

BASICS OF SOFTWARE

 ENGINEERING EXPERIMENTATION

Natalia Juristo

Ana M. Moreno

Universidad Politéncnica de Madrid

Spain

Basics of Software Engineering Experimentation v

CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xiii

FOREWORD xix

ACKNOWLEDGEMENTS xxi

PART I: INTRODUCTION TO EXPERIMENTATION

1. INTRODUCTION
 1.1. PRE-SCIENTIFIC STATUS OF SOFTWARE ENGINEERING 3

 1.2. WHY DON’T WE EXPERIMENT IN SE? 6

 1.3. KINDS OF EMPIRICAL STUDIES 10

 1.4. AMPLITUDE OF EXPERIMENTAL STUDIES 12

 1.5. GOALS OF THIS BOOK 17

 1.6. WHO DOES THIS BOOK TARGET? 18

1.7. OBJECTIVES TO BE ACHIEVED BY THE

 READER WITH THIS BOOK 19

 1.8. ORGANISATION OF THE BOOK 20

2. WHY EXPERIMENT?
 THE ROLE OF EXPERIMENTATION IN SCIENTIFIC

 AND TECHNOLOGICAL RESEARCH
 2.1. INTRODUCTION 23

 2.2. RESEARCH AND EXPERIMENTATION 23

 2.3. THE SOCIAL ASPECT IN SOFTWARE ENGINEERING 26

 2.4. THE EXPERIMENTATION/LEARNING CYCLE 27

 2.5. SCIENTIFIC METHOD 33

 2.6 WHY DO EXPERIMENTS NEED TO BE REPLICATED? 35

2.7 EMPIRICAL KNOWLEDGE VERSUS THEORETICAL
 KNOWLEDGE 40

3. HOW TO EXPERIMENT?
 3.1. INTRODUCTION 45

 vi

 3.2. SEARCHING FOR RELATIONSHIPS AMONG VARIABLES 45

 3.3. STRATEGY OF STEPWISE REFINEMENT 47

 3.4. PHASES OF EXPERIMENTATION 49

 3.5. ROLE OF STATISTICS IN EXPERIMENTATION 51

PART II: DESIGNING EXPERIMENTS

4. BASIC NOTIONS OF EXPERIMENTAL DESIGN
 4.1. INTRODUCTION 57

 4.2. EXPERIMENTAL DESIGN TERMINOLOGY 57

 4.3. THE SOFTWARE PROJECT AS AN EXPERIMENT 65

 4.4. RESPONSE VARIABLES IN SE EXPERIMENTATION 70

 4.5. SUGGESTED EXERCISES 80

5. EXPERIMENTAL DESIGN
 5.1. INTRODUCTION 83

 5.2. EXPERIMENTAL DESIGN 83

 5.3. ONE-FACTOR DESIGNS 85

 5.4. HOW TO AVOID VARIATIONS OF NO

 INTEREST TO THE EXPERIMENT: BLOCK DESIGNS 90

 5.5. EXPERIMENTS WITH MULTPLE SOURCES OF DESIRED

 VARIATION: FACTORIAL DESIGNS 97

 5.6. WHAT TO DO WHEN FACTORIAL ALTERNATIVES

 ARE NOT COMPARABLE: NESTED DESIGNS 102

5.7. HOW TO REDUCE THE AMOUNT OF EXPERIMENTS:

 FRACTIONAL DESIGNS 103

 5.8. EXPERIMENTS WITH SEVERAL DESIRED AND

 UNDESIRED VARIATIONS: FACTORIAL BLOCK DESIGNS 104

 5.9. IMPORTANCE OF EXPERIMENTAL DESIGN AND STEPS 113

 5.10. SPECIFIC CONSIDERATIONS FOR EXPERIMENTAL

 DESIGNS IN SOFTWARE ENGINEERING 116

 5.11. SUGGESTED EXERCISES 119

PART III: ANALYSING THE EXPERIMENTAL DATA

6. BASIC NOTIONS OF DATA ANALYSIS
 6.1. INTRODUCTION 125

Basics of Software Engineering Experimentation vii

6.2. EXPERIMENTAL RESULTS AS A SAMPLE OF A

 POPULATION 126

 6.3. STATISTICAL HYPOTHESES AND DECISION MAKING 128

 6.4. DATA ANALYSIS FOR LARGE SAMPLES 132

 6.5. DATA ANALYSIS FOR SMALL SAMPLES 137

 6.6. READERS’ GUIDE TO PART III 147

 6.7. SUGGESTED EXERCISES 151

7. WHICH IS THE BETTER OF TWO ALTERNATIVES?
 ANALYSIS OF ONE-FACTOR DESIGNS WITH

 TWO ALTERNATIVES
7.1. INTRODUCTION 153

7.2. STATISTICAL SIGNIFICANCE OF THE DIFFERENCE

 BETWEEN TWO ALTERNATIVES USING HISTORICAL

 DATA 153

7.3. SIGNIFICANCE OF THE DIFFERENCE BETWEEN

 TWO ALTERNATIVES WHEN NO HISTORICAL

 DATA ARE AVAILABLE 160

7.4. ANALYSIS FOR PAIRED COMPARISON DESIGNS 163

7.5. ONE-FACTOR ANALYSIS WITH TWO ALTERNATIVES

 IN REAL SE EXPERIMENTS 165

7.6. SUGGESTED EXERCISES 173

8. WHICH OF K ALTERNATIVES IS THE BEST?
 ANALYSIS FOR ONE-FACTOR DESIGNS AND

 K ALTERNATIVES
 8.1. INTRODUCTION 175

 8.2. IDENTIFICATION OF THE MATHEMATICAL MODEL 176

 8.3. VALIDATION OF THE BASIC MODEL THAT

 RELATES THE EXPERIMENTAL VARIABLES 179

 8.4. CALCULATING THE FACTOR- AND ERROR-INDUCED

 VARIATION IN THE RESPONSE VARIABLE 186

 8.5. CALCULATING THE STATISTICAL SIGNIFICANCE OF THE

FACTOR-INDUCED VARIATION 189

 viii

8.6. RECOMMENDATIONS OR CONCLUSIONS OF THE

ANALYSIS 195

 8.7. ANALYSIS OF ONE FACTOR WITH K ALTERNATIVES

 IN REAL SE EXPERIMENTS 199

 8.8. SUGGESTED EXERCISES 201

9. EXPERIMENTS WITH UNDESIRED VARIATIONS:
 ANALYSIS FOR BLOCK DESIGNS
 9.1. INTRODUCTION 203

9.2. ANALYSIS FOR DESIGNS WITH A SINGLE BLOCKING

 VARIABLE 203

9.3. ANALYSIS FOR DESIGNS WITH TWO BLOCKING

 VARIABLES 216

9.4. ANALYSIS FOR TWO BLOCKING

 VARIABLE DESIGNS AND REPLICATION 219

9.5. ANALYSIS FOR DESIGNS WITH MORE THAN TWO

 BLOCKING VARIABLES 220

9.6. ANALYSIS WHEN THERE ARE MISSING DATA IN BLOCK

DESIGNS 227

 9.7. ANALYSIS FOR INCOMPLETE BLOCK DESIGNS 229

 9.8. SUGGESTED EXERCISES 232

10. BEST ALTERNATIVES FOR MORE THAN ONE

 VARIABLE: ANALYSIS FOR FACTORIAL DESIGNS
 10.1. INTRODUCTION 235

 10.2. ANALYSIS OF GENERAL FACTORIAL DESIGNS 236

10.3. ANALYSIS FOR FACTORIAL DESIGNS WITH TWO

 ALTERNATIVES PER FACTOR 246

10.4. ANALYSIS FOR FACTORIAL DESIGNS WITHOUT

 REPLICATION 269

 10.5. HANDLING UNBALANCED DATA 280

 10.6. ANALYSIS OF FACTORIAL DESIGNS IN REAL SE

 EXPERIMENTS 286

 10.7. SUGGESTED EXERCISES 289

11. EXPERIMENTS WITH INCOMPARABLE FACTOR

Basics of Software Engineering Experimentation ix

ALTERNATIVES: ANALYSIS FOR NESTED DESIGNS
 11.1. INTRODUCTION 293

 11.2. IDENTIFICATION OF THE MATHEMATICAL MODEL 294

 11.3. VALIDATION OF THE MODEL 294

 11.4. CALCULATION OF THE VARIATION IN THE RESPONSE

 VARIABLE DUE TO FACTORS AND ERROR 295

11.5. STATISTICAL SIGNIFICANCE OF THE VARIATION IN THE

 RESPONSE VARIABLE 296

 11.6. SUGGESTED EXERCISES 297

12. FEWER EXPERIMENTS: ANALYSIS

 FOR FRACTIONAL FACTORIAL DESIGNS
 12.1. INTRODUCTION 299

12.2. CHOOSING THE EXPERIMENTS IN A 2k-p FRACTIONAL

 FACTORIAL DESIGN 300

 12.3. ANALYSIS FOR 2k-p DESIGNS 305

 12.4. SUGGESTED EXERCISES 310

13. SEVERAL DESIRED AND UNDESIRED

 VARIATIONS: ANALYSIS FOR FACTORIAL BLOCK

 DESIGNS
 13.1. INTRODUCTION 313

 13.2. IDENTIFICATION OF THE MATHEMATICAL MODEL 314

 13.3. CALCULATION OF RESPONSE VARIABLE VARIABILITY 316

13.4. STATISTICAL SIGNIFICANCE OF THE VARIATION IN THE

 RESPONSE VARIABLE 317

 13.5. ANALYSIS OF FACTORIAL BLOCK DESIGNS IN

 REAL SE EXPERIMENTS 320

 13.6. SUGGESTED EXERCISES 321

14. NON-PARAMETRIC ANALYSIS METHODS
 14.1. INTRODUCTION 323

14.2. NON-PARAMETRIC METHODS APPLICABLE TO

 INDEPENDENT SAMPLES 324

14.3. NON-PARAMETRIC METHODS APPLICABLE TO RELATED

 x

 SAMPLES 328

 14.4. NON-PARAMETRIC ANALYSIS IN REAL SE EXPERIMENTS 330

 14.5. SUGGESTED EXERCISES 334

15. HOW MANY TIMES SHOULD AN EXPERIMENT

 BE REPLICATED?
 15.1. INTRODUCTION 337

15.2. IMPORTANCE OF THE NUMBER OF REPLICATIONS IN

 EXPERIMENTATION 338

 15.4. THE VALUE OF THE MEANS OF THE ALTERNATIVES

 TO BE USED TO REJECT HO IS KNOWN 338

 15.5. THE VALUE OF THE DIFFERENCE BETWEEN TWO MEANS

 OF THE ALTERNATIVES TO BE USED TO REJECT HO

 IS KNOWN 341

 15.6. THE PERCENTAGE VALUE TO BE EXCEEDED BY THE

 STANDARD DEVIATION TO BE USED TO REJECT HO

 IS KNOWN 342

15.7. THE DIFFERENCE BETWEEN THE MEANS OF THE

 ALTERNATIVES TO BE USED TO REJECT HO IS KNOWN

 FOR MORE THAN ONE FACTOR 343

 15.8. SUGGESTED EXERCISES 345

PART IV: CONCLUSIONS

16. REMINDERS WHEN EXPERIMENTING
 16.1. INTRODUCTION 349

16.2. PRECAUTIONS TO BE TAKEN INTO ACCOUNT IN SE

EXPERIMENTS 349
 16.3. A GUIDE TO DOCUMENT EXPERIMENTS 354

REFERENCES 359

ANNEXES
ANNEX I: SOME SOFTWARE PROYECT VARIABLES 367

ANNEX II: SOME USEFUL LATIN SQUARES AND HOW THEY ARE

Basics of Software Engineering Experimentation xi

 USED TO BUILD GRECO-LATIN AND

 HYPER-GRECO-LATIN SQUARES 379

ANNEX III: STATISTICAL TABLES 385

Basics of Software Engineering Experimentation xi

LIST OF FIGURES

Figure 1.1. The SE community structured similarly to other engineering

communities

Figure 2.1. Iterative learning process

Figure 2.2. Experimentation/learning cycle

Figure 3.1. Process of experimentation in SE

Figure 3.2. Graph of the population of oldenburg at the end of each year as a

function of the number storks observed in the same year <81930-

36)

Figure 4.1. Relationship among Parameters, Factors and Response Variable

in an Experimentation

Figure 4.2. External parameters

Figure 4.3. Internal parameters

Figure 5.1. Design of the first part of the study

Figure 5.2. Design of the second part of the study

Figure 5.3. Three-factor factorial design and two alternatives per factor

Figure 6.1. Distribution of the Z statistic

Figure 6.2. Student’s t distribution for several values of ν

Figure 6.3. Fisher’s F distribution

Figure 6.4. Chi-square distribution for several values of ν

Figure 6.5. Methods of analysis applicable according to the characteristics

of the response variables

Figure 8.1. Point graph for all residuals

Figure 8.2. Residuals plotted as a function of estimated response variable

values

Figure 8.3. Residuals graph with pattern

Figure 8.4. Funnel-shaped graph of residuals versus estimated values

Figura 8.5. Residuals graph for each language

Figure 8.6. Graph of residuals as a function of time

Figure 8.7. Sample means in relation to the reference t distribution

 xii

Figure 8.8. Reference distribution

Figure 9.1. Distribution of residuals against estimated values for our

example

Figure 9.2. Graph of normal probability of residuals for our example

Figure 9.3. Graph of residuals by alternative and block for our example

Figure 9.4. Significant language in a t distribution with the scaling factor

0,47

Figure 10.1. Domain and estimation technique effects

Figure 10.2. Graph of errors and estimated values of the response variable in

the unreplicated 24 example

Figure 10.3. Residual normal probability graph

Figure 10.4. Graph of residuals plotted against estimated response

Figure 10.5. Graphs of effect and interaction for our example

Figure 10.6. Graph without interaction between factor A and B, each with

two alternatives

Figure 10.7. Effects of A, B and AC

Figure 10.8. Effect of the factors and interactions on normal probability paper

Figure 10.9. Normal probability residuals graph

Figure 10.10. Graph of residuals against estimated response

Figure 10.11. Graphs of principal effects and interactions

Figure 12.1. Normal probability graph of the effects of a 25.1 design

Figure 12.2. Graph of normal probability of the 25.1 experiment residuals

Figure 12.3. Graph of residuals plotted angainst predicted values for the 25.1

design described

Figure 12.4. Graph of effects A, B, C and AB

Figure 13.1. Graph of interaction AB

Figure 14.1. Number of system releases

Figure II.1. Greco-Latin squares

Basics of Software Engineering Experimentation xiii

LIST OF TABLES

Table 1.1. Percentage of faults in the car industry

Table 1.2. Summary of fallacies and rebuttals about computer science

experimentation

Table 4.1. Examples of factors and parameters in real experiments

Table 4.2. Examples of response variables in SE experiments

Table 4.3. Examples of software attributes and metrics

Table 4.4. Measurement type scales

Table 4.5. Examples of GQM application to identify response variables in

an experiment

Table 4.6. Examples of response variables in real SE experiments

Table 5.1. Different experimental designs

Table 5.2. Replications of each combination of factors

Table 5.3. Temporal distribution of the observations

Table 5.4. Possible factorial design

Table 5.5. Nested design

Table 5.6. Three hypothetical results of the experiment with A and B to

study RV

Table 5.7. Suggested block design for the 2k factorial design

Table 5.8. Shows the sign for two factors and Table 5.9 shows the sign

table for three factors

Table 5.9. Sign table for the 23 design with two blocks of size 4

Table 5.10. 2 × 2 factorial experiment with repeated measures in blocks of

size 2

Table 5.11. Another representation of the design in Table 5.10

Table 6.1. Examples of null and alternative hypotheses

Table 6.2. Critical levels of the normal distribution for un ilateral and

bilateral tests

Table 6.3. Expected frequencies according to H0 (there is no difference

between tool use or otherwise)

 xiv

Table 6.4. Observed frequencies

Table 6.5. Structure of the remainder of part III

Table 7.1. Data on 20 projects (using process A and B)

Table 7.2. Shows the 210 observations taken from the historical data

collected about the standard process A

Table 7.3. Means of 10 consecutive components

Table 7.4. Difference between means of consecutive groups

Table 7.5. Results of a random experiment for comparing alternative A and

B

Table 7.6. t0 calculations

Table 7.7. Accuracy of the estimate for 10 similar projects

Table 7.8. Ratio of detected faults ρ

Table 7.9. Number of seconds subjects looked at algorithm when answering

each question part

Table 7.10. Percentage of correct answers to all question parts

Table 7.11. Mean confidence level for each question part

Table 7.12. Number of seconds subjects took to answer questions

Table 7.13. Number of times the algorithm was viewed when answering

each question

Table 7.14. Analysis of claim (a)

Table 7.15. Analysis of claim (b)

Table 7.16. Analysis of claim (c)

Table 7.17. Analysis of claim (d)

Table 8.1. Number of errors in 24 similar projects

Table 8.2. Effects of the different programming language alternatives

Table 8.3. Estimated values of ˆ y ij

Table 8.4. Residuals associated with each observation

Table 8.5. Analysis of variance table for one-factor experiments

Table 8.6. Results of the analysis of variance

Table 8.7. Results for good versus bad OO

Table 8.8. Results for bad structured versus bad OO

Basics of Software Engineering Experimentation xv

Table 8.9. Results for good structured versus good OO

Table 8.10. Lines of code used with three programming languages

Table 8.11. Producting coded of 5 development tools

Table 9.1. Data taken for the example of a design with one blocking

variable

Table 9.2. Effects of blocks and alternatives for our example

Table 9.3. Experiment residuals for our example

Table 9.4. Analysis of variance by one factor and one block variable

Table 9.5. Results of the analysis of variance for our example

Table 9.6. Incorrect analysis by means of one factor randomised design

Table 9.7. Coded data for 5 × 5 Latin square of our example

Table 9.8. Results of the experiment with Latin squares in our example

Table 9.9. Analysis of variance of a replicated Latin square, with

replication type (1)

Table 9.10. Analysis of variance of a replicated Latin square, with

replication type (2)

Table 9.11. Analysis of variance of a replicated Latin square, with

replication type (3)

Table 9.12. Greco-Latin square

Table 9.13. Greco-Latin square design for programming languages

Table 9.14. Analysis of variance for a Greco-Latin design

Table 9.15. Results of the analysis of variance for the Greco-Latin square

Table 9.16. Incomplete randomised block design for the programming

language experiment

Table 9.17. Results of the approximate analysis of variance with a missing

datum

Table 9.18. Balanced incomplete block design for the tools experiment

Table 9.19. Analysis of variance for the balanced incomplete block design

Table 9.20. Analysis of variance for the example in Table 9.18

Table 10.1. Data collected in a 3 × 4 experimental design

Table 10.2. Principal effects of the techniques and domain

 xvi

Table 10.3. Effects of interaction αβ for our example

Table 10.4. Analysis of variance table for two factors

Table 10.5. Result of the analysis of variance for our example

Table 10.6. Experimental response variables

Table 10.7. Alternatives of the factors for our example

Table 10.8. Sign table for the 22 design of our example

Table 10.9. Residual calculation for our example

Table 10.10. Analysis of variance table for 22 design

Table 10.11. Results of the analysis of variance for our example

Table 10.12. Alternatives for three factors in our example

Table 10.13. Sign table for a 23 design

Table 10.14. Residual calculation

Table 10.15. Analysis of variance table for 2k model of fixed effects

Table 10.16. Values of the analysis of variance for our example

Table 10.17. Results of the specimen 24 experimental design

Table 10.18. Sign table for a 24 design

Table 10.19. Effects of the factors and interactions of our 24 design

Table 10.20. Residuals related to the nonreplicated 24 design in question

Table 10.21. Residual calculation for our example

Table 10.22. Table of analysis of variance for our example

Table 10.23. Analysis of variance for the replicated data of Table 10.21

Table 10.24. Experiment on how long it takes to make a change with

proportional data

Table 10.25. Analysis of variance for the maintainability data in Table 10.23

Table 10.26. Values of nij for an unbalanced design

Table 10.27. Values of nij for an unbalanced design

Table 10.28. Analysis of variance summary for (Wood, 1997)

Table 10.29. Analysis of Variance of Inspection Technique and Specification

Table 10.30. Analysis of variance testing for sequence and interaction effects

Table 10.31. Improvement in productivity with five methodologies

Table 10.32. Porcentage of reuse in a given application

Basics of Software Engineering Experimentation xvii

Table 10.33. Effort employed

Table 11.1. Data gathered in a nested design

Table 11.2. Examples of residuals

Table 11.3. Table of analysis of variance for the two-stage nested design

Table 11.4. Analysis of variance for the data of example 12.1

Table 11.5. Reliability of disks from different suppliers

Table 12.1. Sign table for a 23 Experimental Design

Tabla 12.2. Sign table of a 24.1 design (option 1)

Tabla 12.3. Sign table of a 24.1 design (option 2)

Tabla 12.4. Sign table of a 24.1 design (option 3)

Tabla 12.5. Sign table of a 24.1 design (option 4)

Table 12.6. 25.1 design

Table 12.7. Result of the analysis of variance for the example 25.1 design

Table 12.8. Number of errors detected in 16 program

Table 13.1. Factor alternatives to be considered

Table 13.2. Combination of alternatives related to 23 design with two blocks

of size 4

Table 13.3. Calculation of the effects in a 23 design

Table 13.4. Table of analysis of variance for k factors with two alternatives,

one block with two alternatives and r replications

Table 13.5. Analysis of variance for our example

Table 13.6. Design of the experiment described in (Basili, 1996)

Table 13.7. Results of the analysis of variance for the generic domain

problems

Table 13.8. Results of the analysis of variance for the NASA problem

domain

Table 14.1. Data on the percentage of errors detected by the two tools

Table 14.2. Data and ranks of the CASE tools testing experiment

Table 14.3. Errors detected per time unit across nine programs

Table 14.4. Kruskal-Wallis test result for development response variables

Table 14.5. Grades attained by two groups of students

 xviii

Table 14.6. Time taken to specify a requirement

Table 14.7. Lines of code with two different languages

Table 15.2. Number of replications generated according to curves of

constant power for one-factor experiments

Table 15.3. Parameters of the operating characteristic curve for the graphs in

Annex III: two-factor fixed-effects model

Table 15.4. Number of replications for two-factor experiments generated

using operatins curves

Table 16.1. Questions to be addressed by experimental documentation

Table I.1. Possible values for problem parameters

Table I.2. Possible values for user variables

Table I.3. Possible values for information sources variables

Table I.4. Possible values for company variables

Table I.5. Possible values for software system variables

Table I.6. Possible values for user documentation parameters

Table I.7. Possible values for process variables

Table I.8. Possible values for the variables methods and tools

Table I.9. Possible values for personnel variables

Table I.10 Possible values for intermediate product variables

Table I.11. External parameters for the software application domain

Table I.12. Internal parameters for the software application domain

Table III.1. Normal Distribution

Table III.2. Normal Probability Papel

Table III.3. Student’s t Distribution

Table III.4. Ordinate Values of the t Distribution

Table III.5. 90-Percentiles of the F(ν1, ν2) Distribution

Table III.6. 95-Percentiles of the F(ν1, ν2) Distribution

Table III.7. 99-Percentiles of the F(ν1, ν2) Distribution

Table III.8. Chi-square Distribution

Table III.9. Operating Characteristic Curves for Test on Main Effects

Table III.10. Wilcoxon Text

Basics of Software Engineering Experimentation xix

Basics of Software Engineering Experimentation xxi

ACKNOWLEDGEMENTS

So many people have provided help and support in one way or other to write this
book. If we list them we could take the risk to forget somebody. We would like to
thank all of them. In particular, we are specially indebted to those many who have
argued directly with us; sharing their visions and considering their helpful
comments have really improved the ideas that we present in this book.

1 INTRODUCTION

1.1. PRE-SCIENTIFIC STATUS OF SOFTWARE ENGINEERING

This book addresses experimentation in Software Engineering (SE). The book is
aimed at raising readers’ interest in experimentation that has been lacking in the SE
field. Borrowing the experimental tradition from other science and engineering areas
could serve the discipline well.

Experimentation refers to matching with facts the suppositions, assumptions,
speculations and beliefs that abound in software construction. Software construction
is supported by and uses a host of ideas: we apply techniques that we trust to output
a given result; we believe that so many people will be able to complete project; we
expect development time to be shorter using a given tool; we assume that the quality
of the final product will be better if we use a particular development process, etc.
But are we sure that our beliefs are true? Which of the claims made by the software
development community are valid? Under what circumstances are they valid?
Unfortunately, there is almost no certitude about the ideas on which SE is founded.

Software engineering has reached a stage that is more resemblant of quackery than
engineering; a situation in which one research paper after another extols the virtues
of a particular procedure, style, technique or set of rules for taming the software
monster and leading to the promised land; a situation in which anecdotes form the
bulk of the information available on how well a particular scheme works, especially
in comparison with competing models; a situation where opinions are often strongly
held, vigorously advocated, and more prevalent than real objective data.

At present, valid ideas are distinguished from false beliefs in SE by applying the test
of time. The certainty of an idea is judged by whether or not people use the idea. If
lots of people use the idea, it seems to be certain. If few people use the idea, it is
assumed to be false and will be ravaged by time. This modus operandi is more
reminiscent of disciplines like fashion than engineering. But, even supposing we
accept this natural selection of ideas, what happens with development projects that
use ideas that are later believed to be false? How can we decide whether or not to
use an idea? How long do we have to wait before we can be sure that an idea
works? And, more importantly, even if the idea is commonly used, are the project
settings in which it is usually employed similar to the project where we want to use
it?

4 Introduction

Confronted by a confusing array of options for producing software, software
engineers need proof that a particular approach or technique is really better than
another. They need to know the clear-cut benefits of one approach versus another.
They need reliable evidence that one approach clearly works better than another.
This need to work with facts rather than assumptions is a property of any
engineering discipline.

Very few ideas in SE are matched with empirical data. Ideas, whose truthfulness has
not been tested against reality, are continually assumed as evident. For example, the
famous software crisis (Naur, 1969) was and still is more a question of a subjective
customer and/or developer impression than a confirmed phenomenon. In fact, we
can find some claims that there is no software crisis (see comments about Turski and
Hoare opinions given in (Maibaum, 1997)). Another example is the idea that
traditional engineering disciplines behave much better than SE (Pezeé, 1997). For
example, has any empirical study been performed to compare the failure rate of
products obtained by SE and those produced by other engineering disciplines? Table
1.1 presents the percentage of faults in the car industry shown in a study carried out
by Lex Vehicle Leasing, one of the major world vehicle hire and leasing companies,
on a universe of 73,700 cars in England. This fault rate could call the reliability of
the engineering used in this industry into question; however, this is not the case.
Therefore, if we are really to speak of a software crisis, we need studies to show that
SE is less reliable than other branches of engineering, that is, the number of faults in
SE should be checked against the number of faults in other branches of engineering.

Other examples of computer science theories that have not been tested are
functional programming, object-oriented programming or formal methods. They are
thought to improve programmer productivity, program quality or both. It is
surprising that none of these obviously important claims have ever been tested
systematically, even though they are all 30 years old and a lot of effort has gone into
developing them (Tichy, 1998). That’s why, after such a long time, it should not be
surprising to find recent publications (Hatton, 1998), reporting, for example, strong
evidence about the negative effects of C++ regarding programmer productivity or
software quality. Another paradigmatic example of supposed beliefs in SE is the
case of the maturity levels of an organisation on which process assessment and
improvement methods are based (Fenton, 1994). These methods suppose that
organisations at level n+1 normally produce better software than organisations at
level n, but this ratio has not yet been empirically demonstrated.

Although there are some exhaustive experimental studies in the computer science
literature, this is not the general rule. The want of experimental rigour in SE has
already been stressed by authors like Zelkowitz (1998) or Tichy (1993) (1995).
These two authors base this affirmation on a study of the papers published in several
software system-oriented journals. According to Zelkowitz (1998), over 30% of

Basics of Software Engineering Experimentation 5

papers had no experimental validation and only 10% of the papers that presented
some experimentation followed a formal approach (equivalent to experimentation in
other disciplines). Tichy’s study (1993) shows how: (1) only 8% of the papers
published included a sizeable quantitative evaluation (at least two pages) of the
proposed approaches; and (2) none of these evaluations were conducted formally,
that is, by establishing a series of hypotheses and repeatable experiments. Within the
field of computer science, this fact is particularly patent in the field of SE. A survey
(Tichy, 1995) of 400 research articles in SE showed that of those that would require
experimental validation, 40% had none, compared to 15% in other disciplines.
Surveys such as Zelkowitz’s and Tichy’s tend to validate the conclusion that the SE
community could do a better job in reporting its results, thus making it easier for
industry to adopt the new research results.

Table 1.1. Percentage of faults in the car industry

Make Fault rate
Rover 28.33
Vauxhall 27.08
Citroën 27.03
Saab 24.84
Ford 23.77
Renault 19.93
Volvo 19.4
Peugeot 17.41
Land Rover 17.03
VW 16.79
Jeep 15.83
Mazda 11.78
Toyota 10.82
Audi 9.32
Jaguar 9.25
Nissan 9.16
Fiat 8.88
Honda 7.89
Mercedes Benz 7.61
BMW 7.11

Moreover, this need for empirical testing in SE is raised nationally in countries like
the USA, where a National Science Foundation workshop (NSF, 1998) brought
together representatives of a broad segment of the US software community in
October 1998 to discuss the report submitted by the President’s Information
Technology Advisory Committee (PITAC, 1998) emphasising the importance of
software for the nation. The workshop examined and elaborated PITAC
recommendations for significant new research effort. Among the research strategies
discussed, we find: “extract useful principles of software construction through

6 Introduction

empirical investigation of successful projects and validate design principles
developed in the research literature and elsewhere; advance our understanding of the
SE process by experimenting with new approaches in application projects”.

The above-mentioned precedents go towards corroborating what Ebert (1997) said
concerning experimentation being one of the open questions in SE. He also claims
in another publication titled “The Road to Maturity: Navigating Between Craft and
Science” (1997a) the lack of conducting controlled experiments in SE is one of the
reasons of SE immaturity. As Pfleeger (1999) put it, experimentation would lead us
to “gain more understanding of what makes software good and how to make
software well”. This knowledge of software development has a range of applications
(Mohamed, 1993) (Pfleeger, 1995). For example, we would be able to decide
between several methods/tools/techniques; look for quantitative relationships among
variables (what relationship there is between the number of errors found in a
program and the number of existing errors or how programmer experience affects
the number of errors made with a given programming language); confirm certain
theories (rules of thumb about module size to “assure” the quality of the software),
etc.

According to IEEE Standard 610.12 definition of SE the notion of software
engineering, like other engineering disciplines, is to apply scientific knowledge to
the development, operation and maintenance of software systems. Experimentation
generally is an important part of such scientific knowledge. In “What Engineers
Know and How They Know It” Vincenti (1990) states six categories of engineering
knowledge, being one of them quantitative data, often the results of empirical
observation (as well as tabulations of values of cunctions used in mathematical
models). One of the hallmarks of software becoming an engineering discipline is to
be able to lay aside perceptions, bias and market-speak to provide fair and impartial
analysis and information.

Moreover, we have to remember that the soundness of an idea is not absolute; that
is, it depends on individual situations. Rombach (1992) claims that one of the
misconceptions of SE is that “principles, techniques and tools are generally
applicable; therefore, there is no need to investigate their limits in different project
contexts”. It is doubtful whether intuition can help to predict when an idea will work
and when it will not.

1.2. WHY DON’T WE EXPERIMENT IN SE?

It is interesting to look at the most commonly used excuses for not embarking upon
experimentation in SE. Tichy (1998) presents some arguments traditionally used to
reject the usefulness of experimentation in this area. Table 1.2 shows a summary of
these arguments alongside a brief refutation.

Basics of Software Engineering Experimentation 7

Table 1.2. Summary of fallacies and rebuttals about computer science
experimentation

Fallacy Rebuttal
Traditional scientific
method isn’t applicable.

To understand the information process, computer
scientists must observe phenomena and formulate
and test explanations. This is the scientific method.

The current level of
experimentation is good
enough.

Relative to other sciences, the data show that
computer scientists validate a smaller percentage of
their claims.

Experiments cost too
much.

Meaningful experiments can fit into small budgets;
expensive experiments can be worth more than their
cost.

Demonstrations will
suffice.

Demos can provide incentives to study a question
further. Too often, however, these demos merely
illustrate a potential.

There’s too much noise in
the way.

Fortunately, techniques can be used to simplify
variables and answer questions.

Experimentation will slow
progress.

Increasing the ratio of papers with meaningful
validation has a good chance of actually accelerating
progress.

Technology changes too
fast.

If a question becomes irrelevant quickly, it is too
narrowly defined and not worth spending a lot of
effort on.

You will never get it
published.

Smaller steps are still worth publishing because they
improve our understanding and raise new questions.

Other difficulties that we have identified for SE experimentation include:

• Software developers are not trained in the importance and meaning of the
scientific method, which, as we will see in the next chapter, is based on
checking ideas against reality, and think that this modus operandi is suited for
the basic and natural sciences, such as physics and medicine, but does not
work in engineering. As they are unfamiliar with the scientific method,
software engineers do not understand the leading role played by
experimentation in validating theories and converting them into facts. Perhaps
some training concerning the scientific method in engineering, including
production, would help software engineers to realise that the
hypothesis/experimentation cycle used by other branches of engineering can be
a big help for understanding software construction.

• Software developers are unable to easily understand how to analyse the data of
an experiment or how they were analysed by others because they are lacking

8 Introduction

the (statistical) training. Not much training is actually needed, as any engineer
or computer scientist is acquainted with the mathematics and statistics to
understand this. It is more a case of neglect than of inability. And this neglect
is probably the result of the need for this effort not being well understood.

• The fact that there are no experimental design and analysis books for SE does
not help either. This makes things harder to understand. Software engineers
obviously prefer to read examples from their field in order to understand a
concept. If the example concerns fertilisers, catalysts or drugs, the concept
appears to be more difficult than it really is. This has been understood in other
disciplines, and textbooks have been written that cut down on the theory and
centre on practice. The appearance of similar books on experimentation in SE
would, perhaps, encourage the inclusion of this subject in the studies of future
developers. This book aims to explain the foundations of experimentation
directed at software engineers and aims to play the same role of easing
understanding as similar books do in other disciplines.

• Empirical studies conducted to check the ideas of others are not very
publishable. In other scientific and engineering communities, not all
researchers are involved in proposing new ideas, the repetition of experiments
performed by others (to check their validity), experimentation with the
theoretical ideas proposed by others or data collection on real cases are all
tasks that are just as meritorious as coming up with original ideas. Indeed,
there are many disciplines that are subdivided into two groups, theoreticians
and experimenters, where theoreticians have the job of creating theories and
experimenters work on testing them. The case of medicine is a paradigmatic
example of the fact that practitioners (not researchers) have an important role
in corroborating ideas (already experimented in the laboratory) in the field. It
is important to understand that all the new proposals tell us is: “Substance A
eliminated bacterium B under laboratory conditions; this could be due to X, Y,
Z. But we cannot assure that A always has this effect on B; or, worse still, A
may have medium/long-term side-effects, which have not been studied”. SE is
similar to medicine in this respect. The underlying theory regarding software
construction is insufficient for us to be able to ascertain the causes of the
effects of certain variables on others. So, the claims regarding innovative
proposals will be similar to what is alleged by medical researchers, but will
need large-scale corroboration. So, the publication of clinical studies by
practitioners is just as important as laboratory experiments by researchers.

• Another reason used is the immense number of variables that influence
software development. It is true that research into a field is all the more
complex, the greater the number of factors and variables that are involved in its
phenomena. However, complexity should not lead us to neglect
experimentation. If we were to be put off by complexity and did not use

Basics of Software Engineering Experimentation 9

experiments to try to combat and control it, we would never get a thorough
understanding of software development or, alternatively, SE would never
mature.

• It is difficult to get global results in SE, such as, for example, determining the
circumstances under which one technique should be selected instead of another
or, alternatively, proving that alternative A is always better. However, it is
possible to determine under what circumstances one option is better than
another. This is still very useful information and can be used to reduce
uncertainty and gain further knowledge.

• Another important constraint on running experiments in SE is the effect of the
human factor on software development; that is, SE is not a discipline whose
result is independent of practitioners. So, the result of several people applying
one and the same software artefact (technique, process, tool, etc.) will almost
certainly yield different results. This amounts to a substantial obstacle to
generalising the results yielded by empirical testing. Far from being considered
as a barrier to experimentation, however, this question has to be addressed so
as to minimise its impact on experiments. In the following chapter, we will go
into this subject in more detail and will examine how to deal with this attribute
throughout the book.

• Yet another factor that influences this situation is the huge amount of money
moved by the software market today. Companies are continuously developing
new, increasingly complex and, ultimately, more expensive software systems.
This should be a condition for applying the different approaches in a reliable
manner. Paradoxically, however, the market is often used as a culture medium
for performing these experiments, with the usual risks. And to top it all, no
rigorous historical surveys are performed on what happens in the industry
when a given method is applied, which would be useful at least in the long
term.

There are certainly a lot of reasons why the culture of experimentation has not
germinated in SE. But the underlying reason is perhaps that much of the SE
community is not conscious of this need, since if there were an understanding of the
importance of debating facts and claims supported by data rather than suppositions
and beliefs and the benefits that this would bring, minor difficulties would be
overcome. These and other difficulties could be surmounted if customers were to
demand experimental validation. Returning to the case of medicine, would any of
us, as patients, accept that the medical community disposed of experimentation and
tested new drugs on us just because someone said that they “could work”?
Unquestionably, if we did not know that medical practices could be first tested in
the laboratory and then on volunteers, we would accept the situation as another
unfortunate thing that we had to put up with. But what would happen if we, the

10 Introduction

patient community, found out that there was a possibility of some sort of testing,
which, however, was not used by the medical community, because it was difficult,
expensive and uninteresting, looked down upon, not publishable, etc.?

There is no denying the fact that the Romans built bridges, despite not being
acquainted with the experimental method. They used trial and error until the thing
worked; and, thus, based on experience, learnt the tricks that had worked (without
knowing why) and discarded actions that had failed. And it is clear that they were
able to build increasingly more complex constructions as a result of the experience
gathered. But is it licit for SE practitioners to follow the Roman method of trial and
error and overlook five hundred years of scientific method? Einstein (Price, 1962)
said that the development of science was based on two major accomplishments, one
of which was the discovery (in the Renaissance) that causal relationships could be
found by means of systematic experiments1.

1.3. KINDS OF EMPIRICAL STUDIES

Broadly speaking, we can identify two different approaches to running empirical
investigations: quantitative and qualitative. Quantitative research aims to get a
numerical (quantitative) relationship between several variables or alternatives under
examination. For example, we would be able to determine how to improve
programmer productivity using a new programming language by means of a
quantitative investigation. The data collected in this sort of studies are always
numerical values (programmer productivity in this case) to which mathematical
methods can be applied to yield formal results.

Other investigations aim to examine objects in their natural setting rather than
looking for a quantitative or numerical relationship, attempting to make sense of, or
interpret, a phenomenon in terms of explanations that people bring to them (Miles,
1994). As Miles and Huberman said, “a main task (of qualitative research) is to
explicate the ways people in particular settings come to understand, account for,
take action, and otherwise manage their day-to-day situations”. Therefore, “the
research role is to gain a holistic overview of the context under study: its logic, its
arrangements, its explicit and implicit rules”. The data collected from these
experiments are usually composed of text, graphics or even images, etc. Thus, for
example, an inquiry to determine why productivity is higher with a new
programming language and gather data on whether it appeals (and what) to
programmers would be a qualitative study. This study would be concerned with
things like the logic of programs and how similar they are to human reasoning. For
example, this could explain to some extent the increase in productivity promoted by
the language in question. In investigations of this kind, most analysis is done with
words. The words can be assembled, subclustered, etc. They can be organised to
permit the researcher to contrast, compare, analyse, and identify patterns.

Basics of Software Engineering Experimentation 11

Nevertheless, there is no formalised procedure for conducting this analysis and
getting formal and completely objective conclusions from inquiries of this sort.

Note that the concept of subjectivity and objectivity is not necessarily correlated to
either of these types of investigation. We meet with both subjective quantitative
studies (suppose, for example, a study in which the understanding of some
requirements in a given formalism are to be assessed on a scale of 0 to 10) and
objective quantitative inquiries (for example, an experiment to gather the number of
errors detected after applying a testing technique). The same can be said of
qualitative investigations, there are subjective qualitative inquiries (for example, a
study to specify which modelling technique is preferred by several users and why)
and objective qualitative studies (for example, a study that examines the diagram
representing the module-call tree of a series of applications).

Qualitative or quantitative studies are generally run depending on the reality under
examination. It is the way in which the reality is described rather than the reality per
se that is quantitative or qualitative. So, for example, both kinds of inquiries are
applicable in what are known as the natural sciences (that is, sciences that are
governed by the laws of nature; usually include physics, chemistry and biology) and
social sciences (that usually include politics, antropoloty, economy and
psychology). Thus, for example, we could run a qualitative inquiry in medicine to
reflect the mood of patients taking a given tablet; as well as sociological studies that
investigate the voting motivations of a given population. Nevertheless, it is true that
quantitative studies are more common in the natural sciences. This is because, being
more formalised, it is easier to gather numerical variables that can be used to
measure possible relationships among variables more accurately. Very often the
maturity of a discipline corresponds with the use of quantitative variables. In SE we
tend to think that the most of the quantitative concepts we work with are inherently
uncharacterizable. Vincenti’s book “What Engineers Know and How They Know
It” (Vincenti, 1990) discusses the advance of aeronautical engineering betwen the
world wars when they were able to “translate and amorphous, qualitative design
problem into a quantitatively, specifiable problem susceptible of realistically
attainable solutions” refering to “those qualities characteristics of an aircraft that
gover the ease and precision with which a pilot is able to perform the task of
controlling the vehicle”. In the case of SE, which, as we will see in the following
chapter, has a weighty social component, we can run both quantitative and
qualitative inquiries, as illustrated by the two examples on the new programming
language above. Both sorts of studies can be applied to the same topics, even though
they both address different questions.

Quantitative investigations can get more justifiable and formal results than
qualitative inquiries. Because they gather numerical variables, they are more useful
for matching ideas or theories with reality. Thus, quantitative studies can be used to
very reliably expand the body of knowledge of any discipline. This does not mean

12 Introduction

that qualitative studies are useless. Although these studies cannot be as easily
formalised, they are necessary for comprehensively defining the full body of
knowledge of any discipline. So, the two inquiries are to be considered as
complementary rather than competitive (as Einstein pointed out “Not everything that
counts can be counted; and not everything that can be counted counts”). So,
qualitative inquiries could be used as a basis for establishing hypotheses that could
then be quantitatively matched with reality. Similarly, when a discipline has a set of
quantitatively matched ideas, qualitative procedures can be used to try to find the
causes of or justify the above quantitative results. Readers interested in qualitative
studies are referred to (Miles, 1994), whose authors review a range of existing
qualitative approaches and propose a (pseudoformalised) procedure for analysing
textual data gathered in these studies.

1.4. AMPLITUDE OF EXPERIMENTAL STUDIES

Remember that the purpose of the experimentation is to match ideas with reality.
Well, this experimentation is performed at different levels by several groups within
a community. This means that a range of groups within the community have
different responsibilities with regard to the verification of knowledge. Let's take a
look at what happens in other disciplines so as to get an idea of how the
responsibility of verifying knowledge should be stratified in the SE community.

The first link in the chain responsible for checking theories against facts are the
researchers themselves. This level of experimentation is what are known as
laboratory or in vitro experiments. Although it is the researchers who are
responsible for checking their ideas, the community must press for this. The results
of above-mentioned studies conducted by Tichy (1995) and Zelkowitz (1998) about
SE publications, where many of the ideas are presented by researchers without any
empirical testing whatsoever, are disheartening.

Laboratory studies are characterised by having strictly controlled conditions, as
opposed to the real world, where the conditions cannot be controlled at will. Thus,
for example, when the pharmaceutical industry wants to investigate the influence of
a given substance on a particular disease-causing bacterium, the laboratory
experiments involve isolating the bacteria in test tubes and adding the substance in
question. Obviously, the test tube is nothing like the human body (the real situation
in which the bacteria in question live). However, this first round of laboratory
experiments is absolutely necessary to answer the preliminary question “does
substance S have any effect on bacteria B?” If the results of the laboratory
experimentation are unpromising, the research will have to change direction. On the
other hand, if the results confirm the idea that S influences B, then a different sort of
experiment is conducted under increasingly less controlled and real-like conditions,
moving from the test tube to the living organism, the rat, the monkey, up to the
human being subject to scientific observation. Only if these investigations yield

Basics of Software Engineering Experimentation 13

satisfactory results is the medicine administered to the typical patient. Note that the
strength of the evidence is related to the degree of control we have in the studies we
perform. If we can carefully control all the variables that affect bacteria B, we can
say that a change in bacteria B is due to substance S, but if we cannot control all the
variables, all we can say is that that substance S probably or possibly causes the
change.

This transition of experiments from the laboratory (controlled conditions) to reality
(uncontrolled conditions) takes place in all other fields of science or engineering.
Experiments on new materials, for example, are not conducted on the constructed
artefact. First, their properties are investigated in the laboratory, and if they
satisfactorily pass this first round of experiments, tests can be carried out on the
artefact in question and, finally, during routine use. So, although the first link in the
chain of verifying ideas against reality is the researcher, laboratory experiments are
not the whole story. If the SE community were structured similarly to other
engineering communities, idea validation should be at least a three-stage process.

First, as discussed above, the innovative idea should be checked by its inventor by
means of laboratory experiments. For SE, a laboratory experiment is a (or part of a)
development project not subjected to market pressures, in which the techniques
used, the process employed, the background of the developer, etc., can be
controlled. As discussed in the next chapter, the laboratory experiment must be able
to be replicated in other laboratories for the new knowledge to be considered valid.
So, this first level of experimentation is formed not only by the experiments of the
original researcher but also by the experiments replicated by other researchers that
corroborate the results.

The second level of experimentation should be carried out on real projects, whose
developers are prepared to run risks for the purpose of learning about the latest
technological innovations. In other areas of SE, such teams are known as early
adopters and the projects, as case studies. The limits of the innovative proposal can
be better studied by means of these experimental projects or in vivo experiments. In
other branches of engineering, it is very common to find articles reporting the
results of one or several experimental projects, informing the community about
when the theory tested at the laboratory level did and did not work in the real world.
In this respect, Geoffrey Moore (1991) asserts that, as adopters of a new technology,
this kind of practitioners are visionaries. They are eager to change the existing
process, willing to deal with faults and failures and, in general, are focused on
learning about how a new technology works. They are revolutionaries willing to
take big risks, and they feel comfortable replacing their old tools and practices with
new ones.

Only when a new idea has satisfactorily passed through these two levels of
experimentation can we proceed to its use in genuine real-world projects (by

14 Introduction

pragmatic practitioners as opposed to the visionary practitioners mentioned in the
previous level). Only then will the users of the innovation know the risks they run in
using it and what the best conditions for its use are. However, even at the start of
routine use of an innovation, the community is responsible for collecting data on its
performance, that is, observing the development projects in which the innovation is
applied. By gathering these historical data, the consequences of its use will be
perfectly determined in a few years' time and, hence, the application of a particular
idea in given circumstances will have foreseeable results. A good example of such
data collection occurs in medical science by means of what are known as clinical
trials. During these trials, practitioners, in this case physicians (note not the
researchers), collect data about their patients to gather evidence about how a new
medicine behaves in the uncontrolled reality of a standard patient. Again, this type
of studies are made known to the community through publications.

Note that a fundamental difference between this and the above levels is that
researchers merely observe reality in the latter case, whereas they somehow
“modify” this reality in the above cases, subjecting it to changes to evaluate their
effect.

So, three types of practitioners are involved in testing an idea in other scientific or
engineering disciplines:

− Researchers perform laboratory experiments to check their proposals under
controlled conditions. Researchers publish their original proposal and the results
of their experiments that identify the conditions of application or use of the
proposal and the improvements that can be obtained. At this same level, other
researchers replicate the original experiments and publish the results of the
replications so that the community knows whether they were satisfactory and a
given theory can be considered to work in the laboratory at least.

− Innovative developers venture to use the latest innovations according to the
guidelines set out by the laboratory experiments. These innovative practitioners
publish their experimental projects, establishing more accurately when the
researchers’ proposal worked and when it did not, and what improvements were
observed. The limits and boundaries of the proposal can be defined by
accumulating real cases.

− Routine developers use the new proposals at little risk, knowing what
improvements they can expect from their use (as the improvements are
supported by experimental studies and not by mere opinions). Some of these
developers collect data from their projects and publish the behaviour of the new
proposals in a host of different circumstances. Thanks to the evidence gathered,
the researchers’ original proposal is accepted by the community after a few years
and is considered to be an established fact rather than a mere speculation.

Basics of Software Engineering Experimentation 15

Additionally, along the road from speculation to fact, when and how the original
idea is to be used will have been established. Theoretical advances in the
discipline will be needed to establish why the new idea works.

The adaptation of this idea to SE is illustrated in Figure 1.1.

Idea !! Experiment 1
Applying IDEA

Experiment m
Applying IDEARESEARCHER

0
0

0

Publication of IDEA
and results of the experimentation

Experimental Project 1
Applying IDEA

Experimental Project L
Applying IDEA

Experimental Project 1
Applying IDEA

Experimental Project M
Applying IDEA

INNOVATIVE
DEVELOPER 1

INNOVATIVE
DEVELOPER N

Publication of
experiments
When did they
end? What effects
did they have?

When did they end?
What effects did
they have?

Publication of
experiments

P
1

Pq

P
1

Pr

Project 1
Applying IDEA

Project p
Applying IDEA

Publishes data on
experiences

ROUTINE
DEVELOPER 1

ROUTINE
DEVELOPER k

Publishes data on
experiences

The following are established as facts in the body of knowledge of the discipline:
•limits of the IDEA
•consequences of the use of the IDEA
•expected effects of the use of the IDEA in various circumstances
•risks and hazards of the use of the IDEA

Experiment 1
Applying IDEA

Experiment n
Applying IDEA

OTHER RESEARCHERS

Publication of IDEA
and results of the experimentation

...

...

...

...

... ...

......

...
...

Publishes data on
experiences

Figure 1.1. The SE community structured similarly to other engineering communities

The software community obviously does not take the benefits (in terms of reduced
risks and increased useful investment) of empirically testing suppositions at any of
the above levels seriously. As an illustration of how things are done in software
projects, consider our usual manner of incorporating innovations transferred to
another branch of engineering. Suppose a materials researcher went to the president
of an aircraft company with a new, revolutionary metal alloy perfect for

16 Introduction

manufacturing lightweight airliners and insisted that the metal be put on the
production line the next day. What do you think would happen? The researcher
would be taken away in a straitjacket for such an outrageous recommendation. The
company, as is usual practice in engineering, would want to experiment with the
metal first, testing it on a small scale, then gradually extending its use, if the
experiments proved successful. Immediate adoption would be out of question.

The three levels of experimentation we are discussing have also been called
laboratory experiments, quasi-experiments and surveys, respectively. They are
applicable in the above-mentioned order to contrast an idea in what are known as
the applied sciences (physics, engineering, chemistry, etc.). However, they can also
be applied separately to run other kinds of studies, such as, for example, surveys to
evaluate the mean development productivity of an organisation or to analyse the
mean surplus cost in software projects run by the above organisation. Ideally, the
more homogeneous the elements examined in the surveys are, the better the results
obtained will be. So, for example, the greater the similarity between the projects
carried out at the above organisation, the more representative the mean productivity
obtained for a new project will be. However, if the projects assessed at the above
organisation refer to different domains, different development approaches, etc., the
mean productivity obtained is unlikely to be very representative for a new project to
be undertaken. On the other hand, this homogeneity which, as we have said, is good
within each organisation, makes it more difficult to extrapolate the results to other
organisations, for example.

