whitney U is applied by organising the observations yij in ascending 
order and replacing them by their rank Rij, where the rank 1 is the smallest 
observation. If there is a tie (the value of more than one observation is the 
same), the mean rank is allocated to each tied observation. Let R1 and R2 be 
the sum of the ranks of the observations of each alternative and N1, N2 the 
respective replications of each alternative (for convenience’s sake, let N1 be 
the lower if they are unequal). The test statistic is: 

 1
11

21 R
2

1)(NNNNU −
+

+=  

The sample distribution U is symmetric and has a mean and variance given 
by: 

 
12

1)N(NNN;
2
NN 2121221 ++

== UU σµ  

If N1 and N2 are both at least equal to 8, the resulting U distribution is 
approximately normal such that:   

 2

Uz
σ
µU−

=  

is normally distributed with mean 0 and variance 1. Thus, depending on whether the 
alternative hypothesis specifies that the two alternatives are merely different or that 
one is greater than the other, either a two-tailed or one-tailed test will be called for, 
respectively, as discussed in Chapter 6.  

Suppose that we want to analyse two of the above-mentioned CASE tools, for 
example. Instead of investigating development time, however, we are going to look 
at the percentage of errors detected automatically by both tools during analysis and 
design. Our H0 is: “there is no difference between the two tools”, and H1 indicates 
that there is a difference. Table 14.1 shows the observations, as well as the sum of 
ranks. 

 

 

 

 

Table 14.1. Data on the percentage of errors detected by the 
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two tools 

Tool 1 Tool 2 
Errors detected 
(%) 

Rank Errors 
detected (%) 

Rank 

18.3 
16.4 
22.7 
17.8 
19.9 
25.3 
16.1 
24.2 

12 
10 
16 
11 
13 
18 
9 
17 
 
 
Sum 106

12.6 
14.1 
20.5 
10.7 
15.9 
19.6 
12.9 
15.2 
11.8 
14.7 

3 
5 
15 
1 
8 
14 
4 
7 
2 
6 
Sum 65 

From this table, we deduce that: 
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Hence, z = -2.67. We will accept H0 if –1.96 ≤ z ≤ 1.96 and reject it otherwise, as 
discussed in Chapter 6. In this case, then, we reject H0 and find that there is a 
difference between the two tools. If we wanted to know which of the two tools was 
the better, we would have to alter the null hypothesis of the experiment run, that is, 
instead of merely indicating that there is a difference between the tools, H1 would 
have to specify that tool 1 detects more errors than tool 2. In this case, we would 
accept H0 if z ≥ -1.645 and would reject it otherwise. So, we would have rejected H0 
in favour of the number of errors detected by tool 1 being greater than the number 
of errors detected by tool 2. Thus, in this case, we would conclude that tool 1 is 
better than tool 2 with regard to the number of errors automatically detected by the 
tools.  

14.2.2 Kruskal-Wallis Test or H-Test 

The Kruskal-Wallis test, also called H-test, is an alternative procedure to the 
analysis of variance F-test to test the null hypothesis that n alternatives are equal 
against the alternative hypothesis that some cause greater observations than others. 
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The Kruskal-Wallis test is run by organising the observations in the same way as 
explained above for the U test, that is, in ascending order and replaced by their rank 
Rij, where the rank 1 is the smallest observation. If there is a tie (the value of more 
than one observation is the same), the mean rank is allocated to each tied 
observation. Let Ri be the sum of the ranks of the observations of the ith treatment. 
The test statistic is: 
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where ni is the number of the observations of the ith treatment, N is the total number 
of observations and: 
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It is important to note that S2 is equal to the variance of the ranks. If there is no tie, 
S2 = N(N + 1)/12 and the test statistic is simplified to: 
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When there is a moderate number of ties (less than 25% of observations), there will 
be little difference among the equations of H and the simpler equation can be used. 
If ni is reasonably large, as would be the case if ni= 5, then H has a distribution of 

approximately , if the null hypothesis is true. Therefore, if: 
2

1−ax

  
2

1a,xH −α>

the null hypothesis has to be rejected. 

For example, suppose that the response variables (measured in days of effort 
employed in developing similar small applications) collected by testing five 
different tools are as presented in Table 14.2, alongside their respective ranks. 
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Table 14.2. Data and ranks of the CASE tools testing experiment 

Development Tool 
A  B  C  D  E 

y1j R1j  y2j R2j  y3j R3j  y4j R4j  Y5j R5j

7 
7 
15 
11 
9 
 
Ri. 

2.0 
2.0 

12.5 
7.0 
4.0 

 
27.5 

 12 
17 
12 
18 
18 
 
 

9.5 
14.0 

9.5 
16.5 
16.5 

 
66.0 

 14
18
18
19
19
 
 

11.0 
16.5 
16.5 
20.5 
20.5 

 
85.0 

 19 
25 
22 
19 
23 
 
 

20.5 
25.0 
23.0 
20.5 
24.0 

 
113.0 

 7 
10 
11 
15 
11 
 
 

2.0 
5.0 
7.0 

12.5 
74.0 

 
33.5 

As quite a lot of the observations are tied, the second equation described as a test 
statistic must be used: 
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And the test statistic is: 
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It follows from Table III.8 in Annex III that , which means that 
the null hypothesis must be rejected and the tools must be classed as 
different with regard to the effect they cause on the development effort. To 
find out which tool calls for the least development effort, we could analyse the 
above tools pairwise, as discussed in the preceding section. One practical way of 
speeding up this analysis would be to compare the tool having the lowest mean (tool 
A) with the other tools to check whether the effort called for is lower. 

28.132
4.01 => xH

14.3. NON-PARAMETRIC METHODS APPLICABLE TO RELATED 
SAMPLES 

Related samples are samples in which there is a relationship among the sample 
items. Consider the example discussed in section 8.4, for example, which aimed to 
determine the estimation accuracy of two different techniques applied to 10 similar 
projects. This experiment was run by selecting subject pairs of the same 
characteristics for each project and randomly assigning the technique to be applied 
to each one. This is an example of linked, related or parallel samples. It has the 
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advantage of the comparison being more accurate, as the dispersion among the 
subjects is reduced. 

There are different tests for analysing the data of samples of this kind depending on 
how many samples are to be analysed, that is, two or more than two. In this book, 
we are going to focus on one of the most commonly applied tests for two samples: 
the Wilcoxon test or matched-pairs signed-ranks test. This test can be generalised 
for more samples and is then known as the Friedman test. Interested readers are 
referred to (Gibbons, 1992) for a detailed analysis of these tests. This test is not 
addressed in this book, as there are not many references to real SE experiments in 
which it has been applied. 