Note that in that surveys many of the variables that influence projects are not
controlled. But, as a lot of data are collected in these cases, the effects of this
variables are theoretically equally divided. Finally, let’s say that this surveys do not
necessarily have to be collected contemporarily. It is also possible to analyse
historical data, that is, data collected over time.

In other areas, like the social sciences, surveys are very common practice, for
example, for analysing voting intentions or running market research. As specified
by Judd (1991), however, laboratory experiments are not always appropriate for
running experiments in this sort of sciences, where there are variables, like race or
sex, that are constant or where long-term effects (“important phenomena in social
relations develop only ever weeks, months or years”) have to be taken into account.
This involves the use of less controlled settings, like quasi experiments. As far as SE
is concerned, despite its weighty social component (which is examined in detail in
the next chapter), these three levels are still applicable, although the necessary
precautions have to be taken to minimise the impact of the variation between
practitioners, as discussed throughout the book.

These three levels of experimentation can be applied both to qualitative and
quantitative investigations in theory. However, laboratory experiments are usually

Basics of Software Engineering Experimentation 17

typified as quantitative studies in practice, as they are based on measuring the
changes caused by different variables. During these investigations, quantitative data
are collected, to which mathematical (particularly statistical) methods can be applied
to get formal results. In this book, we will mainly focus on the process of
experimentation for quantitative laboratory experiments, as they are, on the one
hand, the first link in the experimental chain, and, on the other, being quantitative,
can yield justifiable results that can be used to expand the body of knowledge of our
disciplines. Readers interested in the other levels can consult (Judd, 1991) and
(Campbell, 1963) for detailed information.

1.5. GOALS OF THIS BOOK

In view of the situation discussed above, we thought that it would be a good idea to
write a book directed at software engineers about running experiments. This book
could be an aid for improving the grounds given for the dearth of experimentation in
SE. As mentioned above, we will actually focus on experimentation run in the
laboratory aimed at quantifying the effect of one or more variables. Thus, we will
apply the technique of Experimental Design and Analysis (founded over 80 years
ago by Sir Ronald Fisher). The experiments supported by this technique aim to
quantify the effect of qualitative variables (for example, use of the tool A or B) on a
particular property that can be measured quantitatively (for example, the quality of
code measured as the number of errors in the code). Other experiments, not
addressed in this book, look for quantitative relationships between quantitative
variables, for example, determining the relationship between the number of errors
found and the number of errors there are in a program, for which other techniques,
like correlation, are used. These are not addressed as they are better documented in
the literature than the others have traditionally been.

Firstly, we have assumed that readers do not necessarily have such an in-depth
knowledge of mathematics as called for by the traditional books on experimental
design. Hence, we will focus on the conceptual essence of experiments, specifying
the mathematical calculations to be made in a clear and simple manner, often
skipping the mathematical and formal reasoning that justifies the use of certain
statistical or mathematical expressions. For readers interested in this subject, we will
include references which they can consult for this mathematical reasoning.

Secondly, the book is practically oriented, for which reason the least amount of
theory required to run experiments has been included. This is not, therefore, a
theoretical book on experimental design and data analysis. There are many books of
this sort, written by reputed mathematicians and statisticians on the market. Readers
in search of thorough theoretical knowledge of experimental design and data
analysis should consult specialised books that address these issues generally and do
not focus on a particular discipline.

18 Introduction

Thirdly, the book is totally directed at SE. This means that all the examples used to
explain how to run experiments are considered in a software setting. This feature
should make it easier for software engineers to learn the basic notions on how to run
experiments. Additionally, the situations encountered in the examples can be
expected to be familiar to readers and easily assimilated to their situations, and this
means that the concepts learnt can be applied almost directly. When software
engineers look to learn how to run experiments from the books there are on this
issue, the examples they find are taken from biology, medicine, agriculture,
chemistry, etc., but not from software. These examples using specialised
terminology from other fields are more difficult for software engineers to
understand.

Fourthly, this book presents, whenever possible, real examples of experiments run
in the SE setting. Thus, the book supplies readers with data on the state of the
practice in SE experimentation. The results of the experiments discussed here (most
of which are taken from the literature) can help readers to ascertain what empirical
data there are on certain SE theories.

1.6. WHO DOES THIS BOOK TARGET?

As it is conceived, this book can be used by both researchers and software
developers who are new to the experimental process. So, it is important to
emphasise that this is a book directed primarily at novices to the field of
experimentation. The first group will be able to use the content of the book to
formally test the features of new artefacts for software development generated as a
result of their research. In this manner, they will be able to rigorously examine the
behaviour of their theories in a variety of situations and thus define the best
conditions of applicability. This will enable them to demonstrate what benefits their
new theories offer, something for which the software industry has been crying out
for some time.

On the other hand, many software development organisations find that they have to
choose between a series of development artefacts; however, they do not have the
quantitative data to determine what benefits each one offers. The content of this
book can help decision-makers to put together experiments that output a data set on
the basis of which to determine which artefact to use. Software developers can also
use the content of this book to analyse the impact of innovations on their
development and thus determine whether or not the above novelties should be taken
up by their organisations.

Developers can also use the content of this book to control software production
similarly to product production in other engineering disciplines. In this case, the
developer does not run laboratory experiments but has to collect data during
development/production. These data can be an aid for better understanding the

Basics of Software Engineering Experimentation 19

factors that affect the problem and thus for better controlling development. Part III
of the book, which discusses data analysis, is a useful aid for developers in
performing this task.

So, after reading this book, readers can be expected to have understood the need and
importance of experimentation in SE; to be able to assess whether they need to run
experiments; if they opt to run experiments, benefit from recommendations on how
to carry the experiments out. If readers decide to go further into the subject of
experimental design and data analysis, this book will have been useful as an
introduction and, above all, for situating the content of the other books they decide
to study within the experimentation process.

1.7. OBJECTIVES TO BE ACHIEVED BY THE READER OF THIS BOOK

Readers who read this book from cover to cover are expected to achieve a variety of
objectives. Firstly, they should apprehend the need and importance of
experimentation in the software community, understanding how software
development can benefit from experimentation. Secondly, they should understand
when to experiment, that is, readers should be able to determine when it is useful to
run experiments and decide whether they are warranted by the situation. Thirdly, if
they have to run experiments, the book will help readers as to how to do this, that is,
readers will identify what activities they have to perform to run experiments, how
they should be focused, how the data obtained should be interpreted, etc.

This is a beginners’ book, in which, as mentioned above, we seek to lay the
foundations of experimentation in SE and provide a guide for performing
experiments in SE. Therefore, our objective is to provide a knowledge base for
researchers and developers who want to experiment and empirically validate their
ideas. It is important to note that this is not a pure statistics book, nor does it provide
full details on experimental design, which is what the traditional books concerning
these fields (which are referenced throughout this book) are for. The idea is that
researchers and developers who are novices with regard to experimentation can
consult this book to gain an understanding of the basic concepts of experimental
design and analysis in SE. If, having understood these ideas, readers need to resort
to more detailed information, they can consult books specialised in particular
subjects (some of which are referenced in this book).

1.8. ORGANISATION OF THE BOOK

The book is composed of four parts. Part I: Introduction to Experimentation deals
with general issues concerning the experimentation process, including its usefulness
for the process of acquiring knowledge and describing how to undertake
experiments. Part II: Designing Experiments details the concepts related to the first
part of the experimental process, that is, the development of a complete plan that

20 Introduction

will specify how to run the experiments to be carried out. For this purpose, this part
describes the terminology used in experimental design, and the concepts to be
considered to define this plan. Part III: Analysing Experimental Data describes how
to interpret the data gathered from the experiments. This is the part that addresses
the mathematical and statistical concepts to be applied to interpret the above results.
However, as specified previously, these concepts are explained in simple terms, and
more importance is attached to how they are to be interpreted to draw conclusions
from the experiments than to their mathematical justification and formalisation.
Finally, Part IV: Conclusions presents some general recommendations on SE
experimentation and gives a guide for documenting experiments.

Below, we briefly describe the content of the chapters in each of the three parts. Part
I is composed of three chapters. Chapter 1: Introduction, which, as we have just
seen, describes the different kinds of empirical inquiries that can be performed,
delimits the sort of empirical studies examined in this book. This chapter also
describes the motivation of the book and its organisation. Chapter 2: Why
Experiment? The Role of Experimentation in Scientific and Industrial Research
describes the relationship between experimentation generally (not only the
laboratory experiments on which the book focuses) and the formation of knowledge
in any discipline. The objective is to underline the fundamental role played by
experimentation in maturing any field. Chapter 3: How to Experiment focuses on the
generic process to be followed to run an experiment. In short, this chapter describes
the strategy for planning experiments, which, as we shall see, is based on successive
approaches or iterations, and on the phases to be addressed in each of the
approaches.

As already mentioned, Parts II and III focus on the most important phases of
experimentation, Experimental Design and Experimental Data Analysis,
respectively.

Part II starts with Chapter 4: Basic Notions of Experimental Design. This chapter
describes the basic concepts that are used in experimental design, including
experimental unit, factors, response variables, etc., and discusses their application in
SE experiments. Depending on the conditions of each experiment, it will follow
what is called a particular kind of experimental design. Chapter 5: Experimental
Design describes the different types of designs and discusses real experiments run
according to the above designs. The different experimental designs are described
focusing on the questions that experimenters may raise when planning.

Part III describes how to analyse the quantitative data collected from experiments.
The first chapter of this part, Chapter 6: Basic Notions of Data Analysis presents
some brief statistical notions for SE experimenters to get an idea of how the results
yielded by the experiments are analysed. The following chapters are focused on
possible questions raised by experiments and how to analyse the data to answer the

Basics of Software Engineering Experimentation 21

questions posed in Chapter 5 on the different kinds of designs. In these chapters,
statistics takes second place, as it is subordinated to use within the experimental
process. However, the statistical notions presented in Chapter 6 are necessary so that
the terminology used in the remainder of Part III does not scare off readers and they
can understand the underlying concepts. As we will see, there are different
techniques of analysis depending on the design of the experiment and the
characteristics of the data collected. Those techniques can be classified as
parametric and non-parametric methods. Parametric methods are studied in Chapters
7 to 13 depending on the number of factors under consideration. Non-parametric
methods are described in Chapter 14: Non-Parametric Analysis Methods. Chapter
15: How Many Times Should an Experiment Be Replicated discusses how to find
out how many times we should replicate our experiments. Actually, this is a design
question, but the concepts to be used for this task are statistical concepts that are
explained during Part III of this book. This explains why we have included this
chapter at the end of this part.

We conclude with Part IV and Chapter 16: Some Recommendations on
Experimenting offering a series of recommendations and suggestions on performing
and reporting experiments in SE.

These four parts are supplemented by three annexes. Annex 1: Some Software
Project Variables describes a set of variables that can affect software development
so that novice readers interested in running SE experiments can examine whether or
not they are of use in their individual experiments. Annex II: Some Useful Latin
Squares and their use in Building Greco-Latin and Hyper-Greco-Latin squares
details a particular sort of experimental design, known as Latin squares, and their
origin, which is far removed from the field of experimental design and analysis.
Finally, Annex III: Statistical Distributions presents the tables of the statistical
distributions that are used in Part III of the book in the process of analysing
experiments.

NOTES

1 This is taken from a letter (cited in Price’s book “Science since Babylon”, published by Yale University
Press in 1962) sent by Einstein to Switzer, which read as follows: “The development of Western science
is based on two great accomplishments: the invention of the formal system of logic by the Greek
philosophers and the discovery that causal relationships can be discovered by means of systematic
experiments”.

2 WHY EXPERIMENT?
THE ROLE OF EXPERIMENTATION

IN SCIENTIFIC AND TECHNOLOGICAL
RESEARCH

2.1. INTRODUCTION

Chapter 1 briefly described some ideas about the need for experimentation in
SE. This chapter discusses in more detail this question. In particular, section 2.2.
analyses what use the process of experimentation is to any scientific and
engineering discipline, that is, analyses how scientific experimentation
contributes to the development of a science or branch of engineering. We will
see how these ideas are also applicable to a scientific discipline to be used for
software development.

Software development has, however, some important characteristics concerning
experimentation. These characteristics are mainly based on the importance of
the human factor in software development and, therefore, on the experiments to
be run in SE. Although several forms of dealing with this characteristic will be
examined throughout the book, this issue and its possible implications for SE
experimentation are discussed in detail in section 2.3.

In sections 2.4 and 2.5 we will take a closer look at the process of
experimentation in any discipline and will study how this process fits the
scientific method generally. Finally, in section 2.6, we will discuss what sort of
results we can expect from running experiments depending on the kind of
knowledge available at the time about the discipline in question, and we will
specify these ideas for the current maturity status of SE.

2.2. RESEARCH AND EXPERIMENTATION

Research is an activity performed, voluntarily and consciously, by humankind in
search of indisputable knowledge about a particular question, that is, to bring to
light a parcel of knowledge that was unknown. However, a researcher’s goal is
not always merely to broaden knowledge. Often researchers seek to gather
certain knowledge to meet a particular practical end of technological, social or
economic interest. In “The Nature of Engineering” Rogers (1983) describes the
aims of technological research: “The essence of technological investigation is
that they are directed towards serving the process of designing and
manufacturing or constructing particular things whose purpose has been clearly
defined. We may wish to design a bridge that uses less material, build a dam that
is safer, improve the efficiency if a power station, travel faster on the railways,

24 The Role of Experimentation in Scientific and Technological Research

and so on. A technological investigation is, in this sense, more prescribed than a
scientific investigation. It is also more limited, in that it may end when it has led
to an adequate solution of a technical problem”.

Anyone working in scientific and technical research accepts, as a working
hypothesis, that the world is a cosmos not a chaos, that is, there are natural laws
that can be comprehended and thought out. In the case of SE, researchers can be
said to assume that precepts that describe and prescribe the optimum means of
building software can be discovered and established. As Pfleeger (1999) said,
the basis of all empirical software engineering is “if we look long enough and
hard enough, we will find rational rules that show us the best ways to build the
best software”.

For a body of knowledge to be considered scientific, its truth and validity must
be proven. A particular item of knowledge is considered to be scientifically
valid if it has been checked against reality. Scientific progress is founded on the
study and settlement of discrepancies between knowledge and reality. Scientific
research is the antithesis of opinion. Ideally, researchers do not opine, they
explain objective results. Their studies are not based on subjective factors, like
emotions, opinions or tastes. Scientific investigations are objective studies,
based on observations of or experimentation with the real world and its
measurable changes.

It can be said that there are various levels of knowledge in science (Latour,
1986): facts given as founded and accepted by all, undisputed statements,
disputed statements and conjectures or speculations; that is, postulates range
from enunciations bordering on factualness to the most speculative assertion.
The ranking of an enunciation depends on the change in its factuality status. The
path from subjectivity to objectivity paved by experimental verification or
comparison with reality determine these changes. Unfortunately, we have to
admit that ideas are not checked against reality in the field of SE as often as
would be necessary to assure the validity of the models, processes, methods and
techniques that are constantly being proposed and used in software construction.
We are still working in the field of subjectivity, opinion and speculation today
or, at best, in the realm of disputed statements.

Traditionally, scientific research was defined as investigation in search of
knowledge about the physical universe, as opposed to philosophical, historical
and literary inquiry. Today, the scientific method is pervading all disciplines. In
the beginning, scientific research was rooted in the observation of nature -the
world and the universe- without modifying anything about nature. Now, most
scientific research is based on experimentation, that is, on the observation of
phenomena provoked for research purposes (by modifying reality) and on the
measurement of the variables involved in the phenomena. The old view taken of
the scientific method applicable only to natural science (physics, chemistry,

Basics of Software Engineering Experimentation 25

biology) is now obsolete. So, we can find experiments that compare conjectures
against reality in disciplines as far removed from the natural sciences as
sociology and linguistics. For example, the writings of Whorf (1962) and
Lenneberg (1953) stress the need to objectify the hypotheses on which
linguistics is based using empirical tests. One of these empirical tests (these
studies contributed to what Whorf termed the principle of linguistic relativity,
according to which there is a correlation between the linguistic structure and
non-linguistic behaviour) was run by Brown and Lenneberg (1954). These
authors showed that the differences in the ability to remember and recognise
colours was associated with the availability of specific names in a given
language. Today, individual branches of science differ with respect to the use to
which they put the knowledge obtained (basic pure research, basic oriented
research, applied research and experimental development) but not with regard to
the method applied to gather the above knowledge (OECD, 1970).

Founding engineering disciplines on scientific knowledge (that is, knowledge
that has been subjected to experimentation to check its factuality) is a means of
guaranteeing the artefacts built. The major advantage of scientific knowledge is
that it is predictive. The physical law of speed (a paradigmatic example of a
theoretical statement confirmed by facts) can be applied to predict the distance
travelled by an object in movement within a particular space of time. Laws on
materials resistance can be used by engineers to predict how a particular
material will behave if it is used to build a bridge (provided the length of the
bridge, the weight it is to bear and a series of other conditions are known). In
other words, the body of proven knowledge within an engineering discipline can
be used to predict the behaviour of the artefacts built: how resistant a dam will
be, whether or not a new plane will fly, whether a building will stay upright, etc.

Obviously, the knowledge underlying engineered constructions has its
limitations. But, usually, the failure of an engineered product to behave as
predicted by the knowledge used in the construction process can be put down to
two things: negligence on the part of developers (the knowledge was poorly
applied, whether mistakenly or deliberately) or the knowledge failed.
Knowledge usually fails as a result of special conditions: either the artefact was
an innovation (a longer bridge, a higher building, etc.) or exceptional
circumstances arose (stronger winds than usual in the place in question, an
atypical landslide, etc.).

It is quite clear that the results of software construction cannot be predicted by
the body of SE knowledge. If technique T is used, will it take more or less time
to complete the project? If more people are brought into the team, will a system
be more or less reliable? Etc. No relationship can be said to be known in SE, not
even between certain project variables. Is SE so different from other engineering
disciplines that certainty about the effects of a series of changes on software
production is unattainable?

26 The Role of Experimentation in Scientific and Technological Research

2.3. THE SOCIAL ASPECT IN SOFTWARE ENGINEERING

If we were to overlook the human factor in software development, the last
question in section 2.2 could be answered affirmatively. In other words, other
disciplines deal with the laws of natural science that are independent of who it is
that manipulates them. This means that the laws of physics do not differ if they
are used by a novice or by an expert, and the same goes for a chemical reaction.
Natural processes differ from social processes, which are the product of human
intention or consciousness. In this sense, SE can be considered as a social
process in that the artefacts (methods/tools/paradigms) to be used are affected by
the experience, knowledge and capability of the user. Thus, an important
difference between SE and other engineering disciplines is the importance of the
human element. Moreover, we find that SE takes place in a social context and,
as such, is influenced by relationships among people (the project team, the
managers, the users, etc.) and the social context (corporate culture,
organisational procedures, etc.).

To acknowledge the social factor in software development prevent us from
falling into the error of directly apply physical determinism to human behaviour.
The direct application of the causal-deterministic model of classical physics to
social phenomena means to accept that social facts (psychological, sociological)
are completely determined by the preceding facts. This vision excludes
explanations referring evolution, option and responsibility in human matters. As
the social sciences have long acknowledge (Alston, 1996) working with human
beings makes experiments more complex than natural sciences.

These characteristics are often used by software engineers as an excuse for not
experimenting. However, not experimenting leads to the above-mentioned
situation in which SE artefacts are used without any certainty as to their results.
Far from being used as an excuse for not empirically corroborating the ideas
used in SE, SE’s special situation, resembling what befalls the social sciences,
has to be exploited to gain a better understanding of these properties and assure
that the above characteristics are taken into account when running experiments
and generalising their results. Throughout the book, we will see how it is
possible to employ a range of strategies (such as block design, randomisation,
different levels of experimentation -discussed in Chapter 1- or other
recommendations mentioned in Chapter 5) to deal with these characteristics and
minimise their impact.

Furthermore, defining scientific theories can take a long time in any discipline,
during which experiments are repeated, manipulating different parameters until
the theory can be supported or refuted. However, technology changes rapidly in
SE, and it can be difficult to run this sort of studies. Again, this cannot be
allowed to stand in the way of experimentation. Instead, Pfleeger suggests the
application of an iterative approach to deal with this problem, similar to the one

Basics of Software Engineering Experimentation 27

used in the social sciences, and suggests the following example (Pfleeger, 1999).
“An educator proposes a new reading technique and tries it on a group of school
children. Based on the result of the initial study, the technique is improved
somewhat, and a second, similar study is run.” As we will see in this chapter,
this iterative procedure can be used in SE to run experiments.

2.4. THE EXPERIMENTATION/LEARNING CYCLE

Research is a process of directed learning. Learning progresses according to the
iteration illustrated in Figure 2.1.

The three reasoning modes for arriving at a hypothesis are deduction, induction
and abduction. Deduction proves that something must be, induction shows that
something is really operational and abduction is confined to suggesting that
something could be. So, by means of a process of deduction, a preliminary
hypothesis about a phenomenon leads to particular consequences, which can be
compared against data taken from reality. When the consequences of the theory
and the real data do not coincide, the discrepancy can lead, by means of a
process of induction and abduction, to the hypothesis being modified. A second
cycle of iteration then commences. The consequences of the modified
hypothesis are deduced and again compared with the data, which can then lead
to further modifications and a gain in knowledge. Data can be collected by
different means: through scientific experimentation, by unearthing existing
information in a library or through observation.

This experimentation/learning cycle can be illustrated by means of a
simplification of a SE learning experiment:

∗ Hypothesis 1 and its consequences: A company that builds CASE tools
believes (hypothesis) that one of its tools decreases design time.

The researcher has a provisional hypothesis and infers its consequences, but
has no data by means of which to verify or reject the hypothesis and, as far
as he/she knows from conversations with other software engineers and
examining the literature, no one has ever built such a tool. He/she therefore
decides to perform a series of experiments.

28 The Role of Experimentation in Scientific and Technological Research

 DATA
 (facts, phenomenon)

deduction

induction

deduction

induction

...

...

 HYPOTHESES
 (conjectures, models, theories …)

REAL WORLD THOUGHT

induction

abduction

abduction

abduction

Figure 2.1. Iterative learning process

∗ Experimental design 1: He/she takes a group of developers employed by a
regular customer who accedes and performs an experiment on a development
project under selected conditions (problem type, software system type, team
of developers, etc.). The project manager plans the project as usual (as if the
design was to be performed without the CASE tool). Then the designers are
given a one-week course, and the project is designed using the tool. The
generic hypothesis H1 is adapted in this experiment in that the real design
time should be shorter than the planned designed time. However, there could
be alternative experimental designs, such as: perform experiments on the
same project carried out by different teams, each team using a different
CASE tool; or have the same team carry out several projects, using the tool
for some and not for others, etc.

Suppose that, as happens in practice, the result of the first experiment is
frustrating. Design time is not improved, it is worsened by the tool in
question.

∗ Facts (Data 1): The design takes 50% longer than planned. Hypothesis 1 and
Data 1 are irreconcilable on this point. The software engineer meditates the

Basics of Software Engineering Experimentation 29

problem, is somewhat sullen over supper, has a shower the next morning and
starts to think as follows:

∗ Induction and abduction: Perhaps the designers are so accustomed to
designing the way they used to do that interaction with the tool slows them
down rather than helping them.

∗ Hypothesis 2 and its consequences: The training time cannot have been long
enough. The design time would have improved with more training.

∗ Experimental design 2: Some members of the original team of developers
are given exhaustive training on tool use. After this period they undertake
another project of similar characteristics. Additionally, another experiment is
performed at the same time, where the other members of the group are not
retrained.

∗ Facts (Data 2): Design time was 10% lower in the first experiment (with the
retrained members of the team) than the planned time. Design time was 25%
longer than planned in the second experiment (with the non-retrained
members of the team).

The subsequent course of such a piece of research is easy to imagine:
modification of the hypothesis at each stage, which leads to other
experiments that shed more light on the available knowledge and, finally,
after a series of ups and downs, celebration of success or admission of
failure.

It is usually more efficient to estimate the effect of several variables at the
same time (for the sake of simplification, learning was the only variable in
the above example). As shown in Figure 2.2, the experiment can be
imagined as a mobile window through which some aspects of reality (the
variables considered during the experimentation) can be observed as more or
less distorted by background noise.

As shown in Figure 2.2, the choice of experimental design (what aspects the
experiment is to involve, what variables are to be taken into account, what data
are to be observed in the experiment, etc.) depends on the applicable hypothesis
and on the resource constraints placed on the experimenter, and, as we will see
in the next chapter, is crucial for the success of any experiment. The design
chosen must investigate the grey areas in our current knowledge of the problem
whose clarification we consider to be an advance.

Note that this approach to research does not assume that there is only one way
of solving the problem. Faced with the same problem, two equally well qualified

30 The Role of Experimentation in Scientific and Technological Research

researchers will generally start at different points, advance along different paths
and may, even so, arrive at the same solution. What we are looking for is
convergence rather than uniformity.

A familiar example is the “20 questions” game, also known as "animal,
vegetable or mineral". The objective of the game is to guess what the opposing
player has in mind, asking no more than 20 questions, which are answered either
yes or no. Suppose that player 2 has to guess the name of the Colombian writer
Gabriel García Márquez. After having actually played the game with two
different people, the results were as follows:

Person A

Question Answer
1. Animal? Yes
2. Rational? Yes
3. Living? Yes
4. Male? Yes
5. Northern Hemisphere? Yes
6. Footballer? No
7. Member of the world of culture? Yes
8. Writer? Yes
9. Stephen King? No
10. Goethe? No
11. North American? No
12. Camilo José Cela? Yes

Person B

Question Answer
1. Man? Yes
2. Living? Yes
3. Northern Hemisphere? Yes
4. American? No
5. Politician? No
6. Artist? Yes
7. Writer? Yes
8. Spanish-speaking? Yes
9. Nobel laureate? Yes
10. Camilo José Cela? Yes

The game follows the iterative pattern shown in Figure 2.2. In this case, a new
design is formulated in each cycle (choice of question). The suspicion held by
the player at each point in the game leads to the choice of a question, the
response to which, assumed to be honest, modifies his or her suspicion

Basics of Software Engineering Experimentation 31

(hypothesis), and so on. Players A and B took alternative routes, but arrived at
the right question, as the data (responses) on which both were based were true.

The qualities required to play this game well are knowledge of the subject,
intelligence and strategy. With regard to the strategy, it is no secret that the best
way to play is to put a question at each stage, which, if possible, divides the
remaining objects into equally likely halves. Both players, A and B, used this
strategy at least once.

The strategy illustrated in this example plays the same role as methods of
experimentation do in research. Note that the game can be played without any
knowledge of strategy (it is possible to experiment without knowledge of
appropriate methods), albeit not very well. However, there is no way you can
play without knowledge of the subject (you cannot experiment without
knowledge of the field). Note, nevertheless, that the best results are obtained by
applying a sound knowledge of the subject combined with a good strategy.

The conclusion can be extrapolated to the relationship between methods of
research and experimentation. An investigation could be run by a researcher
without knowledge of experimentation, but not by an experienced experimenter
who has insufficient knowledge of the field. However, it is much better for the
researcher to use methods of experimentation. Induction of the reality proper to
complex systems is very difficult even if the scientific data contain no noise
(that is, are subject to no disturbance caused by incomplete control of the
experimental environment or owing to measurement errors). This is even harder
if there are experimental errors. Under these circumstances, researchers can put
their intelligence and knowledge of the subject to better use if they can use
statistical tools to interpret the data collected in the experiments.

The convergence towards the result will be quicker and more certain if they are
supported by methods at the primary points of experimentation: experimental
design and data analysis; that is:

I. Efficient experimental design methods that are as unambiguous and
unaffected as possible by experimental errors by means of which to get
responses to their questions.

II. Analysis of the data collected as a result of the experiments, which
specifies what can be reasonably deduced from the valid hypothesis
and produces new ideas for consideration.

32 The Role of Experimentation in Scientific and Technological Research

Hypothesis
Hi

Reality

Experiment

New
Data

Available
Data

Induction
Modified

Hypothesis
Hi+1

Design Di

- Other experiments
- Historical data

..
noise

Design DI+1

Figure 2.2. Experimentation/learning cycle

As we shall see, the more important of these two resources is experimental
design. If the wrong experimental design is chosen, the resulting data contain
little information. Hence, there will be few findings no matter how detailed and
sophisticated the analysis is. On the other hand, if the right experimental design
is chosen, researchers can get a lot of knowledge, and a complex analysis might
not be necessary. Indeed, all the important findings are patent in many cases by
merely examining the data, without the need for sophisticated or very complex
analyses. This book aims to provide basic knowledge about methods by means
of which to design experiments for SE and analyse the data yielded. These
foundations of experimental design and data analysis are given in Parts II and III
of this book, respectively.

However, before moving on to discuss this knowledge, it is important for
readers to grasp the role of experimentation and understand what sort of
knowledge can be obtained from it. All these concepts are outlined in the
remaining sections of this chapter. However, readers who would prefer to

Basics of Software Engineering Experimentation 33

directly learn how to run experiments can skip the remainder of this chapter and
go straight to Chapter 3.

2.5. SCIENTIFIC METHOD

Although there are many methods of research, any investigation, ideally at least,
has certain common characteristics with regard to the manner of attaining new
knowledge. These common factors are the essence of the scientific method. The
activities making up the backbone of any scientific research are: interaction with
reality, intellectual speculation and checking the results of speculation against
reality. As, in 1753 Diderot put it in his work On the Interpretation of Nature:
“We have three important means (of interpreting nature): observation, reflection
and experimentation. Observation gathers facts, reflection changes the facts and
experiments checks the result of the combination”. These activities, which are
described below, are not ordered strictly sequentially, they alternate; that is,
researchers transit from one to another, returning time and again to each one.

The first task of interacting with reality can be performed by means of two
different activities: observation and experimentation.

• Interaction by means of observation: Researchers merely perceive facts
from the outside; that is, perceive things as they are in the outside world,
and there is no interference by researchers with the world (except any
provoked by observation itself). Researchers have no control over reality
during observation, as this is in its natural state.

• Interaction by means of experimentation: Researchers are not mere
receivers, they enter into dialogue with the object under study. This
dialogue involves subjecting the object to new conditions and observing
the reactions. In this case, researchers interfere with the outside world and
their observations are the result of such interference. Researchers have
control over reality during experimentation, as the experiment is a situation
provoked by the researchers, which they, therefore, control (to some
degree at least).

There is actually no clear dividing line between observation and
experimentation, except for the fact that observation is passive and
experimentation is active, and observation is uncontrolled and experiments
controlled. So, observation and experimentation are two very closely related
means for researchers to obtain experiences/facts/impressions from the outside
world, which fire their reasoning.

During the stage of speculation, researchers hypothesise about the perception of
the outside world. The level of abstraction of these lucubrations can vary. It may
be a mere description of a particular case; for example, when biologists

34 The Role of Experimentation in Scientific and Technological Research

experiment in search of an answer to the question “what effects does compound
X have on cells Y?” The final research result is a statement or description of
what happened.

However, the lucubrations can aim to get more general knowledge. The level of
abstraction is higher in this case. Researchers do not stop at a description, they
make an induction leading to the formulation of a general law that establishes
unknown relationships. This is the case of the laws of pendulum motion, for
example, discovered by Galileo after studying individual cases and varying the
length of the thread, and the size and material of the pendulum. He did not
merely describe what he observed, he discovered the relationships (length of the
thread, amplitude of motion, weight of pendulum, …) that existed for what he
observed to occur.

With respect to SE, we are looking for relationships between the development
variables by means of which to predict the implications for the process itself and
the products output. This then is not a question of developing simple
hypotheses, but, in the last analysis, of arriving at laws that co-ordinate software
development and relate variables, such as, techniques with productivity or
process with reliability, etc. These, of course, are not binary relationships but
relationships that are as complex as need be to describe the real world of
software development.

In order to check the speculations, they have to be confronted with reality.
Experimentation is again used to compare theoretical speculations and reality.
This time the new conditions to which the objects are subjected are especially
contrived to confirm or refute the lucubration; that is, experiments are designed
to test whether the ideas are confirmed by events. This is where the different
types of experimentation described in Chapter 1 and, particularly, the controlled
or laboratory experiments on which we focus in this book come in.

Strictly speaking, experiments cannot prove any theory, they can only fail to
falsify it. Popper in 1935 introduced this idea of falsifiability rather than
verifiability in his book “The Logic of Scientific Discovery” (Popper, 1959),
which read: “But I shall certainly admit a system as empirical or scientific only
if its capable of being tested by experience. These considerations suggest that
not the verifiability but the falsifiability of a system is to be taken as a criterion
of demarcation”. In other words, “… it must be possible for an empirical
scientific system to be refuted by experience”. This leads scientific knowledge
to be considered as a system not of true statements but of claims that are
provisionally true as long as they are not contradicted. However, this does not
stop the knowledge from being used and considered true, provided the
precautions imposed by falsifiability are taken into account. Besides,
falsification has a different role in technological research. As Rogers says in
“The Nature of Engineering” (Rogers, 1983) “We have seen that in one sense

Basics of Software Engineering Experimentation 35

sciences progresses by virtue of discovering circumstances in which a hither to
acceptable hypothesis is falsified, and that scientists actively pursue this
situation. Because of the catastrophic consequences of engineering failures -
whether it be human catastrophy for the customer or economic catastrophy for
the firm - engineers and technologists must try to avoid falsification of their
theories. Their aim is to undertake sufficient research on a laboratory scale to
extend the theories so that cover the foreseeable changes in the variables called
for by a new conception”

It can safely be said that experimentation is the stage that lends research its
scientific value, as the stages of interacting with reality and speculation occur in
other intellectual disciplines far from being considered scientific; for instance,
philosophy, theology or politics, etc. Note that, in Figure 2.1, these last two
stages are located in the thought part, whereas checking against reality falls
within the part referred to as the real world.

However, it is not sufficient for researchers to ratify their ideas against reality.
Before the above experiences can be considered facts, they must also provide
the community with data by means of which other researchers can repeat the
original experiments. The following section elaborates on the discussion of the
critical role of replication in experimentation.

2.6. WHY DO EXPERIMENTS NEED TO BE REPLICATED?

A branch of human knowledge can be said to attain the status of science when
the above knowledge is verifiable and, therefore, valid. In this respect, Popper
says: “We do not take even our own observations quite seriously, or accept them
as scientific observations, until we have repeated and tested them.” (Popper,
1960).

These ideas are supported by modern scientific ideology, which also calls for
experimental results to be reproducible by an external agent. For example,
Lewis et al. claim: “The use of precise, repeatable experiments is the hallmark
of a mature scientific or engineering discipline” (Lewis, 1991).

So, a science can be considered as such, when it is based on the scientific
method; that is, each new item of knowledge is confirmed by means of fully
defined experiments, such as can be repeated by other scientists who can then
verify the results. This possibility of other scientists reproducing the results is
extremely important, as it is what (provisionally) labels a new idea as true.
Phrases of the style “unfounded assertion”, “unscientific experiments”, “not
really proven” and “unreliable” discredit any contribution by a researcher that
cannot be proven by other researchers. On the other hand, an idea confirmed by
means of reproducible experimentation is usually qualified as “irrefutable
evidence”.

36 The Role of Experimentation in Scientific and Technological Research

Take the dispute over Freud’s psychodynamic theories for instance. They are
criticised as being unscientific because they can be neither verified nor refuted
empirically. Note that they have been checked against reality to some extent (the
cases studied by Freud); the problem is, however, that these experiments cannot
be generalised. Freud's theories were based on his interactions with reality, but
these theories and experiments are not reproducible by other scientists and the
new knowledge cannot be asserted as being valid. Indeed, Eysenk (Cohen,
1996) raised a now famous objection when he said that the truth that there was
in what Freud said was nothing new and what was new was not true (in obvious
reference to the lack of empirical confirmation). Most therapists argue that
psychoanalysis is more of an art than a science, precisely to shelter it from
empirical criticism.

Another famous case, this time in the field of physics, is what is known as cold
fusion. In 1989, the physicists Pons and Fleischmann surprised the world by
announcing at the University of Utah that they had finally discovered the means
of cold fusing two atoms. For the rest of the community of physicists to take
them seriously, Pons and Fleischmann had to publish their experimental design
so that other physicists could repeat the experiment to validate the new findings
and add them to the body of knowledge of physics. Upon reproduction, the
community of physicists found that under the same circumstances (that is,
replicating the experiment), cold fusion did not take place, thus the new
knowledge was not valid. Indeed, the phenomenon of cold fusion is now defined
as: “... the temporary name attached to anomalous phenomena that occur when
hydrogen is absorbed by some metals and some oxides. However, these
phenomena cannot at present be produced at will; the necessary experimental
conditions are not yet known and, therefore, are not under experimental control.
The research has been directed to prove unambiguously that more energy can
sometimes be generated than the amount of energy put into a process, the origin
of which is thought to be an unknown nuclear transformation" (Fox, 1997).

Scientists and engineers consider repeatability as a critical test to be passed by
any new knowledge. Failure in this respect invariably raises serious doubts
about the validity of the results. Another example of new knowledge not being
considered scientific because the experiment could not be repeated is the
experiment on extrasensory perception performed by the biologist Rhine, who
directed the department for the study of extrasensory perception at the
University of Duke (USA) in the 30s (Cohen, 1996). The main problem in this
case was failure to control the factors involved in the experiment. The Rhine
method was very simple. He put the receiver subject in one room, while another
person in another room took cards out a 25-card pack. Each card contained one
of five geometric pictures; there were five cards of each type in the pack. The
receiver was to guess which cards were being taken out of the pack. Rhine’s
preliminary results were surprising, because the result was convincingly
positive, and the receivers’ guesses were right on more than the five occasions

Basics of Software Engineering Experimentation 37

that would have been expected purely by chance. And, in a series of tests, one
subject correctly guessed all the cards in a sequence of 25. Rhine's results could
not be reproduced by other experimental psychologists, even at his laboratories.
So, the scientific community considered that Rhine's discoveries were nothing of
the kind and that an uncontrolled factor in his experiments had influenced the
results. Sceptics criticised Rhine's results, believing that clues about the cards
had deliberately or inadvertently been given to the receivers. Note that the
subject studied by Rhine is still considered by science today as non-existent
precisely because there is no experimental evidence; that is, the knowledge that
Rhine sought to supply was not added to the patrimony of psychology, because
it was not proven. Nevertheless, it worked on that occasion.

There is another famous case in the field of biology (Latour, 1986). In 1962,
Schibuzawa asserted that he had isolated thyrotropin-releasing factor (TRF) and
even presented the amino acid composition of this hypothalamic humour.
However, far from being acclaimed for having solved the TRF problem in only
two years, his work was questioned. His papers were criticised, and it was said
that his samples of TRF were active only in his laboratory and not in others. It is
said that when he was invited to repeat his experiment at another laboratory, he
did not turn up. Schibuzawa's assertions, which he had sought to present as
confirmed facts, were doubted and disapproved. He wrote no more articles after
1962, his claims to having solved the TRF problem faded away, and the
substance that he asserted he had detected came to be considered as a
subjectivity. Later, he also stopped researching. It is important to stress that,
although Schibuzawa was unable to prove his assertions at the time, they were
proven ten years later (except for the composition of the amino acid). Guillermin
and Schally were awarded the Nobel Prize for the isolation of TRF. Note that
this anecdote illustrates the scientific practice of rewarding the researcher who
establishes a new fact rather than the one whose speculations incidentally
coincide with reality.

The replications described above are called external replications that are run by
independent researchers in order to build confidence in the results of the
experimentation. There is another sort of replication, termed internal replication,
that is run within the experiment itself in order to raise the probability of
correctly deducing results from the experiments. This sort of replication is
discussed in more detail in Chapter 4.

It is very difficult, if not impossible, to repeat identical experiments for software
development projects. If we had a fixed team of developers, problem,
development process and series of products, the development conditions would
be far from being the same in the second and successive repetitions of the
experiment, as the second time the team embarked on the same development
project, it would be more experienced and less effort would be required. So,
replicability (both internal and external) has to be based on similarity in SE; that

38 The Role of Experimentation in Scientific and Technological Research

is, each experiment will consist of a similar problem, a similar process, a similar
team, etc.

Note, however, that this problem of similarity versus equality also occurs in
other sciences and engineering fields, especially in disciplines in which, like SE,
the phenomenon under study is very complex and, therefore, the number of
parameters of the experimentation is high. For example, it is feasible to run the
same two chemistry experiments under almost identical circumstances, in which
certain substances are mixed to produce, for instance, a harder material than is
usually used, since the amount of each substance, heat, time, etc., can be very
accurately adjusted as they are all measurable parameters. Note, however, that
this was not always the case. There was a time when the variables involved in
the chemical reactions were unknown.

However, it is unlikely that the experiments in disciplines like agriculture,
biology or medicine will have parameters with the exact same value; that is, it is
difficult to set values in agriculture because of the uncontrollable influence of
the farmed land. However, replication may be practicable for experiments
performed by the same experimenter, if the experiments are repeated on the
same plots of land.

In biology and medicine, as in SE, identical parameter values are out of the
question. When a new substance is used in an animal or a person, it is not
feasible to use the same animal in another experiment and alter, for example, the
medication only, since the effects of the first application are unavoidable. The
equality of values in this case must be obtained using another animal under
similar conditions: same age, same lifestyle, similar feeding, etc. Note that no
two identical animals are ever going to be found and, for us to speak of similar
animals, we have to define which of the many characteristics of an animal or a
person are considered basic. Evidently, this consideration will depend on the
objective of the experiment. For one piece of research, the colour of the
animals’ coat will have to be the same or similar, whereas this trait may be
irrelevant for other experiments and, therefore, not be considered for identifying
similar animals.

SE is similar to medicine with regard to experimentation and replication: no two
identical software projects are ever going to be found. Therefore, the basic
characteristics of a project must be defined in order to speak of replication based
on similarity. In SE, like medicine, there are a host of uncontrollable variables;
however, this variability does not prevent experimentation in medicine being a
pillar for its progress. Therefore, the intrinsic difficulties of software
development are not an excuse for not experimenting. The poet Machado said
“se hace el camino al andar” (the path is made by walking it). Similarly, the
attempt to define software development project characteristics in order to be
able to replicate experiments will make the path, discarding characteristics that

Basics of Software Engineering Experimentation 39

appeared to be basic and turned out not to be and adding new characteristics,
walking along the experimentation/learning binomial discussed above. In
medicine, however, although there are no two identical human beings, basic
biological and biochemical processes do not differ very much from one person
to another (although there are some systemic differences between adults and
children and men and women). On the other hand, in software development
there is a human factor in software development (the cognitive element of the
way of thinking of each developer, as well as social element of relationships
within the development team), which makes experimentation in SE more
complex than in medicine. As discussed in section 2.3, SE is more resemblant of
disciplines like cognitive psychology or other social sciences on this point,
where experimentation plays an important role but generalisation is trickier.

Again in SE, there may be circumstances in which it is out of the question to
even speak of similarity, because it is impracticable to find individuals who have
a characteristic of similar value or find two teams of developers that have a
particular characteristic in common, etc. In these cases, there are special means
of designing/organising experiments so as to minimise the impact of the
uncontrolled variations. In this case, even though similar individuals or similar
projects have not been found, the manner of designing the experiment means
that conclusions can be drawn despite the differences. Moreover, experimental
methods are powerful enough to detect when there are important variations that
are not being taken into account. Experimenters can then study and opt, if
possible, to eliminate such variations or for experimental designs that prevent
them biasing the results.

Finally, remember that the replication of an experiment may aim to repeat the
experiment under conditions that are as similar as possible or, alternatively, may
be run by varying one or more parameters of the original experiment. In this
case, and depending on the variation, it would be debatable whether the second
experiment should be considered a replication of the first or as a new
experiment. In the case of replication under similar conditions, the aim of the
replication would be to confirm the hypothesis of the first experiment as
discussed so far; whereas the second case of replication, in which a variable is
altered, would aim to check whether a variable could be generalised for certain
values of the results yielded by the first experiment. Exactly what sorts of
variables can be changed from one experiment or another in order to generalise
results are discussed in Chapter 4.

An important question can arise at this point. What happens when an original
experiment is replicated and the results yielded are different? For example, the
effect of different levels of inheritance on the maintainability of object-oriented
programs were investigated at the University of Strathclyde (Daly, 1995).
However, this experiment was replicated at the University of Bournemouth, and
produced the opposite effect (Cartwright, 1998). Both experiments were well

40 The Role of Experimentation in Scientific and Technological Research

designed and analysed, which means that this result could indicate a lack of
confidence. Cases of this sort call for further research and more experiments that
output more information on what caused the variation, such as other variables
possibly not taken into account, for example. The results of altering a parameter
of the original experiment in the replication are an aid for exactly determining
under what circumstances a technology is better used.

2.7. EMPIRICAL KNOWLEDGE VERSUS THEORETICAL
KNOWLEDGE

The data obtained from the real world are meaningless, unless it is in relation to
a theoretical model of the phenomenon. Box gives the following example (Box,
1978). Suppose, for example, that we observed a clock at 12 p.m. on Sunday
and every twelve hours afterwards. Suppose that every time we looked at the
clock, the hands pointed to 6 o' clock. These data would be interpreted
differently depending on the theoretical model considered appropriate.

One idea that would fit the data would be that the clock had stopped at 6 o'
clock. The mathematical model in this case would be: η=β0, where η is the time
indicated by the clock at reading and β0 is a constant equal to 6. A second
interpretation is that the small hand moves right round every twelve hours, but
that the clock is six hours fast. The model in this case is η=(β0 + x)mod 12, where
x is the time in hours since the first reading and (β0 + x)mod 12 is the remainder
obtained after dividing β0 + x by 12. A third hypothesis is that the hand goes
round not once but p times every 12 hours, where p is an integer, in which case
η=(β0 + px)mod 12.

In the second and third theoretical models we assumed that the hands moved
clockwise at a regular speed. The observations are also consistent with a model
in which the hand moved anticlockwise or with another in which the hands
moved very quickly in the first part of the cycle and very slowly in the second.

The possible theoretical models are clearly innumerable. However, we almost
always have basic knowledge of the phenomenon under study (the mechanism
of the clock, in this case). The experimenter can use this background knowledge
to class some models as possible and others as impossible. Experimental designs
are chosen on the basis of the hypotheses of the experimenter concerning which
models are feasible. Even when experimenters think that they know what the
model should be like, they must also take into account some reasonable
alternatives. Hence, the experiment must be designed so as to be able to detect
the points on which the preliminary model is unfit. Models are built by means of
the iterative procedure described in section 2.4, that is, alternative models are
tested, and the survivors and new candidates are scrutinised again.

Basics of Software Engineering Experimentation 41

Generally, experimenters are interested in studying relationships between the
mean value of a response y, like quantity, quality or effectiveness, and the
values or alternatives of a number of variables x1, x2, ..., xk, like time, number of
team members, complexity, etc. The relationship can be abbreviated as η=ƒ(x1,
x2, ..., xk)=ƒ(x), where x refers to all the variables x1, x2, ..., xk.

The phenomenon under study is sometimes well known and a functional form
can be written from the theoretical considerations. This is very common in
sciences like physics, where the physical laws required are often expressed as
differential equations. Another example of a discipline in which the phenomena
are well known is chemistry. Take, for example, a chemical reaction in which
substance A is the reactant and B the product, and the kinetic laws of the first
order are applicable, then the rate of formation of B at any time is proportional
to the amount of A that has not yet reacted. If the mean value of the
concentration of B at time x is denoted as η, the relationship between η and x
can be expressed as smaller. This equation is the result of

solving a differential equation that expresses the sentence "the rate of formation
of B is proportional to the concentration of A that has not yet reacted" in
mathematical terms. This equation is called a mechanistic or theoretical
model, because it is based on an understanding of the mechanistic theory that
governs the process: the theory of chemical kinetics in this case.

)1(1
2xe ββη −−=

A mechanistic or theoretical model is tantamount to a fundamental step forward
in the basic knowledge of a reality. However, a scientist cannot usually come up
with a mechanistic model until there is enough background knowledge of the
discipline. Centuries passed before physicists were able to relate the distance
travelled with speed or force and mass by means of a mechanistic or theoretical
model. These theoretical models are what are known as physical laws, of which
the law of the lever, the law of buoyancy (or Archimedes' principle), Galileo's
law of uniform acceleration of falling bodies, Kepler's laws of planetary motion
and Newton's laws of motion, Coulomb's law of electrostatic attraction or the
law of ideal gases are key examples.

Often, and this is the case of software construction, the mechanism governing a
process is not well enough known or is too complex for an exact model to be
postulated on the basis of theoretical considerations. An empirical model can
be useful under these circumstances. These investigations are much less
ambitious than theoretical research. Their preliminary aim is to arrive not at a
mechanistic model but at an understanding of the phenomenon under particular
conditions (that is, the model is not general and, therefore, cannot be
extrapolated). It is then a matter of building empirical or experimental models of
the results of a series of experiments. These experimental models are usually
represented as equations that relate a particular region of the variables under

42 The Role of Experimentation in Scientific and Technological Research

study (this is the reason why the relationship is limited and cannot be
generalised).

An understanding of the difference between theoretical and experimental studies
can be gained by means of an analogy with physics. Suppose we were in the age
when the relationship between the speed of a body and the distance travelled
was unknown (incredible as it may seem, humankind was ignorant of this
relationship for millenniums). An experimental study like the one discussed
above would involve the following. We would decide on the road to be
travelled, select times at which temperature and humidity conditions were
similar, we would take the same body (which means the same shape and weight,
etc.), which would be given a different momentum (this is the variable). Note
that we use the factor momentum and not the factor speed, because if we already
knew how to measure speed quantitatively, we would probably know how to
calculate it. We would stop the two objects after the same length of time and
measure the distance travelled (response variable). The analysis of the data
collected from these two experiments (evidently, if more were performed, the
results would be more reliable) would tell us that a longer distance is travelled
when the value of the variable momentum is high than when it is low. So, the
conclusion is that the greater the momentum, the longer the distance travelled.
This knowledge, which establishes a correlation between speed and distance
only, could have a multitude of uses, and we could even predict that a given
distance would never be travelled at a given momentum. However, we would
still not know the exact relationship (function, formula or law) that relates speed
and distance. This relationship could be arrived at by two routes (and preferably
both at the same time): by amassing a huge number of experiments or through
theoretical deduction. Only when the law relating space and distance is known
can all the causes influencing a particular distance travelled (speed, friction,
weight, etc.) be confirmed. An example of the empirical model in SE are the
equations used by some estimation techniques, like COCOMO, of the kind
(effort = a (size)b), where the coefficients of the above equation are yielded by
analysing the relationship between effort and size in a series of projects.

Experimental research usually aims to elucidate certain points of relationships
among variables. The objectives and sophistication of these investigations can
vary widely. Different sorts of experimental design and data analysis techniques
will be used for each kind of study. New knowledge is gained from the
following three levels of investigation:

1. Survey inquiries, whose objective is to distinguish which of many variables
appreciably affect another or other variables. Note that, in the case of SE,
surveys would supply knowledge of what development variables affect
certain characteristics of the process or of the products. For example, a
survey inquires after whether age, nationality and sex influence developer
productivity. This knowledge, which is fundamental in any discipline, is still

Basics of Software Engineering Experimentation 43

not available in SE. Nothing needs to be known about the phenomenon
under study (as in the case of SE) to run surveys. All you have to do is to run
a lot of experiments, varying all the possible development variables and
studying their impact on a particular characteristic. These are tedious, but
systematic inquiries that would supply SE with very valuable knowledge.