The Wilcoxon test or matched-pairs signed-ranks test is the non-parametric 
equivalent of the paired t-test, described in Chapter 7. This test is applied by 
overlooking the pairs whose two values are equal and defining the differences: 

  2ixilxid −=

The absolute values ⎢di⎢ are then placed in ascending order and ranked. The lowest 
value will be ranked 1 and the highest n. If any values are repeated, each would be 
assigned a mean rank.  

Alongside each rank number, the respective difference is stated as having a positive 
or negative sign. The positively ranked numbers (Rp) and negatively ranked 
numbers (Rn) are added together, and the sum is tested with the formula: 

 Rp + Rn = n(n+1)/2 

The least of the two sums of the ranks R will be used as a statistic. The null 
hypothesis will be rejected when the value of R obtained is less than or equal to the 
critical value R (n; α) specified in Table III.8 of Annex III, where n is the value of 
the number of pairs whose difference is not 0. 

As an example of applying this test, let’s look at the number of errors detected per 
time unit by two testing techniques across nine programs shown in Table 14.3. 
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Table 14.3. Errors detected per time unit across nine programs 

Project 1 2 3 4 5 6 7 8 9 
Technique 
A 

0.47 1.02 0.33 0.7 0.94 0.85 0.39 0.52 0.47 

Technique 
B 

0.41 1.00 046 0.61 0.84 0.87 0.36 0.52 0.51 

A-B=di 0.06 0.02 -
0.13

0.09 0.10 -
0.02

0.03 0 -
0.04 

Rank 5 1.5 8 6 7 1.5 3  4 
Rp=22.5 +5 +1.5  +6 +7  +3   
Rn=13.5   -8   +1.5   -4 
Test = 22.5+13.5 = 36 = 8 (8+1)/2 

The value of the statistic is Rn= 13.5. This value is greater than R (8, 0.05), 
which means that the null hypothesis cannot be rejected and, therefore, we 
cannot say that both techniques detect a different number of errors.  

14.4. NON-PARAMETRIC ANALYSIS IN REAL SE EXPERIMENTS 

14.4.1. Analysis for Studying the Effect of Cleanroom Development 

Selby, Basili and Barker (Selby, 1987) applied the Mann-Whitney U to get 
significant results for the experiment whose design was described in section 5.3.3. 
Remember that this experiment was developed in order to investigate the effect of 
cleanroom development on the delivered product, on the software development 
process and on the developers. As a result of the application of this test, several 
results can be obtained concerning the product and process (the results concerning 
the developers were not obtained by means of statistical techniques and have, 
therefore, not been included). 

Effect on the product developed: “Cleanroom developers delivered a 
product that (1) met system requirements more completely, (2) had a higher 
percentage of successful test cases, (3) had more comments and less dense 
control-flow complexity and (4) used more non-local data items and a 
higher percentage of assignment statements”. 

Effect on the development process: “Cleanroom developers (1) felt they 
applied off-line review techniques more effectively, (2) spent less time on-
line and used fewer computer resources and (3) made all their scheduled 
deliveries”. 

By way of an example, the data and the result of the non-parametric test used to 
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arrive at the assumption on the schedule are shown in Figure 14.1, where the capital 
letters represent the groups that used and the small letters the groups that did not use 
a Cleanroom process. The hypothesis was tested by having all teams from both 
groups plan four releases of their evolving system, except for team “G”, which 
planned five. Recall that at each delivery an independent party would operationally 
test the functions currently available in the system, according to the team’s 
implementation plan. Figure 14.1 shows that all the teams using Cleanroom kept to 
their original schedules by making all planned deliveries; and only two non-
Cleanroom teams made all their scheduled deliveries. The significance level for the 
Mann-Whitney test statistics report the probability of reject H0 being true in a one-
tailed test. 
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Mann-Whitney signif.= 0.006  

Figure 14.1. Number of system releases 

14.4.2. Analysis for Studying the Effect of Methods to Test PL/I Code 

The H-test or Kruskal-Wallis test was applied by Myers (Myers, 1978), for 
example, to investigate methods to test PL/I code. Myers discusses two experiments. 
The first examines a PL/I program using three approaches and variations: (1) 
computer-based testing where the tester has access to only the program’s 
specification, (2) computer-based testing where the tester has access to the 
program’s specification and source-language listing, and (3) non–computer-based 
testing by teams of programmers employing the walkthrough/inspection method. 
The subjects of this experiment were 59 students with the same average testing 
experience. The author applied the Kruskal-Wallis test on the number of errors 
detected in the program and found no significant difference among them. However, 
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if applied to the mean man.minutes per error, this same test shows a significant 
difference among the methods, where the walkthrough/inspection method is found 
to be the most costly. A second experiment aims to investigate whether any 
combination of the above methods would be more effective. Accordingly, four new 
possibilities were added: (4) two people independently testing the program using 
method 1 and then pooling their results when completed, (5) similar to 4 but 
independent testers use method 2, (6) two independent testers, one using 1 and the 
other using 2, and (7) three people use method 3 and the fourth person 
independently uses method 1.  

Combining the results of the first experiment, the author gets data on these new 
combinations. A Kruskal-Wallis test on the seven mean-number of errors found 
indicates that the null hypothesis can be rejected, implying that methods 4-7 are 
better than methods 1-3. However, a test on the means for methods 4-7 does not 
indicate any difference between these four methods. Again there is a difference with 
regard to cost, and the cost in terms of effort of methods 1, 2, 4, 5 and 6 is 
significantly better than for 3 and 7.  