2. Empirical inquiries, whose objective is to discover an empirical model that
describes how certain variables affect another or others. Once the variables
that affect another or others (survey) are known, the next step is to find out
what influence they have depending on the values of the variables. In the
case of SE, this sort of empirical studies would mean that alternatives could
be compared to select the best value of particular variables for optimising a
given response. For example, if the variables that influence design
productivity were known to be developer experience, system complexity and
technique employed, we would run an empirical study to ascertain which of
two given design techniques output better productivity values.

3. Mechanistic inquiries, aimed at producing a mechanistic or theoretical
model that can explain why the variables affect the response in the observed
manner. This is the deepest level of knowledge of a discipline, as it answers
the question why. For this sort of inquiries, the discipline already needs to
have theoretically founded knowledge, on the basis of which to continue to
build the edifice of theoretical knowledge of the discipline with the aid of
experiments.

A mechanistic model, supposedly backed by the nature of the system under
study and verified by means of experimentation, is a much stronger position
than a model obtained empirically and not backed by the theory of the
phenomenon. An extensively tested mechanistic model does much more than
simply comply with the data, it confirms that the knowledge of the phenomenon
has been verified by experimentation. Additionally, although it can adequately
represent what occurs in the region under study, an equation, which is the
typical form of an empirical model, does not provide a solid basis for
extrapolation to other regions. Thus, its predictive capability is confined to the
conditions under study. On the other hand, a mechanistic model can more
accurately suggest sets of experimental conditions that are worth investigating.
The mechanistic model provides a better basis for extrapolation, because it is the
mechanism and not a new empirical function that is extrapolated, and this
mechanism is based on the verified knowledge of the system. Therefore,
theoretical or mechanistic models can:

a) contribute to the scientific understanding of a phenomenon
b) provide a basis for the extrapolation of the model to situations other than

studied

44 The Role of Experimentation in Scientific and Technological Research

c) provide a stricter representation of the response function than would be
obtained empirically (usually polynomial functions).

Despite the advantages of mechanistic models, there does not appear to be
enough background knowledge of software construction yet to develop general
theoretical models by means of which to predict what will occur on the basis of
specific development conditions. Until this time comes, we can use empirical
models to make local statements about the particular conditions under which a
given theory (technique, model, etc.) works and similar claims. These empirical
models are developed by running experiments focused on the particular
variables and parts of the development project under study. Remember that
these experiments should usually be performed at the three levels described in
Chapter 1: controlled or laboratory experiments, case studies and surveys. This
is the sort of experimentation addressed in this book, although we will focus on
controlled or laboratory experiments. As has happened in other sciences and
engineering disciplines, empirical studies are a means towards the scientific
ideal of theoretical models that lead to a practically full understanding of a
phenomenon.

3 HOW TO EXPERIMENT
3.1. INTRODUCTION

This chapter aims to put the remainder of the book, that is, Parts II and III, into
context. For this purpose, it focuses on describing the steps to be taken to run an
experiment, the most important of which will be described in the other parts of the
book. Beforehand, section 3.2 examines what sort of relationships among variables
can be outputted by an experiment. Having described these relationships, the
process of stepwise refinement involved in any experimentation process is
described in section 3.3. Each cycle of this process involves running a given
experiment, the process to be followed is described in section 3.4. We will see that
this process is composed of the phases of goal definition, design, execution and
analysis. All these phases are essential for the success of the experiment. However,
experimental design and analysis call for special attention. Therefore, Parts II and
III of the book focus on these two phases, respectively. Finally, section 3.5
describes what can be deduced at the end of these stages and what role statistics
plays in determining the above conclusion.

3.2. SEARCHING FOR RELATIONSHIPS AMONG VARIABLES

In Chapter 2, we said that a discipline is formed as the body of validated knowledge
grows. But, what sort of knowledge can be gained from experimentation? What we
look to discover are relationships among the variables involved in the phenomenon.
If we had a wealth of truthful knowledge in SE, we would be able to predict the
impact of any actions that we were to take on development. For example, we would
be able to answer questions like how will the use of programming language X affect
system reliability? Or if the project analysis stage has taken 50% longer than
expected, what effects will it have on the remainder of the project? The planning of
the other stages may have to be reconsidered and increased by 50%; the problem
may be confined to analysis alone and the planning still be valid for the other
phases; or as the analysis stage has taken longer, the need has been better
understood and fewer errors will occur in the remainder of the project (this means
that the extra time spent on analysis can be recuperated, because the other stages
will be completed in less time than planned). What would we need to know to be
able to answer these questions? For example, for the first question, we would need
to know what relationship there is between software reliability and programming
languages. For us to be able to use the above relationship to predict reliability, we
must also know what other project variables influence reliability (for example,
developer experience, system complexity, etc.), as well as the interrelationships
among all these variables that influence reliability. In other words, these will

46 How to Experiment

certainly be complex relationships in which reliability depends on a host of
circumstances and not just on the language. For the second question, we would
need to discover similar complex relationships between the amount of deviation in
one phase and its effect on the other development phases. Knowledge of which set
of variables influence another variable and how they influence this variable could
be used to predict the results of development.

There are several levels of relationships among variables depending on how much
is known about the relationship in question:

1. Descriptive relationship. When the relationship among variables is unknown,
but certain behavioural patterns can be described after observing several
development projects. For example, if analysis takes longer, the other
activities usually take longer. In other words, the best we can do is give a
description of the relationship without stating under which circumstances it
does and does not occur (we can go no further than to say "usually"), and we
cannot say how big the increase is either; that is, whether the total
development time increases in proportion to the increased time spent on
analysis, whether the increase is equivalent to the extra time spent on the
analysis phase or whether the two increases are related in any other way.

2. Correlation. The relationship among variables can be explained by means of
a function. So, apart from description, it can be said that the above relationship
has certain proportions, as well as that there are interactions among several
variables to influence a third. This knowledge captures evidence about
causation, although not necessarily based on an underlying theory. We can
observe correlations among variables, but we cannot distinguish between
cause and effect. Some examples of correlation are given later.

3. Causal relationship. This is the highest possible level of knowledge about the
relationship among several variables. If variables A and B are said to be the
causes of the variations in C, this means that C would vary only depending on
A and B or, alternatively, that there is no other variable of influence.
Therefore, all the parties to the relationship are known.

Causality of this sort is known as deterministic causality. Every time we
invoke a particular cause, we get the expected effect. According to Pfleeger
(1999), in terms of software, “if we can find out what causes good software in
terms of process activities, tools, measurements, and the like, we can build an
effective software process that will produce good software the next time”. This
approach is borrowed from physics. There is also probabilistic causality,
where there is a given likelihood of less than 100% of the relationship

Basics of Software Engineering Experimentation 47

between cause and effect occurring. This probabilistic causality appears to be
better suited to software engineering than fully deterministic causality.

We are not going to discuss here the philosophical problem of causality as an
effect of the human mind, where some authors claim that causality is merely a
correlation 1 between two variables, defending that the effects are not
deducible from the causes. An example of this is given later in this chapter.

These three types of relationship between variables coincide to a certain extent with
the investigations discussed in Chapter 2. The theoretical models of phenomena
usually explain causal relationships, whereas empirical models are nothing more
than correlational relationships. Surveys of variables usually output descriptive
relationships.

3.3. STRATEGY OF STEPWISE REFINEMENT

At first glance, it might seem reasonable to take an exhaustive approach to
exploring a relationship among variables, in which each variable is examined at
length. The resulting experiments could contain all the combinations of several
values of all the variables. This is an inefficient manner of organising the
experimental programme when the elementary experiments can be run in successive
groups. This situation reflects the paradox that the best time for designing an
experiment is when it has finished and the worst at the beginning, when less is
known. If an experiment were fully designed at the start, we would have to assume
that we know what variables are the most important and what value should be
considered. The researcher is better able to answer these questions as the
experiment progresses.

An experimenter is like someone who is trying to map out the seabed by
prospecting only a few sites. If there is a theory on what the seabed in one region is
like, based perhaps on geological considerations or the examination of currents and
tides, the experimenter may be able to work with a defined theoretical model, in
which the values of only a few variables are unknown. Where there is no developed
theory, however, the strategy would be quite different. This book focuses primarily
on situations in which there is no well-defined theory and an empirical approach has
to be taken, that is, the case of SE.

All the above underlines the advisability of performing a sequence of experiments
of moderate size and evaluating the results as they become available. Thus, as an
empirical investigation is being carried out, it may happen that:

48 How to Experiment

1. A decision is made to change the region of the experiment, that is, the values
according to which the variables are being examined are varied. For example,
if we are running experiments with the variable Experience of the Team of
Developers and the values None and Much, we may decide to also examine the
values Little, Some and Fair.

2. Some of the variables considered originally are discarded and others are
added. Note that, at the start of the investigation, experimenters use the
variables considered influential (for example, programmer experience and
language as variables influencing the reliability of the software output).
However, some of the variables considered may be found not to have a
significant influence or, if they do, another source of variation that is not being
explored may be shown up by the experimental investigation. In these cases,
experimenters may decide to include other variables in the investigation (for
example, software size).

3. The objective of the research is altered (digging for silver, we may strike gold,
and no such discovery can ever be overlooked).

As a general rule, no more than 25% of the experimental effort (budget) must be
invested in the first round of experiments. Of course, there are exceptions, as a huge
variety of research is conducted under extremely wide-ranging circumstances. As
our everyday experience shows, however, it is not very intelligent in most situations
to plan an experiment exhaustively from the beginning. At the end of the first part
of an investigation, experimenters will be far more acquainted with the problem
and, therefore, will be much better able to plan the second part, which again will
serve to improve the plan for the third and so on.

After reflecting on the first experiments conducted, one is often jarred at the end of
an investigation by (and even a little ashamed of) how pathetic they were. The
wrong variables may have originally been examined or important variables may
have been investigated, though far outside the right region. It is like watching a film
about a swimmer, who now somersaults from the springboard, when he was only a
small boy learning how to swim. It would be ridiculous to start by doing
somersaults and neurotic to say "if I cannot somersault from the springboard now, I
prefer not to learn to swim". Researchers must learn from the swimmer, who was
ready to put his foot in the water and not afraid of getting wet.

3.4. PHASES OF EXPERIMENTATION

Any experimentation with any degree of formality can be divided into the following
activities:

Basics of Software Engineering Experimentation 49

1. Definition of the objectives of the experimentation
2. Design of the experiments
3. Execution of the experiments
4. Analysis of the results/data collected from the experiments.

Figure 3.1 illustrates this process together with the products output by each activity.
In the following, we will describe these activities in more detail.

O bjective
D efinition D esign E xecu tion A nalysis

H ypothesis
for testing

E xperim enta l
D esign

 Experim ental
R esults

H ypothesis
T ested

Figure 3.1. Process of experimentation in SE

Experimentation is based on the examination of phenomena. Experimentation, as
considered in this book, is rooted in detecting quantifiable changes as a means of
comparing one experiment with another in search of the difference between them
and, hence, the reason for the changes. A comparison based on quantifiable changes
is objective and, therefore, conclusions can be drawn from their investigation.

The term quantifiable can be considered in a broad sense as a synonym of rateable;
that is, numerical and measurable factors are obviously preferable in
experimentation, although factors having another type of value can be considered
acceptable, provided they are perceptible. For example, values like team
experience, design method employed, operating system type, etc., are admissible
provided the difference is perceptible and there is agreement thereon. The kind of
experiments with which we are concerned in this book demand quantitative results,
that is, the variable that is to describe the improvement caused by the new idea must
be quantitative (reliability, productivity, size, etc.) or, in other words, measurable.
(Remember that there are other studies known as qualitative research.)

During the definition of objectives, the general hypothesis is transformed into a
hypothesis defined in terms of what variables of the phenomenon are going to be
examined. For example, suppose we have an experiment in which we aim to
examine how good two individual testing techniques are at detecting one particular
error type. An experimenter can take this idea to define a quantifiable hypothesis,
like, for example: technique A is capable of detecting more type-1 errors than
technique B. This is a quantifiable hypothesis in the sense that it is measurable, that
is, an objective procedure can be provided to determine the above number of errors.
The number of errors could be measured in different ways or, alternatively, by
means of different metrics (errors measured in a total time t, errors measured by a

50 How to Experiment

unit of time t', etc.). The metric to be used will be described during the experimental
design phase, whereas the important thing during objective definition is to assure
that we can define a quantitative procedure for evaluating the hypothesis.

Design involves making a sort of plan according to which the experiment is to be
run. The plan will be made by determining under exactly what conditions the
experiment is to be conducted. This involves determining which variables can affect
the experiment (in the above example, for instance, we have the variable inspection
technique with two possible values -technique A and technique B-, who is going to
participate in the experimentation, how many times it is to be repeated, etc.). The
elements to be considered during experimental design and the different types of
designs that can be defined depending on the variables involved, respectively, are
detailed in Chapters 4 and 5.

The objective of a good experimental design is to get as much information, better
still knowledge, as possible from as few experiments as possible. This saving is one
of the basic differences mentioned above between experimentation and mere
observation.

In the execution stage, elementary experiments are run as indicated by the selected
design. Once the experiments have been performed, it is time to analyse the results,
that is, analyse the data collected during the experiments. This analysis seeks to find
relationships between the study results, that is, type of relationship identified
between the variable under examination (as discussed in section 3.1): descriptive,
correlational or causal.

Descriptive relationships are discovered by carrying out informal analyses of the
data (the experimenter examines the data and detects whether there are behavioural
patterns between the variables under study). The data collected during an
experimentation are analysed by means of data analysis techniques to detect well
justified correlational and causal relationships, which involves making statistical
inferences on the data. A statistical inference (or decision rule) responds to the
question: what can I affirm in view of this data set? Different inferences/statements
can be made depending on what statistical conditions of the data are examined.
However, theoretical models and a mass of empirical studies are usually required to
be able to detect causal relationships.

One of the classes of statistical inference most commonly used in experimentation is
known as significance testing. Significance testing responds to the question of
whether the variations observed in the data collected are statistically significant.
This means that:

Basics of Software Engineering Experimentation 51

− If there is no statistical significance, the variation observed can be put down to
chance or to another variable not considered in the experiment

− If there is statistical significance, the variation observed is due to the fact that a
certain level (or combination of values of different variables) causes
improvements.

The most commonly observed variations of this type are usually: variations in the
means of the variable under study, variations in variances, variations in proportions
and variations in frequencies. The meaning of the study of the different variations
can be illustrated by a short example. In an experimentation, we want to know
which option, A or B, of variable F improves the variable V. Several experiments
are performed, six to be exact, in three of which F=A and in the other three F=B.
The resulting V is measured in each one. So far we have designed and performed
the experimentation. The analysis of the experimentation would consist of making
one or more statistical inferences, depending on what we want to know. As what we
said we wanted to find out was which value of F gives a better V, we are interested
in the mean value of the V yielded in the three experiments with F=A and the mean
value of the V yielded in the three experiments with F=B. We want to know
whether the difference (or variation) observed between these two means is
statistically significant. However, we could be interested in the variability of the
alternatives of F in the variance of V, if we wanted to find out which alternative, A
or B, output the most stable results of V. Or we could carry out an experimental
analysis based on frequencies or on proportions, etc. Despite this range of statistical
inferences, the most commonly used experimental analysis is usually performed on
the variable means, as this is the aspect related to “improving V”.

There are a series of statistical tests (t-test, F-test, χ2 test, etc.) that answer the
questions concerning which value of a variable provides improvements or which
combination of variables is the best, etc. All these analysis-related issues are studied
in Part III of this book.

3.5. ROLE OF STATISTICS IN EXPERIMENTATION

Any experimenter is faced with two difficult tasks:

− Discover and understand any complex relationships between variables;
− Achieve this objective even if the data are contaminated by error.

Over seventy years ago, the pioneering work of Sir Ronald Fisher showed how
statistical methods, and particularly experimental design and data analysis, could
help to solve these problems. Since they started to be used in agriculture and
biology, these techniques have been further developed and began to be used in the
physical and social sciences, engineering and industry. More recently, their catalytic

52 How to Experiment

effect on research and learning processes was spectacularly evidenced by the
important role that they played in the Japanese-led industrial quality and
productivity revolution.

The three sources of difficulty up against which experimenters generally come are:

1. Experimental error (or noise)
2. Confusion between correlation and causality
3. Complexity of the effects under examination.

As we will see below, the branch of statistics known as experimental design and
data analysis is an aid for tackling these difficulties. Let's outline these three sources
of difficulty.

As we will see in the next chapter, one of the most important difficulties is the
variation caused by both known and unknown distortional factors, called
experimental error. Normally, only a small portion of this error can be attributed
to measurement. Important effects can be covered up completely or partly by
experimental error. On the other hand, researchers may be misled by experimental
error into believing in non-existent effects.

The harmful effects of experimental error can be very much reduced by appropriate
experimental design and analysis. Moreover, statistical analysis provides
measurements of the accuracy of the quantities under examination (such as
differences in means or rates of variation) and, particularly, makes it possible to
judge whether there is strong empirical evidence for attributing the observed
differences among experiments to given reasons. The net effect is to increase the
probability of the investigator taking the right rather than the wrong path.

With regard to the confusion between correlation and causality, this can be
illustrated by means of an example taken from Box (Box, 1987). Figure 3.2 shows
the population of the town of Oldenburg at the end of each of seven years (from
1930 to 1936) as a function of the number of storks observed in the same year.
Although few people are likely to establish the hypothesis that population growth is
a direct function of or caused directly by the number of storks (save any who
sustain that babies are brought by storks from Paris, for whom the hypothesis "the
more storks there are, the more trips to Paris will be made and, therefore, the more
births there will be" makes sense), researchers often make this type of mistake. Two
variables X and Y are often correlated because both are associated with a third
factor W. In the example of the storks, as the population Y and the number of storks
X both grow in time W throughout the above period of seven years, it is reasonable
for a correlation to appear if they are both represented together, one as a function of

Basics of Software Engineering Experimentation 53

the other. This means that the third factor, time in this case, is not considered in the
inquiry.

Another more evident confusion between correlation and causality could occur
between thunder and lightning, which always appear together in a storm. If we did
not know that they are both manifestations (one luminous and the other acoustic) of
the same phenomenon (discharge of electricity), we might think that lightning is the
cause of thunder, whereas they are actually two variables between which there is a
correlation 1 and, therefore, the cause of both lightning and thunder is the discharge
of electricity.

P
op

ul
at

io
n

Number of storks

Figure 3.2. Graph of the population of Oldenburg at the end of each year as a
function of the number storks observed in the same year (1930-36)

The reliable scientific principles of experimental design and, specifically,
randomisation, can be used to generate data of higher quality for inferring causal
relations.

Let's now illustrate the complexity of the combinations between the effects of
several variables on a third variable by means of an example. Consider an
experimental examination of the effects of alcohol and coffee on the response times
of car drivers seated at a simulator. Suppose we have found that (a) if no coffee has
been ingested, a drink of liqueur increases the response time by an average of 0.45
seconds and (b) if no alcohol has been ingested, a cup of coffee reduces the
response time by 0.20 seconds on average.

54 How to Experiment

The effects of several glasses of liqueur and several cups of coffee and their
combined effect would be much easier to evaluate if both effects were linear and
additive. If they were linear, two glasses of liqueur would increase the response
time by 0.90 seconds [2(0.45)=0.90] and three cups of coffee would reduce it by
0.60 seconds [3(-0.20)=-0.60]. If the effects were additive, a glass of liqueur and a
cup of coffee would increase the response time by 0.25 seconds [0.45-0.20=0.25].
Finally, if they were linear and additive, 10 glasses of liqueur and 23 cups of coffee
would reduce the response time by 0.10 seconds [10(0.45) + 23(-0.20)=-0.10].

It is much more likely, however, that the effect of one more glass of liqueur will
depend on: (a) the number of glasses of liqueur already drunk (the effect of alcohol
is not linear) and (b) the number of cups of coffee ingested beforehand (there is an
interactive effect between alcohol and coffee). There are experimental designs that
generate data in such a manner as not only the linear and additive effects, but also
the interactive and non-linear effects can be estimated with the least possible impact
of experimental error.

4 BASIC NOTIONS OF
EXPERIMENTAL DESIGN

4.1. INTRODUCTION

This chapter focuses on the basic concepts to be handled during experimental
design. Before addressing design, we need to study the terminology to be used. This
is done in section 4.2. Sections 4.3 and 4.4 focus on the application of this
terminology to the particular field of SE. In those sections we suggest possible
variables for SE experiments as an aid for novice experimenters. However, the
variables proposed here are only a suggestion and SE experimenters can work with
an alternative set depending on their particular goals. Additionally, we will also
examine some variables used in real SE experiments, going beyond a merely
theoretical discussion.

Remember that experimental design has been referred to as a crucial part of
experimentation, hence the importance of this and the next chapter, which details
different kinds of designs.

4.2. EXPERIMENTAL DESIGN TERMINOLOGY

Before software engineers can experiment, they must be acquainted with
experimental design terminology. These are not difficult concepts and are basically
related to the provoked variations that distinguish one experiment from another. The
most commonly used terms in experimental design are discussed below.

• Experimental unit: The objects on which the experiment is run are called
experimental units or experimental objects. For example, patients are
experimental units in medical experiments (although any part of the human body
or any biological process is equally eligible), as is each piece of land in
agricultural experiments. SE experiments involve subjecting project
development or a particular part of the above development process to certain
conditions and then collecting a particular data set for analysis. Depending on
the goal of the experiment, the experimental unit in a SE experiment can then be
the software project as a whole or any of the intermediate products output during
this process. For example, suppose we want to experiment on the improvement
process followed by our organisation, we could compare the current process
with a process improved according to CMM recommendations. Both processes
would be assessed after application to the development of the same software
system and data would be collected on the productivity of the resources or the
errors detected. Thus, the experimental unit would, in this case, be the full
process, as this is the object to which the methods examined by this

58 Basic Notions of Experimental Design

experimentation (process improvement) are applied. However, if we wanted to
study process improvement in one area only, say requirements, the object and,
therefore, the experimental unit would be the requirements phase. Now suppose
we aim to compare the accuracy of three estimation techniques, the experimental
unit would be the requirements to which the techniques are applied. If we
wanted to compare two testing techniques, the experimental unit would be the
piece of code to which the techniques are applied. Thus, the experimental unit
would be a process or subprocess in the first example, whereas it would be a
product in the latter two.

• Experimental subjects: The person who applies the methods or techniques to
the experimental units is called experimental subject. In the above process
improvement example, the experimental subject would be the entire team of
developers. In the estimation example, the subjects would be the estimators who
apply the estimation techniques. And in the testing techniques example, the
subjects would be the people applying the testing techniques. Unlike other
disciplines, the experimental subject has a very important effect on the results of
the experiments in SE and, therefore, this variable has to be carefully considered
during experiment design. Why? Suppose, for example, that we have an
agronomy experiment aimed at determining which fertiliser is best for the
growth of a seed. The experimental subjects of this experiment would be the
people who apply the different fertilisers (experiment variables) on the same
seed sown on a piece of land (experimental unit). The action of different subjects
is not expected to affect the growth of the seed much in this experiment, as the
manner in which each subject applies the fertiliser is unlikely differ a lot. Let’s
now look at the experiment on estimation techniques in SE. The subjects of this
experiment would be software engineers who apply the three estimation
techniques on particular requirements (experimental unit). As the estimation
techniques are not independent of the characteristics of the estimator by whom
they are applied (that is, the result of the estimation will depend, for example, on
the experience of the estimator in applying the technique, in software
development and even, why not, on the emotional state of the estimator at the
time of running the experiment), the result can differ a lot depending on who the
subjects are. Similarly, the result of the application of most of the techniques and
procedures applied in SE happens to depend on who applies them, as the above
procedures are not, so as to say, automatic and independent of the software
engineer who applies them. Therefore, the role of the subjects in SE experiments
must be carefully addressed during the design of the experiment. As we will see
in Chapter 5, there are different points related to the subjects that will have an
impact on the final design of the experiment. Particularly, if we are running
experiments in which we do not intend to study the influence of the subjects, it
will be a good idea to select a design that cancels out the variability implicit in
the use of different developers. Paying special attention to the subjects is typical
of what are known as the social sciences, like psychology or SE, as opposed to
other sciences, like physics or chemistry, where the result of the application of

Basics of Software Engineering Experimentation 59

the variables does not, in principle, necessarily depend on who applies them.

• Response variable. The outcome of an experiment is referred to as a response
variable. This outcome must be quantitative (remember that this book focuses on
laboratory experiments during which quantitative data are collected). The
response variable of an experiment in SE is the project, phase, product or
resource characteristic that is measured to test the effects of the provoked
variations from one experiment to another. For example, suppose that a
researcher proposes a new project estimation technique and argues that the
technique provides a better estimation than existing techniques. The researcher
should run an experiment with several projects, some using the new technique
and others using existing techniques (experimental design would be an aid for
deciding how many projects would be required for each technique). One
possible response variable in these experiments would be the accuracy of the
estimate. The response variable in this example, accuracy, can be measured
using different metrics. For instance, we could decide to measure accuracy in
this experiment as the difference between the estimate made and the real value.
However, if the researcher claims that the new method cuts development times,
the response variable of the experiment would be development time. Therefore,
the response variable is the characteristic of the software project under analysis
and which is usually to be improved. Other examples of response variables and
metrics will be given in section 4.4. Each response variable value gathered in an
experiment is termed observation, and the analysis of all the observations will
decide whether or not the hypothesis to be tested can be validated.

The response variable is sometimes called dependent variable. This term comes
not from the field of experimental design but from another branch of
mathematics. As we discussed in section 3.2, the goal of experimentation is
usually to find a function that relates the response variable to the factors that
influence the variable. Therefore, although the term dependent variable is not
proper to experimental design, it is sometimes used.

• Parameters. Any characteristic (qualitative or quantitative) of the software
project that is to be invariable throughout the experimentation will be called
parameter. These are, therefore, characteristics that do not influence or that we
do not want to influence the result of the experiment or, alternatively, the
response variable. There are other project characteristics in the example of the
estimation technique that could influence the accuracy of the estimate:
experience of the project manager who makes the estimate, complexity of the
software system under development, etc. If we intend to analyse only the
influence of the technique on the accuracy of the estimate, the other
characteristics will have to remain unchanged from one experiment to another
(the same level of experience, same complexity of development, etc.). As we
discussed in section 2.4, the parameters have to be set by similarity and not by
identity. Therefore, the results of the experimentation will be particular to the

60 Basic Notions of Experimental Design

conditions defined by the parameters. In other words, the facts or knowledge
yielded by the experimentation will be true locally for the conditions reflected in
the parameters. The knowledge output could only be generalised by considering
the parameters as variables in successive experiments and studying their impact
on the response variable. Section 4.3.4 lists other examples of parameters used in
real experiments.

• Provoked variations or factors. Each software development characteristic to be
studied that affects the response variable is called a factor. Each factor has
several possible alternatives. Experimentation aims to examine the influence of
these alternatives on the value of the response variable. Therefore, the factors of
an experiment are any project characteristics that are intentionally varied during
experimentation and that affect the result of the experiment. Taking the example
of the estimation technique, the technique is actually the factor and its possible
alternatives are: new technique, COCOMO, Putnam’s method, etc. Other
examples of factors used in real experiments will be given in section 4.3.4.

Factors are also called predictor variables or just predictors, as they are the
characteristics of the experiment used to predict what would happen with the
response variable. Another term, taken from mathematics and used for the
factors, is independent variables.

• Alternatives or levels. The possible values of the factors during each
elementary experiment are called levels. This means that each level of a factor is
an alternative for that factor. In our example, the alternatives would be: the new
technique, COCOMO and Putnam’s method, that is, the alternatives used for
comparison.

The term treatment is often used for this concept of alternatives of a factor in
experimental design. This term dates back to the origins of experimental design,
which was conceived primarily with agricultural experimentation in mind. The
factors in this sort of studies used to be insecticides for plants or fertilisers for
land, for which the term treatment is quite appropriate. The term treatment is
also correct in medical and pharmacological experimentation. A similar thing
can be said for the term level, which is very appropriate for referring to the
examination of different concentrations of chemical products, for example. The
terms treatment and level in SE, however, can be appropriate on some occasions
and not on others. So, we prefer to use the term alternative to refer to the values
of a factor in this book. The alternatives of the factors of the experiments
addressed in this book, such as COCOMO or Putnam’s method, for example, are
qualitative, as discussed above. Remember, though, that the response variables
gathered in these experiments are quantitative. The aim of these experiments
then is to determine the quantitative effect of some alternatives. Other
quantitative experiments aim to find relationships between quantitative
variables, such as, for example, the relationship between years of experience and

Basics of Software Engineering Experimentation 61

productivity. As mentioned in Chapter 1, we are not going to address this sort of
designs as there are many examples in the SE literature. However, experiments
in which the values of the factors are qualitative are less common, and their
results can go a long way towards expanding the body of knowledge of a
discipline, particularly SE, which explains why they are the focus of this book.

Figure 4.1 shows the relationships among parameters, factors and response variables
in an experimentation.

Set Parameters of
the Inquiry:
 p1 = v1
 p2 = v2

Determine the
Factors of the Inquiry:
f1, f2

Determine the
Response Variables:
rv

Experimental Unit 1
p1 = v1
p2 = v2
f1 = a
f2 =α

Experimental Unit 2

p1 = v1
p2 = v2
f1 = b
f2 =

Experimental Unit n

p1 = v1
p2 = v2
f1 = c
f2 =

β

λ

Measurement of rv
Experiment 1

rv =x

rv =y

rv =z

Data Analysis
x, y … z

Definition of
Objectives

Design Execution Analysis

.

.

.
.
.
.

Measurement of rv
Experiment 2

Measurement of rv
Experiment n

Determine the Alternatives
of the Inquiry:
f1: a, b, c
f2: α, β, λ

Findings on the
influence of f1

and f2 on rv under
the following
conditions:
 p1 = v1

p2 = v2.

– Add/delete variables

– Detail goals

– Generalise the results

START
experimentation

Figure 4.1. Relationship among Parameters, Factors and Response Variable in an
Experimentation

• Interactions. Two factors A and B are said to interact if the effect of one
depends on the value of the other. The interactions between the factors used in
the experiments should be studied, as this interaction will influence the results of
the response variable. Therefore, the experimental designs that include
experiments with more than one factor (factorial designs discussed in Chapter 5)
examine both the effects of the different alternatives of each factor on the
response variable and the effects of the interactions among factors on the
response variable.

• Undesired variations or blocking variables: Although, we aim to set the
characteristics of an experiment that we do not intend to examine at a constant
value, this is not always possible. There are inevitable, albeit undesired
variations from one experiment to another. These variations can affect several
elements of the experiment: the subjects who run the experiment (not enough
subjects with similar characteristics can be found to apply the different
techniques); the experimental unit (it is not possible to get very similar projects
on which to apply the different alternatives); the time when the experiment is run
(each alternative has to be applied at different points in time), etc. In short, these
variations can affect any conditions of the experiment. These variations are

62 Basic Notions of Experimental Design

known as blocking variables and call for a special sort of experimental design,
called block design (examined in Chapter 5).

• Elementary experiment or unitary experiment: Each experimental run on an
experimental unit is called elementary experiment or unitary experiment. This
means that each application of a combination of alternatives of factors by an
experimental subject on an experimental unit is an elementary experiment. Thus,
in the example of the estimation techniques, the application of each new
technique on the requirements by a particular subject is an elementary
experiment. As we have three techniques applied to the same requirements, this
experiment is composed of three elementary experiments.

• External replication: As we said in Chapter 2, external replication is performed
by independent researchers. Judd et al. (Judd, 1991) provide the following
definition of external replication: “other researchers in other settings with
different samples attempt to reproduce the research as closely as possible. If the
results of the replication are consistent with the original research, we have
increased confidence in the hypothesis that the original study supported”. We
also said in Chapter 2 that exact replication is not possible in SE, as it is not
possible to find identical subjects, identical units, etc. So when replicating
experiments, it is very important to categorise the differences between the
original experiment and the replication. Basili et al. (Basili, 1999) divided the
types of external replications into three groups:

1. Replications that do not alter the hypothesis:

(1.a) Replications that repeat the original experiment as closely as possible.

(1.b) Replications that alter the manner in which the first experiment was run.
For example, suppose we have an experiment that calls for the subjects
to be trained in the techniques to be used and the subjects are sent a
document describing the above techniques beforehand, a second
experiment could be run giving subjects classroom training.

2. Replications that alter the hypothesis:

(2.a) Replications that alter design issues, such as, for example, the detail
level of the specifications of a problem to be estimated.

(2.b) Replications that alter factors of the setting of the experiment, such as
the type of subjects who participate (students, practitioners, etc.), the
problem domain addressed, etc., for example.

3. Replications that reformulate the goals and, hence, the hypothesis of the

Basics of Software Engineering Experimentation 63

experiment: for example, suppose we have an experiment finding that a
particular testing technique detects more errors of omission than commission.
The goal of a possible replication of the above experiment would be to
distinguish which sort of errors of omission or commission are best detected
by the above technique. Thus, we could determine whether the technique is
better at detecting errors of omission irrespective of the error type or whether
the technique fails to detect omissions better than commissions for a
particular error, etc.

 Of these replications, the aim of group 2 is to generalise the results of the
experiments, seeking to extend their applicability. Group 3 analyse the study in
more detail, that is, can be used examine the survey in more depth getting more
specific results from the experiments. On the other hand, group 1 replications
serve only to reinforce the results of the original experiment, as they neither
extend more modify the original hypotheses.

 Examples of the three categories of replicated experiments will be mentioned
throughout the book.

• Internal replication. As mentioned in Chapter 2, the repetition of all or some of
the unitary experiments in an experimentation is referred to as internal
replication. If, for example, all the experiments of a study are repeated three
times, it is said to be an experiment with three replications. As discussed in
section 2.5, replication increases the reliability of the results of the
experimentation. In our example, we may decide that we need six elementary
experiments (equal to the combination of factors): two for each estimation
technique and each of the above two with a large or small value for project size.
This means that the values of the two identified factors are: new, COCOMO and
Putnam’s method for the estimation technique, and large and small for project
size. So, we will test COCOMO on a large and a small project, and we will do
the same with the other two techniques. Finally, as a question of confidence in
the results, we may decide to replicate each experiment three times in order to be
able to be sure about the values measured for the response variable. Remember
that, as mentioned in Chapter 2, replication is based on similarity in SE. Hence,
if we replicate each elementary experiment three times, we would then have to
work on three similar small projects, it being practically impossible to find three
exactly identical software projects. Similarly, we would have to find some
similar large projects to carry out the replication. So, we would have 18
elementary experiments to be run by the experimental subjects. The ideal thing
would be to assign a different subject to each of the 18 experiments, by means of
which we could avoid undesired effects, as we will see in Chapter 5.

Since the effect of the subjects who apply the factors to the experimental units in
SE can, as mentioned above, be very significant, there is also the possibility of
running the replication on the subjects. Our example was originally composed of

64 Basic Notions of Experimental Design

six elementary experiments (two per each estimation technique). As discussed in
Chapter 5, we should ideally have six subjects with similar characteristics to run
one elementary experiment each. Each elementary experiment could be
replicated using two similar subjects (that is, two subjects applying the same
technique to the same program) to assure that the characteristics of the subjects
have as little effect as possible on the experiment. Nonetheless, a better design
would be to run the replication using subjects and programs, that is, have each
elementary experiment replicated by two people, as in the above case, but
adding a second large and a second small project. In this case, we would have 24
elementary experiments, run by 24 subjects, 12 subjects experimenting on one
large and small program and another 12 on another large and small program.

The number of replications to be run in each experiment has to be identified
during the design process. Certain statistical concepts have to be applied and
knowledge of some characteristics of the population on which the experiment is
run is required to calculate this number. Indeed, Chapter 15 will discuss how to
know a minimum number of replications depending on how sure we need to be
about the findings of the experiment.

• Experimental error. Even if an experiment is repeated under roughly the same
conditions, the observed results are never completely identical. The differences
that occur from one repetition to another are called noise, experimental
variations, experimental error or simply error. The word error is used not in a
pejorative but in a technical sense. It refers to variations that are often inevitable.
It is absolutely blame free. There are, therefore, several possible sources, the
most self-evident of which are errors in the measurement of the values of the
response variable. However, the most interesting cause from the experimental
viewpoint are the unconsidered variations. This means that, by studying the
experimental errors, a decision can be made on whether there is a source of
variation in the experiments that has not been considered (either as a factor or as
a blocking variable). This is a means of learning about the software development
variables and their influence on the project results. Note that if an unknown
variation of this sort is detected, it invalidates the results of the experimentation,
which has to be repeated considering this new source of variation. This is what
we called stepwise approach to experimentation in section 3.1, that is, the
experiments will be run in successive round where what has been learnt in one
group of experiments will feed the following group.

The fact that they are not trained to deal with situations in which experimental errors
cannot be ignored has been a mighty obstacle for many researchers. Caution is not
only essential with regard to the possible effects of experimental error on data
analysis, its influence is also a consideration of the utmost importance in
experimental design. Therefore, an elementary knowledge of experimental error and
associated probability theory is essential for laying a solid foundation on which to
build the design and analysis of experiments. Part III of the book will detail how to

Basics of Software Engineering Experimentation 65

measure this error and its effects on experiments.

4.3. THE SOFTWARE PROJECT AS AN EXPERIMENT

4.3.1. Types of Variables in a Software Experiment

As we have mentioned, the goal of running experiments in SE is to improve
software system development. This improvement will have to be set at some point
or under some circumstance within the development project. We can consider that
the basic components of the development project are: people (developers, users and
others), products (software system and all the intermediate products), problem (need
raised by the user and point of origin of the project) and process (set of activities
and methods that implement the project from start to finish).

It is evident that the software project depends on more than one factor (for example,
the people involved, the activities performed, the methods used for development,
etc.). A proper study of software development calls for the effects of each factor to
be isolated from the effects of all the other factors so that significant claims can be
made, for example, technique X speeds up the development of Y-type software.

Below, we suggest variables that may have an impact on the outcome of software
development and which, therefore, can be taken into account when experimenting
with software development. These variables can be selected as parameters, blocking
variables or factors, depending on the goal of the experiment.

Another point remains to be made concerning the suggested variables. This point is
related to the selected experimental unit. As mentioned earlier, an experimentation
in SE can be run on the whole or any part of the project. The same variable may
play different roles (as a factor or response variable, for example) depending on
what the experimental unit is. For example, suppose we want to determine the size
of the code for implementing one and the same algorithm using two different
programming languages. In this case, the algorithm to be developed would be the
experimental unit and code size would be the response variable in question.
However, if we chose to do another experiment to test two testing techniques, the
experimental unit in this case would be the piece of code, and size would be a
possible parameter or factor, as the result of the experiment could vary depending
on its value.

Therefore, if we take part of a development project as an experimental unit in our
experiment, some of the possible factors and parameters will be the result of earlier
phases of development, whereas if we take the entire project, these very same
factors and parameters could be considered as response variables.

4.3.2 Sources of Variation in a Software Project

66 Basic Notions of Experimental Design

The origins of variables (parameters, factors, blocking and response variables) of a
SE experiment may be distinct, that is, their sources may differ. It may, therefore, be
of interest to study the sources of variables that can affect the software project in
order to identify possible experimental parameters, factors and response variables.
For this purpose, we recommend the use of two different perspectives to address the
software project: internal (inside) and external (outside) to the software project.
Different sources of parameters, factors and response variables are identified for
each perspective.

• External perspective. The software project is seen as a black box and we
examine only the variables affecting it from the outside. These variables cannot
be modified or adjusted from within the software project, as they are
predefined, so they will have to be considered parameters of the experiment.
Figure 4.2 shows the different sources that can influence a software project
from the external perspective. User characteristics can affect the development
process, as well as the characteristics of the problem that we are trying to solve,
the sources of information, some characteristics of the organisation at which the
software is being developed, and customer constraints. Therefore, these are the
sources of possible parameters and response variables in an experiment.

Figure 4.2. External parameters

• Internal perspective. The software project is viewed as a white box and we
examine only variables affecting it from the inside. These variables are
configured at the start of or during the project. Depending on the goal of the

Basics of Software Engineering Experimentation 67

experiment these variables could be selected as parameters, factors of even
response variables. Figure 4.3 shows the different sources that can influence a
software project from the internal perspective. These internal sources are
processes (composed of activities), methods, tools, personnel and products.

Figure 4.3. Internal parameters

So, having identified the possible focus of influence in the software project, we can
start to analyse and then identify possible parameters for a SE experiment. An
extensive list of possible sources of variables for a software project is given in
Annex I. Although we have sought to be exhaustive so as to aid readers with their
experiments, this should not be taken to mean that the list is comprehensive or that
readers cannot select other variables apart from those listed in this annex. Therefore,
readers who are using this book to prepare a particular SE experiment can make use
of this information to select given parameters. Some of the factors and parameters
used in real SE experiments are referred to below.

4.3.3. Parameters and Factors Used in Real SE Experiments

Table 4.1 shows some examples of factors and parameters used in real experiments.
With regard to parameters, it has to be said that it is difficult to find an accurate
description of this sort of variables in the experimental SE literature, as many are
not described explicitly in the references. Moreover, this makes it difficult to
replicate the experiments since the conditions of the experiments are not
exhaustively described. Therefore, Table 4.1 describes the parameters that have
been mentioned explicitly in some experiments. This does not, however, mean that
these were the only ones taken into account.

As far as the factors shown in the table are concerned, note that factor selection
depends on the goal of the experiment in question. They are not unique, however.

68 Basic Notions of Experimental Design

So, two experiments, which may share the same overall goal, may use different
factors and parameters. This choice also depends on the conditions and possible
constraints (time, subject, development conditions, etc.) subject to which each
experiment is run.

Table 4.1. Examples of factors and parameters in real experiments

GOAL FACTORS PARAMETERS REFERENCE
Studying the effect of
different testing
techniques on the
effectiveness of the
testing process

• Software testing
techniques (code
reading, functional
testing, structured
testing)

• Program types: three
different programs

• Subject level of
expertise (advanced,
intermediate, junior)

• Testing process (first
training, then three
testing sessions and
then a follow-up
session)

• Program size
• Familiarity of subjects

with editors, terminal
machines and programs
implementation
language (good
familiarity)

• High-level language for
implementing programs

(Basili, 1987)

Studying the effect of
testing techniques on the
effectiveness and
efficiency at revealing
failures

• Inspection technique
(code reading,
functional testing,
structured testing)

• Program types (three
different programs)

• Subjects (six groups
of similar subjects)

• Order of applying
techniques

• Order in which subjects
inspect programs (first
program 1, then
program 2, and then
program 3).

• Implementation
language (C)

• Problem complexity
(low)

• Subjects from a
university lab course

(Kamsties, 1995)

Studying the ease of
creating a program using
an aspect-oriented
approach and an OO
approach

• Programming
approach (Aspect J,
Java)

• Problem complexity
(low)

• Application type
(program with
concurrence)

• Subjects from a
university course

(Murphy, 1999)

Studying the
effectiveness of methods
for isolating faulty
modules

• Method
(classification tree
analysis, random
sampling, largest
module)

• Modules with a specific
kind of fault

• Modules domain
(NASA environment)

• Implementation
language (Fortran)

(Porter, 1992)

Studying the quality of
code produced using a
functional language and
an OO language

• Programming
language (SML, C++)

• Problem domain (image
analysis)

• Specific development
process

• Subjects experienced in
both programming
languages

(Harrison, 1996)

Basics of Software Engineering Experimentation 69

Studying the effect of
cleanroom development
on the process and on the
product

• Development process
(cleanroom, non-
cleanroom)

• Subjects from a
university course

• Similar professional
experience, academic
performance and
implementation
language experience

• Problem description (an
electronic message
system)

• Implementation
language (Simpl-T)

• Development machine
(Univac 1100/82)

(Selby, 1987)

Studying the best way of
assessing changeability
decay

• Approaches to
assessing
changeability decay:
benchmarking,
structure
measurement, change
complexity analysis

• Problem description
(commercial project for
an airline)

• Visual Basic 6
implementation
language

(Arisholm, 1999)

Studying whether
organisational structure
has an effect on the
amount of effort
expended on
communication-between
developers

• Organisational
distance (close: all
participants report to
the same manager;
distant: at least one
participant from a
different management
area)

• Physical distance
(same corridor, same
building, separate
building)

• Present familiarity
(degree of interaction
among participants)

• Past familiarity
(degree to which a set
of participants have
worked together on
past projects)

• Specific part of the
development process
(process inspection)

• Implementation
language (C++)

• Problem description (a
mission planning tool
for NASA)

• Number of participants
in the inspection
process (around 20)

• Use of a specific
approach for
inspections described in
the paper

(Seaman, 1998)

4.4. RESPONSE VARIABLES IN SE EXPERIMENTATION

As we have already mentioned, response variables reflect the data that are collected
from experiments. They are, therefore, variables that can only be measured a
posteriori, after the entire experiment (the software project or the respective phase
or activity) has ended. Remember that the response variables with which we are
concerned in this book must provide a quantitative measure that will be studied
during the process of analysis. These variables have to represent the effect of the
different factor alternatives on the experimental units in question. For example,
suppose that we want to evaluate the accuracy of two estimation techniques; the

70 Basic Notions of Experimental Design

response variable has to measure accuracy. Alternatively, for example, if we want
to quantify the time saving when using as opposed to not using a code generator,
the response variable to be measured would be the time taken with both alternatives
to program certain specifications. Note then that the response variable of an
experiment depends mainly on the goal and hypothesis of the experiment in
question, whereas more than one response variable can be gathered for one and the
same experiment, as shown in Table 4.6. This will involve running several analyses,
one for each response variable.

The possible response variables that we can identify in software experiments can
measure characteristics of the development process, of the methods or tools used, of
the team or of the different products output during the above development process.
Table 4.2. shows some of the response variables related to each component.

Special measures or, alternatively, special metrics have to be used to get the
individual values of these response variables. The relationship between these two
concepts is discussed in the following section.

Table 4.2 Examples of response variables in SE
experiments

Development process Schedule deviation, budget
deviation, process compliance

Methods Efficiency, usability,
adaptability

Resources Productivity
Products Reliability, portability,

usability of the final product,
maintainability, design
correctness, level of code
coverage

4.4.1. Relationship between Response Variables and Metrics

The response variables of an experiment are closely related to the concept
of metric used in software development. Indeed, as mentioned earlier, metrics
applied to the products or deliverables that are output during development, the
development process or any of its activities and the resources involved in the above
development are used to measure these variables.

Response variables can be likened to what are referred to as product, process or
resource attributes in the literature on software metrics (Fenton, 1997). Here,

Basics of Software Engineering Experimentation 71

Fenton and Pfleeger class these attributes as internal and external attributes. Table
4.3 shows some product-, process- or people-related attributes arranged according
to this classification. The internal attributes of a product, process or resource are
what can be measured purely in terms of the product, process or resource. In other
words, an internal attribute can be measured by examining the product, process or
resource as distinct from its behaviour. On the other hand, the external attributes of
a product, process or resource are what can be measured solely with regard to how
the product, process or resource is related to its environment. In other words, the
behaviour of the process, product or resource is more important than the entity
itself.

Consider code, for example. An internal attribute could be its size (measured, for
example, as the number of lines of code) or we could even measure its quality by
identifying the number of faults found when it is read. However, there are other
attributes that can only be measured when the code is executed, like the number of
faults perceived by the user or the user’s difficulty in navigating from screen to
screen, for example. Table 4.3 shows other internal and external attributes for
products and resources.

Table 4.3 also shows some metrics that could be applied to evaluate the respective
attributes for response variables in terms of SE experimentation. This table is not
designed as a comprehensive guide to software metrics. It simply provides readers
with some examples that can be used to measure given attributes (or response
variables). Note that the table includes no response variables or metrics related to
the methods or tools for use, for example. However, some response variables used
to evaluate a finished product, like usability, efficiency, etc., can be applied for this
purpose.

The metrics included in Table 4.3 actually depend on the (entity, attribute) pair,
where some products, separate parts of the process or of resources are represented
under the entity column. More than one metric can be applicable to the same (entity,
attribute) pair, such as the (code, reliability) pair, which can be measured by the
number of faults in time t or by means of the mean time between failure, for
example. This table is far from being a full list of metrics for application in software
development, it simply gives examples of some of these measures.

When working with metrics, we need to consider the different sorts of measurement
scale. The most common scale types are: nominal, ordinal, interval and ratio
(Fenton, 1997) (Kitchenham, 1996).

a. Nominal scales are actually mere classifications dressed up as numerical
assignations. The values assigned to objects have neither a quantitative nor a
qualitative meaning. They simply act as mere classes of equivalence of the
classification.

72 Basic Notions of Experimental Design

b. Ordinal scales are actually mere relationships of comparison dressed up as
numerical assignations. In this case, the values assigned to the objects do not
have a quantitative meaning and act as mere marks that indicate the order of
the objects.

c. Interval scales represent numerical values, where the difference between each
consecutive pair of numbers is an equivalent amount, but there is no real zero
value. On an interval scale, 2-1 = 4-3, but two units are not twice as much as
one unit.

d. Ratio scales are similar to interval scales, but include the absolute zero. On a
ratio scale, two units are equivalent to twice the amount of one unit.

Basics of Software Engineering Experimentation 73

Table 4.3. Examples of software attributes and metrics

 Entities Internal Attributes Metrics External Attributes Metrics
Products Specifications Size • number of classes

• number of atomic process

Comprehensibility hours that an external analyst
takes to understand the
specifications

 Reuse number of classes used without change Maintainability person.months spent in making a
change

 Functionality number of function points
 Syntactic correctness number of syntactic faults
 Designs Size number of modules Maintainability number of modules affected by a

change in another one
 Reuse number of modules used without

change

 Coupling number of interconnections per
module

 Cohesiveness number of modules with functional
cohesion/total number of modules

 Code Size Non-comment lines of code (NCLOC) Quality defects/LOC
 Complexity • number of nodes in a control flow

diagram
• McCabe’s cyclomatic complexity

Usability hours of training before
independent use of a program

 Maintainability days spent in making a change
 Efficiency execution time
 Reliability • number of faults in a time t

• mean time between failures

74 Basic Notions of Experimental Design

Processes Overall

Process
Time months from start to finish of the

development
Schedule deviation estimated months/real months

 Constructing
specifications

 Effort person.months from start to finish of
the activity

Stability of
requirements

number of requirements changes

 Testing Time months from start to finish of the
activity

Cost-effectiveness number of detected defects/cost
of the testing activity

 Effort person.months from start to finish of
the activity

Quality number of detected
defects/number of existing
defects

Resources Personnel Cost $ per month Productivity number-of-function-points-
implemented/person-month

 Experience years of experience
 Teams Size number of members Productivity number-of-function-points-

implemented/team-month

Basics of Software Engineering Experimentation 75

Table 4.4 shows examples of these scales both inside and outside SE. This table
also shows some constraints on the mathematical operators that can be applied to
each one. As discussed in Chapter 6, this scale is important insofar as it determines
the sort of method of data analysis to be applied to get the respective conclusions.