14.4.3. Analysis for Studying the Effect of a Functional Language 
Versus an Object-Oriented Language 

Although mainly applied with n>2 samples, the Kruskal-Wallis test can also be 
applied to two samples. This is what Harrison, Samaraweera and Dobie (Harrison, 
1996) did, where they sought to investigate whether the quality of code produced 
using a functional language was significantly different from that produced using an 
object-oriented language. Twelve sets of algorithms were developed in SML and 
C++. The statistical test does not reveal any significant differences for direct 
measures of the quality-related development metrics used, such as the number of 
known errors, the number of modification requests, a subjective complexity 
assessment, etc. (the response variables used in this experiment are detailed in Table 
4.17 in Chapter 4, some of which are also used in the experiment described in 
(Samaraweera, 1998)). However, significant differences are found for an indirect 
measure, the number of known errors per thousand non-comment source lines, and 
for various code metrics, including the number of distinct functions called and their 
ratio, which is a measure of code reuse (SML programs have a higher ratio of 
functions called). Table 14.4 shows, by way of an example, the values obtained for 
the development-related response variable and the value of the respective Kruskal-
Wallis test. As you see, the test only outputs a significant difference at 5% for 
(KE/ncsl) x 1000. 
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Table 14.4. Kruskal-Wallis test results for development response 
variables 

Response variable SML C++ Kruskal-Wallis 
number of known 
errors found during 
execution of test scripts 
(KE) 

66 37 2.20 

(KE/ncsl) x 1000 41 16 4.20 
number of 
modifications 
requested during code 
reviews, testing and 
maintenance 

164 122 0.17 

complexity 34 35 0.04 
time to fix errors 540 768 0.12 
time to implement 
modifications  

687min 473min 0.00 

development time 4324min 3629 min 0.65 
testing time 2349 min 1148 min 2.29 

14.4.4. Analysis for Studying the Effect of Ad Hoc Development on 
Software Products 

Basili and Reiter .(Basili, 1981) also applied the Mann-Whitney U and the H-test to 
determine the effect of ad hoc development and development according to a series 
of techniques applied to the products generated. In particular, the alternatives under 
analysis were: (1) single individuals using an ad hoc development approach, (2) 
three-person teams using an ad hoc approach, and (3) three-person teams using a 
particular disciplined methodology. The application of these tests indicates that the 
application of a disciplined methodology effectively improves both the process and 
the product of software development. With regard to the process, for example, the 
effectiveness of a particular programming methodology can be identified via the 
number of bugs in the delivered system. The test indicates that the disciplined 
programming teams scored lower than either the ad hoc programming teams, which 
both scored about the same. 

14.4.5. Analysis of Studying the Effect of Maintaining Modular Code 
against Monolithic Code 

An example of the application of the ranked Wilcoxon test is presented by Korson 
and Vaishnavi (Korson, 1986) to investigate the benefits to maintenance of using 
modular code against non-modular (monolithic code). The experiment was run on 
two types of modular and monolithic code that implemented the same functionality. 
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The monolithic version was developed by replacing the function or procedure calls 
in the modular version by the body of subroutines. The response variable collected 
during the experiments was the time taken to make a change to both code versions, 
and the changes meet the condition of affecting the information hidden in the 
modular version. The results of applying the Wilcoxon test determine that a modular 
program could be maintained significantly faster than an equivalent monolithic 
version of the same program, under the condition that modularity has been used to 
implement information hiding, which localises changes required by a modification. 
This experiment was later criticised and replicated by other authors (Daly, 1994) 
who found from the replication run that there were no significant differences in 
maintainability between the two program types. These criticisms, related to the 
design, not to the analysis of the experiment, were described in section 5.9. 

14.4.6. Analysis for Studying the Effect of an Object-Oriented 
Framework for Building Software Applications 

Shull, Lanubille and Basili (Shull, 1998) investigate the possible advantages 
afforded by the use of an object-oriented framework for building new applications. 
In this experiment, object-oriented framework means a set of objects derived from a 
hierarchy, which interact with each other to implement a functionality of some kind. 
These frameworks are used as sources of reuse. Of the qualitative and quantitative 
studies conducted by the authors, the use of the ranked Wilcoxon test for a 
somewhat original purpose deserves a special mention: “analyse whether teaching 
two different procedures for using a specific object-oriented framework to a group 
of students provides any kind of difference in terms of understanding of the 
framework itself”. The two techniques are teaching on the basis of examples 
contained in the framework itself (example-based technique) and teaching the 
framework object hierarchy and functionality (hierarchy-based technique). The 
response variable used was the grade attained by the students taught according to 
the two techniques across several questionnaires on framework operation. The test 
reveals no difference with regard to the results obtained for the different techniques. 
Therefore, neither group of subjects were at a disadvantage compared to the other in 
terms of their understanding of the framework itself. Note that similar experiments 
can be run to investigate possible sources of variability among the subjects who are 
involved in an experiment. In this example, the similarity of the subjects rules out 
any possible source of variability. 

14.5.  SUGGESTED EXERCISES 

14.5.1. A software development professor applied two DFD construction 
approaches to two different groups of students. The grades attained in a 
common examination are as shown in Table 14.5. Can we deduce at the 
level of significance of 95% that the class in which technique 1 was applied 
attained poorer results than the class in which technique 2 was applied? 
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Table 14.5. Grades attained by two groups of students 

Technique 1 73 87 79 75 82 66 95 75 70    
Technique 1 86 81 84 88 90 85 84 92 83 91 53 84 

Solution: Yes, z= 1.85 > 1.645 

14.5.2. An organisation intends to adopt one of five (A, B, C, D, E) formal 
specification techniques. Table 14.6 shows the time usually taken by 
novice users to specify an employee requirement at a given organisation. Is 
there any difference between the specification techniques at 5% and 1%? 

 Table 14.6. Time taken to specify a requirement 

A 68 72 77 42 53 
B 72 53 63 53 48 
C 60 82 64 75 72 
D 48 61 57 64 50 
E 64 65 70 68 53 

Solution: No; No 

14.5.3. Two programming languages applied to the same programs yield the 
number of lines of code described in Table 14.17. Is there a significant 
difference between both at 95%? 

 Table 14.17. Lines of code with two different languages 

 A B C D E 
Language 1 40 28 19 15 30 
Language 2 35 13 29 10 22 

Solution: Yes (Rn=15) 



 

15 HOW MANY TIMES 
SHOULD AN EXPERIMENT 

BE REPLICATED? 
 

15.1. INTRODUCTION 

An important decision in any problem of experimental design is to determine how 
many times an experiment should be replicated. Note that we are referring to the 
internal replication of an experiment. Generally, the more it is replicated, the more 
accurate the results of the experiment will be. However, resources tend to be 
limited, which places constraints on the number of replications. In this chapter, we 
will consider several methods for determining the best number of replications for a 
given experiment. We will focus on one-factor designs, but the general-purpose 
methodology can be extended to more complex experimental situations. 

How many times to replicate an experiment is actually a design decision. However, 
it calls for knowledge and application of some statistical concepts examined in Part 
III of this book, which is why this chapter has been placed at the end of the book, 
although it is conceptually related to Part II. 