Table 4.4. Measurement type scales

Name Examples outside SE Examples inside SE Constraints
Nominal Colours:

1. White
2. Yellow
3. Green
4. Red
5. Blue
6. Black

Testing methods:
• type I (design
inspections)
• type II (unit testing)
• type III (integration
testing)
• type IV (system
 testing)
Fault types:
• type 1 (interface)
• type 2 (I/O)
• type 3 (computation)
• type 4 (control flow)

Categories cannot be used
in formulas even if you
map your categories to
integers.
We can use the mode and
percentiles to describe
nominal data sets.

Ordinal The Mohs scale to detect
the hardness of minerals
or scales for measuring
intelligence.

Ordinal scales are often used for
adjustment factors in cost models
based on a fixed set of scale
points, such as very high, high,
average, low very low.
The SEI Capability Maturity
Model (CMM) classifies
development on a five-point
ordinal scale.

Scale points cannot be
used in formulas. So, for
instance, 2.5 on the SEI
CMM scale is not
meaningful. We can use
the median and
percentiles to describe
ordinal data sets.

Interval Temperature scales:
-1 degree centigrade
0 degrees centigrade
1 degree centigrade
etc.

If we have been recording
resource productivity at six-
monthly intervals since 1980, we
can measure time since the start
of the measurement programme
on an interval scale starting with
01/01/1980 as 0, followed by
01/06/1980 as 1, etc.

We can use the mean and
standard deviation to
describe interval scale
data sets.

Ratios Length, mass, length The number of lines of code in a
program is a ratio scale measure
of code length.

We can use the mean,
standard deviation and
geometric mean to
describe interval data
sets.

4.4.2. How to Identify Response Variables and Metrics for a SE Experiment

The identification of response variables and metrics in an experiment is an essential
task if the experiment in question is to be significant. The concept of response
variable is often used as interchangeable with the concept of metric in the literature
on SE experiments, that is, when the response variables of an experiment are

76 Basic Notions of Experimental Design

mentioned, the metrics that will be used are sometimes directly specified, and the
two terms are thus used as synonyms.

This is the approach proposed by Basili at al. (Basili, 1994), called Goal-Question-
Metric (GQM), that has been successfully used in several experiments (Shull, 2000)
(Basili, 1987) (Lott, 1996) (Kamsties, 1995) for identifying response variables
(which are directly metrics). This approach involves defining the goal of the
experiment. We then have to generate a set of questions whose responses will help
us to determine the proposed goal and, finally, we have to analyse each question in
terms of which metric we need to know to answer each question.

Let’s take a look at an application of GQM in a real experiment to show how useful
it is for choosing the metrics of an experiment. Kamsties (1995) and Lott (1996)
applied this approach to get the metrics of an experiment that aims to study several
testing techniques. In Table 4.5, we describe the goals defined by the authors, as
well as the questions and response variables considered. Note that one and the same
response variable can be useful for answering different questions, like, for example,
the experience of the subjects, which is used in questions Q.1.2, Q.2.2, Q.3.2 and
Q.4.2. Thus, the GQM provides a structured and gradual means of determining the
response variables to be considered in an experiment, where the choice of the above
variables is based on the goal to be achieved by the above experiment.

4.4.3. Response Variables in Real SE Experiments

In this section we present some response variables found in SE experimentation
literature. As we said before, in the case of a software experiment, the response
variables, which will be assessed by means of the metrics under consideration,
depend on the goal of the experiment in question, the size of the resources available
for running the experiment, the conditions under which the experiment is run, etc.
Thus, for example, Table 4.6 shows some response variables (in this case, metrics

Basics of Software Engineering Experimentation 77

Table 4.5. Examples of GQM application to identify response variables in an experiment

Goal G.1. Effectiveness at revealing
failures

G.2. Efficiency at revealing
failures

G.3. Effectiveness at isolating
failures

G.4. Efficiency at isolating faults

Questions

 Metrics

Q.1.1.What
percentage of
total possible
failures did
each subject
reveal and
record?

Q.1.2. What
effect did the
subject’s
experience
with the
language or
motivation
for the
experiment
have on the
percentage
of total
possible
failures
revealed and
recorded?

Q. 2.1. How
many unique
failure classes
did the subject
reveal and
record per
hour?

Q.2.2. What
effect did the
subject’s
experience
with the
language or
motivation
for the
experiment
have on the
number of
unique
failure
classes
revealed and
recorded per
hour?

Q.3.1. What
percentage of
total faults
(that
manifested
themselves in
failures) did
each subject
isolate?

Q.3.2. What
effect did the
subject’s
experience
with the
language or
motivation for
the experiment
have on the
percentage or
total faults
isolated?

Q.4.1. How
many faults did
the subject
isolate per
hour?

Q.4.2. What
effect did the
subject’s
experience with
the language or
motivation for
the experiment
have on the
number of faults
isolated per
hour?

Number of different, possible
failures

* *

Subject’s experience with the
language (estimated on a scale
from 0-5)

 * * * *

Subject’s experience with the
language (measured in years of
working with it)

 * * * +

78 Basic Notions of Experimental Design

Subject’s mastery of the technique
(estimated on a scale from 0-5)

* * * *

Number of times a test case caused
a program’s behaviour to deviate
from the specified behaviour

* * * *

Number of revealed deviations that
the subject recorded

* * * *

Amount of time the subject
required to reveal and record the
failures

 * *

Number of faults present in the
program

 * *

Number of faults that manifested
themselves as failures

 * * * *

For all faults that manifested
themselves as failures, the number
of those faults that were isolated

 * * * *

Amount of time the subject
required to isolate faults

 * *

Basics of Software Engineering Experimentation 79

directly) employed in real experiments alongside the goal pursued by each
experiment. This illustrates how the response variables depend on the above goal.
Note how it is possible to measure several response variables for just one
experiment. This will involve an independent analysis for each one, and a joint
interpretation of the separate analyses in order to give some response about the
defined goal (remember that data analysis will be examined in Part III of this book).

Table 4.6. Examples of response variables in real SE experiments

Goal Response Variable Experiment
Studying the effect of three
testing techniques on the
effectiveness of the testing
process

• No. of faults detected
• Percentage of faults detected
• Total fault detection time
• Fault detection rate

(Basili, 1987)

Studying the effectiveness of
different capture-recapture
models to predict the number of
remaining defects in an
inspection document

• RE=(estimate_no._defects-
actual__defects)/actual_no._defects

(Briand, 1997)

Studying the performance of
meeting inspections compared
to individual inspections

• Meeting gain rate: percentage of defects first
identified at the meeting

• Meeting loss rate: percentage of defects first
identified by an individual but not included in
the meeting report

(Fusaro, 1997)

Studying the degree of
inheritance in friend C++
classes

• Depth of inheritance tree: maximum level of the
inheritance hierarchy of a class

(Counsell,
1999)

Studying the performance
advantage of interacting groups
over average individuals

• Number of true defects: defects that need
rework

• Number of false positive defects: defects that
require no repair

• Net defect score: number of true defects-number
of false positives

(Land, 1997)

Studying performance between
individuals performing tool-
based inspections and those
performing paper-based
inspections

• Number of defects found after a given time
period

(Macdonald,
1998)

Studying the effect on the
productivity of the development
team on projects with accurate
cost estimation

• TP= (SLC/EFT)
• SLC:size of delivered code
• EFT: total amount of effort needed in the

development(person.month)

(Mizuno,
1998)

Studying the impact on the
number of faults for those
projects that have correctly
applied specific guidelines
provided by a software
engineering process group.

• ρreview/total = (Faults detected during the design
phase) / (Faults detected during the design
phase + Faults detected during the debug phase
+ Faults detected during six months after code
development) x 100

• ρtest/total = (Faults detected during the debug

phase) / (Faults detected during the design phase
+ Faults detected during the debug phase +
Faults detected during six months after code

(Mizuno,
1999)

Basic Notions of Experimental Design 80

development) x 100
Studying the accuracy of the
analogy-based estimation
compared with the regression
model-based estimation

• ((actual effort - estimated effort) / actual effort)
x 100

(Myrtevil,
1999)

Studying the quality of
structured versus object-
oriented languages on the
development process

Studying the quality of
structured versus object-
oriented languages on the
delivered code

• Number of known errors found during execution
of test scripts

• Time to fix the known errors
• Number of modifications requested during code

reviews, testing and maintenance
• Time to implement modifications
• Development time
• Testing time

• Number of non-comment, non-blank source

lines
• Number of distinct functions called
• Number of domain specific functions called
• Depth of the function call hierarchy chart

(Samaraweera,
1998)

Studying the effect of
Cleanroom development on the
product developed

Studying the effect of
Cleanroom development on the
development process

• Test cases passed
• Number of source lines
• Number of executable statements
• Number of procedures and functions
• Completeness of the implementation as a

function of compliance of certain requirements

• Efficiency with which subjects think that they

applied off-line software review techniques(1)

• CPU time used by subjects
• Number of deliveries

(Selby, 1987)

Studying the effect of using a
predefined process versus let
developers use a self-defined
process on the size of the
systems

Studying the effect of using a
predefined process versus let
developers use a self-defined
process on the defects in the
execution of the process

• Number of tables in the database
• Number of modules in the structure chart

• Number of activities included in the process and

not executed
• Number of deliverables expected and not

produced
• Number of activities executed incorrectly

(Tortorella,
1999)

(1)The authors indicate that this response variable can be somewhat subjective.

4.5. SUGGESTED EXERCISES

4.5.1. An aeronautics software development laboratory aims to identify the best
two of four possible programming languages (Pascal, C, PL/M and
FORTRAN) in terms of productivity, which are to be selected to implement
two versions of the same flight control application so that if one fails the
other comes into operation. There are 12 programmers and 30 modules
with similar functionalities to flight control applications for the experiment.

Basics of Software Engineering Experimentation 81

The individual productivity of each programmer differs, which could affect
the experiment productivity. Specify what the factors, alternatives,
blocking variables, experimental subjects and objects, and parameters of
this experiment would be. What would a unitary experiment involve?

Solution: factor: programming language;
alternatives: Pascal, C, PL/M and FORTRAN;

blocking variable: 12 programmers;
subjects: 12 programmers;

experimental objects: 30 modules;
response variable: mean productivity in terms of months/person, for example;

parameters: flight control domain modules, similar complexity;
a unitary experiment would involve the implementation of one of the modules

 by one of the subjects in a given language.

4.5.2. An educational institution is considering justifying whether the deployment
of an intelligent tutoring system to teach OO would improve the quality of
instruction in the above discipline. For this purpose, it decides to compare
the result of a test on this subject taken by students who have used this
intelligent tutor with the result of the same test taken by students who have
used traditional printed material. None of the students will be acquainted
with the domain; the instructors will not interact with students, which
means that the subject matter will not be explained by the instructors in
question; all the students will be of the same age; they will all be given the
same time to do the test; the test will be the same; and the motivation will
also be the same, that is, none of the students will receive anything in
return. What are the factors and parameters of the experiment, blocking
variables, experimental subjects and objects and response variable? What
would a unitary experiment involve?

Solution: factor: system of instruction
parameters: students unfamiliar with the domain;

same test; same time; same motivation; same age;
no interaction with instructors;

block: none;
subjects: students;

experimental objects: test;
response variable: test grade;

unitary experiment: a student is taught according to a particular system of
instruction and takes the test in question.

5 EXPERIMENTAL
DESIGN

5.1. INTRODUCTION

As discussed in Chapter 4, experimental design decides which variables will be
examined and their values, which data will be collected, how many experiments
have to be run and how many times the experiments have to be repeated. In other
words, a decision is made on how the experiment will actually be arranged. This
chapter examines the different kinds of experimental design there are and the
circumstances under which each one should be used.

Before going on to discuss the different kinds of experimental design in detail, let’s
make a parenthesis and note that experimental design is the phase of the
experimental process that best distinguishes an experiment from an observation or
survey. As mentioned earlier, observers do not modify the real world during an
observation, they merely “look at it” and collect data from it. On the other hand,
experimenters arrange the real world before observing it. What primarily
differentiates experimentation from observation is this prior interference with the
real world. The “pre-treatment” of the real world, as required by experimentation, is
what is called experimental design.

This chapter examines a range of ways that can be used in controlled experiments
“to modify the real world”. Sections 5.2 to 5.8 contain several kinds of experimental
designs. After reading Chapter 4 and the above-mentioned sections of this chapter
and having gained an overview of experimental design, sections 5.9 and 5.10
immerse readers in the general questions of experimental design. Section 5.9 lists
the steps to be taken to design experiments, whereas section 5.10 describes some
potential problems encountered during experimental design in SE and their possible
solutions.

5.2. EXPERIMENTAL DESIGN

5.2.1. Kinds of Experimental Design

In experimental design, we first have to decide (based on the goals of the
experiment) to what factors and alternatives the experimental units are to be
subjected and what project parameters are to be set. We will then examine whether
any of the parameters cannot be kept at a constant value and account for any
undesired variation. Finally, we will choose which response variables are to be
measured and which the experimental objects and subjects are to be. These steps
will be described in more detail in section 5.9.

84 Experimental Design

Having established the parameters, factors, blocking variables and response
variables, it is time to choose a kind of experimental design. The type of
experimental design establishes how many combinations of alternatives unitary
experiments have to deal with.

There are different experimental designs depending on the aim of the experiment,
the number of factors, the alternatives of the factors, the number of undesired
variations, etc. Table 5.1 gives a brief summary of the most commonly used
experimental designs.

Table 5.1. Different experimental designs

Categorical
Factors
 and

Quantitative
Experimental
Response

One factor of
interest
(2 or n alternatives)

All other project parameters
can be fixed

K factors of interest
(2 or n alternatives)

- One-factor experiment
- Paired comparison

Block Design

There are desired
variations (of factors) only

Blocked
Factorial Design

- Factorial Design
- Nested Design

Fractional
Factorial
Design

less than nk

experiments

n k experiments

CONDITIONS OF THE EXPERIMENT EXPERIMENTAL DESIGN

There are undesired variations

There are undesired variations{ {

{ {

The remaining sections discuss the designs shown in Table 5.1. However, before
moving on to study each kind of design, it is important to understand a fundamental
concept that must be taken into account in any of these designs: randomisation.

5.2.2. Randomisation in Experimental Design

Randomised design means that the factor alternatives are assigned to experimental
units in an absolutely random order. As far as SE is concerned, both the factor
alternatives and the subjects have to be randomised, as the subjects have a critical
impact on the value of the response variable. For example, suppose we have an
experiment in which there is only one factor of interest. Imagine that we have four
similar development projects that differ only in the use of four CASE tools for
comparison. Consequently, we are working with the factor CASE tool that has four
alternatives. We have to examine how the above tools perform on projects to assess
the effect of the tools, and we have eight subjects with similar characteristics for this
purpose. How are the tools and the subjects assigned to the projects? Experimental
design theory says that if anyone were to deliberately assign tools to projects, they

Basics of Software Experimentation Engineering 85

would be quite likely to bring in undesired sources of variation, that is, the reason
behind the assignment. The assignment should be done completely at random to
prevent this problem, for example, by putting four numbers for the four tools in one
bag, eight numbers for the eight subjects in another and four numbers for the four
projects under development in another. Factor alternatives and subjects must always
be assigned at random to experiments, irrespective of the sort of design chosen in
Table 5.1. Note that we are referring to the assignment of alternatives to
experiments, not the combination of factor alternatives, which is what is actually
established by the experimental design (Table 5.1). As we will see in section 5.5.2.
for example, if we have two factors (A and B) each with two alternatives (A1, A2,
B1, B2,), the alternatives have to be combined as follows: A1B1, A1B2, A2B1, A2B2.
This combination of alternatives is specified by the sort of experimental design
chosen. However, these four combinations must be assigned at random to projects
and subjects.

As we will see in section 5.10., it is not always possible to fully randomise
experiments. This section details these circumstances and gives “tips” on how
randomisation should be addressed in these cases. Whether or not an experimental
design is randomised is important insofar as it determines the method of analysis
that is to be employed, as we will see in Part III of the book.

5.3. ONE-FACTOR DESIGNS

5.3.1. Simple Randomised Designs: One Alternative per Experimental Unit

When a series of experiments are run, the simplest means of comparing the response
variable for each alternative of just one factor is to use each alternative in a given
number of experimental units. Remember, however, that the assignment of the
alternatives to experiments has to be randomised in order to assure the validity of the
data analysis. As we have seen, experiment randomisation involves applying all the
alternatives to the respective projects (and subjects) randomly rather than
systematically.

For example, suppose that we intend to compare two analysis techniques, A and B.
For this purpose, we will use the two in a total of 10 projects. Techniques A and B
will be randomly assigned to one of the 10 projects. In other words, we do not mean
to use A in the first five projects and then B in the remainder, A and B alternatively
or any other option that implies any sort of order. We want the use of A or B in a
project to have been decided arbitrarily.

This random use cannot be assured by means of a human assignment, which is
believed to have an underlying cause (as there may be subconscious implications
that jeopardise the randomness of the assignment). Therefore, some sort of genuine
system of random selection will be used, like, for example, throwing a dice, taking

86 Experimental Design

cards out of a pack, etc. In this case, the experimenter took 10 cards, five red and
five black, from the pack; the red cards would correspond to the use of A and the
black ones to the use of B. The experimenter shuffled the cards and placed each one
face up, yielding the following succession: the first card that came out was red, the
second was red, the third was black and so on. As mentioned above, a similar project
must also be used to assign experimental units and techniques to subjects.

Project/Experimental Unit 1 2 3 4 5 6 7 8 9 10

Technique applied A A B B A B B B A A

This sort of simple design in which each experimental unit is assigned to a factor
alternative is equally applicable for examining two or n alternatives. All we have to
do is assign the n alternatives randomly to the unitary experiments (for example, the
four suits of cards can be used to randomise four alternatives). The analysis of those
designs are shown in sections 7.2. and 7.3. of Chapter 7, when the factor has two
alternatives, and in Chapter 8 when the factor has more than two alternatives.

When the factor has only two alternatives there is another alternative design which
is examined in the following section.

5.3.2. Randomised Paired Comparison Designs: Two Alternatives on One
Experimental Unit

There is another way of designing experiments to find out which is the better of two
factor alternatives in respect of a given response variable. These are paired
comparison designs. These designs increase the accuracy of the subsequent analysis
that is to be conducted on the experimental results. This sort of design involves
applying the two alternatives to the same, instead of two different experimental
units, as specified in the preceding section. Remember that the experimental unit in
SE will be a development project or a specific part of it. Applying the two
alternatives to the same experimental unit means that each alternative must be
applied to the project in question or part of it. As it is not advisable for the same
team to carry out the same project twice (as its members will be much more
knowledgeable the second time round, and the situation could not be considered
similar), the same project will be completed by two different, though similar teams.

The alternative to be applied by each team in each project is assigned randomly.
This means that the same team does not always apply the same alternative, nor is
this varied systematically.

If the above experiment to examine the analysis techniques A and B were to be run
by means of a paired comparison design, an experiment could be designed as

Basics of Software Experimentation Engineering 87

follows:

Project/Experimental Unit Team 1 Team 2
1
2
3
4
5

A
A
B
B
A

B
B
A
A
B

This design has a shortcoming, which is discussed in section 5.10 and concerns
team learning. This characteristic can be briefly described by saying that the fact
that the same team applies the same technique more than once can lead to the
members of the team then becoming more acquainted with the technique. As
mentioned earlier, situations of this sort will be described in detail in section 5.10,
alongside some suggestions on how they can be dealt with.

Section 7.4 in Part III of the book shows how to analyse the data collected
according to this design.

5.3.3. Real SE Experiments with One-Factor Designs

5.3.3.1. Design for Examining the Effect of Cleanroom Development

Examples of one-factor experimental designs can be found in the literature. For
example, Selby, Basili and Baker (Selby, 1987) ran an interesting experiment to find
out the effect of cleanroom development on the delivered product, the software
development process and the developers. This inquiry was conducted working with
15 groups of three subjects, computer science students, who developed versions of
the same software system. Of these groups, 10 worked with the cleanroom
development approach and five took a traditional approach. This design thus yields
a one-factor (development approach) design with two alternatives (cleanroom, non-
cleanroom). Remember that some of the response variables dealt with in this
experiment are number of source lines, number of executable statements or number
deliveries; although all response variables used in this experiment are given in Table
4.6. The results of this experiment are discussed in section 14.4.1.

5.3.3.2. Design to Compare Structured and Object-Oriented Methods for Embedded
Systems

Another interesting one-factor design is described in the controlled experiment
(Houdek, 1999) comparing structured and object-oriented methods for embedded

88 Experimental Design

systems performed by graduate computer science students. The authors selected two
development methods for embedded systems to explore this goal, structured
analysis/real time (SA/RT) (as the structured method) and Octopus (as the object-
oriented method).

The experiment was divided into two parts. The first considered the analysis phase
of software development and the second continued with the design and
implementation phases. Figure 5.1 shows the experimental design used for the first
part of the study. The participants were divided into six teams. Each team was asked
to build two objected-oriented analysis (OOA) and two SA/RT models out of a
given natural language specification document (which implies replicating each
experiment twice). For instance, team 2 built the microwave and an automatic teller
machine (ATM) system using SA/RT, and a parking garage gate and a heating
control using OOA. After the second and the fourth modelling part, the participants
were asked to review the models developed by other groups. In-between, there were
accompanying lectures and exercises (A,B,C). At the end, one student reworked the
defects found.

T1,3,5

Microwave

A

T2,4,6

SA/RT

OOA SA7RT

OOA

Parking
garage gate

B

R
ev

ie
w

R
ev

ie
w

ATM system

SA/RT

OOA SA/RT

OOA

Heating
control

C

R
ev

ie
w

R
ev

ie
w

R
ew

or
k

Figure 5.1. Design of the first part of the study

Figure 5.2 shows the second part of the experiment, where each participant was
asked to build an object-oriented design (OOD) or structured design (SD) document
out of a given OOA or SA/RT model, respectively. In the implementation phase,
they were asked to use the design models to build C++ or C code.

T1,3

copy
machine

A

T2

SD

OOD SD

OOD

heating
control

R
ev

ie
w

R
ev

ie
w

C

C++ C

C++

C

R
ev

ie
w

R
ev

ie
w

R
ew

or
k

R
ew

or
k

M
ai

nt
en

an
ce

copy
machine

heating
control

Design Implementation

Figure 5.2. Design of the second part of the study

The only factor considered in this design is the development method, which means
that the authors can collect data on all the technical activities (analysis, design and
coding) and also reorganise these data to gather information about constructive
(analysis, design and implementation), analytical (reviewing process) and corrective
(error removal) activities. The response variables used in this experiment include:

Basics of Software Experimentation Engineering 89

effort required in each activity, size of the models developed or quality (measured as
the number and type of defects). This experiment yielded interesting results, such as
no significant differences were detected in the effort needed to address the
development phases between either of the two methods or no significant differences
in quality (measured as number and type of defects) were detected in either method.
This means that there is no experimental basis for being able to claim that either of
the two methods is better than the other as far as quality or productivity are
concerned.

5.3.3.3. Design to Compare Structured, Data and Object Methodologies

Another experiment related to the study of development methods, in which a one-
factor design was used, was run by Vessey and Conger (Vessey, 1994) to
investigate the performance of process, data and object methodologies in aiding
novice analysts to learn how to specify information requirements. The
methodologies investigated were: structural techniques, Jackson system
development and Booch’87 object-oriented approach. This experimental design is,
therefore, a one-factor design with three alternatives. Six students with similar
knowledge of the methodologies were randomly assigned to each methodology.
Each student specified three applications and the process followed was traced using
protocol analysis (technique applied in building expert systems and proposed by
Ericson and Simon (Ericson, 1984) to acquire expert knowledge). The results of this
experiment showed that object orientation is not the natural approach to system
requirements, unlike what is often heard in the world of software development.
These results cannot be considered conclusive, especially for experienced
practitioners. Nevertheless, they indicate a direction for further research.

5.3.3.4. Design to Compare Fourth Generation Languages against Third
Generation Languages

One-factor designs were built by Misra and Jalics (Misra, 1988) and by Matos and
Jalics (Matos, 1989) in order to study the benefits of fourth versus third generation
languages in the implementation of simple business system applications. The
alternatives studied in the first experiment were actually dBase III, PC-Focus and
COBOL. The response variables considered in the experiment were the
development effort, the size of the code generated and the performance measured in
execution time. The results of this experiment showed that even though code sizes
were smaller with both fourth generation languages, the third generation COBOL
was clearly superior in performance. On the other hand, it took longer to develop the
solution in COBOL than in dBaseIII but less time than in PC-Focus. The authors
conclude from this experiment that being a fourth-generation language per se does
not mean faster development. The experiment described in (Matos, 1989) is an
extension of the above, in which more alternatives were used (COBOL, Oracle,
Informix-4GL, Condor, Paradox, dBase, Rbase and PC-Focus). The results showed

90 Experimental Design

that COBOL performance was better overall than 4GL systems, but there are some
specific kind of queries in which 4GL perform better than COBOL, for example,
relational union or join.

5.3.3.5. Design to Compare the Comprehensibility of Structured and Object-
Oriented Models

To conclude the examples of one-factor experiments, let’s discuss the experiment
run by Agarwal and De Sinha (Agarwal, 1999) to examine the comprehensibility of
models generated with an object-oriented and a process-oriented approach (the
models used were actually object class diagrams and DFDs, respectively, so they
worked with two alternatives). For this purpose, the authors ran two experiments on
two different problems. In the first, 18 subjects analysed each model and in the
second, 18 subjects evaluated OO and 17 the structured model. The
comprehensibility was evaluated by means of a questionnaire on the models. The
result of this experiment shows that the process-oriented model was found to be
easier to understand than the OO model for complex questions on the meaning of the
models.

5.4. HOW TO AVOID VARIATIONS OF NO INTEREST TO THE
EXPERIMENT: BLOCK DESIGNS

As discussed in Chapter 4, it is not always possible to set all the characteristics of
the project/experiment at a particular value. When this happens and there are
undesired but irremediable variations, we have to resort to a special sort of
experimental design, known as block designs.

What happens in these cases is that while we aim to find out the influence of a
particular factor A on the response, there is another factor B that also influences the
values of the response variable. The problem, then, is as follows: as there are two
variables that influence the response, we are unable to ascertain to which factor the
differences found in the result are due. As we are not concerned with factor B, what
we would like to do is eliminate its influence on the response and assure that the
variations observed in the response variable are due only to the factor. In this case,
we are concerned with factor A.

For example, suppose we have an experiment on programming languages and code
errors. Programmer experience is to be expected to influence the number of errors.
Nevertheless, we do not intend to study the issue of programmer experience; we aim
to focus only on any possible influence of the programming languages on code
errors. So, the ideal thing would be to remove the variability due to programmer
experience. But, how can this be done?

Can focal points of undesired variability be removed from an experiment? Yes,

Basics of Software Experimentation Engineering 91

using experimental block design. A block design is a carefully balanced design
where the uninteresting variable has an equal chance of influencing all the
alternatives of the factor under examination, and the above bias is thus cancelled out
(there are also non-balanced block designs, where this condition cannot be
completely satisfied; however, they are not addressed in this book, as their analysis
is quite complicated and they are not very common designs; interested readers are
referred to the work of Montgomery, et al. (Montgomery, 1991) for more details).

There are pre-established experimental designs for two, three, four and more
sources of uncontrolled variation, known as Latin, Greco-Latin or Hyper-Greco-
Latin square designs. Depending on the number of alternatives of the factor and
blocking variables we can have 3x3, 4x4, 5x5 and so on Latin, Greco-Latin or
Hyper-Greco-Latin square designs. These designs combine the alternatives so that
each one is used once and only once per block. All these designs are examined
below.

5.4.1. Design with a Single Blocking Variable

For example, suppose that the uninteresting factor (called UF) has two options and
the interesting factor (called IF) another two. A balanced design, where the
uninteresting factor has the same influence on the two alternatives of the interesting
factor, calls for the two alternatives of the uninteresting factor to appear the same
number of times paired with each alternative of the interesting factor.

For example, the following 2×2 (number of alternatives of the interesting variable)
matrix meets the above conditions.

UF1 UF2
IF1
IF2

IF2
IF1

This matrix tells us that we need at least four experiments to rule out any bias
caused by the uninteresting variable, where the values of both variables for each
experimental unit are: one experiment with UF1 and IF1, another with UF1 and IF2,
another with UF2 and IF2 and finally one with UF2 and IF1.

Randomisation will be assured if the meanings of alternatives UF1 and UF2 and of
IF1 and IF2 are assigned at random, for example, by tossing a coin, as remarked
upon in the discussion on the need to randomise experiments irrespective of the
design type, and the order in which the interesting variables are applied together
with each uninteresting variable is determined at random. The above matrix shows a
possible order within each uninteresting variable. Nevertheless, there are four
possible ways of running these experiments (2x2).

92 Experimental Design

Suppose now that the interesting factor has four alternatives. Imagine that we come
up against the example described above in which we aim to examine four
programming languages (A, B, C, D) and we intend to eliminate the variable due to
development team experience. Now suppose that we have four development teams
(T1, T2, T3, T4). In order to eliminate the variability and for each team to perform the
experiment the same number of times (at least once) using each alternative of the
interesting variable, a possible design could be as shown in the following matrix.

T1 C B A D
T2 A B D C
T3 B C D A
T4 A D C B

This design tells us that we would need 16 experiments to eliminate the bias of the
undesired variation (development team). This means that each alternative of the
factor under examination (A, B, C, D) is assigned once to each alternative of the
undesired variation (T1, T2, T3, T4). Each row of the matrix (or value of the
undesired variable) is called a block. The number of experiments per block, given
here by the respective columns, is what is called block size. In this case, the size of
the block is four. The order of assignment is random, that is, team E1 can use the
language A in one of its four projects. However, the decision as to which one must
be made randomly, which is why the above matrix shows only one possible design.

Therefore, a single undesired variation can be eliminated by making all the
alternatives of the factor in question coincide with each alternative of the blocking
variable. In the examples discussed above, the number of alternatives of the
blocking variable and of the factor was the same, but this is not necessarily always
the case. There are designs with a blocking variable in which each variable has more
or fewer alternatives than the factor, like the two matrixes below, for example,
where we have two alternatives for the blocking variable and three for the factor and
four alternatives for the blocking variable and three for the factor, respectively.

T1 A B C
T2 C B A

Basics of Software Experimentation Engineering 93

T1 C B A
T2 A B C
T3 B C A
T4 A B C

In any case, the most important thing is for each factor alternative to be applied with
each alternative of the blocking variable.

In the designs described above, block size means that all the factor alternatives can
be tested. Thus, for example, the size of the block is three in the above matrixes and
we need to test three factor alternatives. These are referred to as full designs. It can
also happen, however, that not all the alternatives of the factor can be tested. These
designs are called incomplete designs and will be studied in section 5.4.4. The
analysis of the data collected in both designs will be studied in Chapter 9.

Where there is more than one factor under examination, a single blocking variable
can be eliminated by making each possible combination of the alternatives of the
factors coincide with each alternative of the blocking variable. Chapter 13 discusses
how this sort of designs can be analysed.

Finally, we can produce balanced designs where the influence of a blocking variable
is divided equally between all the factor alternatives (for single-factor designs) or
between all the combinations of alternatives (for more than one factor designs).

5.4.2. Two Sources of Undesired Variability

Now suppose that we have two blocking variables. For example, we know that team
experience and project size influence the response variable. However, we intend to
examine neither. The effect with which we are concerned is the object orientation
notations: A, B, C and D that we want to compare. The following matrix shows the
16 experiments to be run.

 Team
 T1 T2 T3 T4
 Very small A B C D
Project type Small D A B C
 Large C D A B
 Very large B C D A

These designs have the characteristic of each alternative of the desired factor (A, B,
C, D) occurring once in each row and once in each column, that is, occurring only
once for each possible combination of the two blocking variables. This arrangement

94 Experimental Design

of experiments is called Latin square, because it is described using Latin letters (A,
B, C, D).

Another possible arrangement of a 4x4 Latin square is as follows.

 T1 T2 T3 T4

VS D B C A
S B D A C
L C A D B
VL A C B D

Note that both designs are balanced by sharing out the influence of each blocking
variable equally among all the factor alternatives.

A series of Latin squares are shown in Annex 2 for k= 3, 4,, 9 block and factor
alternatives. As applies to designs with a single blocking variable, it is important
that these designs are correctly randomised. This is done by picking any Latin
square design whatsoever, some of which are shown in Annex 2, and assigning the
row, column and letter at random.

5.4.3. More Than Two Undesired Sources of Variability

Greco-Latin or Hyper-Greco-Latin squares can be used to eliminate more than two
sources of variability. A Greco-Latin square is a kxk structure by means of which k
alternatives of a factor under study can be examined simultaneously with three
different blocking variables.

Take, for example, the 4x4 Greco-Latin square for three blocking variables: I, II and
III, each with four alternatives. The alternatives for I are I1, I2, I3, I4; the alternatives
for II are II1, II2, II3, II4; the alternatives for III are A, B, C, D and the alternatives
for factor F are α, β, γ, δ. The design would be:

 Blocking variable I
 I1 I2 I3 I4

 II1 Aα Bβ Cγ Dδ
Blocking variable II II2 Bδ Aγ Dβ Cα
 II3 Cβ Dα Aδ Bγ
 II4 Dγ CδI Bα Aβ

Greco-Latin squares are built by superposing two different Latin square designs.
The following Latin square designs were superimposed for the example described
above:

Basics of Software Experimentation Engineering 95

 A B C D α β γ δ
 B A D C δ γ β α
 C D A B β α δ γ
 D C B A γ δ α β

Another arrangement of a 4x4 Greco-Latin square would be:

Bγ Aβ Dδ Cα
Aδ Bα Cγ Dβ
Dα Cδ Bβ Aγ
Cβ Dγ Aα Bδ

This experimental design is called Greco-Latin square because it is described using
Latin and Greek letters. The requirements to be met by a design of this sort are: each
Latin letter appears only once in each row and each column (Latin square); each
Greek letter appears only once in each row and in each column (Latin square) and,
additionally, each Latin letter must appear once and only once with each Greek
letter.

K treatments with more than three blocking variables can be studied by means of a
kxk Hyper-Greco-Latin square. This is obtained by superposing three different Latin
square designs. If we superimpose a third alternative Latin design on the original
Greco-Latin square:

 A B C D
 C D A B
 D C B A
 B A D C

it would yield the following Hyper-Greco-Latin square:

 Blocking variable I
 I1 I2 I3 I4

 II1 αA1A2 βB1B2 γC1C2 δD1D2

Blocking variable II II2 γB1C2 δA1D2 αD2A2 βC1B2

 II3 δC1D2 γD1C2 βA1B2 αB1A2

 II4 βD1B2 αC1A2 δB1D2 γA1C2

 Blocking variable III with alternatives A1, B1, C1, D1
 Blocking variable IV with alternatives: A2, B2, C2, D2

 Factor F with alternatives: α,β,γ,δ

Readers are referred to Annex 2 for other Greco-Latin squares for 3, 4, ..., 9
alternatives.

5.4.4. Incomplete Block Design

96 Experimental Design

As you will have noted, the block designs discussed so far call for the size of the
blocking variable to be the same as the number of alternatives of the factor studied.
Let’s say that this is the simplest means of automatically getting a balanced design,
in which the influence of the blocking variable or variables on the response variable
is eliminated. Nevertheless, the size of the blocking variables and the number of
alternatives per factor are not necessarily always the same. Designs of this sort are
called incomplete block designs.

For example, suppose that we have an experiment in which the blocks represent four
classes of individuals who are to test four development tools. Suppose that each
individual only has time to test three of the four tools under examination.

In this case, we would have a single blocking variable, with four alternatives (the
four kinds of individuals) and one factor with four alternatives (the four CASE
tools), but the block size is k=3 (each individual only has time to apply three of the
four tools). This number is too small to accommodate the four alternatives of the
factor within each block. What we need is a design that eliminates the influence of
the blocking variable. Any such design must balance out as far as possible the
number of times that the different factor alternatives appear with each blocking
variable alternative. In this case, as each block can only be applied with three
alternatives, there will be an alternative that is not tested in each block. The
balanced design will tell us that this alternatives must be different in each block. For
example, in the design shown in the following matrix, individual 1 would not test
tool D, individual 2 would not test C, individual 3 would not test B and individual 4
would not test A.

 Factor

 A B C D
 1 X X X
 Blocks 2 X X X
 3 X X X
 4 X X X

Therefore, four blocks of experiments are needed with a total of 12 experiments.
The randomisation in this design must make it possible to select randomly which
alternative is not tested in each block and the order in which the other alternatives
are tested within each block.

Generally, these designs have the property of each pair of alternatives occurring the
same number of times together in a block. This number is two in the above design;
that is, A occurs twice with B, twice with C and twice with D and the same applies
to B, C and D.

Basics of Software Experimentation Engineering 97

5.5. EXPERIMENTS WITH MULTIPLE SOURCES OF DESIRED
VARIATION: FACTORIAL DESIGNS

5.5.1. Designs with One Variation at a Time

Simple designs, called designs with “one variation at a time”, deal with all the
factors to be studied in an experiment sequentially. In simple designs, we start with a
standard experimental configuration (that is, the software project with all the
parameters and factors set at a given value). Then, one factor is varied each time to
see how this factor affects the response variable.

Going back to the example of the estimation technique discussed in Chapter 4, one
possible configuration would be: a problem of average complexity in the insurance
domain, solved algorithmically by an expert user, where the process is immature,
automation is average, team experience is average and the COCOMO technique is
used for estimation, etc. The experiment will be run (that is, a project with the above
characteristics will be estimated and completed) and the response variable (time and
budget spent and comparison with the estimated time and budget) measured. Then
another two experiments will be run, where all the parameters and factors are set,
and only the estimation technique is varied. This will make it possible to decide
which technique is best in this situation. Then, the factor estimation technique will
be set with the technique that produced the best result. Afterwards, the following
factor, size, will be varied, and the estimation technique will be set. Note that
technique A, which behaved better originally, may not be the best with the other
values of the other factors. That is, as this simple design is conceived, not all the
combinations of factors are explored. Given k factors, where the ith factor has ni
alternatives, a simple design calls for N experiments:

N =1+ (ni

i=1

k

∑ −1)

For example, four experiments will be run for three factors, each with two
alternatives. The better of the above two alternatives will be chosen by varying the
two possible alternatives of the first factor; the two alternatives of the second factor
will be varied, while the first factor is set at its optimum alternative, which is the
result of the first two experiments; as factor two would be set at one alternative in
the first two experiments, all we need is one experiment by means of which to assess
its second alternative; having chosen the best alternative of the second factor, the
third will be varied to its only remaining alternative.

Expressed more formally, let F1, F2, F3 be the three factors and Vi1, Vi2 the values of
the factor Fi. Thus, the experiments to be run following the “one variation at time”
design could be:

98 Experimental Design

 E1 ⇒ F1 = V11; F2 = V21; F3 = V31

 E2 ⇒ F1 = V12; F2 = V21; F3 = V31
 Note that we have fixed the alternatives of F2 and F3
 From E1 and E2, we get the optimum value of F1, suppose it is V12

 E3 ⇒ F1 = V12; F2 = V22; F3 = V31
 Note that alternative V11 has not been studied together with alternative V22.
 From E2 and E3, we get the optimum value of F2, suppose it is V21

 E4 ⇒ F1 = V12; F2 = V21; F3 = V32

 Note that neither V11 nor V22 has been studied in an experiment together
 with V32.
 From E2 and E4, we get the optimum value of F3, suppose it is V31

Hence, the experiment would indicate that the optimum values of the factors are E2
(V12, V21, V31). However this design has not covered all the possible combinations of
alternatives so we do not know what happens to the response variable in situations
where F1= V11, F2= V22, and F3= V32, which means that the study is not complete.
Four experiments were needed for this simple design (which can also be calculated
according to the general-purpose formula seen above).

This sort of experimental design is not generally recommendable when more than
one factor is under examination, because these studies are incomplete. The factorial
designs discussed in the following section overcome this shortcoming.

5.5.2. Factorial Designs: Studying Interactions

A factorial design uses every possible combination of all the alternatives of all the
factors. An experiment with k factors, where the ith factor has ni alternatives, calls
for N experiments:

N = nii=1

k
∏

In the three-factor example taken from the previous section, each with two levels,
we need:

 N = (2 levels of F1) × (2 levels of F2) × (2 levels of F3) = 8 experiments

The tree in Figure 5.3 illustrates this experiment with its eight unitary experiments:

F3 = V32⇒ E2: V11, V21, V32

F3 = V31⇒ E3: V11, V22, V31

F3 = V32⇒ E4: V11, V22, V32

F3 = V31⇒ E5: V12, V21, V31

F3 = V32⇒ E6: V12, V21, V32

F3 = V31⇒ E7: V12, V22, V31

F3 = V31⇒ E8: V12, V22, V32

F2 = V21

F2 = V22

F2 = V21

F2 = V22

V11

V12

F1

F3 = V31⇒ E1: V11, V21, V31

Basics of Software Experimentation Engineering 99

Figure 5.3. Three-factor factorial design and two alternatives per factor

Factorial design has the advantage of exploring all the possible combinations. It,
thus, discovers the effects of each factor and its interactions with the other factors.
The main drawback of this design type is that it is more or less impregnated with
what is known as the combinatorial curse that raises the cost of the experimental
inquiry. It is evident that it can take a lot of time and money to run all the
experiments called for by a large number (which, on the other hand, is usually the
case) of factors and alternatives, especially considering the possibility of repeating
each experiment (internal replication) to assure that the response variable
measurement is reliable. The analysis to be followed for this kind of designs will be
studied in Chapter 10.

The strategy of stepwise approaches discussed in Chapter 3 is applied to reduce the
number of experiments. This strategy translates into three tactics for reducing the
number of experiments (and, hence, the cost of the experiment):

− Reduce the number of alternatives per factor,
− Reduce the number of factors,
− Use fractional factorial designs.

The reduction of the number of alternatives per factor is especially recommendable,
as the type of experimental design for two levels per factor (known as 2k, for k
factors) is very easy to analyse. Therefore, experiments with a lot of factors are
usually run as follows: first, run a 2k experimental inquiry, where the k factors have
been reduced to two alternatives; then, after examining the influences of the factors
on the response variable, the factors with little influence can be removed (applying
the tactic of reducing the number of factors), thus reducing the number of factors (to
f, for instance), and, finally, run an inquiry with n alternatives per factor (known as
nf). If, to save time and cut costs, we decide to opt for the tactic of fractional

100 Experimental Design

factorial designs instead of complete designs, we will be sacrificing information for
the sake of saving time. This design is discussed in more detail in section 5.7.

Going back to the subject of randomisation discussed in preceding sections, the
assignment of the values of the alternatives and subjects shown in Figure 5.3 to the
experimental unit must be random. This means that they must not be assigned
systematically as shown in the figure (from E1 to E8). One mode of randomising
would be, for example, to enter the values of the alternatives shown in the figure on
cards and pick a card at random to decide the order in which the experiments should
be executed.

5.5.3. Real Examples of Factorial Designs

5.3.1. Design to Compare Defect Detection Techniques and Program Types

One of the issues for which quite a lot of empirical studies can be found in the
literature concerns the quality of the software products and quality-building
techniques. Thus, for example, an experiment comparing three defect detection
techniques is presented in (Wood, 1997). This experiment is a replication of an
experiment run originally by Basili and Selby (Basili, 1981) and replicated later by
Kamsties and Lott (Kamsties, 1995).

The experiment combined three programs and three defect detection techniques,
leading to a 3x3 factorial design. The design yielded six groups, balanced in terms of
study ability, who participated in the experiment as shown in Table 5.2 (P refers to
program, and x indicates that the groups’ members applied that combination of
technique and program).

Table 5.2. Replications of each combination of factors

 Code Reading Functional Testing Structural Testing
 P1 P2 P3 P1 P2 P3 P1 P2 P3
Group 1 x - - - - x - x -
Group 2 - x - x - - - - x
Group 3 - - x - x - x - -
Group 4 x - - - - x - x -
Group 5 - x - x - - - - x
Group 6 - - x - x - x - -

Another point to be made about this experiment is that once a program has been
used in the experiment it becomes public and other subjects may have access to it.
For this reason, all the groups worked first with program 1, then with program 2 and
then with program 3. Note then how the order of applying the programs has not been
randomised, but the assignment of groups to techniques and the order of application

Basics of Software Experimentation Engineering 101

of the techniques has. Table 5.3. shows the factor combination undertaken by each
group organised by time (C represents Code Reading, F Functional Testing and S
Structural Testing).

The response variables collected in this experiment include data on the number of
defects observed, the number of defects detected, time taken to observe defects and
time taken to detect the cause of the defect in the code. Section 10.6.1 examines the
analysis of this experiment and the results arrived at by the authors of the study.

Table 5.3. Temporal distribution of the
observations

 Week 1
P1

Week 2
P2

Week 3
P3

Group 1 C S F
Group 2 F C S
Group 3 S F C
Group 4 C F S
Group 5 S C F
Group 6 F S C

5.5.3.2. Design to Compare the Perspective from which a Code Inspection is Run in
Different Problem Domains

Another factorial design was run by Laitenberger and DeBaud (Laitenberger, 1997)
in order to study whether a particular technique of perspective-based-reading
inspections, when applied to code, is more effective than ad hoc or checklist-based
reading. In this experiment, the above authors worked with two factors: problem
domain (generic, specific to the company for which the people who run the
experiment work) and perspective from which the inspection is run (analyst, module
test, integration test). As a response variable, they considered the number of defects
found by each subject divided by the total number of known defects.

The objectives of this experiment aimed to answer the following question: “Do the
different perspectives and/or the application domain of the documents have an
influence on individual results?”

Laitenberger and Debaud divided this question into the following hypotheses related
to the main effects and interaction:

Hd0: There is no significant difference between subjects reading documents from
their domain and subjects reading documents not from their domain with
respect to their mean defect detection rate.

Hd1: There is a significant difference between subjects reading documents from

102 Experimental Design

their domain and subjects reading documents not from their domain with
respect to their mean defect detection rate.

Hp0: There is no significant difference between subjects using the analyst,
module test and integration test perspective with respect to their mean
defect detection rate.

Hp1: There is a significant difference between subjects using the analyst, module
test and integration test perspective with respect to their mean defect
detection rate.

Hdp0: There is no significant difference between subjects reading documents from
their domain and not from their domain using the analyst, module test and
integration test perspective with respect to their mean defect detection rate.

Hdp1: There is a significant difference between subjects reading documents from
their domain and not from their domain using the analyst, module test and
integration test perspective with respect to their mean defect detection rate.

The subjects who ran the experiment were professional software developers working
at a specific company. As indicated by the experimenters, they tried to use code
within two domains of similar complexity, a similar number of errors (between 10
and 15 for the organisation-specific code and between 12 and 16 for the generic
modules).

The design employed is thus a 2x3 factorial design in which there are six
replications per cell and two developers who review three documents belonging to
each domain. The analysis related to this design will be shown in section 10.6.3.

5.6. WHAT TO DO WHEN FACTORIAL ALTERNATIVES ARE NOT
COMPARABLE: NESTED DESIGN

One particular case of designs with more than one factor occurs when the
alternatives of some of the factors are meaningful only in conjunction with just one
of the alternatives of another factor. For example, suppose we have two factors A
and B. If each alternative of B occurs in conjunction with an alternative of A, then B
is said to be nested with A and is described as B(A). B is the nested factor and A is
the nest factor. Designs of this sort are called hierarchical or nested designs.

Pfleeger (1995) uses an illustrative example. Suppose we want to analyse two
development methods and we want to study their efficiency when used with or
without a CASE tool. In principle, we might opt for a factorial design as shown in
Table 5.4, where Pi indicates the identifier randomly assigned to a development
project.

Table 5.4. Possible factorial design

 Method A Method B

Basics of Software Experimentation Engineering 103

With tool P1,P2 P5,P6
Without tool P3,P4 P7,P8

However, if we go into the question in more detail, we will realise that this design
would only be suited if the same tool were to be applied in both methods. Suppose
that this is not the case, and we have one tool for working with method A (called
Tool A) and a different one for working with method B (called Tool B).
Accordingly, the alternatives of the tool factor would not be comparable for both
methods. The correct design would be as shown in Table 5.5.

Table 5.5. Nested design

Method A Method B
With Tool A Without Tool A With Tool B Without Tool B
P1,P2 P3,P4 P5,P6 P7,P8

Designs of this sort do not study the interactions among factors. In this case,
however, this is not a problem, as such interactions are meaningless because not
every alternative A appears with every alternative B.

These designs can be generalised to more than one factor and even combined with a
factorial design. However, their conception and analysis is more complicated, and
they are not very commonly used in experiments run in SE.

The analysis steps to be followed for this design will be studied in Chapter 11.

5.7. HOW TO REDUCE THE AMOUNT OF EXPERIMENTS:
FRACTIONAL DESIGNS

A full factorial design sometimes calls for too many experiments. Remember the
curse of combinatorial explosion mentioned above. This happens when there is a
large number either of factors or of alternatives. When time or budget constraints
rule out full factorial designs, a fraction of the full factorial design can be used.
Fractional designs save time and money but provide less information than the full
designs. For example, we may get some but not all of the interactions between the
factors. On the other hand, if some interactions between factors are known to be
negligible, then this is no drawback. Therefore, the cost of a full study would not be
justified.

Fractional factorial designs are based on the fact that when there are quite a number
of variables in an experiment it is very likely that not all the variables have an
influence on the response variable, and only interactions between two or at most
three variables have significant effects on the response variables. The higher order
interactions (over three variables) are not usually very important and this, what is

104 Experimental Design

known as the principle of effect dispersion, is the basis for using fractional factorial
designs.

Fractional factorial designs are useful for studying a lot of variables and
investigating which have a significant effect on the response variable. In other
words, this is a broad-based experimental strategy that aims to account for a high
number of variables. After analysing the fractional experiments and getting clues
about which variables are influential, these factors can be examined by means of
factorial experiments. In other words, an in-depth strategy is then adopted that
covers only a few variables, whereas it examines all their interactions. Thinking
back to Chapter 3, readers will realise that this manner of experimenting is what was
termed strategy of stepwise refinement.

Chapter 12 examines how to analyse this sort of design.

5.8. EXPERIMENTS WITH SEVERAL DESIRED AND UNDESIRED
VARIATIONS: FACTORIAL BLOCK DESIGNS

5.8.1. Defining Factorial Block Designs

Section 5.4 showed how to deal with undesired variations in experiments where
there is one factor. But what happens when we intend to investigate more than one
variable? As there is more than one factor, a factorial design must be used, which, as
discussed earlier, will deal with all the possible combinations between the
alternatives of all the factors. However, if we have undesired variations in a factorial
design experiment, the blocking philosophy can be applied to cancel out the effects
of the undesired variable on the response variable; that is, guaranteeing that the
undesired variable effect will be the same in all the combinations of factors.

The simplest (also the most common) situation is that the factors have only two
alternatives and that the number of blocks is a multiple of two. This means that the
experiments called for by the factorial design can be dealt with using blocks. For
example, a factorial design of two factors (A and B) and two alternatives (a1, a2 and
b1, b2) calls for four experiments:

 a1, b1
 a1, b2
 a2, b1
 a2, b2

If we were to have a blocking variable C with two alternatives (c1 y c2) in this
experiment and we wanted to eliminate its effects according to the blocking
philosophy, the two alternatives of A and two of B would both have to appear with
c1 and with c2. However, if the four unitary experiments of the 22 factorial design are
carefully assigned to c1 and to c2 , we do not need any more experiments to assure

Basics of Software Experimentation Engineering 105

the above circumstance. For example, in the following design, both alternatives a1
and a2 appear once with c1 and once with c2. The same can be said for b1 and b2:

 a1, b1 c1
 a2, b2
 a1, b2 c2
 a2, b1

This means that the same number of experiments yields a factorial design and the
design can also be blocked. Unfortunately, this is not a fair exchange, and
information is lost in respect of the pure factorial design, particularly, information
about the interaction between the factors A and B. This is because not all the
combinations of A and B have been examined after exposure to the two alternatives
of the blocking variable (c1 and c2). This leads to some of the effects observed in the
response variable being confounded. Indeed, technically it is said that the effect of
the interaction between A and B is indistinguishable or is confounded with the
blocked effect.