The sections of this chapter describe how to identify the number of replications of 
an experiment depending on the information we have about the alternatives under 
consideration. Section 15.2, however, briefly recalls the importance of getting the 
number of replications for an experiment right. Section 15.3 then describes the 
procedure for outputting the above number of replications to be applied when the 
means of the alternatives to be used to reject H0 are known. As these mean values 
are often difficult to identify, section 15.4 describes an alternative procedure that 
can be used when the value of the difference between any pair of means to be used 
to reject H0 is known.  Section 15.5 shows us what to do when we know the 
percentage value not to be exceeded by the standard deviation so as not to reject H0. 
Finally, section 15.6 indicates how to proceed when we have more than one factor 
and we know the difference between the means of the alternatives to be used to 
reject H0. 

As we will see throughout the chapter, we need to have some information about the 
population in question to determine how many replications to run. This information 
is known only to experimenters who are somewhat experienced in the experimental 
domain, either because they have run experiments before or have actually worked in 
the domain. If no such information is available, one possibility is to set a given 
number of replications (depending, for example, on the available resources) and 
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afterwards evaluate, using the methods discussed in this chapter, whether this 
affords the right Type II error. The experience gathered from these early 
experiments can be used to set this number beforehand in subsequent experiments in 
the same domain. 

15.2.  IMPORTANCE OF THE NUMBER OF REPLICATIONS IN 
EXPERIMENTATION 

As discussed in Chapter 6, there are two error types associated with statistical 
hypotheses. If we reject the null hypothesis when it should be accepted, we will say 
that a type I error has been made. On the other hand, if we accept the null 
hypothesis when it should be rejected, we will say that a type II error has been 
made. The ideal thing would be to be able to minimise both error types. However, 
this is not a simple matter, because any attempt at reducing one error type in a given 
sample size is usually accompanied by an increase in the other type. The only means 
of reducing both at once is to increase the sample size. Hence, the importance of 
properly determining the number replications in experimentation. 

As discussed in earlier chapters, type I error is associated with the significance level 
(α). As explained in section 6.3.2, however, type II error (β) depends on the sample 
size, the value of the difference between the observations of the different 
alternatives being tested and the power of the statistical test (1-β), which defines the 
probability of a statistical test correctly rejecting the null hypothesis. Therefore, we 
are interested in running experiments that raise the statistical power of the applied 
tests and, hence, reduce type II error. This can only be done by calculating the right 
number of replications to be run. We will look at how to complete this process in 
the following sections. 

15.3. THE VALUE OF THE MEANS OF THE ALTERNATIVES TO BE 
USED TO REJECT H0 IS KNOWN 

One way of determining the number of replications of an experiment is to use 
operating characteristic curves. An operating characteristic curve is a graph that 
plots the likelihood of a statistical test yielding a type II error for a particular sample 
size against the parameter that reflects when the null hypothesis is false.  

Operating characteristic curves can be used as a guide for experimenters to decide 
on the number of replications of an experiment needed to assure that the design is 
sensitive to potentially important differences between alternatives and that the null 
hypothesis can be correctly rejected during the analysis. Briefly, operating 
characteristic curves can be used to select the number of replications of an 
experiment so as to increase statistical power. 
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Firstly, consider the probability of a type II error in the fixed-effects model, where 
the sample size is the same for each alternative. This error can be represented as: 

β = 1 − P Reject  H 0 H0  is false{ }= 1 − P F0 > Fα ,a −1,N − a H 0  is false{ }
 

This probability can be evaluated if we know the distribution of the statistic F0 when 
the null hypothesis is false. It can be shown that if the null hypothesis is false, the 
statistic F0=MSalternatives/MSE has a decentred distribution F, with a-1 and N-1 
degrees of freedom and a parameter of decentring equal to δ, where a is the number 
of factor alternatives addressed and N is the total number of observations made. If δ
=0, the decentred F distribution becomes the usual F distribution, which is discussed 
throughout the book. This parameter of decentralisation determines the source of the 
graphical representation of the F distribution. So, for example, this parameter is 0 in 
Figure 6.3, which means that the curve that represents this distribution starts at 0 on 
the x-axis. As the value of this parameter increases, the curve would move to the 
right. 

The operating characteristic curves set out in Annex III are used to evaluate the 
probability of the above equation. The curves are provided for α = 0.01 and α = 
0.05 and for a range of values of numerator and denominator degrees of freedom. 
These curves indicate the probability of a type II error (β) against the parameter φ, 
where: 

 φ2 =

n τ i
2

i =1

a

∑
aσ2   

and n is the number of replications, τi is the average of the individual means of the 
alternatives and σ2  is the standard deviation of the observations. 

Experimenters must specify the value of φ when operating characteristic curves are 
used. This is often difficult in practice. One way of determining φ is to choose the 
values of the means of alternatives for which the null hypothesis is to be rejected 
with a high probability. Therefore, the above equation can be used to find out the 
value of τi if µ1, µ2, …, µn are the means of the proposed alternatives, where 
τ i = µi − µ = (1 / a) µii =1

a∑  is the average of the individual means of the alternatives. An 

estimation of σ2 is also required. This can sometimes be taken from past experience, 
previous experiments or a proposed estimation. When the value of σ2 is uncertain, 
the number of replications can be determined for an interval of possible values of σ
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2, and the effect of this parameter on the number of replications can be examined 
before making a final decision. 

The following example illustrates these ideas. Consider an experimenter who is to 
investigate five testing techniques and is going to evaluate the percentage error 
detected by each one. Suppose that the experimenter intends to reject the null 
hypothesis with a probability of 90%, which means that the variation in the result 
due to alternatives will be detected at least 90 out of the 100 times the experiment is 
run, and the mean of each technique is 11%, 12%, 15%, 18% and 19%, respectively. 
These values could be obtained by running a cost/benefit analysis of the deployment 
of the five techniques, for example, used by experts to determine the percentages as 
of which it is worth deploying the most expensive techniques (which detect more 
errors). 

How could we determine how many times the experiment had to be replicated to be 
able to reject the null hypothesis with the required 90% probability? 