This concept of confounding can be illustrated by examining the case in question in
more detail. Suppose that we are examining A and B without a blocking variable,
that is, the four elementary experiments are run under the same circumstances.
Suppose, too, that we are measuring the response variable RV. Imagine the three
possible results obtained in the experiment shown in the columns of Table 5.6,
labelled case 1, case 2 and case 3.

Table 5.6. Three hypothetical results of the experiment with A and B to study
RV

Alternatives of A and B RV Case 1 RV Case 2 RV Case 3 Blocking
a1b1 10 10 15 c1
a1b2 10 15 10 c2
a2b1 15 10 10 c2
a2b2 15 15 15 c1

What could we state about case 1? A mere look at the values of RV could lead us to
suspect that A influences the RV and that the alternative of A that increases the
value of the RV is a2. However, we will see how to formally analyse the result of an
experiment in Part III of this book and that this statement cannot be made just like
that without running any checks. However, this intuitive analysis is accepted here
for the sake of illustrating the concept of confounding.

What could we state about case 2? That B (but not A) influences RV and that b2 is
the value of B that optimises RV.

What could we state about case 3? The value of neither A nor B improves the RV,
and it is a combination of A and B that increases the RV, namely, the combinations

106 Experimental Design

a1b1 and a2b2 . In this case, and as we will see in more detail in Part III of the book,
A and B are said to interact.

Now, if we had the undesired variable C and were to build the blocked factorial
design as instructed above (and this was the only means of eliminating the bias of C
with 4 experiments), the result would be that when the value of C is c1, RV=15 and
when the value of C is c2, RV=10. In this case, we cannot distinguish whether the
above variation in RV is due to C or to the interaction between A and B. The only
means of preventing this would be to run eight experiments, where all the possible
combinations between A and B occur when the value of C is both c1 and c2. Hence:

 a1, b1 a1, b1
 a1, b2 c1 a1, b2 c2
 a2, b1 a2, b1
 a2, b2 a2, b2

where if both circumstances of C yielded case 3, we could assure that the variation
of RV is due to the interaction between A and B; and if case 3 occurred only with
one alternative of C (for instance, c1), then the variation in the RV would be due to
C because the design will be equally divided between all the combinations of A and
B. Actually, when calculating the value of the RV for each combination of A and of
B as the mean of the two results obtained for the above combination (one for c1 and
another for c2), the values of the RV for all the combinations have the same
influence on c1 and on c2 (50%), so the differences observed in the RV for a given
combination will be the fruit of the values of A and of B only and not of the values
of C.

However, there is often little interaction between factors, and confounding can be
exploited to build a blocked factorial design with the same number of experiments as
the respective factorial design, for which data analysis is much simpler (as we will
see in Chapter 13).

This same philosophy of experimental saving and ease of analysis can be applied to
designs with 3, 4 or more factors and 2 alternatives. The effects of the blocking
variable and the effects of the interactions are always confounded in these cases. If
there is a blocking variable with two alternatives, only the interaction between all
the n factors (called interaction at level n) will be confounded. However, if the
blocking variable has 4, 6 or more alternatives both the interaction at level n and the
interaction at lower levels (between n-1 factors, for example) will be confounded.
For example, if we have three factors A, B, C and a blocking variable D:

• If D has two alternatives, the level 3 interaction is confounded: ABC
• If D has four alternatives, the level 2 interactions are confounded: AB, AC and

BC.

A design assuring that all the alternatives of each factor appear in each block for this

Basics of Software Experimentation Engineering 107

second situation of four blocks and three factors would be as follows:

 a1 b1 c1 d1
 a2 b2 c2

 a1 b1 c2 d2
 a2 b2 c1

 a1 b2 c1 d3
 a2 b1 c2

 a2 b1 c1 d4
 a1 b2 c2

Experimental Design 108

Table 5.7. Suggested block design for the 2k factorial design

Number of
factors, k

Number of
blocks, 2p

Block size,
2k-p

Combinations chosen to generate
blocks

Confounded interactions between blocks

3

4

5

6

7

2
4
2
4
8
2
4
8
16
2
4
8
16

32
2
4
8
16

32

64

4
2
8
4
2
16
8
4
2
32
16
8
4

2
64
32
16
8

4

2

ABC
AB, AC
ABCD
ABC, ACD
AB, BC, CD
ABCDE
ABC, CDE
ABE, BCE, CDE
AB, AC, CD, DE
ABCDEF
ABCF, CDEF
ABEF, ABCD, ACE
ABF, ACF, BDF, DEF

AB, BC, CD, DE, EF
ABCDEFG
ABCFG, CDEFG
ABC, DEF, AFG
ABCD, EFG, CDE, ADG

ABG, BCG, CDG, DEG, EFG

AB, BC, CD, DE, EF, FG

ABC
AB, AC, BC
ABCD
ABC, ACD, BD
AB, BC, CD, AC, BD, AD, ABCD
ABCDE
ABC, CDE, ABDE
ABE, BCE, CDE, AC, ABCD, BD, ADE
All the interactions of 2 and 4 factors (15 combinations)
ABCDEF
ABCF, CDEF, ABDE
ABEF, ABCD, ACE, BCF, BDE, CDEF, ADF
ABE, ACF, BDF, DEF, BC, ABCD, ABDE, AD, ACDE, CE, BDF,
BCDEF, ABCEF, AEF, BE
All the interactions of 2, 4 and 6 factors (31 combinations)
ABCDEFG
ABCFG, CDEFG, ABDE
ABC, DEF, AFG, ABCDEF, DCFG, ADEG, BCDEG
ABCD, EFG, CDE, ADG, ABCDEFG, ABE, BCG, CDFG, ADEF,
ACEG, ABFG, BCEF, BDEG, ACF, BDF
ABG, BCG, CDG, DEG, EFG, AC, BD, CE, DF, AE, BE, ABCD,
ABDE, ABEF, BCDE, BCEF, CDEF, ABCDEFG, ADG, ACDEG,
ACEFG, ABDFG, ABCEG, BEG, BDEFG, CFG, ADEF, ACDF,
ABCF, AFG
All the interactions of 2, 4 and 6 factors (64 combinations))

Experimental Design 109

Nevertheless, the loss of information causes some concern in this case, as the higher
level interactions do not usually have much influence on the response variable,
while the lower level interactions do. Therefore, unless there are more than four
factors, the literature on experimentation recommends that no more than two blocks
be used so that the lower level interactions (between two factors) are safeguarded,
as are the level 3 interactions whenever possible.

Table 5.7 shows all the cases for up to seven factors. Column four of this table aims
at block formation. This can always be done manually applying the strategy that
both alternatives of all the factors must appear the same number of times in each
block. However, when there are a lot of factors, an algorithm is an aid. Column four
of Table 5.7 is the result of this algorithm. This block formation algorithm uses the
sign table technique (which is also used for other experimental analysis questions,
as we will see in Part III). The sign table of an experimental design is built as
follows:

• Assign the sign + to one of the alternatives of each factor and the sign - to the
other. It does not matter which alternative is chosen for each sign.

• Build a table with one column per factor and another column per combination of
factors. The table rows are as follows.
– For the one-factor columns, every row corresponds to a given combination

of + and - values for the respective alternatives. The set of all the rows
contain all the combinations of the alternatives of all the factors. (These
tables are also termed decision tables in logic.)

– For the factor-combination columns, every row corresponds to the
multiplication of the signs of the one-factor columns for the combination
specified by the column. For example, each row in column AB will be filled
in by multiplying the sign of A and the sign of B that appear in the same
row under column A and column B.

Table 5.8 shows the sign table for two factors and Table 5.9 shows the sign table for
three factors

Table 5.8. Sign table of a 22 experiment with two blocks of
size 2

A B AB Blocks
- - + C1
+ + + C1
- + - C2
+ - - C2

110 Experimental Design

Table 5.9. Sign table for the 23 design with two blocks of size 4

A B C AB AC BC ABC Blocks
- - - + + + - C1
- + + - - + - C1
+ - + - + - - C1
+ + - + - - - C1
+ - - - - + + C2
- + - - + - + C2
- - + + - - + C2
+ + + + + + + C2

The blocks are generated automatically by grouping signs of given combinations.
For example, the value + in column AB of Table 5.8 generates the first block and
the value – the other block; that is, we will use the combinations of alternatives
corresponding to the - sign for factor A and the - sign for factor B and to the + sign
for factor A and + sign for factor B in the first block. We can identify the
combination of alternatives for the second block similarly. Provided we want no
more than two blocks, we will do the same thing with Table 5.9, taking the sign of
the combination ABC as a guide, as shown in Table 5.7.

Hence, the column “combinations selected to generate blocks” in Table 5.7 indicates
what combinations should be used to generate blocks. For example, if we intend to
form four blocks in the three-factor experiment in Table 5.9, Table 5.7 tells us that
the signs of the columns AB and AC must be used as a guide, that is, the
experiments that have the same signs in AB and AC should be grouped in the same
block. The result would be:

AB AC A B C
+ + - - -
+ + + + + Block 1
- - - + +
- - + - - Block 2
- + + - +
- + - + - Block 3
+ - + + -
+ - - - + Block 4

which evidently matches the decision on blocks that we made earlier without the
algorithm. These were:

Basics of Software Engineering Experimentation 111

 a1 b1 c1

 a2 b2 c2 Block 1

 a1 b1 c2

 a2 b2 c1 Block 2

 a1 b2 c1

 a2 b1 c2 Block 3

 a2 b1 c1

 a1 b2 c2 Block 4

Other blocked factorial designs could be built similarly using Table 5.7.

Finally, it is important to stress that what we are talking about here is using a pure
factorial design to cancel out a blocking variable without increasing the number of
experiments. However, if we have the chance of running more experiments, one or
more blocking variables can always be cancelled out by repeating the pure factorial
design for each alternative of the blocking variable. All the interactions between
factors can be examined this way and no information about the interactions is lost.

5.8.2. Real SE Experiments with Several Factors and Blocks

Moving on to real experiments, Basili et al. (Basili, 1996) ran a series of studies
about inspection techniques. One of these studies is aimed to compare the
perspective-based reading (PBR) technique with the inspection technique usually
used in the NASA Software Engineering Laboratory (SEL) on requirements
documents. One of the objectives of this experiment was to answer the question: “if
individuals read a document using PBR, would a different number of defects be
found than if they read the document using their usual technique?”

A two-factor experiment was designed in order to answer this question, these being
the reading technique (with the alternatives: PBR, usual technique) and the
document reviewed (with the alternatives: generic document, NASA/SEL
document). The response variable selected was the defect detection rate, particularly
the percentage of true defects found by a single reviewer with respect to the total
number of defects in the inspected document.

The subjects involved in this experiment were software developers from the
NASA/SEL. As the subjects are a source of undesired variation, the experiment was

112 Experimental Design

designed by selecting the group as a blocking variable. Thus, the subjects were
assigned in two blocks of size two, that is, within any block only two alternative
combinations appear instead of the four possible alternative combinations. This is
therefore a 2x2 factorial design in blocks of size 2. Besides, the experiment was
done with internal replication, the repeated measures are obtained using different
problems from the two domains addressed. Two problems were actually used for
the generic domain (automatic teller machine -ATM- and parking garage control
system - PG-; and two flight dynamics problems -NASA_1 and NASA_2- for the
NASA domain were used.

As discussed above, the cost of the reduction in block size is the loss of some
information on interactions. In this case, the technique X document interaction is
totally confounded with the group effect, that is, Group 1 applied the usual
technique to the ATM document and the PBR to NASA_2 document, while Group
2 applied the usual technique to NASA_2 document and PBR to the generic_1
problem. On the other hand, Group 1 applied the usual technique to NASA_1
document and PBR to the generic_2 problem; while Group 2 applied the usual
technique to the generic_2 document and PBR to NASA_1 document. Table 5.10.
shows this design, where each row shows a repetition within each block. As
mentioned earlier, this design means that it is not possible to estimate the two-factor
interaction separately from the blocking variable (group) effect.

Table 5.10. 2x2 factorial experiment with repeated
measures in blocks of size 2

Group 1 Group 2
usual/ATM
PBR/NASA_2

usual/NASA_2
PBR/ATM

usual/NASA_1
PBR/PG

usual/PG
PBR/NASA_1

Table 5.11 shows how this same design can be represented for each domain.

Table 5.11. Another representation of the design in Table 5.9

Generic Domain NASA Domain
Group 1 Group 2 Group 1 Group 2
Usual/ATM Usual/PG Usual/NASA_1 Usual/NASA_2
 PBR/PG PBR/ATM PBR/NASA_2 PBR/NASA_1

Thus, the hypotheses of this experiment were specified as follows:

Basics of Software Engineering Experimentation 113

Htd0: There is no difference between subjects in Group 1 and subjects in Group
2 with respect to their mean defect rate scores.

Htd1: There is a difference between subjects in Group 1 and subjects in Group
2 with respect to their mean defect rate scores.

Ht0: There is no difference between subjects using PBR and subjects using
their usual technique with respect to their mean defect rate scores.

Ht1: There is a difference between subjects using PBR and subjects using their
usual technique with respect to their mean defect rate scores.

Hd0: There is no difference between subjects reading the ATM document (or
NASA_1 document) and subjects reading the PG document (or NASA_2
document) with respect to their mean defect rate scores.

Hd1: There is no difference between subjects reading the ATM document (or
NASA_1 document) and subjects reading the PG document (or NASA_2
document) with respect to their mean defect rate scores.

The analysis of this experiment and the results obtained are described in section
13.5.

5.9. IMPORTANCE OF EXPERIMENTAL DESIGN AND STEPS

Experimental design is a critical activity that determines the validity of an inquiry.
Firstly, the design must be consistent, that is, it must be defined so that the
hypothesis can be tested. Secondly, the design must be correct; that is, it must
consider the undesired sources of variation, it must consider whether or not
randomisation is possible, it must select the significant metrics for the response
variables under analysis, etc. In other words, the design is carefully made on the
basis of the circumstances surrounding the experiment.

Some of the best-publicised studies have subsequently been challenged on the basis
of inappropriate experimental design. For example, Shneiderman (Shneiderman,
1977) attempted to measure how flowcharts affect comprehension. He and his
colleagues found that there were no differences in comprehension using flowcharts
and code, in particular Fortran code. As a result, flowcharts were shunned in the
software-engineering community and textbooks declined the use of flowcharts as a
way to represent algorithms. Some years later Scanlan (Scanlan, 1989)
demonstrated that structured flowcharts are preferable to pseudocode for program
documentation (this experiment will be described in Part III of the book). Thus,
Scanlan exposed a number of experimental design flaws that explain the radically
different conclusions about the techniques. The flaws included: (1) that the response
variable was inappropriate; Scanlan claims that the result of the experiment should
have measured the time required to understand the algorithm using flowcharts and
Fortran instead of allowing subjects to take as much time as they needed to fill in
the comprehension test; (2) the comprehension test was not objective and clearly
benefited students working with Fortran, as some of the test questions could only be

114 Experimental Design

answered by expressing the algorithm in this manner and not in pseudocode; and
finally (3) the algorithm used was too simple and tests should have been run with
more complex algorithms before blindly confiding in the result of this experiment.

Another example of an incorrectly designed experiment, which, therefore, yielded
unreliable results was run by Korson and Vaishnavi (Korson, 1986) to investigate
the benefits to maintenance of using modular code against non-modular (monolithic
code). The results of this experiment determined that a modular program could be
maintained significantly faster than an equivalent monolithic version. Nevertheless,
this experiment was later criticised and externally replicated by other authors (Daly,
94), who found from the replication run that there were no significant differences in
maintainability between the two program types. Daly et al.’s criticisms of the
original experiment include the fact that the experimental units used for both cases
(that is, the two programs) was not actually objective in the sense that the use of the
modular program included a series of comments that favoured application
maintainability, whereas this facility did not exist in the monolithic program. The
authors also argue that the activities to be completed to carry out the maintenance of
the programs proposed by Korson was not a normal work process performed by a
programmer to modify a program. For example, programmers had to manually
search the code to be modified in the experiment, whereas a text editor is usually
used to perform this job.

The design can thus invalidate empirical studies. Therefore, the experimental design
process is critical if results yielded by the experiment to be reliable. This being the
case, remember briefly the steps to be taken to design experiments. For this
purpose, we assume that the goals of the experiment and the hypotheses to be tested
have been previously defined. The next section discusses some of the specific
points that must be taken into account in SE experiments when taking some of these
steps.

Step 1. Identify the factors, that is, the methods, techniques or tools
to be studied. All factors and alternatives must be explicitly
specified, alongside their respective alternatives. Be sure that all
requirements for the application of the factors are available (for
example, training, equipment, etc.). The alternatives to be taken into
account will depend on the goals of the experiment and the
constraints imposed on time, cost, etc.

Step 2. Identify the response variables, that is, the characteristics of
the software process or the products on which the factors under
examination are expected to have an effect. Remember that, as
discussed in Chapter 4, one and the same response variable can be
measured using different metrics. These metrics must be specified
during experimental design, and care must be taken that they do

Basics of Software Engineering Experimentation 115

actually measure what is to be studied.

Step 3. Identify the parameters, that is, the variables that can affect
the response variables under examination and which can be
controlled. These variables have to be kept at a constant value to
assure this control, otherwise they should be used as blocking
variables.

Step 4. Identify the blocking variables, that is, the variables that can
affect the response variables considered but which cannot be
controlled during the experiment.

Step 5. Determine the number of replications, that is, how many
times each elementary experiment is to be repeated. As mentioned in
Chapter 4, we have not yet examined how to calculate the number of
replications of an experiment because some familiarity with the
statistical concepts discussed in Part III of the book is needed to
determine this. Therefore, we will go back to this question in
Chapter 15, although it is noteworthy that this is an issue for
consideration during design.

Step 6. Select, as described in earlier sections, the kind of
experimental design, that is, decide whether to use factorial, block,
nested designs, etc.

Step 7. Select the experimental objects, that is, decide, on the basis
of the goals of the experiment, whether software projects, or part of
them are to act as experimental units, and which ones.

Step 8. Select the experimental subjects, that is, the people who are
to run the experiments. Differences in ability can be ruled out if they
can be randomly chosen from a bigger population and/or randomly
assigned to the experimental teams. Remember that the subjects play
a fundamental role in software development, as different subjects
can give rise to completely different results applying the same
software artefact to the same experimental unit. This is what we
referred to as the social aspect of SE in section 2.3. One alternative
worth considering to try to minimise the impact of this characteristic
on SE experiments is to consider the subjects as blocking variables
when they have different characteristics and are, therefore,
distinguishable. Note that this situation can condition the type of
design selected in step 6.

Step 9. Identify the data collection process, that is, the procedures to

116 Experimental Design

be followed to collect the values of the response variables.

Although all these steps may appear to be straightforward, they are not in practice,
as we will see in the next section.

5.10. SPECIFIC CONSIDERATIONS FOR EXPERIMENTAL DESIGNS IN
SOFTWARE ENGINEERING

The experiments run in SE are often characterised by a group of subjects
performing all or some of the activities related to software development. These
activities are not usually the result of an automatic process, they depend on the skill,
psychological circumstances and other characteristics of the subjects who apply the
above process. This situation is not specific to SE and is shared by many other
sciences, generally known as social sciences.

Special care is therefore needed to design SE experiments. Below, we will discuss
some points related to the social factors and software development-specific
characteristics to be taken into account when designing SE experiments.

• Technique learning effect: one of the most important points when running
experiments in SE is what is known as the learning effect. This means that
after having applied the technique more than once, a person who re-applies
a technique several times will not do things the same way as he or she did
the first time. In other words, the subject learns how to apply the technique
over time. This implies that the effect caused by learning on the response
variable would be confounded with the application of the technique. This
problem can be solved if the technique is re-applied by different rather than
the same subjects. This is not always possible, as the number of subjects
involved in an experiment is often limited, and can also cause an undesired
effect due to subject heterogeneity. Subject heterogeneity can be ruled out
by blocking according to subject types, selecting subjects at random or
increasing the number of replications using different subjects. Section
10.6.4 discusses how this effect can be detected.

• Object learning effect: the same point can also be made concerning the
experimental units or objects handled in an experiment. In other words, if a
subject has to apply different modelling techniques on one and the same
problem, for example, it is very likely that the subject will learn more
about the problem each time he or she applies the techniques to it. So, as
the application of the modelling technique actually depends on problem
understanding, the result of applying the last technique may be better than

Basics of Software Engineering Experimentation 117

the first, simply because the subject knows more about the problem and not
because the technique is better. Something similar will happen if the
experimental unit is a product and the knowledge of the product influences
the application of the factor. In other words, it will generally occur every
time we use the very same object with the same subject in several unitary
experiments in which the learning of the object can influence the results of
the experiment. One possible way of detecting such an effect is to analyse
the experiment considering the sequence in which the problems are given
to the subjects as a factor. In section 10.6.4, we will describe how this
analysis was carried out in some real experiments. The solution to this
problem would again be based on different subjects applying different
techniques to the same object, another solution is to slightly modify the
object, assuring that not much is learnt from one to another.

• Boredom effect: the opposite effect to the learning effect is what is known
as the boredom or tiredness effect where subjects become bored or tired
with the experiment over time and put less effort and interest into running
the experiment as time passes, thus outputting worse results as the
experiment progresses. Therefore, it is not very recommendable to run
experiments over long periods of time. If this is essential, one solution that
can minimise the tiredness effect problem is to leave at least one day free
between two days of experiment. Another possible action could be to
motivate the subjects who run the experiment with some sort of benefit to
keep their interest up.

• Enthusiasm effect: this is the opposite to the boredom effect. We
previously remarked on the importance of the motivation of the subjects
who participate in an experiment. One motivation-related point can arise
when a new technique is to be tested against a traditional technique in SE.
It can happen that the subjects who apply the traditional technique are not
motivated to do a good job, whereas those who apply the new technique
are more inspired and motivated about learning something new. Therefore,
it would be best for subjects not to be acquainted with either the
formulated hypotheses or the goals of the experiment and ideally even with
the source of the techniques used, not stressing the novelty of the
techniques to be applied at all. Used in medicine, this sort of tactic is
referred to as blind experiments.

• Experience effect: another related situation occurs when a new technique is
compared to an existing technique. If the subjects are experienced in the
existing technique, the results will always be better with this technique
than with a new one. Therefore, it would be a good idea for both
techniques to be applied by subjects with no experience in either technique
and, later, check how generalised the results are by replicating this with

118 Experimental Design

subjects experienced in the existing technique.

• Unconscious formalisation: another point related to the learning effect, is
the unconscious formalisation, which arises when one and the same subject
applies two or more techniques with differing degrees of definition or
formality. Suppose that we have two testing techniques, one fully defined
(that is, there is a clear procedure to be followed for its application), and
the other informal or ad hoc (that is, no particular guidelines are provided
for its application). If subjects applied first the formal and then the
informal technique, they would be likely to apply, albeit unconsciously,
ideas taken from the first to the second technique, which would mean that
the technique would not be as informal as it really is. The solution to this
problem is usually based on applying the least, followed by the most
formal technique. This means that the experiment is not fully randomised.
The implications of this are discussed at the end of this section.

• Assurance concerning the procedure implemented by the subjects: also
with regard to the accuracy with which the SE techniques or process are
applied, we have to take into account that although a subject is supposedly
going to apply a particular process (marked by the SE technique or method
under study in the experiment), there is really no guarantee that the process
has been applied exactly as defined. Therefore, we have to be careful when
drawing conclusions about the experiments and take into account this fact.
One possible alternative for analysing the process followed by the subjects
uses the protocol analysis technique. The application of this technique for
experimentation in SE involves subjects explaining out loud the process
that they are following in each experiment. This explanation can be
recorded so that experimenters can check whether or not the process
coincides with the one that should be applied.

• Setting effect: Finally, remember that as the emotional state of the subjects
participating in the experiment are actively involved in SE experiments, as
many variables as possible that can directly or indirectly affect the mind
and emotions of these subjects should be kept constant. For example, if an
experiment has to be run over several days, make sure that they are all
similar, that is, do not run part of the experiment on the afternoon or day
before a holiday or a special day on which some event or other is
scheduled to take place. The idea is thus to keep the sort of day on which
all the elementary experiments are run homogeneous.

Several experiments in which some of these points have explicitly been taken into
account can be found in the literature (Basili, 1999), (Shull, 1998), (Basili, 1996),
(Porter 1995). Interested readers are referred to the above references that illustrate

Basics of Software Engineering Experimentation 119

their application to a range of individual cases.

Note that having to take into account some of these questions to counteract the
subject learning or the novelty effect of some alternatives can affect the
randomisation required in experimental design, for example. As discussed earlier,
this has an impact on the method of analysis that has to be used to draw conclusions
about the data gathered from the experiments. We are not going to focus on this
question in this chapter, as this activity of the process of experimentation is detailed
in Part III of the book. However, there is one general point that we can make here
and this is that there are two major groups of methods of analysis, parametric and
non-parametric, and that randomisation is, among other criteria, the one that
determines which sort of methods are applied. Theoretically, randomisation is an
essential requirement for the application of parametric methods (Part III examines
several tests used to check for randomisation). However, there are experiments in
the literature that do not fully meet this requirement and still apply parametric
methods. Although this is discussed in more detail in Chapter 6, this book
recommends that both types of method be applied in these cases to provide more
assurance about the conclusions yielded by the experiments. As we will see in Part
III of the book, it does not take an awful lot of effort to apply two analysis
techniques, as the most costly thing about experimentation is running the
experiment and collecting the data. On the other hand, getting the same results
using two analysis techniques rules out uncertainties about the validity of the
conclusions of the experiment.

5.11. SUGGESTED EXERCISES

5.11.1. What is the difference between a randomised block design and a two-
factor design?

Solution: The blocking variable is of no interest to the experiment
in a block design; that is, we do not intend to examine
its effect on the response variable. Both variables are

of interest in a two-factor design and, therefore, we
intend to examine its effect on the response variable.

5.11.2. Specify what the words block, incomplete and balanced mean in a block
design.

Solution: Block is a variable that can influence the response variable,
whose effect we do not intend to examine;

Incomplete means that not all the factor alternatives can be
tested against each blocking variable alternative;

120 Experimental Design

Balanced means that the blocking variable has the same probability
of influencing all the factor alternatives

5.11.3. How many elementary experiments are needed in a 3x4x2 design? How
many factors are considered?

Solution: 24; 3

5.11.4. How many elementary experiments are there in a 26 design? What if it is
replicated twice? How many factors are there? How many alternatives are
there per factor?

Solution: 64; 128; 6; 2

5.11.5. Is the following block design correct?

Block Factor
1 2 3

I + + -
+ - +

II - + -
- - +

III - - -
- + +

IV + - -
+ + +

Solution: No, because the effect of factor 1 is confounded
with differences between blocks

5.11.6. If we aimed to analyse the efficiency of two code generators for two
different languages. What would be the right sort of design?

Solution: Nested Design: Generator (Language)

5.11.7 Going back to exercise 4.5.1, what would be the right sort of experimental
design if each programmer were to work with four languages? And what if
each programmer was to work with only two of the four languages?

Solution: complete block design;
incomplete block design

6 BASIC NOTIONS OF
DATA ANALYSIS

6.1. INTRODUCTION

Having designed the experimentation, each unitary experiment is run as prescribed
by the design. Measurements of the response variable are taken during the
experiments. So, after completing the unitary experiments, experimenters have a
collection of data, called the results of the experimentation. By examining or
analysing these data, experimenters will arrive at conclusions about the relationships
between factors, the influence of factors on the response variables and the
alternatives that improve the values of the response variables. The data analysis
branch of statistics provides the techniques for examining the experimental results.
These are statistical methods that are used to analyse the data output by experiments
and are explained in this, the third part of the book.

As mentioned in Chapter 1, this book deals with quantitative experiments in which
the response variable is, therefore, numerical. One word of advice at this point:
experimenters should not jump in at the deep end, without first making what we
could call an informal analysis of the experimental results. This informal analysis
means that software engineers look at and think about the data they have gathered
from the experiments in search of any apparent trend, whether there is any obvious
relationship or whether they can see any influence; that is, they make an attempt at
explaining the data collected. Although this informal examination of the data is by
no means a substitute for a statistical and formal analysis, it can give clues as to the
variables under consideration or errors made during the experiments, ideas for
directing future experiments and even suggestions about the experiments. In other
words, we recommend that, rather than proceeding unthinkingly, experimenters stop
at certain points of the experimentation (when planning the inquiry to be conducted,
before and after designing the experiments and before and after analysing the data)
and use the knowledge they have about SE to reason out the facts that have emerged
from the experimentation.

Having advised experimenters never to disregard their knowledge of SE and their
intuitions about the subject, let's move on to see how statistics can be of assistance
in this job of extracting information from experimental data.

Several statistical concepts have to be applied for data analysis. These concepts are
described in this chapter (section 6.2. to 6.5.) so as to acquaint readers with the
terminology used in subsequent chapters.

Readers familiar with the rudiments of statistics (sample, population, probabilistic
distributions, such as normal, Student's t distribution, etc.) can go directly to section

126 Basic Notions of Analysis

6.6 of this chapter, titled "Readers' Guide to Part III", which describes the
organisation of Part III of the book, to gain an overview of this part of the book
before plunging into the details.

6.2. EXPERIMENTAL RESULTS AS A SAMPLE OF A POPULATION

An experimental result or datum is usually a numerical measurement obtained in an
elementary experiment. For example, the datum of interest in a SE experiment
aiming to detect the percentage of errors there are in a program applying a particular
testing technique is precisely the percentage in question. Thus, for example, 10
(elementary) experiments run under supposedly identical conditions could have
output the following data, measured as percentage errors detected:

66.7 64.3 67.1 66.1 65.5 69.l 67.2 68.l 65.7 66.4

The total set of data that could conceptually occur as a result of a certain experiment
is called the population of observations. For example, the population of observations
in the above example would be the percentage error of all existing projects. This
population should sometimes be thought of as infinite. For practical purposes,
however, it will be considered in this book to be finite, of size N, where N is very
large. The data (not usually many) that we have collected as a result of the
experimentation are considered to be a sample of the above population. For
example, the sample of the previous experiment would be formed by the
percentages over ten.

One important characteristic of the sample is its mean, which is represented by x .
For the above 10 experimental results, this will be:

10

4.66...3.647.66
x

+++
=

Generally, we can write for a sample of n experimental results,

nn

x...xx
x 1

i
n21

x∑
==

+++
=

n

i

Suppose we have a hypothetical population with a very high number N of data, we
use the Greek letter mu, µ, to refer to the respective mean of the population, such
that:

Basics of Software Engineering Experimentation 127

n

x
1

i∑
==

N

iµ

The mean of the population is also called, expected value of x (where x is any
observation whatsoever). It is written E(x). Hence, µ=E(x).

We can get a better understanding of a population using some measure of the
dispersion of the population data. The most commonly used measure is the variance
of the population, which is represented by the sign σ2. This is calculated considering
a measure of the distance of a given observation from the mean of the population: x-
µ. The variance is the mean value of the squares of the above deviations taking into
account the whole population:

N

2)(x2)E(x2 ∑ −
=−=

µ
µσ

One measure of dispersion is σ, the positive square root of the variance. It is called
standard deviation.

N

2)(x2)E(x ∑ −
=−=

µ
µσ

As far as samples are concerned, the sample variance provides a measure of the
dispersion of the sample. The sample variance is calculated as:

1n

2)x(x2s
−

−
=

∑

where the square root of this value is the sample standard deviation:

1n

2)x(x
s

−

−
=

∑

In statistics, a quantity directly associated with the population, like the mean µ, or
the variance σ2 is called a parameter. On the other hand, a quantity calculated on
the basis of a data set, often considered as a sort of sample of the population, like x

128 Basic Notions of Analysis

or s2, is called a statistic. Parameters are often denoted with Greek letters and
statistics with Latin letters. Briefly, we have:

 Population Sample
Description A very large set of N observations from

which we can imagine the sample has been
taken.

Small group of available
observations.

Mean

n

x
1

i∑
==

N

iµ
 n

x 1
ix∑

==

n

i

Variance

N

2)x(2)E(x2 ∑ −
=−=

µ
µσ

1n

2)x(x2s
−

−
=

∑

Standard Deviation

N

2)x(∑ −
=

µ
σ

1n

2)x(x
s

−

−
=

∑

As the hypothetical population contains all the possible values output as a result of
an experiment, any set of observations gathered is some sort of sample of the
population. A sampling statistic can be employed to approximately calculate the
respective parameter of the population. So, x can be used to estimate µ or s2 as an
estimator of σ2.

6.3. STATISTICAL HYPOTHESES AND DECISION MAKING

When we have to make decisions concerning a population on the basis of
information taken from samples, we are said to be making a statistical decision. For
example, when we want to decide whether or not a coin is a fake, tossing it several
times for the purpose. The population would in this case be infinite and would be
composed of all the tosses; the sample on which the decision must be based are the n
tosses we actually make. Depending on the value of n, the decision will more or less
likely to be true. For example, only one toss (n=1) does not supply enough
information to make a decision with any likelihood of success.

As we discussed in the preceding section, an experimentation (set of unitary
experiments) must be considered as a sample for the purpose of results analysis. The
result of a unitary experiment, the datum taken as a result of an experiment, will be
termed observation. Now, the population would be the total set of observations that
could conceivably occur after running a given unitary experiment. The observations
that we have gathered are considered as a sample of the above population.

Basics of Software Engineering Experimentation 129

6.3.1. Statistical Hypotheses

When trying to make a statistical decision, it is useful to try to construct hypotheses
(or conjectures) about the population concerned. Such hypotheses, which can be
either true or false, are called statistical hypotheses. In an experimental process,
these are the hypotheses output by the experiment goal definition process, described
in Chapter 3.

We often formulate a statistical hypothesis solely for the purpose of having it
rejected or refuted. Thus, if we want to decide whether a coin is a fake, we formulate
the hypothesis that the coin is not a fake. Similarly, if we want to decide whether
one alternative is better than another is, we formulate the hypothesis that there is no
difference between the two alternatives, that is, that any difference observed is due
merely to fluctuations in the sampling of the same population. Such hypotheses are
usually called null hypotheses and are denoted as H0. Any hypothesis that differs
from a given one will be called an alternative hypothesis. An alternative hypothesis
to the null hypothesis will be denoted as H1.

Suppose we have an experiment run for the purpose of deciding which is the better
of two alternatives. Note that if a given alternative is actually better than another, the
observations about each alternative must be samples from different populations. In
other words, the results that are going to be obtained when applying the better
alternative come from a population that contains better results than the population of
the other alternative. The results obtained whenever the better alternative is applied
are an improvement on when the other alternative is applied because the results in
the first case come from a population that contains better values for the data than the
source population of the values of the second alternative.

Some null hypotheses were examined in Part II of this book. Table 6.1 contains
other examples of null and alternative hypotheses applied to real experiments. Note
how the alternative hypothesis could simply indicate a difference with respect to the
samples under examination or can go even further, indicating the sign of the above
difference as shown in (Counsell, 1999).

6.3.2. Decision Rules and Significance Level

If we suppose a particular hypothesis to be true, but find that the results observed in
a random sample (result of the experimentation) differ considerably from the
expected outcomes pursuant to the above hypothesis, then we will say that the
observed differences between the expected outcome and the experimental results are
significant, and we would be inclined to reject the null hypothesis (or at least not
accept it in face of the evidence obtained).

The procedures by means of which we are able to determine whether the observed

130 Basic Notions of Analysis

samples differ significantly from the expected results are called significance tests or
decision rules. Therefore, these tests are an aid for deciding whether we accept or
reject hypotheses.

Table 6.1. Examples of null and alternative hypotheses

Null Hypothesis Alternative Hypothesis Experiment
H0: there is no difference in
defect detection rates of
teams applying the PBR
inspection technique as
compared to teams applying
the usual technique

H1: the defect detection rates of
teams applying PBR are higher
compared to teams using the
usual technique

(Basili, 1996)

H0: classes declared as
friends of other classes have
the same inheritance as other
system classes

H1: classes declared as friends of
other classes have less
inheritance than other system
classes

(Counsell, 1999)

H0: there is no difference
between the different
inspection techniques with
respect to the team scores on
defect detection rate

H1: there is a difference between
the various techniques with
respect to the team scores on
defect detection rate

(Fusaro, 1997)

H0: there is no difference in
intervals neither in number of
defects detected between
inspections with large teams
and with smaller teams

H1: inspections with large teams
have longer intervals, but find no
more defects than smaller teams

(Porter, 1997)

H0: there is no difference in
effectiveness in teams who
begin an implementation
using an existing example
and in teams who begin
implementing from scratch

H1: teams who begin an
implementation using an existing
example for guidance are more
effective than those who begin
implementing from scratch are

(Shull, 2000)

If we reject the null hypothesis when it should be accepted, we will say that a type I
error has been made. On the other hand, if we accept the null hypothesis when it
should be rejected, we will say that a type II error has been made. An error of
judgement has been made in both cases. For decision rules (or significance tests) to
be good, they must be designed so as to minimise errors of judgement. This is not a
simple matter, because any attempt at reducing one error type in any sample size is
usually accompanied by an increase in the other type. The only means of reducing
both at once is to increase the sample size, which is not always possible. Sample size
can be increased (and, hence, the probability of error, particularly type II error
probability can be reduced) by the internal replication of experiments.

Basics of Software Engineering Experimentation 131

When testing a given hypothesis, the maximum probability with which we are
prepared to run the risk of making a type I error is called the level of significance
for the test. The level of significance is commonly 0.05 or 0.01 in practice, although
other values are used. If, for example, we choose the level of significance 0.05 (or
5%) when designing a decision rule, then there are 5 chances in 100 of rejecting the
hypothesis when it should have been accepted; in other words, we have a confidence
of 95% of having made the right decision. In this case, we say that the hypothesis
was rejected at the level of significance 0.05, which means that the hypothesis has a
probability of 0.05 of being false. This level of significance is often represented by
the Greek letter α.

On the other hand, the type II error is represented by β and depends on several
factors:

1. On the size of the sample n: the larger the sample, the easier it will be to
discover a difference between two populations for a given level of
significance α.

2. On the value of the difference between the observations of the different
alternatives being tested. This difference is represented by δ.

3. On the property of a test termed the power of a statistical test. The power
of a test is defined as the probability of a statistical test correctly rejecting
the null hypothesis and is represented by 1-β. The power of a test can also
be interpreted as the possibility of the effect of a particular factor alternative
being detected if it causes a significant change in the response variable. For
example, a power level of 0.4 means that if an experiment is run ten times,
an existing effect will be discovered in only four out of the ten experimental
runs.

The lower the probability β (probability of making a type II error) for a
given α (level of significance), all the more accurately H0 and H1 will be
distinguished. A test is said to be powerful, when it has a relatively high
power of resolution compared with other possible tests. Where H0 is true,
the maximum power of a test is α. Then given a very small α, statistically
significant results will only be able to be obtained for very large values of n
or a very large difference δ. Therefore, we often have to accept a level of
5% (there are 5 chances out of a 100 of the null hypothesis being rejected
when it should have been accepted) and a power of at least 70% (if the
experiment is performed 100 times, a possible effect on the result will be
detected at least 70 times). The only thing you can do to increase the power
at random is increase the sample size. These ideas will be used to determine
how many times an experiment should be replicated, as we will see in

132 Basic Notions of Analysis

Chapter 15.

Experimentation usually intends to compare the alternatives of one or several
factors. This being the case, we need data analyses that test the differences of some
statistic of the data collected as the response variable. The most commonly used tests
in experimentation are known as tests of difference between samples and are used
to compare statistics. The statistic compared is usually the mean between the sample
for alternative A and the sample for alternative B. In this case, the test is known as
the test of differences between means. The mean value of the response variable for
alternative A and alternative B will tell us which alternative improves the response
variable. However, proportions or any other statistic may be used, depending on the
objective of the experimentation. We then use the test of difference of proportions.
A similar sort of test is used for two or more alternatives of more than one factor.

6.4. DATA ANALYSIS FOR LARGE SAMPLES

All the concepts discussed here can be used equally, irrespective of the size of the
sample (number of observations obtained or unitary experiments run). However, one
distinction has to be made before we go any further. Data analyses are much easier
(and reliable) for what are known as large samples. A sample is considered large if it
contains over 30 observations. This is a high number for a controlled experiment,
but not for observations of a large population (that is, when we are conducting a
survey rather than an experiment). When the size of the sample is under 30, it is
known as a small sample. The statistic that governs these cases is called small-
sample theory and this is what is usually applied in experimentation. This is what
will be discussed throughout Part III of this book. Note that the small sample
technique is also applicable to large samples, let us briefly discuss how to address
large samples, however, so that readers appreciate the difference between the modus
operandi with large samples and small samples. We will then examine how small
sample theory is also be applicable to large samples.

Suppose we want to use a test of difference between means to test whether a given
alternative (alternative A) is better than another (alternative B). Let x1 and x2 be the
sample means obtained in large samples of sizes n1 and n2 obtained from
populations, having means µ1 and µ2 and standard deviations σ1 and σ2, respectively.
Let us consider the hypothesis that there is no difference between the means of the
populations (that is, µ1 = µ2), which is equivalent to saying that the samples have
been taken from the same population and that, therefore, there are no improvements
in the response variable due to the use of alternatives A or B.

The benefits of having large samples is that for large numbers of observations (n ≥
30), the sampling distribution of means is approximately normal with mean xµ and
standard deviation xσ , irrespective of the population. This means that we can use

Basics of Software Engineering Experimentation 133

the sample means and sample standard deviations (which can be calculated from the
sample obtained from the experiments) as estimates of the means and standard
deviations of the populations. This is a very useful and easy means (as we will see)
of being able to find out things about the population using the sample data.

We use the decision rule of difference between means to ascertain whether the
difference between 1x (mean of the observations using alternative A) and 2x (mean
of the observations using alternative B) is significant. If the difference is significant,
this means that the alternative whose mean is greater is effectively better, as it
produces higher response variable values, which results in a greater mean. If the
difference is not significant, it means that neither alternative is better than the other
(with respect to the response variable x), as both alternatives produce a similar mean
(the difference between 1x and 2x is close to 0, and there is practically no
difference between the values of the response variables obtained using alternatives
A or B). In other words, if the difference is not significant, the differences observed
can be put down to chance but not to the influence of the alternatives on the
response variable.

The question of whether or not the difference between the sample means is
significant can be settled using a variable called z, which is defined as:

212121

21 212121 0
xxxxxx

xx xxxxxx
z

−−−

− −
=

−−
=

−−
=

σσσ
µ

where

2121x

µµµ −=
− x

which will be 0, as we are using the null hypothesis that there are no differences

between the means; and
21

21
n

2
2

n

2
1 σσ

σ +=− xx , where the sample standard

deviation s1 and s2 can be used as an estimator of σ1 and σ2.

Hence, we are using the variable z to test the null hypothesis (there is no difference
between alternatives) against the alternative hypothesis (there is a difference
between the alternatives under examination) at an acceptable level of significance.

Generally, we can use the standardised variable z to run the test on the sampling
distribution of any statistic S (mean, variance, etc., of the sample), if we define z as:

134 Basic Notions of Analysis

S

SSz
σ

µ)(−
=

where µS and σS are the mean and the standard deviation, respectively, of the above
statistic.

The distribution of the standardised variable z is the canonical normal distribution
(mean 0 and variance 1), as shown in Figure 6.1.

0.95

Critical Region : 0.025
Critical Region : 0.025

Z=-1.96 Z=+1.96

Figure 6.1. Distribution of the z statistic

The graph shown in Figure 6.1 shows a symmetric curve centred at 0, where the
total area under the curve is 1 or, alternatively, the area from 0 to either of the ends
will be 0.5. The abscissa axis represents all the possible values of the variable z.
These values are used to determine the area under the curve at the above points,
which represents a particular level of significance.

For example, let's look at how we get the values of z for a level of significance of
5%. What we are looking for are two symmetric values (one positive and one
negative) such that the area of the curve outside the numerical range formed by the
above pair is 0.05 (this area would be the grey area under the curve in Figure 6.1).
This means that the area of the curve within the above range will be 0.95, as the total
area is 1. These values can be taken from Table III.1 in Annex III. This table shows
the area under the curve bordered by any positive value of z and z=∞. This value of
z is obtained by combining the values of the column and the row labelled z. The
column shows the unit and first decimal of and the row the second decimal of z. As
the curve is symmetric, all you have to do is look for a value of z for which the tail
area is 0.025 (0.05/2). This value is given in Table III.1 of Annex III. The value of z
is 1.9 under the column labelled z and 0.06 in the row labelled z. Hence, the value of
z is 1.96. This means that the tail area at point z=1.96 is 0.025, and we can say that
the tail area at point z=-1.96 will be 0.025, as the curve is symmetric. Therefore, the
total area of the tails will be 0.05, which is the level of significance we were looking

Basics of Software Engineering Experimentation 135

for. Since the total area under the curve is 1, the area within the range (-1.96, 1.96)
will be 0.95. The set of z outside the range -1.96 to 1.96 is what is termed the critical
region of the hypothesis.

What we need to know now is how to interpret these results to find out whether our
particular hypothesis can or cannot be accepted. For this purpose, we have to
calculate the respective value of z. If this value is from –1,96 to 1,96, the hypothesis
can be accepted. However, if z is outside this range, we have to conclude that we
have a confidence of only 5% of the hypothesis being true. We will then say that this
z differs significantly from what would be expected according to the hypothesis, and
we would be obliged to reject the hypothesis.

When we intend to test merely whether two processes are different, then we have to
examine the value of z at both sides of 0 (that is, in the two tails of the distribution).
These tests are termed two-tailed or bilateral tests. Often, however, we will be
interested in only one of the extreme values at one side of the mean (that is, at one
side of the distribution tail), as is the case when testing the hypothesis that one
alternative is better than another is. Such tests are termed unilateral or one-tailed
tests. In these cases, the critical region is a region located at one side of the
distribution that has an area equal to the level of significance.

Table 6.2 shows the critical values of z for one- or two-tailed tests at several levels
of significance. These values were taken from Table III.1 of Annex III. For
unilateral tests, the value of z shows the point at which the area under the curve is
equal to the level of significance (0.1, 0.5, 0.01, 0.005 or 0.002, respectively). As
the curve is symmetric, there are two points in the graph (one positive and one
negative) for which the area under the curve is equal to the above values.

Table 6.2. Critical levels of the normal distribution for unilateral and bilateral tests

Level of significance α 0.10 0.05 0.01 0.005 0.002

Critical values of z for
unilateral tests

-1.28

 or 1.28

-1.645

 or 1.645

-2.33

or 2.33

-2.58

or 2.58

-2.88

or 2.88

Critical values of z for -1.645 -1.96 -2.58 -2.81 -3.08

136 Basic Notions of Analysis

bilateral tests and 1.645 and 1.96 and 2.58 and 2.81 and 3.08

Therefore, 0212x1x =−=− µµµ

and 606.1
50

27
40

28
n

2
2

n

2
1

21
21 =+=+=−

σσ
σ xx , where we have used the sample

standard deviations as estimators of σ1 and σ2.

Then we can calculate z as follows:

 49.2
606.1

7874
z

21

21 x-x
−=

−
==

− xxσ

As the alternative hypothesis is that there is a difference between the two means (it
does not indicate whether the difference is for the better or for the worse), we will
apply the two-tailed test. According to Table 6.2., we would not reject H0 at a level
of 0.05, for example, if z were between –1.96 and 1.96. Hence, we conclude that
there are significant differences between the two classes (as z is not within the
specified range).

If H1 were: µ1<µ2 (the grades of the first group are worse than the grades of the
second), then we would apply the one-tailed test and, at the level of significance
0.05, we would say that the grade of the second group is significantly better than the
grade of the first if z < -1.645, which is actually the case.

6.5. DATA ANALYSIS FOR SMALL SAMPLES

In the above section, we have taken advantage of the fact that the sampling
distributions of many statistics are approximately normal for samples of size n ≥ 30,
called large samples, where the approximation is all the better the greater n is. For
samples of a size of less than 30, called small samples, the above approximation is
not good and is worse the smaller n is. Therefore, some adjustments are required.

As we said before, the study of the sampling distribution of statistics for small

Basics of Software Engineering Experimentation 137

samples is called small-sample theory. However, a better name would be exact
sampling theory, as it can be used to analyse both small and large samples.

The usual distributions used to analyse the data obtained from a small sample and
apply decision rules on the significance of the results are: the t (called Student's)
distribution and F (called Snedecor’s) distribution and the chi-square distribution.
The t distribution is used as a reference for analysing the difference between means;
the F-distribution is employed to analyse the difference between variances; and the
chi-square distribution is used to analyse differences between frequencies.

6.5.1. Hypothesis Testing with the Student’s t Distribution: Mean of a
Population and Differences between Means (assuming homogeneity of
variance)

We define the t statistic as:

1−
−

= n
s

xt µ

This statistic is applied when we work with normal or almost normal populations
(several tests for checking this constraint are examined throughout the book). So,
considering samples of size n taken from a normal or almost normal population
having mean µ and calculating t using the sample mean x and the sample standard
deviation s yields the sampling distribution for t, shown in Figure 6.2.

0,1

0,2

0,3

0,4

-1-2 -3 1 2 3

Normal

ν =4

ν =1

Figure 6.2. Student's t distribution for several values of ν

The Student’s t distribution is very similar to the normal distribution. Like the
normal distribution, it is continuous, symmetrical and bell-shaped. However, this
distribution depends on the value ν, that is, the number of degrees of freedom, that
is, the more degrees of freedom there are, the closer the distribution is to normal.

138 Basic Notions of Analysis

The property that determines how pointed a distribution is is called kurtosis. The
kurtosis of a normal distribution is zero, and the kurtosis of a t distribution tends to
be increasingly negative as the degrees of freedom fall.

The number of degrees of freedom of a statistic is defined as the number n of the
sample size (observations of which the sample is composed) less the number K of
population parameters (that is, the mean of the population, the standard deviation of
the population, etc.), which are unknown, and must be estimated from the sample
observations to calculate the statistic.

The fewer the degrees of freedom, the further removed the respective curve will be
from the normal and the flatter it will be (the values 0.4, 0.3, etc., in Figure 6.2.
illustrate how the curve flattens). When the number of degrees of freedom is high,
the Student’s t distribution is confused with a normal distribution. Like the normal
distribution, the values of the X-axis represent the values of the t for which the area
under the curve has a specific value.

In the case of the t statistic, the number of observations of the sample is n.
Remember that t is defined as:

1−
−

= n
s

xt µ

In the above formula, x and s are sample statistics and can be calculated from our
sample data. However, µ is the parameter of the population, its mean. As the
population is unknown, µ has to be estimated from the samples. Therefore, K=1, and
the degrees of freedom of the t are ν=(n-k)=(n-1).

The degrees of freedom, as we will see later, must be used to deal with small
samples to find out the limitations of our estimates for each statistic.

Returning to Figure 6.2, the curve Y is given by:

2
)1(

2

0

1
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
ν

ν
t

Y
Y

where Y0 is a constant that depends on n, such that the total area under the curve is
1. The distribution Y is called Student's t in honour of W.F. Gossett, who published
his work under the pseudonym of Student at the beginning of the 20th century.