We know that  
 µ1 = 11 µ2 = 12 µ3 = 15 µ4 = 18 and µ5 = 19 

We plan to use α = 0.01. Hence, , because µii =1

5
∑ = 75 µ = (1/5)75 = 15 and 

 τ1 = µ1 - µ  = 11 – 15 = -4 

 τ2 = µ2 - µ  = 12 – 15 = -3 

 τ3 = µ3 - µ  = 15 – 15 = 0 

 τ4 = µ4 - µ  = 18 – 15 = 3 

 τ5 = µ5 - µ  = 19 – 15 = 4 

Therefore, . Suppose also that the experimenter believes that the 

standard deviation in the percentage of defect detection is under σ = 3%. This value 
may have been obtained from his/her experience, consultation with experts or 
information gathered from earlier experiments. Hence: 

τ i
2

i =1

5∑ = 50

 φ2

n τ i
2

i =1

5

∑
aσ 2 =

n(50)
5(3)2 = 1.11n  

The operating characteristic curve in Annex III for n–1 = 5–1 = 4, N–a = a(n –1) = 
5(n–1) degrees of freedom of the error and α = 0.01 yields n = 4 as a rough estimate 

 



Basics of Software Engineering Experimentation 341 
 

of the number of replications. This yields φ2 = 1.11(4) = 4.44, φ = 2.11 and 5(3) = 
15 degrees of freedom of error. Therefore, β ≅ 0.30. Thus, we conclude that n=4 
replications are insufficient because the power of the test is approximately 1-β = 1– 
0.30 = 0.70, which is under the required 0.90. Table 15.2 can be built according to a 
similar procedure. 

Table 15.2. Number of replications generated according to 
operating characeristic curves for one-factor experiments 

n φ2 φ a(n – 1) β Power (1 - β) 
4 
5 
6 

4.44 
5.55 
6.66 

2.11 
2.36 
2.58 

15 
20 
25 

0.30 
0.15 
0.04 

0.70 
0.85 
0.96 

Therefore, at least n=6 replications are required to get a test with the desired power. 
Remember that the experiment will be better defined, the greater the power 
obtained. 

15.4. THE VALUE OF THE DIFFERENCE BETWEEN TWO MEANS OF 
THE ALTERNATIVES TO BE USED TO REJECT H0 IS KNOWN 

The only problem with the above approach is that it is usually difficult to select the 
set of alternative means on which the decision concerning replication will be based. 
One possible option is to select the number of replications so that the null 
hypothesis is rejected if the difference between any pair of alternative means is over 
a particular value (D). This value can be obtained from several sources, such as 
cost/benefit analyses of the alternatives in question or more informal inquiries that 
determine as of when it is worth identifying differences between alternatives. 

If the difference between two alternative means is no more than D, it can be 
demonstrated that the least value of φ2 is: 

 φ2 =
nD2

2aσ 2   

As this is the least value of φ2, the value of the number of respective replications 
yielded by the operating characteristic curves is conservative, that is, provides a 
power at least equal to the one specified by the experimenter. 

To illustrate this method, suppose that we want to reject the null hypothesis of the 
inspection technique problem with a probability of at least 0.90, if the difference 
between any pair of technique means is at most equal to 10%. Supposing that σ = 
3%, the least value of φ2 is: 
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 φ2 =
n(10)2

2(5)(32)
= 1.11n  

and analysing the above example, we find that n=6 replications are needed to get the 
desired level of sensitivity when α = 0.01. 

15.5. THE PERCENTAGE VALUE TO BE EXCEEDED BY THE 
STANDARD DEVIATION TO BE USED TO REJECT H0 IS KNOWN 

The specification of an increase in the standard deviation of the means is sometimes 
useful for selecting the number of replications. If there is no difference in the 
alternative means, the standard deviation of an observation selected at random is σ. 
On the other hand, if the means of the alternatives are different, the standard 
deviation of an observation selected at random is: 

 σ 2 + τ i
2 / a

i =1

a

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

If we select P as the percentage not to be exceeded by the standard deviation of the 
observation (if it is over, the hypothesis that all the alternative means are equal will 
be rejected) is equivalent to selecting: 

 )percentageP(P01.01

a

1i

2
i

2

a/
=+=

σ

⎟
⎠

⎞
⎜
⎝

⎛
τ

+σ
∑

=  

or 

 

τ i
2 / a

i=1

a

∑
σ

= (1+ 0.01P )2 − 1  

therefore, 

 φ =

τ i
2 / a

i=1

a

∑
σ / n

= (1+ 0.01P )2 − 1( n)   
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Thus, the value of φ can be calculated using this equation for a specific value of P, 
and the operating characteristic curves in Annex III can then be used to determine 
the number of replications. 

Consider the techniques problem addressed in the preceding section and suppose 
that we intend to detect an increase of 20% in the standard deviation (that is, 20% 
variations can be detected in the response variable) with a probability of at least 
0.90 (1-β=0.9) and that α  = 0.05. Then: 

 φ = (1.2)2 −1( n) = 0.66 n  

As far as the operating characteristic curves are concerned, n=9 is found to be 
necessary to get the desired sensitivity. 

15.6. THE DIFFERENCE BETWEEN THE MEANS OF THE 
ALTERNATIVES TO BE USED TO REJECT H0 IS KNOWN FOR MORE 
THAN ONE FACTOR 

operating characteristic curves can also be used as an aid for experimenters to 
determine the number of replications, n, in a factorial design having more than one 
factor. Indeed, the value of φ2 are presented in Table 15.3, together with the degrees 
of freedom of the numerator and denominator for two-factor experiments having a 
and b alternatives, respectively, and n replications. 

A very efficient means of using these curves is to determine the least value of φ2, 
which corresponds to a specified difference between two alternative means. For 
example, if the difference between two means of factor A is D, the least value of φ2 
will be: 

 φ2 =
nbD2

2aσ 2   

whereas if the difference between two means of factor B is D, the least value of φ2 
will be: 

 φ2 =
naD2

2bσ 2   

Finally, the least value of φ2, which corresponds to a difference equal to D between 
any pair of interacting effects will be: 
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 φ2 =
nD2

2σ 2[(a − 1)(b − 1) + 1]
  

Table 15.3. Parameters of the operating characteristic curve for the graphs in Annex 
III: two-factor fixed-effects model 

Factor φ2 Degrees of freedom of 
the numerator 

Degrees of freedom of 
the denominator 

A bn τ i
2

i=1

a

∑
a σ 2

 

a – 1 
 

ab(n – 1) 
 

B an β j
2

j=1

b

∑
bσ 2

 

b – 1 ab(n – 1) 

AB n (τβ )ij
2

j=1

b

∑
i=1

a

∑
σ 2[(a −1)(b−1)+1]  

 

(a – 1)(b – 1) ab(n – 1) 

Consider, as an illustration of these equations, a two-factor experiment, whose goal 
is to determine the time it takes programmers with three levels of experience and 
using three different programming languages to program one and the same 
algorithm. Suppose that, before running the experiment, it was decided that the null 
hypothesis was highly likely to be rejected if the maximum difference in 
implementation time of any pair of languages was equal to 40 minutes. For example, 
the experimenters may have obtained this difference by placing constraints on the 
development times used. 

Therefore, D=40, and if the standard deviation of the time is assumed to be 
approximately equal to 25, the second equation described in this section yields 

 φ2 =
naD2

2bσ2 =
n(3)(40)2

2(3)(25)2 = 1.28n  

as the least value of φ2. Supposing that α  = 0.05, the curves in Annex III can be 
used to build Table 15.4. 
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Table 15.4. Number of replications for two-factor experiments generated using 
operating curves 

n φ2 φ ω1 = Degrees of freedom 
of the numerator 

ω2 = Degrees of 
freedom of error 

β 

2 
3 
4 

2.56 
3.84 
5.12 

1.60 
1.96 
2.26 

2 
2 
2 

9 
18 
27 

.45 

.18 

.06 

We find that n=4 replications produce a level close to 0.06 for β or a probability of 
roughly 94% of the null hypothesis being rejected if the difference in the mean time 
for two experience levels is at most equal to 40 minutes. Therefore, it is concluded 
that four replications are sufficient to assure the desired level of sensitivity, 
provided that no serious error was made when estimating the standard deviation of 
the time. When in doubt, experimenters must repeat the above procedure using 
several values of σ to determine the effect of the error on the estimation of this 
design sensitivity parameter. 

15.7.  SUGGESTED EXERCISES 

15.6.1. Suppose that we want to analyse the programming languages that we 
looked at in section 7.3 again to find out whether there is any difference 
between them for a given problem domain. Suppose we intend to reject H0 
with a probability of 90% if the means are µA=20 and µB=30, where α
=0.01. At least how many replications will have to be run? Where do we 
get the estimate of σ2 from? 

Solution: 10; from s2 in the example shown in section 7.3 

15.6.2. Suppose that we intend to detect this difference in the above exercise if the 
percentage standard deviation of any observation is greater than 30%. 
What will be the least number of replications required to detect this value 
with a minimum probability of 90%? 

Solution: 31 

15.6.3. If we wanted to replicate the experiment described in section 8.1 with 
programmers from another organisation and wanted to detect significant 
differences between the four languages when there is a difference of at 
least five errors, with a probability of 0.9 at least, and α=0.01. At least how 
many replications would have to be run? How would we get a preliminary 
estimate of σ2? 

Solution: 5; from the value of MSE in the above-mentioned exercise 
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15.6.4. Suppose we have an organisation that intends to examine the better of two 
modelling techniques depending on analyst experience. How many 
replications would have to be run if we wanted to detect a difference 
greater or equal to 10 between the techniques and the number of errors, 
with a probability of 80%, where α=0.05? Suppose that the organisation 
has already worked with these techniques and suspects that σ2=3? 

Solution: 2 



16 SOME RECOMMENDATIONS 
 ON EXPERIMENTING 

16.1. INTRODUCTION 

This chapter aims to outline the most important ideas discussed throughout the 
book, mainly focusing on some useful points for correctly running and documenting 
experiments so that they can be replicated by other people. Section 16.2 groups a 
series of precautions, which, although they have been addressed in other chapters of 
the book, should be taken into account by readers whenever they experiment. 
Section 16.3, on the other hand, provides a set of guidelines to aid novice 
experimenters to document their empirical work. These guidelines are designed to 
ease external replication. They can also be used to check that the fundamental 
design and analysis issues of each experiment have been taken into consideration. 

16.2. PRECAUTIONS TO BE TAKEN INTO ACCOUNT IN SE 
EXPERIMENTS 

This section recalls some points to be taken into account for correctly running SE 
experiments. These points are applicable to experiments in any field and not only to 
SE. Some of these points have already been remarked upon in other chapters of the 
book. Below, they are grouped in one section as a quick reference and reminder for 
readers. 

These points will be classed according to the phase of the experimental process 
(described in Chapter 3) to which they refer: goal definition, experimental design, 
experiment execution and data analysis. 

1. Defining the goals of the experiment 

• Describe the general goals of the experiment, that is, what the experiment 
aims to investigate and its motivation. If experimenters are inexperienced in 
experimental design and analysis, we recommend that they start by 
replicating known experiments. This will help them to formulate hypotheses 
and with design, analysis, etc. (Remember that the hypotheses and setting of 
the experiment can used unchanged in external replication in order to 
confirm earlier results or the two concepts can be varied so as to generalise 
or further investigate the results.) 

• Determine whether the experiment in question is an external replication of an 
existing experiment or a new experiment. Remember that, as discussed in 
Chapter 4, the same hypotheses must be used for replication if the goal is to 
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validate the results of an earlier experiment or they can be varied if the goal 
is to generalise or further investigate the results. 

• Deduce the hypotheses to be investigated from the general goals of the 
experiment, which should be represented as H0 and H1, where H0 is always 
the hypothesis that indicates that there are no differences between the 
variables under study and H1 that there are differences. 

• Remember that the hypotheses to be tested as a result of the experiments 
must be quantifiable, that is, there must be a formal procedure for outputting 
the result of the experiment so as to test the hypothesis in question as 
objectively as possible. This point was discussed in more detail in Chapter 3. 

2.    Designing experiments 

• Try to use metrics that are as objective as possible to measure the response 
variables, where objectivity means that two people measuring the same item 
get the same measure. In this respect, the number of lines of code of an 
application is more objective than the number of function points, for 
example.  

• One variation that often occurs in experiments is due to the heterogeneity of 
the subjects. Consider the possibility of using blocks to assure that this 
variation does not affect the results. 

• The alternatives of a factor can be quantitative or qualitative. If they are 
qualitative, clearly describe each one to make the experiment repeatable. For 
example, if we consider experience, whose alternatives are very and little, as 
the factor, we should describe exactly what very and little experienced means 
so that other experimenters can later replicate the experiment under the same 
circumstances. 

• Carefully consider the number of internal replications. Remember that if too 
few replications are run, the results of the experiment are meaningless, as the 
type II error is likely to be high. Therefore, it is important to calculate this 
number, ideally a priori, as discussed in Chapter 15. If this is not possible, 
the type II error or power of the test has to be calculated a posteriori to 
determine how reliable the results yielded are. 

• Consider a possible learning effect. If you suspect that your experiment is 
open to this problem (regarding both the factor alternatives to be applied and 
the experimental units), try to assign different subjects to both the 
alternatives and the experimental units. 
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• Be careful with the boredom effect (subjects get bored as the experiment 
progresses). If you suspect that your experiment is open to this problem, try 
not to run the experiment over a long period of time and try to motivate the 
participant subjects.  