Basics of Software Engineering Experimentation 139

For high values of n, and certainly for n ≥ 30, the curves in Figure 6.2 are very close
to the canonical normal curve, and the t analysis is then equal to the analysis
discussed in section 6.4. for the difference between means in large samples.

As for the normal distribution, intervals of confidence of 95%, 99% or others can be
defined using Table III.3. Student’s t-distribution in Annex III to estimate the mean
of the population within specified limits.

The hypothesis or significance tests or decision rules we examined for large samples
are easily extended to small samples. The only difference is that the z statistic is
replaced by the t statistic.

For example, we use the t statistic to examine the mean of the population µ, that is,
to test the hypothesis H0:

1−
−

= n
s

xt µ

where x is the mean of a sample of size n and s is the standard deviation of the
sample.

Suppose that a research group develops an estimation technique for software
projects, which they claim provides an accuracy of 15% after the requirements have
been defined. This technique is applied to 10 projects to test this assertion, yielding
a (sample) mean accuracy of 15.9% and a standard deviation of 0.9%. Thus, we can
define H0: µ =15% and H1: µ ≠15%. This calls for a two-tailed test, in which we will
calculate the value of the t using the following parameters.

15.9x = ; µ=15; n=10 and s=0.9. Then: t=3

We can use Table III.3 of Annex III to get the values within the range of which the t
statistic must fall to accept H0 at 95%. These are –t0.975 and t0.975, which are values
for which 2.5% of the area is in each Student’s t distribution tail. Running along the
row for 9 degrees of freedom (the 10 projects in the sample less 1 for the unknown
population parameter µ), we find that the respective value of t that leaves an area of
0.025 under the distribution tail is 2.26. As the curve is symmetric, the value of -
2.26 will also leave an area of 0.025 under the curve. Consequently, the area of the
curve between -2.26 and 2.26 is 0.95. As the value for this example t is 3 and is
outside this range, we can reject the null hypothesis, claiming with 95% confidence
that the data obtained about these projects would satisfy the condition specified by
the research group: the new technique provides an accuracy of 15% once the
requirements have been defined.

140 Basic Notions of Analysis

We can also use the t statistic to examine the difference between means in a small
sample. Suppose we take two random samples of sizes n1 (n1 experiments with
alternative 1) and n2 (n2 experiments for alternative 2) of normal populations whose
standard deviations are equal (σ1=σ2). Let 1x and 2x be the means of the two
samples and s1 and s2 be the sample standard deviations. To test the hypothesis H0
that the samples come from the same population (that is, µ1=µ2 and σ1=σ2 and,
therefore, there is no improvement in the response variable when either is used as an
alternative), we use the t statistic for the distribution of the differences between the
means of the two samples, which is defined as:

2
)1()1(

:,
11 21

2
22

2
11

21

21

−+
−+−

=
+

−
=

nn
snsn

where

nn

xx
t σ

σ

The use of this equation is plausible, provided σ1=σ2=σ in the equation that
represents the distribution of z, discussed in section 6.4.

212121

21 212121 0
xxxxxx

xx xxxxxx
z

−−−

− −
=

−−
=

−−
=

σσσ
µ

212

2
2

1

2
1

n
1

n
1

nn
21 +=+=−

σσσ xx

The weighted mean is used to estimate σ2:

1)(n1)(n
1)s(n1)s(n

21

2
22

2
11

−+−
−+−

The resulting distribution is a Student's t distribution with ν=n1-n2-2 degrees of
freedom. For the first sample, its size would be n1 and we would have to estimate σ1,
hence the degrees of freedom for this first sample would be n1-1. Similarly, the
degrees of freedom would be n2-1 for the second sample, which leads to a
distribution having ν=n1-n2-2 degrees of freedom.

For example, suppose two different code inspection techniques are applied to 24
programs of similar size (each technique is applied to 12 projects). The mean
number of errors detected per time unit is 4.8 with a standard deviation of 0.4 for the
first technique and of 5.1 with a deviation of 0.36 for the second. We would like to
know whether the observed difference in the response variable, number of errors

Basics of Software Engineering Experimentation 141

detected per time unit using the second technique is significant. Hence, we can
define H0: µ1=µ2 , and H1:µ1<µ2 .

The values for calculating t are as follows:

n1= 12; n2= 12; 4.85.1 21 x;x == ; s1= 0.36; s2= 0.4

0.38
21212

(11)(0.4)(11)(0.36)
2nn

1)s(n1)s(n 22

21

2
2

211
2

=
−+

+
=

−+
−+−

=σ

93.1

12
1

12
138.0

8.41.5

n
1

n
1

xxt

21

21
=

+

−
=

+

−
=

σ

If we consider a level of significance of 0.01, for example, we would reject H0 if t is
greater than t0.99 (that is, the value for which the area under the tail is 0.01) for
n1+n2-2=22 degrees of freedom. From Table III.2 the value for t0.99 is 2.50, hence
we cannot say that there is a significant difference with regard to the number of
errors detected per time unit by the two techniques.

The application of this distribution is part of the data analysis for a one-factor design
with two alternatives discussed in Chapter 7. The distributions used in data analysis
are discussed in this chapter so that readers can understand them separately and then
find it easier to understand the analysis process as a whole.

6.5.2. Hypothesis Testing with the F Distribution: Difference between Variances

As we have seen, it is important to find out the sampling distribution of the
difference between means (21 xx −) of two samples in experiments. Similarly, we

could use the sampling distribution of the difference between variances ().

However, this is actually a complicated distribution, and the statistic

2
2

2
1 ss −

2
2

2
1

s
s is

considered instead. This statistic supplies information equivalent to the difference
between variances, as a large or small quotient indicates a big difference, whereas a
quotient close to 1 specifies a small difference. The sampling distribution of this
quotient of variances is called the F- distribution in honour of Snedecor.

Indeed, let 1 and 2 be two samples of size n1 and n2, taken from two normal (or
almost normal) populations having variances and . The following statistic 2

1σ 2
2σ

142 Basic Notions of Analysis

is defined:

1
ŝ,

1
ˆ where

)1(

)1(
ˆ

ˆ

2

2
222

2
1

2
112

1

2
22

2
22

2
11

2
11

2
2

2
2

2
1

2
1

−
=

−
=

−

−
==

n
sn

n
sn

s

n
sn

n
sn

s

s

F

σ

σ

σ

σ

Then the sampling distribution of F is called an F distribution, having 111 −= nν

(K=1, as the parameter σ1
2 needs to be estimated) and 122 −= nν (for the same

reason K=1, but for population 2) degrees of freedom. This distribution is given by
the function Y:

() 2
)(

21

12

21

1

νν

ν

νν
+

−⎟
⎠
⎞⎜

⎝
⎛

+
=

F

CFY

where C is a constant that depends on 1ν and 2ν such that the total area under the
curve is 1. The curve is shaped as shown in Figure 6.3, although this shape can vary
considerably depending on the values of 1ν and 2ν .

F0.95 F0.99

F

Y

Basics of Software Engineering Experimentation 143

Figure 6.3. Snedecor’s F distribution

Tables III.5, III.6 and III.7 of the Annex III give percentile values of F for which the
right-hand tail areas are 0.1, 0.05 and 0.01, denoted F0,90, F0,95 and F0,99, respectively.
Representing the levels of significance of 10%, 5% and 1%, these can be used to
determine whether or not the variance of sample 1 is significantly greater than

 of sample 2 (in practice the sample with the larger variance is chosen as sample
1).

2
1s

2
2s

For example, suppose two samples have been taken during an experimentation.
Sample 1, for example, contains the results of 9 experiments in which alternative 1
is used; sample 2 contains the results of 12 experiments in which alternative 2 was
used. Suppose that the response variable development effort was measured in this
experimentation. The experimental results yielded can be viewed as samples of two
normally distributed populations having respective variances of 16 and 25 in respect
of development effort. Assuming that the sample variances are 20 and 8, we would
like to determine whether the first sample has a significantly greater variance than
the second at the level of significance 0.05.

For the two samples 1 and 2, we have n1 = 9 and n2 = 12, σ1
2 = 16, σ2

2 = 25, s1
2=20

and s2
2= 8. Hence

 03.42
22

2
22

2
11

2
11

1)/(nsn
1)/(nsnF =

−
−

=
σ

σ

The degrees of freedom for the numerator and denominator of F are ν1= n1-1=8 and
ν2 = n2-1 = 11. In Table III.6 of Annex III, F0.95=2.95 for 8 and 11 degrees of
freedom in the numerator and denominator, respectively. As the calculated F=4.03 is
greater than 2.95, we can conclude that the variance of the sample 1 is significantly
greater than that of sample 2 at the level of significance 0.05. This means that
alternative 1 causes a greater variance than alternative 2 on the response variable
development effort.

This distribution will be used as part of the analysis process designs with a single
factor and several alternatives, several factors and blocks, therefore, it will be
reviewed in Chapters 8 to 13 of the book.

6.5.3. Hypothesis Testing with the Chi-square Distribution: Difference in
Frequencies

144 Basic Notions of Analysis

The χ2 statistic, owed to Pearson, can be used in experiments designed to examine
the number of times a given event occurs rather than the value of the response
variable; that is, it is neither the mean nor the variance, it is the frequency of the
response variable that is examined. Indeed, the χ2 distribution is useful for
calculating discrepancies between two sets of frequencies of the same variable, for
example, the expected and observed frequencies. Thus, a measure of the
discrepancy existing between both frequencies is provided by:

∑
=

−
=

−
++

−
=

k

1j j

2
jj

k

2
kk

1

2
11

e
)e(o

e
)e(o...

e
)e(o2χ

where oi is the observed (or empirical) frequency of the event Ei, and ei is the
expected (or theoretical) frequency of the above event and k is the number of events
considered. For example, we could use the expected frequency in relation to the null
hypothesis for our experiments. The null hypothesis used in our experiments claims
that there is no difference between the different alternatives. So, according to this
hypothesis, the frequencies expected by the use of the different alternatives would
be identical and they could be compared with the empirical or observed frequencies
for each alternative. An example is given below.

The χ2 sample distribution very closely approximates a chi-square distribution

21/2)(2v
0

21/2)(2)(1/2)(v
0 eYe)2(YY χχ −−−− == χχ

where ν is the number of degrees of freedom and Y0 is a constant that depends on ν
such that the total area under the curve is 1. The chi-square distribution for several
values of ν is shown in Figure 6.4.

Basics of Software Engineering Experimentation 145

0.2

5 10 15 20

Y

0.1

0.3

0.4

0.5

X2

ν = 2

ν = 4

2 = 6

ν = 10

Figure 6.4. Chi-square distribution for several values of ν

We can use the following rule to calculate the number of degrees of freedom:

• ν=k-1 if the expected frequencies can be calculated without having to estimate
the parameters of the population on the basis of sample statistics.

• ν=k-1-m if the expected frequencies can be calculated only by estimating m
parameters of the population on the basis of sample statistics.

In practice, the expected frequencies are calculated on the basis of a hypothesis H0.
If, according to the above hypothesis, the value calculated for χ2 is greater than any
critical value (such as χ2

0.95, χ2
0.90, which are the critical values of the levels of

significance 0.05 and 0.01, respectively, and can be taken from Table III.8 of Annex
III), we have to conclude that the observed frequencies differ significantly from the
expected frequencies and we will reject H0 at the respective level of significance;
otherwise, it will be accepted (or at least will not be rejected). This procedure is
called the chi-square hypothesis or significance test.

Let's look at how this test is used in an experiment. Suppose a total of 200 modules
have been identified on which to run code inspections. This inspection is conducted
on 100 of the modules with the aid of a tool (group A) and is performed manually
on another 100 (group B). An inspection is considered to have been successful if it
detected at least 85% of the existing errors. According to the null hypothesis H0 that
the tool has no effect, we would expect the amount of successful inspections to be
the same with and without the tool, that is, according to Table 6.3, at least 85% of
the errors would be detected in 70 of the 100 inspections. The observed success

146 Basic Notions of Analysis

values, however, are shown in Table 6.4. Can we really say from these data that the
use of the tool improves the success of the inspections?

Table 6.3. Expected frequencies according to H0 (there
is no difference between tool use or otherwise)

 Success Failure Total
Group A (with tool) 70 30 100
Group B (without tool) 70 30 100
Total 140 60 200

Table 6.4. Observed frequencies

 Success Failure Total
Group A (with tool) 75 25 100
Group B (without tool) 65 35 100
Total 140 60 200

We will apply the χ2 test to answer this question. For this purpose, we will use the
following values:

 o1=75; o2=65; o3=25; o4=35;

 e1=70; e2=70; e3=30; e4=30

 k=2 (with tool, without tool);

 38.2
30

2)3035(

30

2)3025(

70

2)7065(

70

2)7075(
2 =

−
+

−
+

−
+

−
=χ

According to the above-mentioned rules for calculating degrees of freedom, as no
population parameter needs to be estimated to calculate χ2, ν = k-1=2-1=1.

If we look up the value χ2 with 1 degree of freedom in Table III.8 of Annex III, we
find that χ2

0.95, which is the value of χ2 for which the tail area is 0.05, is 3.84. As
3.84 > 2.38, we conclude that we cannot reject H0 at the level of 0.05 and, therefore,
on the basis of our data, we cannot affirm that the tool has a significant effect.

We will come back to this distribution in Chapter 14, which addresses the methods
of analysis classed as non-parametric tests.

The distribution of χ2 is also useful for identifying relationships between non-
numerical characteristics of individuals or objects. These characteristics are known

Basics of Software Engineering Experimentation 147

as attributes and the degree of dependency between the different characteristics is
called correlation of attributes.

)1(

2

−
=

kn
r

χ

is defined as the coefficient between attributes, where n is the total sample size and k
is the number of attributes whose possible relationship is under examination, as in
Table 6.4, for example. This coefficient is between 0 and 1. The values close to 1
indicate a strong relationship between the attributes examined, whereas the values
close to 0 imply a weak relationship.

For example, for Table 6.4, suppose we want to get the correlation between the
success of an inspection and the use or not of the tool. The value of r is calculated as
follows

 1091.0
)12(200

38.2

)1(

2
=

−
=

−
=

kn
r

χ

where k = 2 (with tool, without tool) which indicates that there is little correlation
between the two variables, that is, the use of the tool has little influence on the
success of an inspection.

6.6. READERS' GUIDE TO PART III

So far we have outlined some brief notions of statistics to give SE experimenters an
idea of the sort of data analysis to be conducted on the results yielded by the
experiments. Readers should not allow themselves to be discouraged by the
formulas and other tiresome notation, since, as we shall see in the following
chapters, simple techniques have been developed in tabular format. These can be
used to make quick calculations and test the results fairly effortlessly. Also, there are
a host of tools (BMDP, SSPS, etc.) on the market where all these data analyses are
automated. However, it is essential to understand the concepts applied by the above
tools so as to get significant results from the analyses conducted. As discussed
earlier, it is no good for experimenters to conduct analyses blindly guided by a
method or still worse by a tool without employing their knowledge of the subject
and the foundations of statistics. Blind analyses can lead to errors in both the
analysis procedure and the results interpretation.

In the following chapters, we are going to focus on questions likely to be posed by
experimenters and on how to analyse the data to answer these questions. Statistics

148 Basic Notions of Analysis

takes second place in these chapters, as it is subordinated to its use within the
experimental process. However, an introduction had to be given to these notions in
this more purely statistical chapter to assure that the terminology used in the
remainder of part III does not demoralise readers and that they understand the
underlying concepts.

Next, let’s consider a brief outline of how the remainder of part III of this book. As
already mentioned, this part describes how to analyse experiments, that is, how to
examine the data collected from the experiments in order to draw certain
conclusions. As detailed below, there are different analysis techniques depending on
the characteristics of the data collected (that is, the response variable of an
experiment) and on the design applied. The methods of analysis can roughly be
divided into two major blocks, parametric and non-parametric methods.

In Chapter 4 we said that the most common scale types for a quantitative response
variable are: nominal, ordinal, interval and ratio. In that chapter we mentioned that
the scale type determines which procedure to be used during the analysis. Figure 6.5
shows the sorts of methods applicable in each case. Thus, when the response
variable scale is nominal or ordinal, the methods to be used during analysis fall into
the non-parametric group. When the response variable is measured on an interval or
ratio scale, then parametric or non-parametric methods will be applied, depending on
whether these data meet certain restriction, like randomisation constraints, for
example.

Nominal scale
Ordinal scale

Non-parametric
 methods

 Model
restrictions
 satisfied

 Parametric
 methods

Yes No

No Yes

Figure 6.5. Methods of analysis applicable according to the characteristics of the

response variables

Parametric tests are statistically more powerful (Miller, 1994) (Briand, 1996) than
non-parametric methods. Remember that this means that a type II error is less likely
to occur. This means that it is more difficult for a non-parametric test to detect a
significant effect in the response variable in face of the same the results, thus leading

Basics of Software Engineering Experimentation 149

to the acceptance of the null hypothesis when a parametric test would have
recommended rejecting the hypothesis in question. Hence, parametric tests should
ideally be applied to analyse the data collected from the experiments. The problem
lies in the fact that the application of parametric methods calls for the data to meet a
set of constraints, like randomisation. The chapters that address this sort of methods
discuss a range of tests to which the results of the experiments can be subjected in
order to examine whether or not the restrictions required are met. If these tests are
not conclusive, then we would have to resort to the application of non-parametric
tests, although they are a little less statistically powerful.

The power of no parametric tests could be raised, without increasing the Type I error
(the probability of rejecting the null hypothesis when it is true), by increasing the
number of replications of an experiment (remember that Chapter 15 examines how
to calculate the minimum number of replications for a particular experiment with a
given α and β, probabilities of type I and type II error, respectively). However, this
is not always possible in SE experiments where time and resources are limited.

One difficulty arising when choosing the type of test to be applied is that it is often
not easy to determine the scale type of a measure in SE. One example mentioned by
Briand et al (Briand, 1996) is as follows: what is the scale type of cyclomatic
complexity? Can we assume that the distances on the cyclomatic complexity scale
are preserved across all of the scale and that therefore the scale is an interval?.

One possibility when it is unclear whether parametric methods can be applied
(remember that these conditions are based on the response variable scale and the
constraints met by the data) is to apply statistics for both test types, that is, apply a
parametric and a non-parametric test. If the two procedures output the same
conclusions we can safely reject or accept the null hypothesis. If, on the other hand,
the two procedures generate different results, we would have to trust the result of the
non-parametric test, as it would not be possible to assure that the conditions called
for by the parametric tests are met. Note that the result of the tests would be to reject
the null hypothesis with the parametric test and accept it with the non-parametric
test.

According to Table 6.5, parametric methods are examined in Chapters 7 to 13
depending on the sort of design used for the experiment. On the other hand, non-
parametric methods are described in Chapter 14. The techniques to be applied in
both sorts of methods rely on the t, F and chi-square distributions described in this
chapter.

Table 6.5. Structure of the remainder of part III

Factors Parametric Methods Non-Parametric Methods
1 factor

150 Basic Notions of Analysis

 2 alternatives
 n alternatives
 with blocks

n factors, k alternatives
 kn experiments
 incompatible alternatives
 under kn experiments
 with blocks

Chapter 7
Chapter 8
Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13

Chapter 14

These chapters describe in detail the essential activities to be performed in data
analysis, based on short examples that illustrate the reasoning to be followed.
However, real experiments will be described at the end of each chapter in which the
analysis techniques described in the chapter have been applied in order to show their
applicability in practice.

Before moving on to the following chapters, remember that the experiments with
which this book is concerned focus on the use of qualitative factors and quantitative
response variables. Thus, the analysis techniques that we will examine aim to
establish relationships between these factors and the response variables. If the
factors under examination were quantitative, we could establish another type of
analysis applying techniques of regression analysis to determine the mathematical
function that relates the factor and the response variable (this means adjusting
points, that is, response variable values, to least square curves, for example). This
part is not included, as these are unusual conditions for SE experiments, which tend
to compare non-quantitative alternatives (methods, tools, etc.). Additionally,
regression analyses are covered by basic mathematics courses and books, and
readers can be expected to be acquainted with them, even if they have never applied
them to further their understanding of software development.

Within the analyses that we are going to examine, we will specifically focus on the
methods used to detect differences between the means of the response variable. This
is the most common sort of analysis in SE. Differences between other statistics, like
frequencies, medians, etc., can also be used. However, they are not considered in
this book, which merely aims to offer readers an introduction to the world of
experimentation in SE and does not intend to make them experts. Readers who are
acquainted with the method of analysis for studying differences between means will
find it easy to understand and use the methods of analysis for other statistics, as they
are similar. For more details about these other analyses, readers are refered to
Chapter 5 of (Box, 1978).

Finally, we will also focus on problems for which the factor alternatives have been

Basics of Software Engineering Experimentation 151

fixed a priori, as this the case in most SE experiments. In this sort of experiments,
the factor alternatives with which we work are selected specifically by the
experimenter and the conclusions are only applicable to the alternatives in question
and are not extendible to similar alternatives that have not specifically been
considered. This sort of experiments call for the use of what are known as fixed-
effects models during analysis. On the other hand, the factor alternatives could be a
random sample of a larger population of alternatives. In this case, it would be
desirable to generalise the conclusions to all the alternatives, whether or not they
have been explicitly considered in the analysis. This sort of experiments are unusual
in the early stages of a SE experiment. They are, therefore, not considered in this
book. Readers interested in this sort of experiments are referred to the classic books
on experimental design and analysis, such as Chapter 7 of (Montgomery, 1991).

It remains to say that Part III of this book focuses on the analysis of individual
experiments. However, one could go a step further and integrate and compare
individual experiments that have been designed and executed independently but that
address a common hypothesis. A statistical approach for integrating multiple studies
is called meta-analysis (Glass, 1981). This approach is not addressed in this book,
whose aim is to introduce readers to the field of experimentation. Interested readers
are referred to the above-mentioned reference to further their knowledge of this
subject.

6.7. SUGGESTED EXERCISES

6.7.1. The mean value for keeping to the preliminary schedule yielded by 50
applications developed applying given process improvement procedures
was 68.2% with a standard deviation of 2.5. Another 50 applications
developed without the above procedures provide a mean of 67.5% with a
standard deviation of 2.8. Test the hypothesis that the applications in which
the improvement procedures were applied keep closer to the schedule at a
level of significance of 5%.

Solution: No (z=1.32)

6.7.2. The mean rating awarded by 12 users to an application developed using
usability techniques was 5.1 with a standard deviation of 0.4. Another 12
users assessed another application in which the above techniques had not
be used, giving a mean rating of 4.8 with a standard deviation of 0.36. Can
we conclude that there was an improvement as a result of the application of
usability techniques at 1% and 5%?

Solution: t=1.85
No (α=0.01);
No (α=0.05)

152 Basic Notions of Analysis

6.7.3. Suppose that we have two samples of 8 and 10 projects of normal
populations distributed with variances 20 and 36 respectively. A different
programming language has been applied in each sample. What probability
is there of the variance of the first sample being double that of the second?

Solution: 0.01 < P < 0.05

6.7.4. Of a sample of 200 developers, 115 preferred to use methodology A and 85
preferred to use methodology B. Test the hypothesis that methodology A is
preferred to B at the levels of significance 0.05 and 0.01.

Solution: χ2=4.5
Yes (α=0.05);
Yes (α=0.01)

7 WHICH IS THE BETTER OF
TWO ALTERNATIVES?
ANALYSIS OF ONE-FACTOR

DESIGNS WITH TWO
ALTERNATIVES

7.1. INTRODUCTION

One-factor experiments are used to compare more than one possible alternative for
just one factor. For example, an experiment of this kind could be used to find out
which is the best of six CASE tools or which is the best of two code inspection
techniques. There is no limit on the number of alternatives for using this sort of
analysis. However, this chapter focuses on the analysis of an experiment intended
to assess which is the better of two possible alternatives; whereas we will study
how this analysis can be generalised for k alternatives in the following chapter.

The results of an experiment designed to study which of two alternatives improves
the response variable are analysed differently depending on whether or not there
are any historical data. An organisation will have historical data if it regularly
measures the response variable. This historical data set can be taken as a reference
to check whether the use of the new alternative (reflected in the results of the
experiments) has improved the response variable as compared with the usual
alternative (reflected in the historical data).

We are first going to examine the analysis using historical data (section 7.2) and
then the analysis of experimental results when no historical data are available, and
all we have are the data yielded by the experiments (section 7.3). This chapter also
presents the analysis of a particular case of one-factor experiments: paired designs
(section 7.4). We conclude the chapter (section 7.5) by reviewing some real
experiments run with this single-factor design with two alternatives.

7.2. STATISTICAL SIGNIFICANCE OF THE DIFFERENCE BETWEEN
TWO ALTERNATIVES USING HISTORICAL DATA

In this section, we are going to examine how to determine when the changes in the
selected response variable can be considered to be due to a change between
alternative 1 and 2 of the factor under examination (or whether, on the other hand,
they should be put down to chance), supposing that we have historical data that
can be used for reference purposes. The sort of analysis carried out is the study of
statistical significance discussed in Chapter 6.

Let’s have a look at a common case taken from everyday life that Box et al. (Box,

154 Which is the better of two alternatives?

1987) use to detail the statistical techniques that we will use. This will give us an
idea of how the real difference among the factor alternatives can be studied.

A family moves to another town. When they arrive at the new town, they intend to
buy a house. They start to look at prices and discover that they are nothing like the
house prices in the town they had just left. This means that when a seller gives
them the price of a house, they have no idea whether it is expensive or cheap
within its class, whether it is a bargain or costs a fortune. In other words, the
family has no point of reference to be able to decide on the house price.

The family conceives the following strategy to solve this reference problem. They
make quick visits to a lot of the available houses, thus forming a reference set.
Once they have this reference, they start to take a closer look at the houses they
like best. When they get a price, they compare it with the reference set and can
determine whether the house is very expensive, very cheap or its price is average.

The method of statistical inference termed significance testing or also hypothesis
testing (discussed in Chapter 6) is comparable to the above process. Suppose a
researcher has altered an organisation’s standard software process. When the
researcher runs an experiment according to the modified software process, he or
she gets a result (let’s say the reliability of the software built). What he or she
needs to know is whether the result is clearly explained by a mere chance variation
or is exceptional, demonstrating the effectiveness of the modification. This is a
fairly straightforward decision if the researcher has historical data on the reliability
of the software obtained in earlier projects (all of which were carried out according
to the unmodified software process established by the organisation). Thus, the
software engineer has a reference set that represents the typical set of results that
would occur if the modification had no effect. The result obtained in the
experiment can be compared with the historical reference set. If, after comparison,
the result is found to be exceptional, it is declared statistically significant. This
means that the variation in the response variable (reliability of the software built)
is due to the modification made to the software process and did not occur by
chance. In other words, if the reliability is higher, this is due to the process
modification, and the modified process can be said to output more reliable
software than the standard process.

We are going to take an example in which the usual software process of an
organisation (process A) is compared against a new software process (process B)
in order to illustrate the analysis to be conducted. The objective of our experiment
is to find out whether the change in the process improves the reliability of the
projects developed. So, the factor to be considered is the software process with
two alternatives (A and B), and the response variable is the reliability of the
software measured as percentage success in the execution of the components (that
is, a component reliability of 80% indicates that not one fault occurred 8 out of the

Basics of Software Engineering Experimentation 155

10 times it was executed). The null hypothesis is H0: “there is no difference in the
reliability of the components produced using process A and process B”.

We design our experiment to test this hypothesis, and we will apply process A to
10 projects and process B to another 10. Imagine that the values of the response
variable for the 20 projects are shown in Table 7.1.

Table 7.1. Data on 20 projects (using process A and B)
Order Process Reliability

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B

89.7
81.4
84.5
84.8
87.3
79.7
85.1
81.7
83.7
84.5
84.7
86.1
83.2
91.9
86.3
79.3
82.6
89.1
83.7
88.5

Y A = 84.24 Y B = 85.54

Y B −Y A = 1.30

We can analyse the experiment to calculate the mean reliability with A (84.24) and
the mean reliability with B (85.54) from these data. Therefore, the modified
process B has improved process A reliability by 1.30 points.

The question is whether this difference is really due to the improvements provided
by process B or whether the reliability with process A would be better than the
reliability with process B, if we repeated the experiments with other data.

Going back to H0, this null hypothesis states that the change in the process has not
produced any variation in the reliability of the projects. If this hypothesis is
rejected, we can say that the new process produces a statistically significant
improvement in the response variable.

156 Which is the better of two alternatives?

Table 7.2 shows the 210 observations taken from the historical data collected
about the standard process A.

Table 7.2. Historical data from 210 projects
observation observation observation observation observation observation

85.5
81.7
80.6
84.7
88.2

84.9
81.8
84.9
85.2
81.9

89.4
79.0
81.4
84.8
85.9

88.0
80.3
82.6
83.5
80.2

85.2
87.2
83.5
84.3
82.9

84.7
82.9
81.5
83.4
87.7

81.8
79.6
85.8
77.9
89.7

84.5
82.4
86.7
83.0
81.8

89.3
79.3
82.7
88.0
79.6

87.8
83.6
79.5
83.3
88.4

86.6
84.6
79.7
86.0
84.2

83.0
84.8
83.6
81.8
85.9

88.2
83.5
87.2
83.7
87.3

83.0
90.5
80.7
83.1
86.5

80.5
86.1
82.6
85.4
84.7

82.8
81.9
83.6
86.8
84.0

84.2
82.8
83.0
82.0
84.7

84.4
88.9
82.4
83.0
85.0

82.2
81.6
86.2
85.4
82.1

81.4
85.0
85.8
84.2
83.5

86.5
85.0
80.4
85.7
86.7

79.5
86.7
80.5
91.7
81.6

83.9
85.6
84.8
78.4
89.9

85.0
86.2
83.0
85.4
84.4

84.5
86.2
85.6
83.2
85.7

83.5
80.1
82.2
88.6
82.0

85.0
85.2
85.3
84.3
82.3

89.7
84.8
83.1
80.6
87.4

84.8
86.6
83.5
78.1
88.8

81.9
83.3
80.0
87.2
83.3

86.6
79.5
84.1
82.2
90.8

86.5
79.7
81.0
87.2
81.6

84.4
84.4
82.2
88.9
80.9

85.1
87.1
84.0
76.5
82.7

85.1
83.3
90.4
81.0
80.3

81.1
85.6
86.6
80.0
86.6

83.3
83.1
82.3
86.7
80.2

Basics of Software Engineering Experimentation 157

85.4
86.3
80.7
83.8
90.5

90.0
77.5
84.7
84.6
87.2

86.7
82.3
86.4
82.5
82.0

86.8
83.5
86.2
84.1
82.3

79.8
89.0
83.7
80.9
87.3

We have to examine the historical data and calculate how often there has been a
difference in the reliability equal to or greater than 1.30 in successive groups of 10
observations in order to define the significance of the change produced by process
B. If the answer was frequently, we could conclude that the difference in reliability
is due to random variations. If the answer was rarely, we could conclude that the
change in the process has produced an improvement in reliability, and we could
say that the difference between the means of A and B is statistically significant.

Let’s represent the means of groups of 10 consecutive observations in Table 7.3.

Table 7.3. Means of 10 consecutive components

obs. mean
10
obs.

obs. mean
10
obs.

obs. mean
10
obs.

obs. mean
10
obs.

obs. mean
10
obs.

obs. mean
10
obs.

85.5
81.7
80.6
84.7
88.2

84.9
81.8
84.9
85.2
81.9

89.4
79.0
81.4
84.8
85.9

88.0
80.3
82.6
83.5
80.2

85.2
87.2
83.5
84.3
82.9

83.94

84.33
84.06
84.14
84.15
83.92

84.23
84.08
83.85
83.68
83.51

83.09
83.91
84.12
84.07
83.77

84.5
82.4
86.7
83.0
81.8

89.3
79.3
82.7
88.0
79.6

87.8
83.6
79.5
83.3
88.4

86.6
84.6
79.7
86.0
84.2

83.0
84.8
83.6
81.8
85.9

84.42
84.70
84.79
85.30
84.51

84.90
84.20
84.40
84.82
83.73

84.06
84.18
83.46
83.49
84.15

83.88
84.41
84.11
83.91
84.37

83.89
84.01
84.42
84.27
84.02

80.5
86.1
82.6
85.4
84.7

82.8
81.9
83.6
86.8
84.0

84.2
82.8
83.0
82.0
84.7

84.4
88.9
82.4
83.0
85.0

82.2
81.6
86.2
85.4
82.1

84.53
84.09
84.28
84.51
84.33

83.61
84.05
83.94
84.16
83.84

84.21
83.88
83.92
83.58
83.58

83.74
84.44
84.32
83.94
84.04

83.84
83.72
84.04
84.38
84.12

79.5
86.7
80.5
91.7
81.6

83.9
85.6
84.8
78.4
89.9

85.0
86.2
83.0
85.4
84.4

84.5
86.2
85.6
83.2
85.7

83.5
80.1
82.2
88.6
82.0

83.72
83.89
83.90
84.50
83.99

83.71
84.04
83.88
83.47
84.26

84.81
84.76
85.01
84.38
84.66

84.72
84.78
84.86
85.34
84.92

84.77
84.16
84.08
84.40
84.16

84.8
86.6
83.5
78.1
88.8

81.9
83.3
80.0
87.2
83.3

86.6
79.5
84.1
82.2
90.8

86.5
79.7
81.0
87.2
81.6

84.4
84.4
82.2
88.9
80.9

84.36
84.54
84.58
84.33
84.47

83.98
83.96
83.34
83.65
83.75

83.93
83.22
83.28
83.69
83.89

84.35
83.99
84.09
84.09
83.92

83.79
84.19
84.00
84.67
83.68

81.1
85.6
86.6
80.0
86.6

83.3
83.1
82.3
86.7
80.2

83.68
83.91
83.53
83.43
84.06

84.41
83.82
83.68
84.26
83.55

158 Which is the better of two alternatives?

84.7
82.9
81.5
83.4
87.7

81.8
79.6
85.8
77.9
89.7

85.4
86.3
80.7
83.8
90.5

83.44
83.70
83.59
83.58
84.33

83.99
83.23
83.46
82.82
83.50

83.57
83.91
83.83
83.87
84.15

88.2
83.5
87.2
83.7
87.3

83.0
90.5
80.7
83.1
86.5

90.0
77.5
84.7
84.6
87.2

84.18
84.07
84.82
84.59
84.90

84.90
85.47
85.18
85.31
85.37

85.55
84.95
84.70
84.79
84.78

81.4
85.0
85.8
84.2
83.5

86.5
85.0
80.4
85.7
86.7

86.7
82.3
86.4
82.5
82.0

83.82
83.43
83.77
83.89
83.74

84.17
84.51
83.93
83.96
84.42

84.95
84.68
84.74
84.57
84.42

85.0
85.2
85.3
84.3
82.3

89.7
84.8
83.1
80.6
87.4

86.8
83.5
86.2
84.1
82.3

84.21
84.11
84.08
84.19
83.85

84.47
84.94
85.03
84.23
84.77

84.95
84.78
84.87
84.85
84.85

85.1
87.1
84.0
76.5
82.7

85.1
83.3
90.4
81.0
80.3

79.8
89.0
83.7
80.9
87.3

83.54
84.28
84.58
83.51
83.62

83.69
83.58
84.40
83.61
83.55

83.02
83.21
83.18
83.62
84.08

Table 7.4 shows the differences between the means of two consecutive groups
taken from Table 7.3. For example, the first value, -0.43, was calculated by
subtracting 83.94 (mean of projects 1 to 10) from 83.51 (mean of projects 11 to
20). This calculation was repeated with the means of projects 2 to 11, 12 to 21 and
so on.

Table 7.4. Difference between means of
consecutive groups

-0.43

-1.24
-0.15
-0.02
-0.08
-0.15

-0.79
-0.38
-0.26
-0.10

-0.36
-0.52
-1.33
-1.81
-0.36

-1.02
0.21

-0.29
-0.91
0.64

-0.17
-0.17
0.96
0.78

-0.13

0.30
-0.34
0.71
0.68

-0.32
-0.21
-0.36
-0.93
-0.75

0.13
0.39
0.38

-0.22
0.20

-0.37
-0.16
0.12
0.80
0.54

0.08

-1.01
-0.55
-0.05

1.09
0.87
1.11

-0.12
0.67

1.01
0.74
0.98
1.87
0.66

-0.04
-0.60
-0.93
0.02

-0.50

-0.51
-0.67
-0.78
-1.15

-0.43
-1.32
-1.30
-0.64
-0.58

0.37
0.03
0.75
0.44
0.17

-0.23
0.97
0.72
0.98

-0.21

-0.81
0.29
0.49

-0.58

Basics of Software Engineering Experimentation 159

0.82

0.90
-0.68
-0.66
-1.25
-0.27

0.13
0.21
0.24
0.29

-0.18

0.43
1.47
1.33
2.48
1.01

1.33
0.29
0.57
0.95

-0.42

0.53

1.01
1.46
0.76
1.04
1.35

1.37
0.88

-0.12
0.20

-0.12

-0.37
-1.38
-0.90
-0.80
-1.04

-1.94
-0.90
-0.76
-0.63
-0.94

-0.30

0.33
0.79

-0.11
-0.42
0.30

1.13
1.25
0.97
0.68
0.68

-0.45
-0.62
-0.03
0.54

-0.43

-1.24
-0.64
-0.86
-1.10
-0.16

-1.07

-0.30
0.78
0.95

-0.17
0.61

0.74
0.67
0.79
0.66
1.00

-0.11
-0.40
-0.45
0.10

-0.30

-0.97
-0.82
-1.53
-1.20
-1.10

-0.30

-0.01
-0.61
0.40

-1.06
-0.13

-0.52
-1.07
-1.40
0.11
0.46

-0.01
0.33

-0.87
-0.18
0.51

1.39
0.61
0.50
0.64

-0.53

These subtractions provide a reference set against which we can compare the
difference (1.30) that we got when we used process B.

We can see that only 9 of the 191 differences are greater than 1.30. These are
highlighted in bold type. So, we could say that there is a probability of
9/191=0.047 of the observed difference in the means being statistically significant.
This probability is less that 5% (5/100=0.05). Therefore, it is likely that there is a
significant difference using process B.

 This calls into question the null hypothesis, which assumes that the observed
difference is the fruit of chance. In statistical terms, the experimenter could say
that, with regard to these historical data and the reference set they form, the
difference observed is statistically significant at the level of significance 9/191 =
0.047. So, the modified process is likely to be better than the regular process, as it
outputs more reliable software.

So, the steps for answering the question of whether an alternative (A) improves the
response variable with respect to another alternative (B), having historical data,
can be summarised as follows:

160 Which is the better of two alternatives?

1. Calculate the differences between the different means using the data yielded
by the new experiments (run by varying the factor under examination: m
experiments with alternative A and m with alternative B).

2. Calculate the differences between the means of the historical data (groups of
size m equal to the experiments).

3. Determine how often means greater than the experimental means are yielded
by the historical data. If they are yielded frequently, then the differences will
be due to chance, whereas the differences may be due to the change made to
the factor in question if the frequency is low (under 5%).

Supposing that we want to compare more than one new alternative using historical
data, we will only be able to compare each new alternative with the alternative
used historically by means of the above procedure. This sort of inquiry will be able
to tell us whether each of the new alternatives is an improvement on the historical
alternative. However, it cannot be used to compare the new alternatives.

7.3. SIGNIFICANCE OF THE DIFFERENCE BETWEEN TWO
ALTERNATIVES WHEN NO HISTORICAL DATA ARE AVAILABLE

What happens when there are no historical data that can be used for comparison?
In this case, the procedure to be followed involves using Student’s t distribution
and comparing the results of the experiment against this. The Student’s t
distribution used as a reference for differences between means was discussed in
Chapter 6 (Table III.3 in Annex III). This process is only possible if the data
behave like a random sample. This means that it is absolutely indispensable for the
experiments to have been randomised, if Student’s t distributions are to be used as
a reference distribution to check the statistical significance of the difference
between the mean responses of two factor alternatives. As discussed in Chapter 5,
this calls for the performance of the experiments in a completely random order
(remember the bag or card procedures) rather than an order assigned by the
researcher.

Note, therefore, that if the concept of randomisation has not been applied to the
experiments, it is impossible to use the Student’s t as a reference distribution, as
we would be infringing the restrictions that validate statistical inference on the
basis of t.

Suppose we have an experiment to determine the better alternative of two
programming languages (A and B) with respect to the number of errors detected
when inspecting similar programs implemented using the above languages. The
results of the experiment could be:

ORDER
LANGUAGE
CORRECTNESS

1
A

29.9

2
A

11.4

3
B

26.6

4
B

23.7

5
A

25.3

6
B

28.5

7
B

14.2

8
B

17.9

9
A

16.5

10
A

21.1

11
B

24.3

Basics of Software Engineering Experimentation 161

Table 7.5. Results of a random experiment for
comparing alternative A and B

LANGUAGE A LANGUAGE B
29.9
11.4
25.3
16.5
21.1

nA = 5

∑YA =104.5

 26.6
23.7
28.5
14.2
17.9
24.3

nB = 6
∑YB = 135.2

20.9
5

104.5
YA ==

22.53
6

135.2
YB ==

1.69YY AB =−

The null hypothesis is that H0: the use of A or B has no effect on the results and,
hence, on the mean. The alternative hypothesis establishes that H1: language B
always outputs a higher mean than A.

As discussed in section 6.5.1., t can be used as a reference distribution by
consulting the quantity:

BA

BAAB
0

n
1

n
1s

)()YY(t
+

−−−
=

µµ

in the Student’s t table with nA+nB-2 degrees of freedom, where µi are population
means and s is the sample standard deviation. According to the random sampling
hypothesis, s yields an estimate of σ with nA+nB-2=9 degrees of freedom (as we
will see in Table 7.6, s is calculated as illustrated in section 6.5.1). The Student’s t
table gives us the significance level, that is, the proportion of experiments that
would yield a difference greater than 1.69 according to the null hypothesis. If
there are a lot, the difference detected in the means is nothing exceptional and can
be put down to chance. Therefore, the null hypothesis would be true, and the use
of either A or B would provide no improvement. If, on the other hand, the
proportion is small, the difference between the means that we have found is
strange. Therefore, it is unlikely to have occurred by chance and can be attributed
to language A actually providing more correctness than language B.

162 Which is the better of two alternatives?

Table 7.6. t0 calculations

)
5

1

6

1
39.73(

1.69

39.73
54

5(29.51)4(52.50)

1)(n1)(n

21)s(n21)s(n2s

29.51
5

47.5333

1n

2)Y(Y2s

52.50
4

209.9920

1n

2)Y(Y2s

1.6920.8422.53YY

0BA
0

BA

BA

B

BB

A

AA

AB

)(t

BA

B

A

+

−−
=

=
+

+
=

−+−

−+−
=

==
−

∑ −
=

==
−

∑ −
=

=−=−

µµ

where is the low value of the null hypothesis. It will be zero 0)(AB µµ −
if there is no difference between applying B and applying A.
t0 = 0.44 and Pr(t ≥ t0) = 0.34

Going back to the formula of t0. According to the null hypothesis, (µB-µA)0 is
zero. The quantity t0 is (see Table 7.6 for operations):

t 0 =

1. 69 − 0
3. 82

= 0.44

If we consult the value 0.44 in the t table with 9 degrees of freedom (see Table
III.3 in Annex III), we find that the value 0.44 is between 0.260 and 0.697. The
table tells us that the probabilities of a higher value being output are 0.4 for 0.260
and 0.25 for 0.697.

So, greater differences between the means than we have found (1.69) would be
detected as often as 25% to 40% of the time. Therefore, the null hypothesis cannot
be rejected, and we can state that the difference found is due to chance and not to
either of the processes being effectively better and causing fewer errors.

The null hypothesis is generally rejected when P(t≥t0)<5%. This probability value
is also often termed p-value.

7.4. ANALYSIS FOR PAIRED COMPARISON DESIGNS

Basics of Software Engineering Experimentation 163

There is a more precise means of comparing two alternatives of the same factor.
This involves using each alternative in the same experimental unit instead of some
experimental units being completed with alternative A and other experimental
units with alternative B, as shown in the preceding section. If each alternative is
used in the same project, two similar teams are required to carry out the task. As
discussed in Chapter 5, this sort of experimental design is called paired
comparison.

Making comparisons within homogeneous pairs of experimental units can often
raise the precision of the analysis. For example, this would be the case of one and
the same application developed using different techniques or tools. One possible
situation is depicted in Table 7.7, showing the estimate accuracy for two different
techniques applied to 10 similar projects. This experiment was run after selecting
subject pairs of the same characteristics (same development experience, same
domain knowledge, etc.) and randomly assigning the project to be estimated by
each pair and the order of application of both techniques over the project.

Neither the projects nor the subjects can be considered to be identical. However,
both techniques have been applied together to each project. Therefore, if we work
with the ten B-A differences, let’s call them di (to stress that we are talking about
differences between data), we can eliminate most of the differences among
subjects.

Table 7.7. Accuracy of the estimate for 10 similar projects

Project Technique A Technique B d = B-A
1 13.2 14.0 0.8
2 8.2 8.8 0.6
3 10.9 11.2 0.3
4 14.3 14.2 -0.1
5 10.7 11.8 1.1
6 6.6 6.4 -0.2
7 9.5 9.8 0.3
8 10.8 11.3 0.5
9 8.8 9.3 0.5
10 13.3 13.6 0.3
 Mean difference=0.41

If we accept the random sampling hypothesis of the differences di of a normal
population of mean δ, we could use the t distribution to compare d and δ. So, as
shown in section 6.5.1., the following statistic will be used to determine whether a
normal population has mean δ:

164 Which is the better of two alternatives?

 1
s

)(d
d

−
−

= nt δ

where n is the sample size and sd is the standard deviation of the differences. As
mentioned earlier, this statistic is distributed like a t with n-1 degrees of freedom,
where

1

2)dd(2
ds

−

∑ −
=

n

Thus,

 ;149.0
9

349.12
ds ==

 386.0149.0ds ==

According to the null hypothesis, δ is equal to zero (as it is the mean between the
population and differences, it will be 0 if there is no difference between techniques
A and B), so the respective reference distribution is a t distribution with nine
degrees of freedom. The value of t0 associated with the null hypothesis δ=0 is:

18.39

386.0

41.0
=

If we consult the t table with nine degrees of freedom (Table III.3 in Annex III),
we get P(t≥3.18)≅0.004. Hence, we can reject the null hypothesis and consider
that technique A is more accurate.

Basics of Software Engineering Experimentation 165

7.5. ONE-FACTOR ANALYSIS WITH TWO ALTERNATIVES IN REAL
SE EXPERIMENTS

7.5.1. Analysis for Examining the Relationship between Code Quality and
Estimate Accuracy

Mizuno et al. (1998) present a series of experiments run for the purpose of
studying the truthfulness of the following hypotheses:

“In projects with accurate cost estimation, the quality of the delivered
code is high” and “In projects with accurate cost estimation, the
productivity of the development team is high”.

The factor considered for this project, then, is the accuracy of the estimation
process. This factor is represented as RE and the authors describe an objective
form of calculating it by means of the following expression:

 x100
estCOST

estCOSTactCOST
RE

−
=

where actCOST is the actual cost (measured by person-month) and estCOST is the
estimated cost (measured by person-month). Based on this value, the projects can
be classed into three groups, Co, C+, and C-. Co is the set of projects with -10% <
RE <+10%, C+ is the set of projects with RE ≥ 10% and C- is the set of projects
with RE ≤ -10%. Thus, we have a factor RE, with three alternatives, Co, C+ and
C-. Although this is an experiment with three alternatives, the analysis is actually
performed by comparing alternatives two by two (this procedure can be
considered as a sort of trick for analysing experiments with more than two factors;
however, we will look at how to do a full k (k>2) study in the following chapter).

The experiments were run on 31 projects at one company. The response variables
are detailed in Chapter 4, Table 4.6. Remember that they are FQ: quality of
delivered code (FD/SLC) and TP (productivity of the team (SLC/EFT).

Thus, µo was defined as the average of FQs of all projects which belong to Co, and
µ+ and µ- as the averages of FQs of all projects in C+ and C-, respectively.

The results of Co and C+ were compared by establishing the null hypothesis as
H0: µ+ = µo (there is no difference in either code quality or team productivity for
Co projects in which the range of the estimate deviation is from -10% to 10%) and
the alternative hypothesis as H1: µ+ >µo (both code quality and team productivity
is greater in the projects whose deviation is from –10% to 10% than in projects in

166 Which is the better of two alternatives?

which the deviation is greater than 10%). The authors applied the t-test to study
these hypotheses statistically. They calculated the respective statistic according to
the following formula (derived from the t-statistic examined in Chapter 6):

 1.997

o

2
o

2

o

N
s

N
s

xxt =

+

−
=

+

+

+

The exact data of this analysis are confidential and the authors only show the
result of the t-test. For a significance level of 95%, P(t>T)<0.05, which means that
the null hypothesis can be rejected. This means that there is a significant
difference in code quality, FQ, between Co projects (range of deviation from the
estimate of from -10% to +10%), and C+ projects (deviation from the estimate of
over 10%).

However, after applying this same test, the authors did not identify any significant
difference in the software quality between Co and C- projects.

A similar analysis was performed by the authors to test development team
productivity, outputting the result that there is a significant difference in
productivity among Co projects (deviation of from -10% to +10%) and C+
projects (deviation of over +10%). However, this difference is not considered
significant among Co and C- projects.

So, one of the most significant results of their experiments is the assertion that if
the cost estimate of a project is accurate, then the project code quality and
equipment productivity is greater.

7.5.2. Analysis for Examining the Relationship between the Application of
SEPG Guidelines and the Defect Detection Process

An example of an analysis of this kind was conducted by Mizuno and Kikuno
(Mizuno, 1999). They ran several studies for the purpose of examining the
development process implemented at a company, where a Software Engineering
Process Group (SEPG) made several efforts at improving the review process. The
goal of one particular study conducted was to prove the following assertion:

 “The number of faults detected by the review increases in projects that
have correctly applied the SEPG guidelines. Similarly, the number of
faults detected in the debug & test phase decreases”.

This investigation was really designed as an observation not as a controlled

Basics of Software Engineering Experimentation 167

experiment. It has been included in this section to show readers how the process of
analysis is applicable in both cases.

In this study there were one factor of interest (project type) and two alternatives
(faithful project and unfaithful project). The authors consider a project to be
faithful if, following SEPG guidelines, at least 15% of the total efforts for design
and coding activities are assigned to reviews (document review and code review).

The response variables considered for this study ρreview/total (ratio of faults detected
in the review of the design phase) and ρtest/total (ratio of faults detected in the debug
& test phase) have already been discussed in Chapter 4, Table 4.6. Table 7.8
outlines the results of this study across a total of 23 projects.

Table 7.8. Ratio of detected faults ρ

 Faithful projects Unfaithful projects
ρreview/total 78.4% 38.8%
ρtest/total 21.1% 60.7%

Applying the t-test at a confidence level of 95%, the authors confirmed a
significant difference between the means for the response variables ρreview/total and
ρtest/total for the faithful and the unfaithful projects, thus corroborating the assertion
under examination for this level of significance.

7.5.3 Analysis for Comparing Structured Flowcharts and Pseudocode

The t-test was also applied by Scanlan (1989). to find out if real differences in
comprehension exist between structured flowcharts and pseudocode. So, he
worked with one factor and two alternatives (flowcharts and pseudocode). For this
purpose, algorithms of low, medium and high complexity were represented in both
formats and shown to a group of students. The response variables considered
were: the number of seconds the subjects viewed the algorithms when trying to
answer a question, the percentage of questions answered correctly about the
algorithms, the confidence level for answers to questions about the algorithms, the
number of seconds the subjects viewed questions and spent answering questions
about the algorithms, and the number of times an algorithm was brought into view.