• If the alternatives under study are partly distinguished by how formally they 
are applied, be careful with the unconscious effect. This can be minimised by 
getting different subjects to use the above alternatives or having the same 
subjects apply the least formal alternatives first, gradually moving up to the 
more formal ones. 

• Try to keep the conditions, that is, the characteristics of the days, time, etc., 
under which the experiment is run constant throughout in order to prevent a 
possible setting effect. 

• Do not forget to assign experimental units to subjects and techniques as 
randomly as possible. Otherwise, it is impossible to apply the analysis 
techniques. 

• Determine the type of experimental design that is best suited to your 
particular case (one-factor, factorial, fractional design, etc.). Remember that 
the use of simple designs, known as “one factor at a time” (discussed in 
Chapter 5), are usually a waste of resources, as they call for many more 
experiments to be run to get the same amount of information. Using a suitable 
experimental design, the same number of experiments can output narrower 
intervals of confidence for the effects on the response variable. Additionally, 
simple designs overlook interactions. The effect of one factor often depends 
on the level of other factors. This sort of interactions cannot be estimated 
with “one factor at a time” designs. 

• Do not worry if the experimenter does not know which variables do and 
which do not have an influence on the response variable in the early 
experimental runs. Indeed, this is usually the case. The important thing is for 
experimenters to be conscious of what they do not know and investigate the 
experimental error observed in their experiments. Experimental error advises 
of uncontrolled variations that can be accounted for in the next run by 
including new variables (in an attempt to identify the uncontrolled variation) 
or even by removing from the investigation variables that have proven not to 
have an effect on the response variable. Remember that a possible stepwise 
approach with successive experiments would be as follows: 

1. Detect influential factors using fractional design 

2. Examine the important factors using two alternatives, that is, by means 
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of 2k designs 

3. Investigate the important factors that have a significant effect for a 
wider range of alternatives. 

3.   Running experiments 

• Try not to disturb or interrupt the subjects when they are running the 
experiment. Noise or interruptions can affect the process of executing the 
experiment, influencing the results yielded. 

• Be sure to remind the subjects who are taking part in an experiment that the 
goal of the experiment is to measure not their performance but the 
alternatives of the factors under consideration. Suppose, for example, that we 
are evaluating estimation techniques, and the response variable to be 
measured is the deviation between the estimated and real values. The subjects 
could be tempted to state that the deviation is lower than it actually is, if they 
suspect that the above measure could somehow be used as an indicator of 
their ability to meet particular constraints, making the techniques look more 
accurate than they really are. 

• Try not to let the subjects know what the hypothesis to be tested is. This can 
affect, albeit unconsciously, the way they perform the experiment in an effort 
to prove the hypothesis. 

• The fact that subjects drop out of the experiment after it has got under way 
must be taken into account, as, depending on the factors addressed, this can 
invalidate the results. For example, if the subjects are a factor of the 
experiment and all the subjects who drop out are representatives of one 
alternative, the experiment will not be valid and will have to be repeated. 

• Make sure that none of the subjects participating in any combination of 
alternatives of an experiment communicate with each other in the course of 
the experiment. Such conversations can affect the outcome of the 
experiment. Suppose, for example, that two groups of subjects are testing 
two different CASE tools (A and B) and the two groups converse during the 
experimentation. If, as a result of this conversation, the members of the group 
testing tool B get the idea that the productivity of their tool is lower than tool 
A, they might not even try to reach the desired productivity level in the belief 
that their tool is worse. Alternatively, they could try to boost productivity by 
doing things quicker but less correctly. Either circumstance could affect the 
results of the experiment. 
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• Use protocol analysis to be sure about the process enacted by the subjects 
while running the experiment. Remember that this is a way of determining 
the accuracy with which the subjects apply the SE techniques or process 
during the experiment.  

4.   Analysing data 

•     Try to use a statistically powerful test. Remember that statistical power is 
the likelihood of a test correctly rejecting the null hypothesis. This concept 
was addressed in Chapters 6 and 14. 

•     Carefully validate the assumptions of the different tests. As shown in Part 
III of this book, some of the statistical tests used assume samples to be 
normally distributed and independent, for example. If these assumptions are 
not met, the findings output by the above tests are invalid. 

•    Take care when extrapolating the results of your experiment to industrial 
practice. Carefully consider whether the subjects, experimental units, etc., are 
representative of such practice. Indeed, remember that this calls for two 
successive levels of experimentation, what we have termed controlled and 
quasi experiments. The best thing to do to extrapolate the results of an 
experiment to industry is to continue the investigation by running quasi 
experiments. 

•     One point must be made regarding the relationships of causality 
investigated by the experiment. The cause-effect relationships usually used in 
experiments tend to be deterministic, that is, every time we invoke a given 
cause, we get the expected effect. As far as software development is 
concerned, some authors, like Pfleeger (1999), think that this deterministic 
relationship has a tendency to be a bit stochastic owing to the immaturity of 
the processes to be enacted and to our actual unfamiliarity with software 
development. In this respect, the findings of SE experiments should be 
expressed as, for example, “the use of technique A is more likely to reduce 
development effort under such and such circumstances than B” rather than 
“technique A reduces development effort under such and such circumstances 
more than B”. 

•     Suppose you suspect that the response variable is affected by a variable, 
like, for example, the problems to be dealt with, the subjects, etc. One way of 
confirming whether or not there is any such variability is to redefine the 
experiment considering this possible source of variation as the only factor 
and then analysing the response variable output. If the effect of the above 
factor is insignificant, the analysis can be conducted without considering it as 
a blocking variable; otherwise, the above factor has to be considered as a 
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blocking variable and the analysis has to be completed taking this 
characteristic into account. 

These points have also been called validity threats by some authors. Wohlin et al. 
(2000) describe some of these recommendations according to the classification 
proposed by Cook and Campbell (1979). According to this classification, they were 
divided into threats related to the conclusion (that is, on the process of drawing 
conclusions about the data output by the experiments); internal threats (points that 
assure that there is a causal relationship between the factors and the response 
variable); construct threats (points related to the design of the experiment to assure 
that it simulates the real conditions of use of the factors under consideration) and 
external threats (points required for experiment replications). Other reading on 
validity threats includes (Judd, 1991) or (Cronbach, 1955). Readers are referred to 
these sources for further details. 

16.3. A GUIDE TO DOCUMENTING EXPERIMENTATION 

As mentioned above, the external replication of experiments is essential for 
confirming experimental findings and thus building a scientific body of knowledge 
in any discipline. One limit to this replication is that experimental findings are 
poorly reported. This means that any replications run cannot reproduce the same 
conditions as the original experiments, as these conditions have not been published 
and, therefore, are unknown. This makes it difficult to achieve the goals of external 
replication (consolidate the findings of earlier experiments, if the replication is run 
without altering any hypothesis, and generalising the results, if the replication is run 
by altering the setting of the experiment). 

There are a series of general rules, used to write scientific papers, especially in the 
field of applied sciences like biology, which experimenters could use as a basis for 
reporting their experimental results. These rules recommend that papers be drafted 
starting with an introduction that describes the problem to be addressed, the purpose 
of the paper, the motivation, etc., followed by a discussion of the experimental work 
carried out, including the materials used and the biological or industrial methods and 
statistical methods employed. This discussion is followed by a description of the 
results of the planned investigation, addressing the recorded data, measured values, 
etc. Although these guidelines can be useful for documenting experiments in areas 
like physics or biology, this issue has to be dealt with at more length in SE. 

This section aspires to provide a guide indicating the most important points to be 
documented in a SE experiment. This guide does not profess to be a mandatory 
template. It merely aims to serve as a starting point to assure that novice 
experimenters wanting to document their experiments do not forget to describe the 
most important points. 
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Generally, good experimental documentation must cover all the phases of 
experimentation (goal definition, experimental design, execution and analysis) and 
supply all the information required by third parties to reproduce the above process. 

The most important points to be documented for each phase are specified below as 
questions to be answered by the experimental documentation. Table 16.1 contains 
these questions. 

 

As final remarks we would like to say that there are a lot of things to consider about 
experimentation in SE besides the topics covered in this book. For example, 
deepening into the differences between experimentation in natural versus social 
sciences, including qualitative analysis techniques, meta-analysis techniques, and 
many other things. Nevertheless, our intention with this book has not been to cover 
all possible topics about experimentation in SE, a task not very realistic for only one 
book. Quite the opposite, our intention has been to wake up the interest of the reader 
about  experimentation in SE, so as he/she can start a long travel through the way of 
experimentation in this field. This book would represent the first steps to be walked 
in that long way. We hope that, after reading this book, the reader feels more 
attractive for this interesting topic. 
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Table 16.1. Questions to be addressed by experimental documentation 

Goal Definition Motivation for the experiment • Why is investigation in the field with which the experiment is concerned important? 
• What information do we intend to gather to add to the knowledge of the field with which 

the experiment is concerned?  
• What findings need to be justified?  

  Earlier experiments • What other experiments have been run in the field in question? What were the results? 
• Is this experiment an external replication of an earlier experiment? Is it an exact 

replication or is any characteristic to be altered? 
 Goals of the experiment • What are the general goals to which this experiment aims to contribute? 

• What particular goal is it to satisfy? 
• What are the null and what is the alternative hypotheses? 

Design  Factors • What are the experimental factors?  
• Why have these factors been chosen? 
• What are the alternatives of each factor? 
• How is each alternative defined, that is, when is a factor said to have a particular 

alternative? 
   Response variables • What are the response variables? Why were these variables chosen instead of others? 

• What metrics are to be employed to measure the response variables? 
• Is there an objective procedure by means of which to get the value of the above metrics? 

What is it? 
  Parameters • What are the parameters?  

• When is a parameter assigned a given value? 
• What guarantees are there that the parameters are kept constant or at similar values across 

all the elementary experiments? 
  Blocks • Are there any blocking variables? What are they?  

• Why do we need blocks? 
• What are the alternatives of the blocks? How are the above alternatives defined? 
• How big is the block? 
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   Experimental units • What are the experimental units? 

• How are the values of their related parameters reflected? 
• If they are not attached to the experimental documentation, where are they specified? 

  Experimental subjects • Who are the experimental subjects? 
• Why have these subjects been chosen?  
• What, preferably objective, criteria were used to select these subjects? What, preferably 

objective, characteristics do these subjects have? 
   Data collection • What process is to be enacted to collect the experimental metrics?  

• At what point(s) during execution will they be collected? Why? 
• If the subjects supply the above metrics, how do the experimenters collect them? On a 

form, for example? If this form is not attached to the experimental documentation, where 
is it available for consultation? 

   Internal replication • How many replications are run of each elementary experiment? Why? 
• What subject and experimental unit is used in each replication? 

  Randomisation • Is it possible to randomise? If so, how was it done? What variables, subjects, 
experimental units, time, etc., have been randomised? 

 Subject knowledge of the 
alternatives 

• How can we assure that the subjects are familiar with the alternatives to be applied? 
• Is it necessary to train the subjects in any of or all the alternatives? How is the above 

training process run? How long does it take? What documentation is supplied? When 
does training take place? 

  Schedule • When are the elementary experiments run? How many days do they take? Which 
experiments are run on which day? 

 Constraints on the validity of the 
experimental results 

• Is the learning effect likely to appear? If so, can it be avoided? How? 
• And the boredom effect? 
• And unconscious formalisation? 
• And the effect of applying a novel alternative? 
• And the enthusiasm effect? 
• And the setting effect? 

Experiment Execution Monitors • Who controls experiment execution? Exactly what role do they play? 
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  Instructions • What spoken and written instructions are given to the subjects? Where are these 

instructions available for consultation? 
• What checks are run to find out whether the subjects actually follow these instructions? 

  Timing • How long have the subjects been given to run the experiment? 
  Exceptions • Has any exception been made with regard to the planned design? Why? How has it been 

managed? 
   Data collected • What were the values of the metrics yielded by each elementary experiment? 
Experimental analysis Constraints • What properties do the collected data have, that is, do they meet constraints on normality, 

independence, etc.? How have the above constraints been tested? 
 Methods of analysis • Have parametric or non-parametric methods been used to determine statistical 

significance? Why? 
• What methods have been used? 
• What confidence level (α) has been used? 

 Results of analysis • What are the results? 
• What factors are important? 
• What factors are statistically significant? 
• If statistical significance has been detected, what method has been employed to identify 

the best alternative? Why? What was the result? 
• If the concept of similarity has been used in the internal replications, for example, with 

regard to the subjects or the experimental units, have the possible differences been tested 
for statistical significance? What was the result? 

 Findings of the experiment • How can the result of the experiment be explained? 
• Does the result obtained contradict or support the results of earlier experiments? 
• What other experiments could be run on the basis of this one to further investigate the 

results yielded? 
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