Some of the most significant results obtained from this experiment were as
follows:

• The subjects needed less time to comprehend structured flowcharts at all three
levels of complexity. Table 7.9 shows the average number of seconds
necessary to comprehend the algorithm for each kind of complexity.

168 Which is the better of two alternatives?

 Table 7.9. Number of seconds subjects looked at algorithm when
answering each question part

Complexity
level

Factor Mean s t0 Degrees of
freedom

Pr (t≥
t0)

Simple Flowcharts 7.83 5.09
 Pseudocode 13.44 7.75 6.47 81 0.000

Medium Flowcharts 6.19 3.02
 Pseudocode 11.71 6.5 9.43 81 0.000

Complex Flowcharts 6.33 2.37
 Pseudocode 15.8 10.98 8.45 81 0.000

• The subjects made fewer errors using structured flowcharts. The mean
percentages of correct answers derived from flowcharts versus those derived
from pseudocode, at all three levels of complexity, differed significantly in
favour of structured flowcharts, as shown in Table 7.10.

 Table 7.10. Percentage of correct answers to all question parts

Complexity
level

Factor Mean s t0 Degrees of
freedom

Pr (t≥t0)

Simple Flowcharts 97.97 8.5
 Pseudocode 93.80 10.9 2.77 81 0.0035

Medium Flowcharts 98.81 3.4
 Pseudocode 94.92 10.3 4.05 81 0.000

Complex Flowcharts 98.68 3.5
 Pseudocode 91.71 14.4 4.82 81 0.000

• The subjects had greater confidence using structured flowcharts. The mean
confidence levels for answers derived from flowcharts versus those derived
from pseudocode, at all three levels of complexity, differed significantly in
favour of structured flowcharts, as shown in Table 7.11 (the confidence level
was measured for each answer in a range from 1 to 4).

Basics of Software Engineering Experimentation 169

Table 7.11. Mean confidence level for each question part

 Factor Mean s t0 Degrees of
freedom

Pr (t≥
t0)

Simple Flowcharts 3.96 0.114
 Pseudocode 3.85 0.315 3.36 81 0.006

Medium Flowcharts 3.95 0.179
 Pseudocode 3.81 0.368 3.86 81 0.001

Complex Flowcharts 3.94 0.210
 Pseudocode 3.71 0.469 4.81 81 0.000

• The subjects needed less time to answer questions using structured flowcharts.
The mean number of seconds subjects spent answering each question part
when using flowcharts versus the time spent when using pseudocode, at all
three levels of complexity, differed significantly for medium to complex levels
only, as shown in Table 7.12.

Table 7.12. Number of seconds subjects took to answer questions

Complexity
level

Factor Mean s t0 Degrees of
freedom

Pr (t≥t0)

Simple Flowcharts 9.5 6.93
 Pseudocode 90.1 5.1 0.6 81 0.2755

Medium Flowcharts 6.83 3.2
 Pseudocode 7.47 3.67 1.94 81 0.0279

Complex Flowcharts 7.25 2.03
 Pseudocode 8.73 3.84 3.73 81 0.002

• The subject viewed the algorithm fewer times using structured flowcharts. The
mean number of times the subjects moved the test algorithm into the viewing
area per question for flowcharts versus for pseudocode, differed significantly
as shown in Table 7.13.

170 Which is the better of two alternatives?

 Table 7.13. Number of times the algorithm was viewed when answering
each question

Complexity
level

Factor Mean s t0 Degrees of
freedom

Pr (t≥t0)

Simple Flowcharts 1.30 0.275
 Pseudocode 1.41 0.344 3.25 81 0.0008

Medium Flowcharts 0.86 0.239
 Pseudocode 0.92 0.289 2.84 81 0.0030

Complex Flowcharts 0.72 0.229
 Pseudocode 0.82 0.296 4.55 81 0.000

7.5.4 Analysis for Comparing Object-Oriented and Structured Development

The t-test was also applied (Lewis, 1992) to show, by means of different
experiments and using the development paradigm (procedural represented by
Pascal and object oriented represented by C++) as a factor, differences in
productivity.

The authors used different measures of productivity as a response variable for
running this experiment. These are:

Runs: number of runs made during system development and test
RTE: number of runtime errors discovered during system development
and testing
Time: minutes to fix all run-time errors
Edits: number of edits performed during system development and testing
Syn: number of syntax errors made during system development and
testing

The authors describe the first three variables as main productivity measures and
the other two as secondary productivity measures.

The results of the analyses conducted by the authors to test some of the most
prominent assertions are given below. As mentioned above, the analysis was
conducted using the t-test, in this case with a confidence of 95%.

Table 7.14 shows the results of the analysis that lead to the following claim: (a).
“the object-oriented paradigm promotes higher productivity than the procedural
paradigm”.

Basics of Software Engineering Experimentation 171

Table 7.14. Analysis of claim (a)

 Means
Response variable Procedural Object oriented P(t>t0) Significant?
Runs 59.27 47.50 0.0066 Yes
RTE 65.00 50.20 0.0078 Yes
Time 354.41 261.70 0.0104 Yes
Edits 271.55 263.65 0.3469 No
Syn 183.67 202.40 0.8675 No

Table 7.15 shows the results of the analysis that led to the following claim: (b).
“there is no difference in productivity in the object-oriented paradigm and in the
structured paradigm when programmers do not reuse”.

Table 7.15. Analysis of the claim (b)

 Means
Response variable Procedural Object oriented P(t>t0) Significant?
Runs 75.38 83.17 0.8909 No
RTE 65.0081.25 87.17 0.7506 No
Time 446.38 385.00 0.1607 No
Edits 416.00 392.00 0.2360 No
Syn 311.00 290.33 0.1733 No

Table 7.16 shows the results of the analysis that led to the following claim: (c).
“the object-oriented paradigm promotes higher productivity than the procedural
paradigm when programmers reuse”.

Table 7.16. Analysis of the claim (c)

 Means
Response variable Procedural Object oriented P(t>t0) Significant?
Runs 50.07 32.21 0.0001 Yes
RTE 55.71 34.36 0.0005 Yes
Time 301.86 208.86 0.0153 Yes
Edits 189.00 208.64 0.8380 No
Syn 137.14 164.71 0.9767 No

Table 7.17 shows the results of the analysis that led to the following claim: (d).
“the object-oriented paradigm promotes higher productivity than the procedural
paradigm when programmers are moderately encouraged to reuse”.

Table 7.17. Analysis of claim (d)

172 Which is the better of two alternatives?

 Means
Response variable Procedural Object oriented P(t>t0) Significant?
Runs 45.13 27.75 0.0023 Yes
RTE 49.50 32.00 0.0178 Yes
Time 264.25 196.13 0.1179 No
Edits 192.13 189.50 0.4660 No
Syn 142.25 146.75 0.5688 No

7.5.5. Analysis for Examining the Efficiency of Group Interactions in the
Review Process

Land, Sauer and Jeffery (Land, 1997) also applied the t-test in some experiments
to analyse the performance advantage of interacting groups over average
individuals and artificial groups (jointly considering the results of some
individuals) in technical reviews. Of the hypotheses studied by the authors, we
might consider, for example:

H.1: Interacting groups report more true defects than the average individual
reviewer

H.2: Interacting groups report more net defects than the average individual
reviewer

H.3: Nominal groups report more true defects than interacting groups
H.4: Interacting groups report fewer false positive defects than nominal

groups

This experiment was performed with 101 graduate students, who were required to
inspect the same piece of compiled code, first as an individual, then followed by a
face-to-face group review. So the experimenters collected data from 101
individual defect forms and 33 group defect forms. The response variables for
consideration to validate the hypotheses were as follows:

• Number of true defects: defects in need of repair
• Number of false positives: these are non-true defects, that is, defects that

require no repair
• Net defect score: number of true defects – number of false positives.

In order to test the above hypotheses, the authors applied the t-test and the result
was that they were all considered true with a significance level of < 0.05. Thus,
the authors demonstrated the effectiveness of the interacting groups over
individuals in technical inspections, where the source of the performance
advantage of interacting groups was not in finding defects, but rather in
discriminating between true defects and false positives.

7.5.6. Analysis for Examining the Use of a Framework-Based Environment

Likewise, Basili, Lanubile and Shull (Basili, 1998) applied the t-test as part of an

Basics of Software Engineering Experimentation 173

experiment for studying the effectiveness of the maintenance process in an
environment in which there was a repository of potential sources of reuse. So, they
worked with one factor and two alternatives (adapting an existing application and
developing from scratch). One of the most important findings of this study was
that “for implementing a set of requirements in a framework-based environment, if
a suitable example application can be found, then adapting that application is a
more effective strategy than starting from scratch”. This hypothesis was tested
yielding the t-test (t0=1.538) giving a probability P(t> t0=0.15).

7.5.7. Analysis for Examining Meeting Performance in Inspections

We have also discussed the paired t-tests in this chapter. One example of analysis
of this kind is the experiment performed by Fusaro, Lanubile and Visaggio
(Fusaro, 1997) as part of a broader experiment related to the study of meeting
performance in inspections. The authors applied this analysis to compare the
meeting gain rates (the percentages of defects first identified at the meeting) and
the meeting loss rates (the percentage of defects first identified by an individual
but not included in the report from the meeting). The paired t-test failed to detect
significant differences between meeting gain rates and meeting loss rates. This
result led the authors to determine that the defect detection rate is not improved by
collection meetings.

7.5.8. Analysis for Comparing the Accuracy of an Analogy- against a
Regression-Based Estimate

Another experimental analysis that used the paired t-test was run by Myrtevil and
Stensrud (Myrtevil, 1999) in an experiment run to examine whether there is a
significant difference in the accuracy of the estimate made with the aid of an
analogy-based tool (first alternative) against the use of a tool based on a regression
model (second alternative). For this purpose, 68 subjects, who were experienced
personnel with acknowledged project manager skills and a minimum of 6 years of
relevant practice, were asked to estimate different projects with both methods. The
authors concluded that the application of the paired t-test with a confidence of
90% did not show any difference among the two techniques.

7.6. SUGGESTED EXERCISES

7.6.1. Table 7.18 shows the time taken to specify five similar algorithms using
two formal specification techniques. What evidence is there to suggest
that there is a difference in the time taken for each technique?

Table 7. 18. Data of a paired design

A B A B B A A B B A

174 Which is the better of two alternatives?

3 5

 8 12

11 4

 2 10

9 6

Solution: P(t=t0)=0.014

7.6.2. Taking into account the data of an experiment to calculate the time it
takes five programmers to modify a program using two different
languages (A and B):

A B B A B
3 5 5 1 8

Calculate the probability P(t=t0) of finding differences between the means
of A and B greater than yielded by the above data. Can the null
hypothesis stating that there is no difference between languages A and B
be rejected in respect of the time taken to modify programs?

Solution: P(t=t0)=0.04; Yes

7.6.3. Repeat the exercise with the following data:

B A B A A A B B
32 30 31 29 30 29 31 30

Solution: P(t=t0)=0.01; Yes

8 WHICH OF K ALTERNATIVES
IS THE BEST?

ANALYSIS FOR ONE-FACTOR DESIGNS
AND K ALTERNATIVES

8.1. INTRODUCTION

We are now going to address the comparison of k alternatives for any one factor.
The method of analysis examined in this chapter can also be applied for k=2 and is,
therefore, an alternative procedure to the one discussed in Chapter 7. Again we are
looking at one-factor experiments, in which the other parameters would either
remain unchanged or, as remarked upon in Chapter 2, have similar values. The
underlying philosophy and process is similar to the comparison of two means: the
question is whether there are real differences between the results obtained for the
different options or whether the differences observed are merely due to chance.
Again, a standard distribution that will output the level of significance of the
differences found will be used to answer this question. Once again randomisation is
essential if this standard distribution is to be used as a reference.

A series of steps can be identified that should be taken to analyse an experiment that
aims to determine which is the best of k alternatives. As we will see in the
following chapters, these steps are also applicable for analysing other classes of
experiment, including factorial or block experimental designs. These steps are as
follows.

1. Identify the mathematical model that relates the response variable and the factor.
This model will be used to conduct the analysis.

2. Validate the model to assure that the data collected meet the model
requirements. This is validated by examining the residuals or experimental
errors.

3. Calculate the factor- and error-induced variation in the response variable.
4. Calculate the statistical significance of the effect of the factor.
5. Establish consequences or recommendations on the alternative that provides the

best response variable values.

Let’s start with an example that will be a guide for the remainder of the chapter.
Table 8.1 shows the results measured in terms of number of errors for 24 similar
projects using four different programming languages: A, B, C and D. The use of
language A was replicated four times, B and C six times and D eight times. The
numbers in brackets in this table specify the project in which the language was
used. The languages were assigned by means of the card technique to assure
randomisation.

176 Which of k alternatives is the best?

Table 8.1. Number of errors in 24 similar projects

 Language Alternative
 A B C D
 62(20)

60(2)

63(11)

59(10)

63(12)

67(9)

71(15)

64(14)

65(4)

66(8)

68(16)

66(7)

71(1)

67(17)

68(13)

68(21)

56(23)

62(3)

60(6)

61(18)

63(22)

64(19)

63(5)

59(24)

Mean per alternative
Grand mean

61
64

66 68 61

Let’s consider the following question “is there enough evidence to suggest that
there are real differences among the mean values of the different alternatives
(programming languages)?” So, the null hypothesis to be tested is H0: the means of
alternatives µA, µB, µC and µD are all the same. The alternative hypothesis H1 is that
these means are different. Thus, we have an experiment in which we are
considering one factor, the programming language, with four alternatives (A, B, C
and D) and the response variable is the number of errors detected.

The above-mentioned steps will be applied to complete the analysis of this example
as we examine the theory in the following sections (sections 8.2. to 8.6). Finally,
section 8.7 analyses some real SE experiments using the described method.

8.2. IDENTIFICATION OF THE MATHEMATICAL MODEL

Experimental data are analysed using models that relate the response variable and
the factor under consideration. The use of these models involves making a series of
assumptions about the data that need to be validated rather than blindly trusting in
the result of the analysis. Therefore, after identifying the mathematical model
associated with the respective analysis, we need to check that the experimental data
with which we are working comply with the assumptions required by the model
(this test is examined in section 8.3).

The model that describes the relationship between the response variable and the
factor in a one-factor experimental designs is:

 yij = µ + α j + eij

Basics of Software Engineering Experimentation 177

where yij is the value of the response variable in the i-th observation with the factor
valued j (that is, the j-th alternative), µ is the mean response, αj is the effect of the
alternative j, and eij is the error. The effect of an alternative of one factor is the
change provoked by this alternative in the response variable. The reasoning for
calculating such effects is as follows.

Each observation in Table 8.1 fits this expression:

 yij = µ + α j + eij

If we sum all these equations, we have:

yij = Nµ + rjα j + eij
j =1

a

∑
i=1

rj

∑
j=1

a

∑
j =1

a

∑
i=1

rj

∑

where N is the total number of observations, rj is the number of observations (or
replications) for the j-th alternative, and a is the number of alternatives of the factor.

One of the hypotheses called for by the model is that the sum of the effects is 0 and
that the sum of the errors is 0. Accordingly, the above equation is:

 00Ny
a

1j
ij

r

1i

j

++=∑∑
==

µ

So, the mean of the observations is:

 ∑∑
==

=
a

1j
ij

r

1i

y
j

µ

which is called the grand mean ..y

This mean is different from the mean of each alternative (each column of Table 8.1)
denoted by .jy :

 ∑
=

=
jr

1i
ij

j
j y

r
1.y

178 Which of k alternatives is the best?

If we replace yij by µ +α j + eij , we have:

y. j =

1
rj

µ + α j + eij()
i=1

r j

∑ =
1
rj

rj µ+ r j α j + eij
i=1

r

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ = µ + α j

This equation tells us how to calculate the effect of every alternative (j) on the
response variable:

 .jjj .y-.y-.y == µα

The bottom row in Table 8.2 shows the effect of each alternative on the response
variable. The grand mean is 64 and is obtained by dividing the grand sum (1414) by
24, which is the number of observations.

Remember that, in this experiment, the factor is the programming language and the
response variable is the number of errors, thus these effects can be interpreted as
follows: the use of language A leads to an average of 3 errors less than the mean,
whereas the use of language C, for example, leads to 4 more errors on average.

Before trusting in these results, we have to check that these differences in the
response variable are really due to the programming language and not to
experimental errors, such as, for example, the fact that other variables have not been
considered.

Table 8.2. Effects of the different programming language
alternatives

 Language Alternative
 A B C D
 62(20)

60(2)

63(11)

59(10)

63(12)

67(9)

71(15)

64(14)

65(4)

66(8)

68(16)

66(7)

71(1)

67(17)

68(13)

68(21)

56(23)

62(3)

60(6)

61(18)

63(22)

64(19)

63(5)

59(24)

Mean per alternative
Grand mean
Effect per alternative

61
64
-3

66

2

68

4

61

-3

Basics of Software Engineering Experimentation 179

8.3. VALIDATION OF THE BASIC MODEL THAT RELATES THE
EXPERIMENTAL VARIABLES

Before making any further calculations, it is important to check that the data that are
being used in the experiment comply with the requirements for the use of the model
in question. Indeed, the model used is applicable if the data are random samples of
normal populations of the same variance, albeit having different or equal means
depending on the results of the experiment. According to this assumption errors eij
must be distributed identically and independently with a normal distribution of
mean zero and constant, albeit unknown variance. This assumption is termed NIID
(Normal and Independent with Identical Distributions), in particular, NIID(0, σ2).

Accordingly, if the hypothesis on the errors were correct, all the pertinent
information would be supplied by the means of the k alternatives. If we could be
sure that this hypothesis is right, we could assure that no more pertinent information
remains in the original data after the means of the alternatives have been calculated,
and we could, therefore, disregard the original data and focus all our attention on
the interpretation of these means.

In practice, it would be unwise to trust in these hypotheses without running further
checks, as the data may contain valuable information not picked up by the
mathematical model and, therefore, not considered when checking the statistical
significance of the difference between means.

Suppose that, in the example examined above, programmer experience in the four
languages differs and experience has an influence on the number of errors. This
variable (programmer experience in the language) is not specifically accounted for
by the model as another factor of experimentation. However, the random
assignment of languages to projects (and, therefore, to programmers) would assure
that the errors arising from this systematic trend appeared randomly in the treatment
groups. In other words, a particular language is not always assigned to programmers
with a particular level of experience, which would indeed influence the results for
the language concerned. Random assignment could validate the significance tests
we examined earlier. However, the additional variation produced by programmer
experience will reduce test sensitivity. This means that the differences in the
number of errors will not be caused only by the language employed but also by
programmer experience. Hence, as the latter variable is not considered in the
conclusions drawn about the observations, the variability of such observations will
be less sensitive to (will be less affected by) the programming language.
Nevertheless, the graphic representation of the residuals (difference between the
mean of one alternative and the grand mean) over time (the more projects
programmers work on, the more experience they gather) or according to
programmers would reveal the existence of such a trend. This is important, because:

180 Which of k alternatives is the best?

− it reveals a previously unconsidered source of variation, which can be examined
in future experiments.

− it can lead, in this experimentation, to a more accurate analysis of the
differences in the number of errors in which the experience trend is taken into
account and not arbitrarily mixed up with the error term.

The tests to be performed on the data are based on the examination of the residuals
or errors. These errors or residuals can be defined as , that is, the difference
between the measured and estimated value of the response variable. These residuals
are the quantities remaining after removing the systematic contributions of the
proposed model (in this case, the contributions of the means of the alternatives, that
is, of the programming language). Discrepancies of many classes can be described
by examining residuals. If the hypotheses related to the model are true, we expect to
find that the residuals vary at random. If we discover that the residuals contain
inexplicable systematic trends, the model will be suspect, and we should reflect on
the causes of the variations.

yij − ˆ y ij

Therefore, one indispensable requirement prior to undertaking any statistical
analysis is to study the residuals. As we discussed above, we can compute this error
by calculating the difference between each measured value and the estimated value
that we ought to obtain.

The estimated value of the response variable in our model can be calculated by:
jj µ α+=ŷ , that is, the mean of each column. This mean is shown in Table 8.3.

Table 8.3. Estimated values of ijŷ

Language Alternative

A B C D
61
61
61
61

66
66
66
66
66
66

68
68
68
68
68
68

61
61
61
61
61
61
61
61

If we calculate the difference between each response variable value in Table 8.1 and
the means of each column of Table 8.3, we get the values of the residuals shown in
Table 8.4.

Basics of Software Engineering Experimentation 181

Table 8.4. Residuals associated with each
observation

Language Alternative

 A B C D
Residuals 1

-1
2

-2

-3
1
5

-2
-1
0

0
-2
3

-1
0
0

-5
1

-1
0
2
3
2

-2

The following tests have to be run on the residuals we have obtained.

8.3.1. Testing for the Normal Distribution of Residuals

First, a general inspection must be carried out by plotting the residuals on a point
graph, as shown in Figure 8.1.

-6
.

-4 -2 0 2 4

.. .
6

..

Figure. 8.1. Point graph for all residuals

If the hypothesis concerning error normality is true, this graph will generally have
the appearance of a normal distribution centred at zero (shaped as shown in Figure
8.1, for example). If there are very few observations, significant fluctuations will
appear, which means that the appearance of non-normality is not necessarily
indicative of an underlying cause in this case. When very strong abnormalities
appear, however, we have to look for the possible causes.

The kind of discrepancy most commonly revealed by these graphs occurs when one
or more of the residuals have a much bigger or much smaller value than the others.
The most likely explanation for this value is usually an error of transcription or an
arithmetic error. So, all the original data of the observations must be thoroughly
examined. If no error of this sort appears, all the circumstances surrounding the

182 Which of k alternatives is the best?

experiment that outputs such an apparently discrepant result have to be taken into
consideration and investigated. The discrepant observation can be rejected if this is
justified by the circumstances of the experiment. If no such justification is found,
the possibility of the atypical observation having unexpected consequences worth
following up must be investigated.

The graph shown in Figure 8.1 gives no indication of this sort of abnormalities in
the residuals of the numbers of software errors. Therefore, the experimental data do
not violate the hypothesis on error normality and the model used would be valid so
far.

There is another equivalent graph that can be plotted to test error normality, which
represents the residuals on normal probability paper. We will look at graphs of this
sort in later chapters.

8.3.2. Testing for Error Independence

If the mathematical model is suitable and, therefore, the errors are independent and
identically distributed, the residuals must not be related to the values of any
variable. Indeed, they must not be related to the value of the actual response. This
point can be investigated by plotting the residuals as a function of the
estimated values as shown in Figure 8.2 for the data of the experiment
described in the example, that is, residuals as a function of the estimated value for
software error.

yij − ˆ y ij
ijŷ

For the errors to be independent, there should be no obvious pattern in the graph
resulting from Figure 8.2, as is the case. Consider the graph shown in Figure 8.3,
for example. It shows that the errors have a curvilinear pattern. This type of graph
leads us to suspect that the residuals are not independent and that, hence, the model
constraints cannot be met.

8.3.3. Testing for Constant Error Variance

Variance sometimes increases as the response value rises. For example, if the
experimental error of the number of software errors was not a constant percentage,
the absolute values of the residuals would tend to grow as the value of the
observations increased and the graph would be funnel shaped. This would indicate
that the variance of the errors is not constant and, therefore, does not meet the
requirements needed to make an analysis with the model in question. No such
behaviour is observed in Figure 8.2, therefore, there is no question about the
variance not being constant.

Basics of Software Engineering Experimentation 183

.

.....0 .
-4

-2

60

2

4

6

...
-6

64 68..
.

.
.
.....

Yij − Ŷij

Ŷ
ij.

.

Figure 8.2. Residuals plotted as a function of estimated response variable values

... ..
.

... Ŷij

Yij− Ŷij

Figure 8.3. Residuals graph with pattern

Note how it differs from Figure 8.4, however, which depicts a clear tendency
towards an increase in the variance of the residuals as the response variables rise,
thus indicating that the variance of the residuals is not constant.

184 Which of k alternatives is the best?

Apart from these three tests, other complementary checks can be run depending on
each alternative and on time. Let’s look at a selection.

..

.
.

0

.

.
.
..

Yij − Ŷij

Ŷij

Figure 8.4. Funnel-shaped graph of residuals versus estimated values

8.3.4. Abnormalities Associated with Each Alternative

The residuals of any one alternative can be found to behave abnormally. The
residual graphs are plotted for each alternative to discover possible trends of this
sort. Figure 8.5 shows the graphs for the software errors example.

This sort of graphs can be useful, for example, for detecting excessive variations in
the number of errors due to an individual programming language. This behaviour
would be detected if the absolute values for errors in one language graph are much
bigger than in the other graphs. In this case, the graphs do not suggest that the
software errors associated with any of the programming languages behaves at all
anomalously.

Basics of Software Engineering Experimentation 185

-6

Language A .
-4 -2 0 2 4 6

.. .

-6
.

-4 -2 0 2 4
.

6
. . . .Language B

-6 -4 -2 0 2 4 6
..Language C

-6
.

-4 -2 0 2 4 6
.Language D

Figure 8.5. Residuals graph for each language

8.3.5. Graph of Residuals as a Function of Time

Graphs of this sort are useful for detecting situations, such as the experience of the
individuals running the experiments sometimes increasing as the experiment
progresses. Note that this test detects what was referred to in section 5.10 as the
learning effect. Trends of this sort can be discovered by plotting a graph of residuals
as a function of time, as shown in Figure 8.6. There does not appear to be any basis
for suspecting an effect of this type for the software errors data. If this effect were
to occur, the figure would show how the residuals approach zero as time passes;
that is, the values of the observations (the number of errors made in this case)
resemble each other more closely over time.

In our example, the tests run indicate that the model requirements are met.
Therefore, we can proceed with the data analysis according to the established
model. If any of the above tests raised suspicions as to the experimental data
breaching any model constraint, we could apply the data transformations discussed
later and would have to resort to the non-parametric methods of analysis described
in Chapter 14.

186 Which of k alternatives is the best?

.0

-4

-2

4

2

4

6

. .

-6

...
.

Yij − ˆ Y ij

.
8 12 16 20 24

time

.
.

.
.

Figure 8.6. Graph of residuals as a function of time

8.4. CALCULATING THE FACTOR- AND ERROR-INDUCED
VARIATION IN THE RESPONSE VARIABLE

Once the model has been validated, we can confidently proceed with the remainder
of the analysis. Remember that our objective is to test whether the different
alternatives under consideration provoke a significant change in the value of the
response variable, in which case some of the alternatives could be considered better
than the others with regard to response variable improvement. The total variation of
the response variable has to be calculated as an intermediate step towards achieving
this objective. This variation can be attributed to two sources: the factor and the
errors. To perform our analysis, therefore, we first need to calculate what variation
in the response variable is due to the factor alternatives under study compared with
the variation provoked by the error. A high variation provoked by the factor could
be indicative of a good experiment, whereas the opposite could lead us to discard
the experiment in question, as we are usually more interested in studying the factors
that have a bigger impact on the response variable. The calculation of this variation
is used to determine the importance of a factor. This means that a factor is all the
more important, the greater the variation it explains, and, therefore, the more weight
it has on the response variable value or, in other words, the more influence it has on
the response variable. Having calculated the variation provoked by the factor, we
would have to proceed to examine the statistical significance of this variation, that
is, whether, from a mathematical and formal viewpoint, the variation is due to the
effect of the different alternatives or is simply due to chance. It is important to bear
in mind that, as mentioned in Chapter 3, the final result of the analysis will be

Basics of Software Engineering Experimentation 187

output by calculating the statistical significance, by means of which we can also
determine whether or not the null hypothesis can be rejected. This section deals
with the intermediate step of calculating the variation in the response variable and
studying how much of this variation is provoked by the factor, while the next
section addresses the determination of the statistical significance of the above
variation.

The reasoning used to calculate the variation in the response variable is as follows.

Firstly, we square both sides of the model equation examined in section 8.2:

 yij
2

= µ
2

+ α j
2

+ eij
2

+ 2 µα j + 2 µeij + 2α je ij

If we sum the terms for the N equations of which the model is composed, we get:

products cross of termsey

ij
ij

2

ij ij

22

ij
ij

2 +++= ∑∑ ∑∑ αµ

The cross product terms all sum zero, because of the constraints on the effects
summing zero (∑αj = 0) and the errors of each column summing zero (∑eij = 0). The
above equation can be expressed in terms of sums of squares:

 SSY = SS0 + SSA + SSE

where SSY is the sum of squares of the response variable (y), SS0 is the sum of
squares of the grand mean, SSA is the sum of squares of the effects and SSE is the
sum of squares of the errors. Note that SS0 and SSA can be easily calculated as
follows:

SS0 = µ2

j =1

a

∑
i=1

r

∑ = N µ2

SSA= α j
2

j =1

a

∑
i=1

r

∑ = rjαj
2

j =1

a

∑

The total variation of y (SST) is defined as:

SST = yij∑(∑ - y.. 2

= SSY-SS0=SSA+SSE)

Therefore, the total variation can be divided into two parts, SSA and SSE, which

188 Which of k alternatives is the best?

represent the parts of the total variation explained (due to the factor) and not
explained (due to error). If a high percentage of the variation were explained, this
would indicate a good experiment.

Returning to the example of the programming languages comparison:

 SSY = 622 + 602 + ... + 592 = 98664

 SS0 = Nµ2 = 24 × (64)2 = 98304

 SSA = 4(-3)2 + 6(2)2 + ... + 8 (-3)2 = 228

 SSE =∑
ji

ije
,

2 = 12 + (-1)2 + ... + (-2)2 = 112

 SST = 228 + 112 = 340

The percentage variation explained by the programming languages is (228/340) x
100 = 67, that is, 67%. The remaining 33% of the variation in the number of errors
is due to experimental errors and is referred to as unexplained variation. In this
example, we can see that, although the unexplained variation is high (33%), the
explained variation doubles the unexplained variation and is very close to 70%.
Hence, it is interesting to examine this factor further, as, if the above variation is
significant, we can select the best programming language and we will be less likely
to make mistakes. Moreover, the higher the explained variation, the more likely the
response variable is to improve if the best alternative is selected. If the unexplained
variation were similar to, or greater than, the explained variation, then we could call
the experiment into question and redesign it to try to find other variables not
considered in this experiment that explains a greater proportion of the response
variable. Note that experimental error means an error in the statement of the
experimentation not in data collection. A high error rate would tell us that we have
not taken into account important factors for the experiment in question and,
therefore, should reflect on the possible causes of the experimental errors; they
could be due to the differences between the different programmers used, to the
diversity of problems dealt with, or other causes.

The following point in the analysis is to determine whether or not the contribution
of the different programming languages is statistically significant, that is, whether or
not this factor is significant. This is dealt with in the following section.

8.5. CALCULATING THE STATISTICAL SIGNIFICANCE OF THE

Basics of Software Engineering Experimentation 189

FACTOR-INDUCED VARIATION

In the preceding section we used an approach to calculate the factor-induced
variation in the response, which is very useful in practice. This approach considers
any factor that explains a high percentage of variation to be important. Importance
must be distinguished from significance, which is a statistical term. The importance
of a factor indicates how much of the observed variation in the response variable is
due to the factor in question, whereas the significance of a factor indicates whether
or not the change caused in the response variable due to the factor alternatives is
statistically significant. Thus, the determination of the statistical significance of the
variation caused by a factor and, therefore, the effect of the factor will help us to
answer the question of whether there are real differences between the mean values
of the response variable with each alternative. If the effect of the factor is
statistically significant, then the response to the question will be yes, and there will
be an alternative that improves the value of the response variable. If the effect of the
factor is not statistically significant, the response would be no.

Therefore, in order to determine whether or not the above variation is statistically
significant, that is, as discussed in Chapter 3, to find out whether there is really a
cause-effect relationship between the factor (factor alternatives) and the response
variable from an statistical and formal viewpoint, then the analysis has to continue
and the techniques of statistical significance examined in the following need to be
applied.

Looking back to Chapter 7, when dealing with two alternatives of one factor, the
study of statistical significance of the effect of the above factor was based on the
difference between the means of the response variable with each alternative. In this
case, as this procedure deals with several alternatives, it would involve comparing
the means of all the alternatives of the factor in question pairwise. A simpler
procedure is to study whether the discrepancy between the means of the alternatives
is greater than the discrepancy that could be expected within the alternatives (this is
due to experimental error and will be yielded by replications). From the statistical
viewpoint, the calculation of the above discrepancies means getting an estimate of
the variance of the means of the different factor alternatives and an estimate of the
variance of the error. As discussed in Chapter 6, two variances can be compared by
analysing the ratio between them, which is then compared against a reference
distribution (the F distribution to be exact). This will tell us whether or not the ratio
obtained is significant. If the ratio is statistically significant, then the variation
between the alternatives is greater than within the alternatives and, therefore, the
variation observed in the response variable is due to the fact that certain alternatives
of the factor cause improvements in the response variable. This would also indicate
that we can reject the null hypothesis (that there is no difference between the means
of the different alternatives). If, on the other hand, the ratio is not statistically
significant then the variation observed can be put down to chance or to another

190 Which of k alternatives is the best?

variable not considered in the experiment and, therefore, the null hypothesis would
be sustainable and no difference whatsoever could be determined among the
alternatives.

Note that a factor can be highly important (that is, can explain a large fraction of the
variation), whereas the above variation is not necessarily statistically significant,
and it cannot be said that any of its possible alternatives are better than another. For
example, suppose a factor varies 15 units and this value accounts for 90% of the
total variation in the response variable; however, these 15 units cannot amount to a
significant difference so none of the alternatives of the factor would lead to a
substantial improvement. Similarly, even if a factor does not explain a very large
proportion of the response variable, the above variation can be statistically
significant, that is, the above variation is really due to the effect of the different
alternatives on the factor. This means that one of the alternatives is really better than
others. However, as the factor is not very important, the effect observed in the
response variable will be very small (the improvement would be negligible, as the
factor has little impact on the response variable). Ideally, the experiment will be
better if the factors under analysis explain a high proportion of the response variable
(that is, they are important) and the above variation is statistically significant (that
is, one or more alternatives really do improve the response variable).

The statistical procedure for analysing the significance of one or several factors is
termed analysis of variance. When the analysis of variance is applied for only one
factor, it is also called one-way analysis of variance.

To gain an understanding of the analysis of variance, consider the sums of squares
(SSY, SS0, SSA and SSE). Each sum of squares has an associated degree of
freedom. In this case, the number of degrees of freedom1 matches the number of
independent values required to calculate the sum of squares. Thus, the degrees of
freedom for the sums of squares are:

 SSY = SS0 + SSA + SSE

 N = 1 + (k-1) + (N-k)

The sum SSY consists of a sum of N terms, where all the terms can be chosen
independently. Therefore, this SSY has N degrees of freedom. The sum SS0
consists of a single term µ2, which is repeated N times. SS0 can be calculated as
soon as a value has been chosen for µ. Thus, SS0 has one degree of freedom. The
sum SSA contains a sum of k terms α j

2(), that is, the different alternatives studied,

but only k-1 of these terms are independent, as αj must sum zero. Therefore, SSA
has k-1 degrees of freedom. The sum SSE consists of N error terms, of which only
k(rj-1) can be chosen independently. This is because the rj errors for the rj

Basics of Software Engineering Experimentation 191

replications of each experiment must sum zero. This is the same as saying that only
N-k errors are independent. Note that the sum of the degrees of freedom on each
side of the above equation is the same. This verifies that the degrees of freedom
have been correctly assigned.

What has this got to do with the procedure discussed above for testing the statistical
significance of the variation caused by the factor under consideration, which,
remember, involved comparing the estimate of the variance between the means of
the alternatives with the estimate of the variance within the alternatives? Well,
simply that the quotient SSA/νA (where νA=k-1) represents the estimate of the first
variation, whereas the quotient SSE/νB (where νB=N-k) represents the estimate of
the second variation. Why?

SSA represents the variation caused in the response variable by the different factor
alternatives. If there were no real differences between the means of the alternatives,
we could get an estimate of the variation of the means of the alternatives in respect
of the grand mean. Indeed, this estimate is obtained by means of the quotient
between SSA (calculated, as explained, on the basis of the effects of the alternatives
or, alternatively, the difference between the mean per alternative and the grand
mean) and the degrees of freedom between the alternatives νA. This quotient is also
termed mean square of A (MSA) or mean square between alternatives.

On the other hand, SSE represents the variation caused within all the alternatives
(calculated, as explained above, on the basis of the square of the difference between
the values of the response variable with each alternative and the grand mean). The
grouped estimate of the variance within the alternatives or the variance of the error
is calculated by means of the ratio SSE/νB, also termed mean square of error (MSE)
or mean square within alternatives.

According to the null hypothesis that there are no differences between the means of
the alternatives, we have got two estimates of variance: MSA and MSE. Evidently,
if the means of the alternatives really do vary from alternative to alternative, the
estimate of this variation MSA will tend to increase in respect of MSE. The
relationship between the two estimates can be objectively examined on the basis of
the fact that the ratio (SSA/νA)(SSE/νB) has an F distribution with νA degrees of
freedom in the numerator and νB in the denominator (remember that, as explained in
Chapter 6, the F distribution is used to study differences between variance, which is
what we are concerned with here). If the ratio calculated is greater than the quantile
F

1−α ;V A ,VB[] taken from the F quantile table (see Annex III, Tables III.5, III.6 and III.7),
SSA is considered to be significantly greater than SSE and, therefore, the factor is
understood to explain a significant fraction of the variation. Therefore, the above
variation provoked by the factor will be due to the differing effect of the alternatives
of the above factor. The null hypothesis that the means of the alternatives are equal

192 Which of k alternatives is the best?

can thus be rejected.

Table 8.5 shows a tabular format that is very convenient for organising and running
the analysis of variance tests. This table includes all the calculations required to
apply this significance test.

Taking up the programming languages example again, the analysis of variance for
this example is shown in Table 8.6. If the null hypothesis were true in this case, the
MSA/MSE ratio would follow an F distribution with 3 and 20 degrees of freedom.
Consulting Tables III.5, III.6 and III.7 in Annex III, we will see that the significance
points of the F distribution with 3 and 20 degrees of freedom greater than 10%, 5%
and 1% are 3.10, 4.94 and 8.10, respectively. These values are less than the
calculated F, which is 13.6. So, taking these data, the null hypothesis must be
rejected, and it is better to believe that there are differences between the alternative
means, that is, among the languages. Hence, we calculated that the factor
programming language in the above section was important for the number of
software errors (that is, that the above factor had a sizeable weight in determining
the number of errors, as the explained variation was high). We have now reached
the conclusion that the above variation is really significant, that is, there really are
significant differences between some factor alternatives and others and that one or
more of these especially improves the response variable.

Basics of Software Engineering Experimentation 193

Table 8.5. Analysis of variance table for one-factor experiments

COMPONENT SUM OF
SQUARES

PERCENTAGE
VARIATION

DEGREES OF
FREEDOM

MEAN
SQUARE

F CALCULATION F TABLE

Y

Y • •

Y − Y • •

A

e

SSY= Yij
2∑

2µNSSO =

SST = SSY− SSO

∑= 2
ijrSSA α

SSE = SST − SSA

100

100
SSA
SST

⎛
⎝

⎞
⎠

100
SSE
SST

⎛
⎝

⎞
⎠

N

1

N-1

k-1

N-k

MSA=
SSA
k − 1

)(kN
SSEMSE

−
=

MSA
MSE

[]),(1;1 kNaF −−−α

194 Which of k alternatives is the best?

Table 8.6. Results of the analysis of variance

COMPONENT SUM OF
SQUARES

PERCENTAGE
VARIATION

DEGREES OF
FREEDOM

MEAN
SQUARE

F CALCULATION F TABLE

Y

Y..

Y-Y..

A

Errors

98644

98304

340

228

112

100.00

67

33

23

3

20

22.9

1.6

13.6

3.10

4.94

8.10

Basics of Software Engineering Experimentation 195

In the following, we will examine how to draw conclusions from the analysis that
indicate which alternatives of the studied factor improves the response variable
value.

8.6. RECOMMENDATIONS OR CONCLUSIONS OF THE ANALYSIS

We have seen that the data reject the hypothesis that the mean number of software
errors was the same for all the programming languages. But, how much difference
is there? Is any bigger than the other? Are the four different from each other? The
procedures for making these comparisons are known as methods of multiple
comparison. There are several techniques, including Duncan’s multiple intervals
test (Duncan, 1955), the Scheffé test (Scheffé, 1959) or the procedure of paired
comparison published by Tukey (Tukey, 1949). In this case, we are going to centre
on an easy graphic device which is commonly used to compare the means of k
alternatives and which can be of use for answering the above questions.

If the differences between the means of the response variable k21 y,...,y,y are due
to chance and, therefore, the k alternatives has the same mean µ, then they match
with k observations of the same shared quasi normal distribution with a scaling
factor:

n
σ

where σ is the standard deviation of the population and n is the number of
replications for each alternative, supposing that this number is the same for each
alternative. The scaling factor is used, as we will see below, to determine the
amplitude of the curve that represents the t distribution on the abscissa. Suppose we
can build this distribution. The k observations must fit into any distribution we plot
as random samples. For this example, σ is unknown and the number of replications
of each alternative is not the same. More or less approximately, although useful in
this example in which the number of replications is fairly similar, we will replace
the normal distribution by a t distribution with a scaling factor:

MSE

n = 5, 6
6 = 0, 97

where

n =
na∑

k
= 6

196 Which of k alternatives is the best?

is the mean number of replications of the four alternatives. We will refer to this
distribution, shown in Figure 8.7, as an approximate reference distribution by
means jy .

Let’s see how to plot the reference t distribution using Table III.3 given in Annex
III. The ordinates of the distribution are entered in this table as a function of the
different values of t and degrees of freedom ν. (For the procedure to be valid, there
must be no fewer than 10 degrees of freedom). For our example, ν = 20 and the
scaling factor

n
MSE is 0.97. Using ν = 20 to search Table III.3, we get:

Value of t 0 0.5 1.0 1.5 2 2.5 3.0
Ordinate of t 0.394 0.346 0.236 0.129 0.058 0.023 0.008
t × 0.97 0 0.48 0.97 1.45 1.93 2.42 2.90

In order to plot the reference distribution, we first choose a random source ρ in the
proximity of the means for comparison (ρ = 67.05 was taken in this case). We then
plot and draw a continuous line through the ordinates of the points ρ, ρ ± 0.48, ρ ±
0.97, etc.

Now consider the sample means against the approximate reference distribution
shown in Figure 8.7. Imagine that the reference distribution can slide along the X-
axis. This means that we can analyse different hypotheses. Note that we cannot
place the reference distribution at any point where it encompasses the four means
and, hence, be able to say that they are typically random observations of these
means (µA, µB, µC and µD). This result is the graphic equivalent of what we
demonstrated formally with the F-test (that the observations for the four alternatives
do not come from the same distribution or, in other words, there actually is a
difference between the means). Additionally, however, the reference distribution
clearly indicates that µB and µC are probably greater than µA and µD, which means
that the languages A and D are the source of fewer errors than B and C. Note that
owing to the type of response variable addressed in this example, the number of
software errors, the best alternative will be the one that outputs the lowest response
variable values.

60

C
A
D B

mean of the alternatives

.
61 62 63 64 65 66 67 68 69 70

. . .

Figure 8.7. Sample means in relation to the reference t distribution

Basics of Software Engineering Experimentation 197

Figure 8.8 shows examples of other graphs. In Figure 8.8(a), for example, even if
the reference distribution covers the points of the two means, it would be
unreasonable for them to come from the same population (therefore, the variations
between the two are the fruit of the alternatives and not of chance). In Figure 8.6(b),
however, 16 means are compared and have been plotted, such that the maximum
and minimum means coincide with those of the preceding figure. Note, however,
that there is now no reason to think that these two means do not come from the
same population (the differences between the means are due to chance not to the
differences caused by the 16 treatments). The sixteen means considered as a full
sample are of the sort that can be expected to all come from the specified reference
distribution.

.

-3.0 -2.0 -1.0 ..0 1.0 2.0 3.0..
a) Two discordant means in relation to their reference distribution

4.0

-3.0 -2.0 -1.0 ..0 1.0 2.0 3.0..
b) Sixteen means whose ends are shown in Figure 6.7a

4.0
.

Figure 8.8. Reference distribution

The reference distribution is a picture of the data obtained from experiments, which
not only shows the likelihood of the null hypothesis generally, but is also an aid for
the researcher to form and evaluate other hypotheses. This means that it provides an
easily understandable summary of the main conclusions of an experiment.

Going back to Figure 8.7, intuitively we can see that there is not a big difference

198 Which of k alternatives is the best?

between µB and µC or between µA and µD. If this were true, it could mean that
languages B and C, on the one hand, and A and D, on the other, have similar error
ratios. This claim can be tested formally by calculating the confidence interval for
the difference between the means of two alternatives (let’s say the p-th and the q-th
alternative, for example, B and C in our example). As we saw in Chapter 6, the
variance of the difference between two means qp yy − is , where
σ is the standard deviation of the population, and n

)1/n(1/n qp
2 +σ

p and nq are the number of
replications with each alternative (in terms of sample variables, these would be the
sample size with each alternative). As we saw in Chapter 6, is estimated as s2σ 2,
where s is the standard sample distribution. Thus, the estimated variance of qp yy −

is and a confidence interval for this unique difference is given by)1/n(1/ns qp
2 +

)(1/n)(1/nstyy qp2,qp +±− /v α

where are degrees of freedom associated with sRvv = 2. This interval defines a set
of values including the difference between means for a given level of significance α
. For example, if α is 0.9, the above interval will show the values between which
the mean is to be found 90% of the time. If the value 0 appears in the above
interval, thus indicating that the value of the difference of means could be 0, then
we can state that there would be no significant difference between the means of the
alternatives. If, on the other hand, the value 0 does not appear within the above
interval, then we will be able to say that there is a difference between the means of
the alternatives at the specified level of significance.

In our example, let’s analyse the difference BC yy − =68-66=2, with s2
R=5.6 (that

is, the value of MSE), and ν=20 degrees of freedom, nC=6 and nB=6. The estimated
variance for BC yy − is 5.6(1/6+1/6)=1.87, according to the formula discussed
above. Thus, the 95% confidence limits for the difference of means is 2±2.08 87.1 ,
that is 2±2.85, where 2.08 is the value of t for 20 degrees of freedom, which is
exceeded positively and negatively a total of 5% of the time (Table III.3 in Annex
III). As this interval includes the value 0, we have 95% confidence that there is no
appreciable difference between these two languages with regard to the number of
errors.

This same procedure could be applied to the means of A and C or A and B to
confirm that there is a significant difference among the above languages. This
process is left as an exercise for the reader.

Basics of Software Engineering Experimentation 199

8.7. ANALYSIS OF ONE FACTOR WITH K ALTERNATIVES IN REAL SE
EXPERIMENTS

8.7.1. Analysis for Comparing Object-Oriented and Structured Development

Briand et al. (Briand, 1997a) applied the one-way analysis of variance method for
the purpose of testing some intuitive ideas about object-oriented and structured
development held by developers. The hypotheses to be tested include:

H.1. “Good OO design is easier to understand and modify than bad OO design”
H.2. “Bad structured design is easier to understand that bad OO design”
H.3. “Good OO design is easier to understand and modify than good structured
design”

In this case, the alternatives to be considered are good OO design and bad OO
design for H.1.; bad structured design and bad OO design for H.2.; and good OO
design and good structured design for H.3. The response variables used in this
experiment were discussed in section 4.4.3, Table 4.6 Remember that Que_%:
percentage of correct questions answered by subjects about their understanding of
the design; Mod_%: percentage of places to be changed during the impact analysis
of a change that were correctly found; and Mod_Rate: modification rate dividing
the number of correct places found by the total time taken.

Tables 8.6, 8.7 and 8.8 show the results of this analysis. As we can see in this case,
the one-way analysis of variance was applied for two alternatives and is, as we said
in section 8.1, an alternative procedure to the one described in Chapter 7.

Table 8.7 gets significant results for Que_% and Mod_Rate. Thus, the authors
consider that there is sufficient evidence to accept H.1, confirming the intuitive idea
that a good OO design would be more easily understood than a bad OO design.
Although the Mod_% is not significant, its effect was also in the direction of
supporting the hypothesis.

Table 8.7. Results for good versus bad OO

Response Variable Effect Degrees of
Freedom

F-Computed F-Table (α=0.1)

Que_% 1.487 12 6.67 3.23
Mod_% 0.61 12 1.16 3.23
Mod_Rate 1.48 12 7.34 3.23

Table 8.8 presents the results for hypothesis H.2. A significant result is achieved for
Que_%, indicating that subjects had a better understanding of the ‘bad’ structured
design documents than of the ‘bad’ object-oriented design documents. Mod_% has
a slight anomaly, as its value points go in the opposite direction to the stated
hypothesis. However, the difference between the means is almost negligible.

200 Which of k alternatives is the best?

Consequently, it seems there is little or no visible effect for modifiability.

Table 8.8. Results for bad structured versus bad OO

Response Variable Effect Degrees of
Freedom

F-Computed F-Table (α=0.1)

Que_% 1.22 12 4.59 3.23
Mod_% * 12 0.01 3.23
Mod_Rate 0.22 12 0.15 3.23

Finally, Table 8.9 shows the result for the third hypothesis. As you can see, this
hypothesis cannot be confirmed, as there is no significant difference in the response
variables. This result is particularly interesting, as it reveals that, in the context of
this experiment at least, the belief that OO provides better results than the structured
paradigm cannot be sustained by empirical data.

Table 8.9. Results for good structured versus good OO

Response Variable Effect Degrees of
Freedom

F-Calculated F-Table (α=0.1)

Que_% 0.7 12 1.46 3.23
Mod_% 0.54 11 0.02 3.29
Mod_Rate 0.84 11 2.10 3.29

8.7.2. Analysis for Comparing the Utility of a Reuse Model in a Particular
Development Environment

Another application of the one-way analysis of variance was performed by Browne,
Lee and Warth in (Browne, 1990), where the authors experimentally investigate the
effect of a particular programming environment on productivity and software
quality, with and without a reusability help module. The experiment was conducted
by 43 graduate students and undergraduate seniors in computer science. With
regard to productivity, the response variable used was the development time
employed to develop three applications. We do not have the individual data of the
analysis, but the authors applied the analysis of variance for each application and
discovered significant differences in development time at a level α = 0.01 and
determined that the use of the programming environment with the reuse module
provides a significant time saving. With regard to the quality of the software
generated, the authors considered the number of errors detected in the final
programs and found, after applying the analysis of variance, that the difference was
significant for two of the applications at 0.1 and for the others at 0.05. Hence, the
statistical analysis suggests that the use of the environment with the reuse module
reduces the error rate, although this is nowhere near as clear as regarding
development time. As stated by the above authors, these studies are an essential first
step in the systematic evaluation of the programming environment with the reuse
component.

Basics of Software Engineering Experimentation 201

8.7.3. Analysis for Comparing the Use of a Predefined Versus a Self-Defined
Development Process

Tortorella and Visaggio (Tortorella, 1999) also applied this sort of analysis of
variance to study the effect of the use of a predefined development process as
opposed to leaving the developer to apply a self-defined process. The response
variables of this experiment are described in Table 4.6 in section 4.4.3. This
analysis revealed no difference with regard to the size of the software system under
development. However, it did reveal a difference with regard to the number of
defects detected in the process execution, indicating that the degree of defectiveness
during the execution of the self-defined process is less than during the pre-defined
process. Indeed, at a level α = 0.10, the activities included in the process that were
not executed were more in the pre-defined process, the deliverables expected and
not produced were more in the pre-defined process. Consequently, the activities that
were executed incorrectly due to the absence of all the input and all the output were
more numerous in the pre-defined process. Interested readers are referred to the
paper for the tables from this analysis.

8.8. SUGGESTED EXERCISES

8.8.1. Table 8.10 shows the number of lines of code used by 15 programmers to
implement a particular algorithm with three programming languages. At a
level of significance 90%, is the difference in the number of lines of code
due to significant differences between the languages or to experimental
error?

Table 8.10. Lines of code used with three programming languages

R V Z
144
120
176
288
144

101
144
211
288
72

130
180
141
374
302

Solution: The difference is due
to experimental error

 (F-computed=0.7, F-table= 2.8)

8.8.2. Repeat the above analysis considering that after measurement, it is
discovered that three of the observations had not been done correctly and
their data should not be used in the analysis. Of the three incorrect

202 Which of k alternatives is the best?

observations, suppose one is the last observation for language V and two
are the last observations for language Z.

Solution: The difference is due
to experimental error

 (F-computed =0.26, F-table= 3.1)

8.8.3. Suppose that the coded response variables of an experiment to compare the
productivity of five development tools are as shown in Table 8.11 and
significant differences have been detected. What we want to find out is
which tool(s) provide(s) greater productivity. Which is it?

Table 8.11. Productivity (coded) of 5 development tools

Percentage of Observations Totals
cotton 1 2 3 4 5

15
20
25
30
35

-8
-3
-1
4

-8

-8
2
3

10
-5

0
-3
3
7

-4

-4
3
4
4
0

-6
3
4
8

-4

-26
2

13
33

-21

Solution: Tool D

8.8.4. Do the data in Table 8.11 satisfy the assumptions of the analysis of
variance?

Solution: Yes

NOTES

1 Note that both the degrees of freedom of a statistic and the number of available observations of a
population less the number of parameters of the above population that were unknown and had to be
calculated from the observations were defined in Chapter 6. Although this definition differs from the one
given here, note that the concept is the same "extent of freedom for ascertaining any value" (the value
referred to in Chapter 6 is the value of the statistic and here it is the value of the sum of squares).

9 EXPERIMENTS WITH
UNDESIRED VARIATIONS:
ANALYSIS FOR BLOCK DESIGNS

9.1. INTRODUCTION

As specified in Chapter 5, there is an experimental design for dealing with variables
whose effect on the response variable we are not interested in. Designs of this sort
are known as block designs, and the variables whose effect is to be eliminated are
known as blocking variables. This chapter discusses the process for analysing data
collected from experiments designed thus. Firstly, we will address the case where
there is one variable that is not of interest (section 9.2) and then go on to review the
analysis process when there are several blocking variables (section 9.3, 9.4 and
9.5). A somewhat special analysis has to be conducted when any of the response
variables that should have been gathered are missing. We look at how to do this
analysis in section 9.6. Finally, in section, 9.7, we will examine the case where the
block size is smaller than the number of factor alternatives, which we referred to as
incomplete block designs in Chapter 5.

9.2. ANALYSIS FOR DESIGNS WITH A SINGLE BLOCKING VARIABLE

One of the most characteristic blocking variables in SE experiments is the team of
developers who are to work on the software projects or activities that constitute the
experimental unit, that is, what we called experimental subjects in Chapter 4.
Therefore, we are going to consider an experiment taking this blocking variable in
order to show how to analyse the data yielded by designs with one blocking
variable.

Suppose then that we are going to work with the four programming languages
mentioned in Chapter 8, for which we intend, in this case, to determine the
efficiency of detecting errors of syntax by means of a reading process. Thus, we are
going to consider the ratio between the number of errors detected and the time spent
on reading as the response variable for this experiment.

Note that we are working with one factor (programming language) and four
alternatives (languages A, B, C and D). The systems to be developed with these
four languages are going to be implemented by four different programmers. In this
case, we have the feeling that the programmer variable will have an influence on the
response variable because the programmers have different backgrounds. (Note that
this point was not taken into account in Chapter 8, as all the programmers were
similar and any undesired effects could be ruled out through randomisation. Now,

204 Experiments with undesired variations

however, randomisation would not suffice because the subjects are evidently
different.) Nonetheless, all we intend to account for is the effect of the
programming language, and we do not aim to examine the variable programmer.
Hence, we have to use a block design, as described in Chapter 5. We have four
blocks, each one with four similar programs, and each block has been randomised
by assigning each language to a program at random. Table 9.1 shows the data
measured during this experimentation.

Table 9.1. Data taken for the example of a design with one blocking
variable

Block Factor Alternatives
(Programmer) A B C D
I 9.3 9.4 9.2 9.7
II 9.4 9.3 9.4 9.6
III 9.6 9.8 9.5 10.0
IV 10.0 9.9 9.7 10.2

The steps to be taken to perform the analysis of these data are the same as we
discussed in Chapter 8 for the analysis of one factor with k alternatives. Let’s recall
these steps:

1. Identify the mathematical model according to which the analysis is to be
conducted.

2. Validate the model by examining the residuals or experimental errors.
3. Calculate the factor- and error-induced variation in the response variable.
4. Calculate the statistical significance of the factor-induced variation.
5. Establish recommendations on the optimal values of the factor.

As in the preceding chapter, the following sections discuss how these steps should
be taken with the aid of an example.

9.2.1. Identification of the Mathematical Model

The observations in Table 9.1 can be described by means of a linear model

 yij = µ + β i + αj + eij

This means that an observation yij can be represented as the sum of the mean µ, the
blocking variable effect βi, the alternative effect αj and the error eij. Note that this
model does not account for the possible interaction between blocks and alternatives.
If any such interaction were to exist (which can be determined after validating the
model), the block design would not be the ideal design for analysing this
experiment, and the best suited approach would be a factorial design (this class of
design is studied in Chapter 10).

Basics of Software Engineering Experimentation 205

Summing all the equations output by the above model, we could get the following
decomposition:

1. ..)y.y-.y- (y..)y-.y().y-.y(..y y j iij jj iij ++++=

where ..y represents the mean value of all the observations (what we called the
grand mean in Chapter 8) and is represented in the model by µ; .yi represents the
mean of the observations for each blocking variable and j.y represents the mean
value of the observations for each alternative. Thus ..)y-.y(i represents the effect
of the i-th block and ..)y-.y(j represents the effect of the j-th alternative.

It follows from the model that the last term ..y.y-.y-y j iij + represents the
residual or error, as it represents what remains after having taken into account
differences in the mean, the block and alternatives.

For the purposes of simplifying the calculations, we are going to code the original
data by subtracting 9.5 from each observation and then multiplying the result by 10
(to rule out decimals). Table 9.2 represents the effects of the blocks and alternatives
for the language example. It follows from the above decomposition that the effect of
block I is ..)y-.y(1 = (-1)-1.25=-2.25. The other blocks would be obtained
similarly, whereas the effect of alternative A is obtained from the expression

..)y-.y(A =0.75-1.25 =-0.5. The effect of the other alternatives is calculated
similarly.

Table 9.2. Effects of blocks and alternatives for our example

Block Factor Alternatives
(programmer) A B C D Block mean Block effect
I -2 -1 -3 2 -1 -2.25
II -1 -2 -1 1 -0.75 -2
III 1 3 0 5 2.25 1
IV 5 4 2 7 4.5 3.25
Alternative mean 0.75 1 -0.5 3.75 1.25
Alternative effect -0.5 -0.25 -1.75 2.5

9.2.2. Model Validation

The validation of this model involves examining several assumptions, such as there

206 Experiments with undesired variations

must be no interaction between the factor and the blocking variable; the error
distribution must be normal and the error variance in the blocks or alternatives must
be equal.

It is essential to examine whether there are interactions between the factor and the
blocking variable in a block design. Before continuing with model validation, let’s
pause for a moment to reflect on these interactions.

The model associated with this analysis is an additive model. This means, for
example, that if alternative A causes the estimated response to increase by 2 units (
α1 = 2) and if the first block raises the estimated response by 2 units (β1 = 2), then
the estimated increase in the response of both alternative A and block I together is
4, plus the error. For this case and on the basis of the model, alternative A can
generally be said to always increase the estimated response by 2 units above the
sum of the grand mean and the block effect.

Despite the fact that this additive model is often useful, there are times when it is
unsuitable. Suppose, for example, that we are comparing four estimation techniques
using six problem domains, and the domains are considered as blocks. If the
characteristics of one particular domain adversely affect some of the estimation
techniques, resulting in extraordinarily low accuracy, whereas they do not affect the
other techniques, then we say that an interaction has taken place among the
techniques (or alternatives) and domains (or blocks). Similarly, an interaction
among the alternatives and blocks can occur when the response is measured on an
incorrect scale. Thus, a ratio that is multiplicative on the original scale, let’s say,

 yij = µβ i αi

is linear or additive on a logarithmic scale. For example,

 log(yij)= logµ + logβ i + logαi

thus converting the multiplicative model into an additive model. This model would
be analysed like any other additive model. After analysis, we would have to
calculate the antilogarithm of the effects obtained to calculate the multiplicative
effects.

Interactions could be divided into two categories: a) transformable interactions,
which can be eliminated by analysing the logarithm, the square root or the inverse
of the original data, for example, and b) non-transformable interactions, such as the
estimation technique-domain interaction discussed above, which could not be
eliminated in this manner. The analysis of residuals and other diagnostic procedures
are useful for detecting situations where interactions of this sort occur.

Basics of Software Engineering Experimentation 207

The analysis of variance for blocking designs can be seriously affected and even
invalidated, if there is an interaction. As a general rule, an interaction tends to
increase the mean square error and negatively affect the comparison of the means of
the alternatives. Factorial design should be used when both factors and their
possible interaction are of interest. Analyses for these designs are presented in
Chapter 10.

We are now going to proceed with the analysis of residuals to test the hypotheses on
which the model is based. In a randomised block design, the residuals are:

 ijijij ŷye −= , or alternatively, ..y.y-.y-ye j iijij +=

The observations, estimated values and residuals for the coded data of the
programming language are shown in Table 9.3. Thus, for example,

5.125.175.01y
1.

y
.1

y
11

ŷ −=−+−=−+=

and, therefore, e11=-2 + 1.5 = 0.5. The errors for each observation were calculated
similarly.

Table 9.3. Experiment residuals for our
example

ijy ijŷ ijijij ŷye −=
-2.00
-1.00
1.00
5.00

-1.00
-2.00
3.00
4.00

-3.00
-1.00
0.00
2.00
2.00
1.00
5.00
7.00

-1.50
-1.25
1.75
4.00

-1.25
-1.00
2.00
4.25

-2.75
-2.50
0.50
2.75
1.50
1.75
4.75
7.00

-0.50
0.25
-0.75
1.00
0.25
-1.00
1.00
-0.25
-0.25
1.50
-0.50
-0.75
0.50
-0.75
0.25
0.00

9.2.2.1. Testing for the Absence of Interactions

The shape of the graph of residuals plotted against the estimated values is

208 Experiments with undesired variations

sometimes curved. For example, there may be a trend towards the negative residuals
occurring for low values of the estimated value, positive residuals occurring for
intermediate values of the estimated value and negative values occurring for the
high values of the estimated value. Behaviour of this sort suggests an interaction
between the factor alternatives and blocks. If this pattern occurs, some sort of
transformation must be used to try to eliminate or minimise the interaction.

Figure 9.1 illustrates the graph of residuals plotted against estimated values for our
example. No pattern of this sort is observed, that is, there is no relationship
whatsoever between the size of the residuals and the adjusted values , which
means any interactions are, in principle, ruled out, and, therefore, our additive
model could be valid.

ijŷ

-4

eij

-2 0 2 4 6 8

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

.

.
..
. .
. .. .

.
..

. .
.

Ŷij

Figure 9.1. Distribution of residuals against estimated values for our example

As far as non-transformable additivity is concerned, this can be easily detected
informally if the values of the response variable for one of the factor alternatives
with a given blocking variable differ a lot from the values of the other response
variables. Remember that, as mentioned at the beginning of Chapter 6, it is
important to also run informal analyses of the data beforehand to detect any trends
that could be of assistance in performing the mathematical and formal analysis.
Further tests for detecting additivity are given in section 10.3.1.2.4. Turkey
(Turkey, 1949) proposed another statistical test for detecting additivity; interested
readers are referred to this source for details.

9.2.2.2. Testing for Residual Normality

Basics of Software Engineering Experimentation 209

As we discussed in Chapter 8, residual normality could be examined by plotting a
bar chart of residuals. This also applies in this case. So, we are going to take
advantage of this to study another alternative method. Indeed, when this bar chart is
not very representative (see the reasons specified in Chapter 8), a more effective
method is to plot the residuals on normal probability paper. If the points in this
graph are not reasonably close to a straight line, we have grounds to question the
normality of the residuals. Figure 9.2 shows the normal probability graph and a bar
chart of these residuals for our example. A graph of this sort is the representation of
the accumulated distribution of the residuals on normal probability paper. This is
paper for graphs whose ordinates scale is such that the normal accumulated
distribution is a straight line (this type of paper can be obtained from specialised
statistics books and many analysis of variance computer programs are capable of
preparing normal probability graphs). This graph is plotted by lining up the 16
residuals in ascending order along the X-axis. In this example, the lowest residual is
–1.00 and the greatest is 1.50. We can then consult Table III.2 in Annex III that sets
out scales of accumulated probability for several values (15, 16, 31, 32, 63 and 64)
to get the point of accumulated probability. In this case, as we have 16 residuals, we
select 16 as the respective ordinate value and we plot the ordinate values taken from
Table III.2 for each residual on the graph shown in Figure 9.2. Thus, we would start
with the value for the first residual –1.00; according to Table III.2, the first ordinate
value is 3. Hence, this would be the ordinate that we plot on graph 9.2 for this
residual value. The following ordinate value in Table III.2 would be a value close to
9. Hence, this would be the ordinate value of the next residual -0.75. We can plot
the normal accumulated probability values (ordinates in Table III.2) similarly for
the other residuals of our example. As shown in Figure 9.2, all the residuals are
close to a straight line, which means there is no strong indication of non-normality,
nor is there evidence to suggest any unusual residuals. This means that there is no
reason to doubt that the assumption of normality of the residuals for this problem.

9.2.2.3. Testing for the Independence of Errors

Figure 9.1 represents the residuals against the estimated values. As specified in
Chapter 8, there must be no relationship between the size of the residuals and the
estimated values in these graphs. No pattern appears in Figure 9.1, which means
that this graph reveals nothing unusual of interest and, therefore, we can assume
that the errors in the experimental data yielded are independent, as called for by the
model used.

9.2.2.4. Testing for the Constant Variance of Errors

Figure 9.3 shows graphs of the residuals by programming language (alternative)
and by domain (block). These graphs are potentially very informative. If the
residuals for one language in particular are more dispersed, this could indicate that
more errors could be detected by means of this language than by others. In this case,

210 Experiments with undesired variations

a greater dispersion in the residuals for a language in particular could indicate that a
standard number of errors is not obtained from the above language.

.

-1.00 0.00 1.00 2.00

.
...
.

...

.

.

.

.

..

.

.
99

98

96

90

80

70

60

50

40

30

20

10

5

2

1

.2

.1

.01

...

.

. ..

99

98

96

90

80

70

60

50

40

30

20

10

5

2

1

.2

.1

.01

%%

Figure 9.2. Graph of normal probability of residuals for our example

For our example, however, Figure 9.1 gives no indication of inequality of variance
by alternative or by block, neither is there any indication of inequality in Figure 9.2
with regard to the errors and expected values of the response variable. Therefore,
the tests run have not detected any problems that could lead us to question the
hypotheses on which the model is based. Thus, we can go ahead with the analysis.
Remember that if we had detected a problem in this step, we would have to resort:

Basics of Software Engineering Experimentation 211

..
.
A

2.0 .. .
.

(a) eij / alternative

.
B C

..
..
.
D

1.0

0.0

Programming language

-1.0

-2.0

.
..
I

2.0 .
.
. .
.

(b) eij / block

.
II III

.

.
.
.

IV

1.0

0.0

Domain

-1.0

-2.0

.
.

..

.

.

Figure 9.3. Graph of residuals by alternative and block for our example

• to the analysis of a factorial design, if we detected non-transformable
interactions

• to the examination of possible model transformations, if the interaction is
transformable

• to the use of non-parametric methods, if the assumption of normality fails.

Transformations have not usually been used in SE experiments, which means that it
is not going to be considered in this book. Interested readers are referred to classic
experimental design books, like (Box, 1978) or (Winer, 1962).

9.2.3. Factor-, Block- and Error-Induced Variation in the Response Variable

The variation in the response variable is calculated by means of the sum of squares
SST, defined in a similar manner as in Chapter 8. Indeed for this model:

212 Experiments with undesired variations

 SST= SSB+SSA+SSE = SSY-SS0,

where SSB is the sum of squares of the block effects, SSA is the sum of squares of
the factor (that is, its alternatives) effects and SSE is the sum of squares of the error;
SSY is the sum of squares of the response variable and SS0 is the sum of squares of
the mean.

2
ji.ij

2

2

2

..)y.yy(ySSE

aSSB

bSSA
abSS0

+−−=

=

=

=

∑
∑

j

i

β

α

µ

In this expression, a is the number of factor alternatives and b is the number of
blocks. Applying these formulas to our example, we get:

SSA = 38.50, SSB = 82.50, SSE = 8, SST = 129

As explained in Chapter 8, the variation caused in the response variable by a factor
shows how important this factor is in relation to the changes produced in the
response variable. Thus, in this case, we find that the factor accounts for 29.8%
(38.5 x 100/129) of the variation in the response variable, whereas the block
accounts for 63.9%. Remember that in this sort of analysis for designs with
blocking variables, we are actually concerned with the variation caused by the
factor and not by the blocks, as these are of no interest to our experiment. However,
if the blocks account for a high variation in the response variable, we have done
well to approach the design and analysis of this experiment using the blocking
technique, as our aim is to analyse the experiment omitting the variation caused by
the above blocks and focusing on the variation produced by the factor.

Remember that, as we discussed in Chapter 8, we have to resort to the analysis of
variance, as shown in the following section, in order to examine whether or not the
variation produced by the factor is significant. If the variation provoked by the
factor is significant, this means that some of the alternatives of the factor will
produce improvements in the response variable. If the variation is not significant,
then all we can say is that the variation provoked by the factor was due to chance
and not to any of the factor alternatives behaving significantly differently. Also
remember that the ideal experiment will be one whose factor explains a high
percentage of variation that turns out to be statistically significant.

9.2.4. Calculation of the Statistical Significance of the Factor-Induced

Basics of Software Engineering Experimentation 213

[]1)1)(b(a1);(b;1 −−−−α

It may also be of interest to compare the means of the blocks, because if they are
not separated by a big difference, a block design may not be necessary in future
experiments. When analysing the expected values of the mean squares, one might
think that the hypothesis that the effects of the blocks is equal to zero can be tested
by comparing the statistic MSB/MSE with F . However, it is

important to bear in mind that the randomisation was applied only to the alternatives
within the blocks. In other words, there is no guarantee of the blocks being
randomised. What effect does this have on the MSB/MSE statistic? There are
different answers to this question. For example, Box, Hunter and Hunter (Box,
1978) argue that the F test of the analysis of variance can be justified on the basis of
randomisation alone without the need to use the assumption of normality. They
conclude that this argument does not apply to the test for comparing blocks as a
result of the randomisation constraint. However, if the errors are normally
distributed with mean zero and constant variance, the MSB/MSE statistic can be
used to compare the block means. On the other hand, Anderson and McLean
(Anderson, 1974) argue that the randomisation constraint means that this statistic is
useless for comparing the means of the blocks, and that the F statistic is actually a
test of the equality of the means of the blocks, plus the randomisation constraint.

Statistical significance is obtained by applying the analysis of variance table shown
in Table 9.4. Note that this table is distinguished from the one included in Chapter
8, as the block effect is considered here and was not in the preceding chapter.
However, the underlying philosophy is the same as discussed in the preceding
chapter for comparing means of several alternatives, that is, comparing the variation
between the alternatives and within the alternatives (after having eliminated any
variation caused by the blocking variable from this unknown variation, as discussed
above). The results of the analysis of variance for our example are shown in Table
9.5. If α = 0.05, the critical value of F is 3.86. As 14.44 > 3.86, the inference is that
the programming language has a significant effect on the reading-based
identification of errors of syntax.

What should we do in practice then? As there is often a question mark over the
assumption of normality, it is not generally a good idea to take MSB/MSE as an
accurate F test. Therefore, this test is excluded from the table of analysis of
variance. However, the examination of the MSB/MSE ratio can certainly be an
approximate procedure for investigating the effect of the blocking variable. If the
value of the above ratio is high, the blocking factor has a big effect and the
reduction of the noise obtained by block analysis was probably useful, as it would
have improved the accuracy of the comparison of the means of the factors.

Variation

Component Sum of Squares Degrees of
Freedom

Mean Square F-
Computed

F-Table

Y
 ∑= 2

ijySSY ab

..Y 2abSS0 µ= 1

..YY − SS0SSYSST −= ab-1
A ∑= 2bSSA iα a-1

1a
SSAMSA
−

= MSE
MSA [])11)(b(a1);(a;1F −−−−α

B ∑= 2aSSB jβ b-1

1b
SSBMSB
−

=

e ∑= 2
ijeSSE (a-1)(b-1)

 1)1)(b(a
SSEMSE

−−
=

214 Experiments with undesired variations

Table 9.4. Analysis of variance by one factor and one block variable

Experiments with undesired variations 215

Table 9.5. Results of the analysis of variance for our example

Component Sum of
Squares

Degrees
of

Freedom

Mean
Square

F-
Computed

F-Table

Y 16
..Y 1

..YY − 129 16-1
A 38.5 4-1 12.83 14.44 3.86
B 82.5 4-1 27.5
e 8 (4-1)(4-1) 0.89

In our example, then, there also seems to be a significant difference between
programmers (blocks) because the mean square of the blocks is relatively large
compared with the mean square error. Therefore, we did well to use a block design
to eliminate the programmer bias and thus better be able to examine the effect of the
programming languages on the response variable. Additionally, this significant
difference between programmers suggests that, if covered by the goals of our
investigation, it is advisable to continue with experiments that account for
programmer experience as a factor, that is, examine this variable.

The results that we would have obtained if we had not opted for a randomised block
design are worth mentioning. Let’s suppose that we had used four programmers,
that the languages had been assigned randomly to each programmer and that we had
accidentally obtained the same design as shown in Table 9.1. The incorrect analysis
of these data using the one-factor design appears in Table 9.6. As F0.05,3,12 = 3.49,
the null hypothesis of equality in the number of errors detected/time unit ratio for
the four languages cannot be rejected, which leads us, mistakenly, to conclude that
the effect of the programming languages on the number of errors detected is
insignificant. Therefore, by selecting a design suited to the goals and circumstances
of the inquiry (the randomised block design), the amount of noise has been
sufficiently reduced and we can detect differences among the four languages.

 Table 9.6. Incorrect analysis by means of a one-factor randomised design

Component Sum of
Squares

Degrees
of

Freedom

Mean
Square

F-
Computed

F-Table

Y 16
..Y 1

..YY − 129 15
A 38.5 3 12.83 1.7 3.49
e 90 12 7.54

9.2.5. Recommendations on the Optimal Alternative of the Factor

216 Experiments with undesired variations

Whenever the analysis indicates a significant difference among the means of factor
alternatives, the experimenter will usually be interested in carrying out multiple
comparisons to determine which is the best alternative, that is, the alternative that
produces the best value for the response variable.

Figure 9.5 illustrates multiple comparisons in the complete randomised block
design, where the means of the four programming languages of our example are
plotted against a t distribution scaled with a scaling factor MSE/b . This graph
was represented according to the same procedure as discussed in Chapter 8. The
graph specifies that languages A, B and C probably produce identical mean
measurements of the response variable (ratio of the number of errors detected and
reading time), whereas language D produces a much higher error ratio. This means
that the practical recommendation from this experiment is based on the fact that
more errors can be detected per time unit by language D than by the other languages
under comparison. A subsequent analysis should lead experimenters to look for an
explanation for this deduction, analysing the programming structures used in the
languages in question, for example. This sort of analyses could be run by means of
qualitative investigations, as mentioned in Chapter 1.

Mean of errors

.
-1

C

0 1 2 3 4
. ..A B D

Figure 9.5. Significant language in a t distribution with the scaling factor 0.47

9.3. ANALYSIS FOR DESIGNS WITH TWO BLOCKING VARIABLES

As we saw in Chapter 5, the Latin square design is used to eliminate two
problematic sources of variability. This means that it provides a systematic two-way
blocking analysis. In this design, the rows and columns actually represent two
constraints on randomisation. Generally, a Latin square for p factors, or a pxp Latin
square, is a square that contains p rows and p columns. Each p2 cell contains one of
the p letters for a treatment, and each letter appears only once in each row and
column. See Annex II for some examples of Latin squares.

The process of analysis for examining the data extracted from these experimental
designs is similar to the one we discussed in section 9.2. We, therefore, have to
identify the mathematical model, validate the model, calculate the variation in the
response variable, calculate the statistical significance of the factor-induced

Basics of Software Engineering Experimentation 217

variation and establish recommendations, now considering the effect of two blocks
instead of just one.

The statistical model for analysing a Latin square design can be expressed as:

 yijk = µ + αi + βi + τk + eijk

where yijk is the observation for the i-th row, the j-th column and the k-th
alternative; µ is the grand mean, αi is the i-th effect of the row (effect of block i of
the variable that forms blocks by rows), βj is the j-th effect of the column (effect of
block j of the variable that forms blocks by columns), τk is the k-th effect of the
alternative (effect of the alternative k of the factor) and eijk is the random error. The
model is completely additive, that is, there is no interaction between the rows,
columns and alternatives. Only two of the three subindexes i, j and k are required to
specify one observation in particular, because there is only one observation in each
cell. This is because each alternative appears exactly once in each row and in each
column.

We are going to analyse this design by applying it to a variation on the experiment
described in section 9.2. The aim of this new experiment is to measure the effect of
five programming languages (A, B, C, D and E) on the number of errors of syntax
detected per unit of time by means of program reading. For this purpose, we are
going to consider the five programmers who are to perform the inspection and the
five program types to be inspected as blocking variables, because, although they
have similar characteristics, a cautious experimenter may wish to eliminate the
possible impact of program types. The design of this experiment is a 5x5 Latin
square.

Table 9.7 shows the coded observations for this experiment as well as the effects of
the rows (blocking variable program) and columns (blocking variable
programmers)1.

Table 9.7. Coded data for 5x5 Latin square of our example

 Programmers
Program 1 2 3 4 5 Row

mean
Row
effect

1 A=-1 B=-5 C=-6 D=-1 E=-1 -2.8 -3.2
2 B=-8 C=-1 D=5 E=2 A=11 1.8 1.4
3 C=-7 D=13 E=1 A=2 B=-4 1 0.6
4 D=1 E=6 A=1 B=-2 C=-34.5 0.6 0.2
5 E=-3 A=5 B=-5 C=4 D=6 1.4 1
Column mean -3.6 3.6 -0.8 1 1.8
Column effect -4 3.2 -1.2 0.6 1.4 0.4

The effects of the alternatives are presented below:

218 Experiments with undesired variations

Alternative Alternative mean Alternative effect
A y ..1 = 3.6 3.2
B y ..2 = -4.8 -5.2
C y ..3 = -2.6 -3
D y ..4 = 4.8 4.4
E y ..5 = 1 0.6

As with any design problem, the experimenter should have investigated model
suitability by inspecting and plotting the residuals. In a Latin square, the residuals
are:

 kijijkijk ŷye −= or, alternatively,i..yye jijkijk yyy k +−−−=

As for the single-block model, experimenters must assure that there are no
interactions between factors and blocks and check for error normality and
independence and constant error variance. The graph of residual distribution against
estimated values of the response variable, the graph of normal probability and the
graphs of residuals by alternatives and blocks must be plotted for this purpose, as
we did in section 9.2.2. These graphs are left as an exercise for readers who will
find when they plot these graphs that they show no sign of tending to reject the
assumptions, which means that we can trust in the result of the analysis of variance.

We then proceed with the analysis of variance by calculating the variation in the
response variable. As we already know, this is yielded by calculating the sum of
squares SST, which is obtained in this case as follows:

 SST = SSRows+SSColumns+SSAlternatives + SSE

128)..(SSE

330pSS

150pSS

68pSS

2
j

2
esAlternativ

2
Columns

2
Rows

... ..i..yyijk ==

==

==

==

+−−−

∑
∑
∑

yyy k

j

i

kτ

β

α

where p is the size of the Latin square, 5 for our example.

We can then move on to the analysis of variance in a similar way as we did with one
block variable. Table 9.8 summarises the result of the analysis of variance. From
this table we can infer that there is a significant difference in the number of errors
detected due to the five programming languages. There is also an indication of a
difference among programmers. Therefore, the decision to control this variable was
a sound one. On the other hand, there is no strong evidence of any difference among
programs and, apparently, there was unnecessary concern in this experiment about
this source of variability. However, it is never wrong to take precautions. Having

Basics of Software Engineering Experimentation 219

detected significant differences in the programming languages, we could proceed to
determine which is the best language as far as number of detected errors is
concerned. For this purpose, we could apply the multiple comparison technique as
we did when studying one factor with a blocking variable in section 9.2.5.

 Table 9.8. Results of the experiment with Latin squares in our example

Component Sum of
Squares

Degrees
of

Freedom

Mean
Square

F-
Computed

F-Table

Y
...Y

...YY −
Languages

Programmers
Programs

Error

676
330
150
68

128

24
4
4
4

12

82.5
37.5
17

10.97

7.73

5.41

9.4. ANALYSIS FOR TWO BLOCKING VARIABLE DESIGNS AND
REPLICATION

One drawback of small Latin squares is that they provide relatively few degrees of
freedom for the error. For example, the error has only two degrees of freedom in a
3x3 Latin square, six for a 4x4 Latin square and so on. When a small Latin square is
used, it is often better to repeat it in order to increase the degrees of freedom of the
error.

This can be done in several ways. By way of an illustration, suppose that the 5x5
Latin square used in the example is repeated n times. This can be done in any of the
following ways:

1. Using the same alternatives for the programs and programmers in each
replication, that is, each programmer uses the same alternative (language) on
the same program in each replication. This option would not make much sense
in our particular example.

2. Using the same programs and different programmers in each replication (or,
alternatively, the same programmers and different programs). This means that
the same programs are tested by other programmers in each replication (or,
alternatively, the same programmers test different programs in each
replication).

3. Using different programs and programmers. This means that both the programs
and programmers are varied in each replication.

The process of analysis would be similar to the one explained when there is no
replication, although the form of calculating the sums of squares and, therefore, the

220 Experiments with undesired variations

tables of analysis of variance differs. We are going to focus on this part of the
analysis.

The analysis of variance to be used depends on the method used to make the
replications. Consider case (1), where the same alternatives are used for the
blocking analysis of the rows and columns in each replication. Let yijkl be the
observation for row i, column j, alternative k and replication l. There is a total of
N=np2 observations. The analysis of variance is summarised in Table 9.9.

Now, consider case (2), supposing that new programs are used with the same
operators in each replication. Therefore, there are five new rows (generally, p new
rows) in each replication. The analysis of variance is shown in Table 9.10. Note that
the source of variation for the rows actually measures the variability between the
rows within the n replications.

Finally, consider case (3) in which as many new programs are used as new
programmers in each replication. In this case, the variability produced by both the
rows and columns measure the variation of these factors within the replications. The
analysis of variance is shown in Table 9.11.

9.5. ANALYSIS FOR DESIGNS WITH MORE THAN TWO BLOCKING
VARIABLES

Consider a p×p Latin square combined with a second Latin square, whose
alternatives are designated by Greek letters. The two squares are said to be
orthogonal if, when combined, they have the property of each Greek letter appearing
only once with each Latin letter. As we saw in Chapter 5, this design is called
Greco-Latin square. Table 9.12 shows a 4×4 Greco-Latin square for three blocking
variables (I, II and III), each with four alternatives. The alternatives for I are I1, I2,
I3, I4; the alternatives for II are II1, II2, II3, II4 and the alternatives for III are A, B, C,
D. The alternatives of the factor would be α, β, γ, δ.

The Greco-Latin square design can be used to systematically control three unusual
sources of variability. In other words, it is used for three-way blocking analysis.
Four variables (row, column, Greek letter and Latin letter) can be analysed by p2
experiments. Greco Latin squares exist for every p ≥ 3, save if p=6.

221 Experiments with undesired variations

Table 9.9. Analysis of variance of a replicated Latin square, with replication type (1)

Source of
variation

Sum of squares Degrees of freedom Mean square F0

Columns y. j..
2

npj=1

p

∑ −
y....

2

N

p - 1

 1p

SSColumns

−

E

esAlternativ

MS

MS
F =0

Rows yi...
2

npi=1

p

∑ −
y....

2

N

p - 1

1p

SSRows

−

Alternatives y..k.
2

npk=1

p

∑ −
y....

2

N

p - 1

1p

SS esAlternativ

−

Replications y...l
2

p2
l=1

p

∑ −
y....

2

N

n - 1

 1p

SS nsReplicatio

−

Error Subtract

(p - 1)[n(p + 1) - 3]

3]1)1)[n(p(p

SSE

−+−

Total

yijkl

2∑∑∑∑ −
y....

2

N
np2 - 1

222 Experiments with undesired variations
Table 9.10. Analysis of variance of a replicated Latin square, with replication type(2)

Source of
variation

Sum of squares Degrees of freedom Mean square F0

Columns y. j..
2

npj=1

p

∑ −
y....

2

N

p - 1

 1p

SSColumns

−

E

esAlternativ

MS

MS
F =0

Rows yi..l
2

pi=1

p

∑ −
y...l

2

p 2
l =1

n

∑
l=1

n

∑

p - 1

1p

SSRows

−

Alternatives y..k.
2

npk=1

p

∑ −
y....

2

N

p - 1

1p

SS esAlternativ

−

Replications y...l
2

p2
l=1

p

∑ −
y....

2

N

n - 1

 1p

SS nsReplicatio

−

Error Subtract

(p - 1)(np -1)

1)1)(np(p

SSE

−−

Total
yijkl

2∑∑∑∑ −
y....

2

N
np2 - 1

Basics of Software Engineering Experimentation 223

Table 9.11. Analysis of variance of a replicated Latin square, with replication type (3).

Source of
variation

Sum of squares Degrees of freedom Mean squares F0

Columns y. j..
2

npj=1

p

∑ −
y....

2

N

p - 1

1p

SSColumns

−

E

esAlternativ

MS
MS

F =0

Rows

yi..l

2

pi=1

p

∑ −
y...l

2

p 2
l =1

n

∑
l=1

n

∑

n(p - 1)

1p

SSRows

−

Alternatives y...kl
2

pk=1

p

∑ −
y... l

2

p2
l =1

n

∑
l =1

n

∑

n(p - 1)

 1)n(p

SS esAlternativ

−

Replications y...l
2

p2
l=1

n

∑ −
y....

2

N

n - 1

1)n(p

SS nsReplicatio

−

Error Subtract

(p - 1)[n(p - 1) -1] SSE

(p− 1)[n(p −1) −1]

Total
yijkl

2

l
∑

k
∑

j
∑

i
∑ −

y....
2

N
 np2 - 1

224 Experiments with undesired variations

 Table 9.12. Greco-Latin square

 Blocking Variable I
 I1 I2 I3 I4
 II1 Aα Bβ Cγ Dδ
Blocking variable II II2 Bδ Aγ Dβ Cα
 II3 Cβ Dα Aδ Bγ
 II4 Dγ CδI Bα Aβ

The process of analysing the data collected from these experiments is similar to the
process followed in sections 9.2 and 9.3 for one and two blocking variables. In this
case, the statistical model for a Greco-Latin square block design is

 yijkl = µ + θi + τj + ωk + ψl + eijkl

where yijkl is the observation for the row i, column l, Latin letter j and Greek letter k;
θi is the effect of the i-th row; τj is the effect of the alternative j of the Latin letters;
ωk is the effect of the alternative k of the Greek letters; Ψl is the effect of column l,
and εijkl is the component of random error whose distribution is NIID(0, σ2). As for
Latin square designs, only two of the four subindexes are needed to completely
identify any observation.

Suppose that we consider another additional variable in the experiment comparing
the programming languages described in the example given in section 9.3, this being
the time of the day when the programmers run the experiment. Thus, we are going
to consider five times during the day at which experiments are performed,
represented by the Greek letters α, β, γ, δ and ε. The resulting 5x5 Greco-Latin
square is shown in Table 9.13.

Table 9.13. Greco-Latin square design for programming languages

 Programmers
Programs 1 2 3 4 5 Row

mean
Row
effect

1
2
3
4
5

Column
mean

Column
effect

Aα = -1
Bβ = -8
Cγ = -7
Dδ = 1
Eε = -3

-3.6

-4

Bγ = -5
Cδ = -1
Dε = 13
Eα = 6
Aβ = 5

3.6

3.2

Cε = -6
Dα = 5
Eβ = 1
A γ= 1
Bδ = -5

-0.8

-1.2

Dβ = -1
Eγ = 2
Aδ = 2
Bε = -2
Cα = 4

1

0.6

Eδ = -1
Aε = 11
Bα = -4
Cβ = -3
Dγ = 6

1.8

1.4

-2.8
1.8
1

0.6
1.4

0.4

-3.2
1.4
0.6
0.2
1

Basics of Software Engineering Experimentation 225

The process of analysis is again as described above, that is, the model would have to
be identified, validated, the response variable variation calculated, checking whether
the above variation is significant (applying the analysis of variance) and, if any,
looking for the best alternative for factor. In this section, we are going to focus on
the calculations related to the response variable variation and the analysis of
variance in order to find out what effect an additional blocking variable has on Latin
squares analysis. The task of validating the model is left as an exercise for readers.

The analysis of variance is very similar to a Latin square. The factor represented by
the Greek letters is orthogonal to the rows, columns and alternatives of the Latin
letter, because each Greek letter only appears once in each row, each column and for
each Latin letter. Therefore, the sum of squares due to the Greek letter factor can be
calculated using the effects of the Greek letter and, therefore, the experimental error
is reduced by that amount.

The effects of the languages (Latin letters) are:

Latin letter Language effect
A
B
C
D
E

3.2
-5.2

-3
4.4
0.6

Note that the effects for the programs (rows), programmers (columns) and
languages (Latin letter) are identical to those of the example given in section 9.3.
Hence:

 SSPrograms = 68.00 SSProgrammers = 150.00 and SSLanguages = 330.00

The effects of the time of day (Greek letters) are:

Greek letter Time effect
α
β
γ
δ
ε

y..1. = 2
y..2. = - 1.2
y..3. = - 0.6
y..4. = - 0.8
y..5. = 2.6

Hence, the sum of squares due to the time is SSTime = 62

The computational details are given in Table 9.14. The null hypotheses of equality
between the rows, columns, Latin letter alternatives and Greek letter alternatives can
be tested by dividing the respective mean square by the mean square error. The
rejection region is the top edge of the distribution Fp-1,(p-3)(p-1).

226 Experiments with undesired variations

Table 9.14. Analysis of variance for a Greco-Latin design

Source of variation Sum of squares Degrees of
freedom

Latin letter
alternative

2

j
jL)...(pSS yy −= ∑ p-1

Greek letter
alternative

2

k
kG)...(pSS yy −= ∑ p-1

Row 2

i
iR)...(pSS yy −= ∑ p-1

Column 2

l
lC)...(pSS yy −= ∑ p-1

Error 2
lkjiijkl

lk,j,i,

....)y...y...y...y...y(y +−−−−∑ (p-3)(p-1)

The full analysis is shown in Table 9.15. The languages are significantly different at
1%. If we compare Tables 9.15 and 9.8, we find that the experimental error has been
reduced by eliminating the variability in respect of the time at which the experiment
was conducted. However, as the experimental error is reduced, the degrees of
freedom also fall from 12 (in the Latin square design, illustrated by the example
given in section 9.3) to 8. Hence, the error estimate has fewer degrees of freedom,
leading to a less sensitive test; that is, the test is less likely to detect a change in the
response variable due to the factor alternatives.

Table 9.15. Results of the analysis of variance for the Greco-Latin square

Component Sum of
squares

Degrees
of

freedom

Mean
square

F-
Computed

F-Table

....YY −
Languages

Programmers
Programs

Time
Error

676
330
150
68
62
66

24
4
4
4
4
8

82.5
37.5
17

15.5
8.25

10

7.01

The concept of orthogonal pairs of Latin squares, which are combined to form
Greco-Latin squares, can be extended. A pxp hypersquare is a design composed of
three or more combined orthogonal pxp Latin squares. As a general rule, up to p+1
factors can be analysed if we have a full set of p-1 orthogonal Latin squares. Such a
design would use all the (p+1)(p-1)=p2-1 degrees of freedom, and, hence, calls for
an independent analysis of the error variance. Of course, there must be no
interactions among the factors when hypersquares are used.

Basics of Software Engineering Experimentation 227

9.6. ANALYSIS WHEN THERE ARE MISSING DATA IN BLOCK DESIGNS

When a randomised block design is used, an observation may occasionally be
missing from any of the blocks. This design is termed unbalanced design. This
happens owing to carelessness and can be put down to mistakes by or grounds
beyond the experimenter’s control. For example, let’s suppose that programmer II is
unable to perform the experiment with language C in the example discussed in
section 9.2. Suppose that the values of the response variable are as shown in Table
9.16, in which the missing observation has been represented by means of an x.

A missing observation brings a new problem into the analysis, as the alternatives
cease to be orthogonal to the blocks, that is, not every alternative appears in each
block. There are two general ways of solving the problem of missing values. The
simplest is an approximate analysis that estimates the missing observation. Then, the
usual analysis of variance is performed as if the estimated observation was a real
datum, reducing the degrees of freedom by one.

Table 9.16. Incomplete randomised block design
for the programming language experiment

 Block Factor Alternative

Programmer A B C D
I
II
III
IV

-2
-1
-3
2

-1
-2
-1
1

1
x
0
5

5
4
2
7

As a general rule, the total of all the observations with a missing observation will be
represented by and the totals of the alternatives and of the block with a missing

datum as
..y′

.jy′ and , respectively. Suppose that x is chosen to estimate the missing
observation, such that it has a minimum share in the sum of square error. As

i.y′

2a b
...j1i 1j i.ij)yyy(ySSE +−−=∑ ∑− −

, the foregoing is equivalent to choosing x, such

that it minimises either:

2

a

1i

b

1j
ij

2b

1j

a

1i
ij

2
a

1i

b

1j
ij

a

1i

b

1j

2
ij y

ab
1y

a
1y

b
1ySSE ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑∑ ∑∑ ∑∑∑

= == == == =

or:

228 Experiments with undesired variations

 Rx)y(
ab
1x)y(

a
1x)y(

b
1xSSE 2

..
2

.j
2

i.
2 ++′++′−+′−=

where R includes all the terms that do not contain x2. From dSSE / dx = 0, we get:

1)1)(b(a
yybya

x ...ji.

−−

′−′+′
=

as an estimator for the missing observation.

Taking the data of Table 9.16, we find that 17yy 6y 1,y ...32. =′=′=′ . Therefore,

 1.22
(3)(3)

174(6)4(1)
yx 23 =

−+
=≡

Then, the usual analysis of variance is performed, taking y23 = 1.22 and reducing the
degrees of freedom of the error by one. This analysis is shown in Table 9.17.

Table 9.17. Results of the approximate analysis of variance with a missing
datum

Source of variation Sum of
squares

Degrees of
freedom

Mean
square

F0

Programming
Language
Programmer (blocks)
Error
Total

39.98
79.53

6.22
125.73

3
3
8

14

13.33
26.51

0.78

17.12a

a Significant at 5%

This same philosophy of minimisation can be applied when more than one datum is
missing. For this purpose, several missing observations can be estimated by writing
the sum of square error depending on the missing data, deriving with respect to each
one, equalling to zero and solving the resulting equations. On the other hand, the
equation by means of which x can be generated can be used iteratively to estimate
the missing values. By way of an illustration of this approach, suppose that two
values are missing. The first missing value is estimated at random, and this value is
used, together with real data and the equation for estimating the second. Then, this
equation is used to make a second estimation of the first missing datum. This is used
again to estimate the second. This process continues until there is convergence, that
is, until the estimates output for both missing data stabilise. For any problem of
missing data, the number of degrees of freedom of the error is reduced by one for

Basics of Software Engineering Experimentation 229

every datum that is estimated.

There is another more complex form of calculating the missing values by means of
what is called exact analysis. This book does not address this technique in detail, but
interested readers are referred to the work of Montgomery (Montgomery, 1991).

9.7. ANALYSIS FOR INCOMPLETE BLOCK DESIGNS

As discussed in Chapter 5, a balanced incomplete block design is a block design in
which the factor has a alternatives, and only k (k<a) alternatives per block can be
proven. Remember that each block is determined by a blocking variable value, that
is, there will be as many blocks as there are blocking variable alternatives). For
example, suppose we have an experiment in which the blocks represent four classes
of individuals who are to test four development tools. Therefore, the individual type
is the blocking variable and the development tool is the factor. Suppose that each
individual only had time to test three of the four tools under examination. Block size
is usually limited in SE by constraints on resources (time, budget, etc.) Table 9.18
shows a possible response variable for this experiment representing the time spent
on developing a small application.

Table 9.18. Balanced incomplete block design for the tools
experiment

Block (Individual)
Alternative

(Tool)
I II III IV yi.

1
2
3
4

y.j

73
-

73
75

221

74
75
75
-

224

-

67
68
72

207

71
72
-

75

218

218
214
216
222

870 = y..

The analysis regarding designs of this kind uses a variation on the analysis of
variance procedure. Let’s examine this.

Suppose, as usual, that there are a alternatives and b blocks (although a=b in this
case). Suppose, also, that k alternatives are tested in each block, that each alternative
happens r times in the design (or is repeated r times) and that there is a total of N =
ar = bk observations. Moreover, each pair of alternatives occurs

230 Experiments with undesired variations

1a
1)r(k

−
−

=λ

times in the same block.

The parameter λ must be an integer. Let any alternative, for example 1, be
considered to deduce the ratio of λ. As alternative 1 occurs in r blocks and there are
another k-1 alternatives in each of the above blocks, there are r(k–1) observations in
a block that contains alternative 1. These r(k–1) observations must represent the
other a–1 alternatives λ times. Therefore, λ(a–1) = r(k–1).

The statistical model is:

 yij = µ + αi + β j +eij

where yij is the i-th observation of the j-th block, µ is the grand mean, αi is the effect
of the i-th alternative, βj is the effect of the j-th block, and eij is the random error
component NIID(0, σ2). The total variation in the data can be decomposed as
follows:

 SST = SSA(adjusted) + SSB + SSE

where the sum of squares of the alternative is corrected to separate the effects due to
the alternative and the effects due to the block. This correction is necessary because
each alternative occurs in a different set of r blocks. This means that the differences
between the uncorrected alternative totals y1, y2, …, ya are also affected by the
differences between the blocks.

The sum of squares of the corrected (or adjusted) alternative is:

a

Qk
SSA

a

1i

i

(adjusted)

2

λ

∑
==

where Qi is the corrected total of the i-th treatment, which is calculated by means of

 ∑
=

−=
b

1j
jijii y.n

k
1.yQ

and nij = 1 if the treatment i occurs in block j, and nij = 0 otherwise. Therefore, the
second term of the subtraction is the average of the totals of the blocks in which the

Basics of Software Engineering Experimentation 231

alternative i is applied. The sum of the corrected alternative totals will always be
zero. The SSA(adjusted) has (a – 1) degrees of freedom. The sum of square error is
calculated by the difference

 SSE = SST - SSA(adjusted) - SSB

and has (N – a – b + 1) degrees of freedom.

A summary of the analysis of variance for this type of designs is presented in Table
9.19. Remember that, as explained above, before applying the table of analysis of
variance, it is necessary to resort to the previous steps of defining and validating the
model in order to determine whether the result of this analysis can be trusted.

Table 9.19. Analysis of variance for the balanced incomplete block design

Source of
variation

Sum of squares

Degrees of
freedom

Mean square

F0

Alternative
(corrected)

Blocks

Error

Total

k Qi
2∑

λa
yj

2

k∑ −
y2

N

SSE(by difference)

yn
2∑∑ −

y2

N

a – 1

b – 1

N – a – b + 1

N - 1

1a
SSA(adjusted)

−

1−b
SSB

1+−− baN
SSE

SSE
MSA

F adjusted)(
0 =

Table 9.20 shows the results of this analysis for the example whose data are
specified in Table 9.18. This is a balanced incomplete block design where a = 4, b =
4, k = 3, r = 3, λ = 3 and N = 12.

As F0>F0,05,3,5 = 5.41, we infer that the development tool employed has a significant
effect on development time. These data can be used to find which of the
alternatives, that is, which tool would be the best with regard to development time.
For this purpose, we could apply the multiple comparison technique as discussed in
section 9.5.2.

232 Experiments with undesired variations

Table 9.20. Analysis of variance for the example in Table 9.18

Source of
variation

Sum of
squares

Degrees of
freedom

Mean square

F0

Alternative
(corrected)

Blocks

Error

Total

22.75

55.00

3.25

81.00

3

3

5

11

7.58

-

0.65

11.66

This same philosophy can be applied for more than one blocking variable. A
particular example of this are Youden squares, which contain two blocking
variables. Analyses of designs of this sort are not addressed in this chapter and
interested readers are referred to classic books on experimental design, like (Box,
1978) or (Montgomery, 1991).

9.8. SUGGESTED EXERCISES

9.8.1. Four test case generators have been used on five program types. Table 9.21
sets out the probability with which the test cases generated served to detect at
least 80% of the existing errors. Is there a significant difference between the
four generators at 10% significance?

Table 9.21. Probabilities of detecting errors in four test case

Test Case Generators

Block (Program) A B C D
1
2
3
4
5

89
84
81
87
79

88
77
87
92
81

97
92
87
89
80

94
79
85
84
88

Solution: No (F- computed = 1.24, F-table: 2.61)

9.8.2. Table 9.22 shows the errors found in four programs (1, 2, 3, 4) when four
programmers (I, II, III, IV) apply four different testing techniques (A, B, C,

Basics of Software Engineering Experimentation 233

D). At what level would the difference between the four testing techniques
be significant?

Table 9.22. Errors found in four programs

Programs

 1 2 3 4
 I A

21

B

26

D

20

C

25

 II D

23

C

26

A

20

B

27

Programmers III B

15

D

13

C

16

A

16

 IV C

17

A

15

B

20

D

20

Solution: > 0.25

9.8.3. Suppose that we intend to examine the effect of seven programming
languages on the number of lines of code yielded. For this purpose, we have
seven algorithms that are thought to possibly introduce some variability.
Consider that we can only implement each algorithm with three languages
for reasons of time. Table 9.23 shows the results obtained. Is there any
evidence at 1% of there being a significant difference between the seven
languages? What percentage of the variation in the response variable is due
to the languages?

234 Experiments with undesired variations

Table 9.23. Number of lines of code generated

Language Algorithm
 1 2 3 4 5 6 7
I
II
III
IV
V
VI
VII

114
126

141

120
137

145

117
129

120

149
150

136

120

143
118

119

123
130

117

134

127

Solution: Yes (F- computed =57.4); 80.9%

NOTES

1 Remember that as discussed at the beginning of this chapter, the effects are calculated by the difference

between the mean of the observation for the variable in question (k..y.,.y.,y ji. , respectively) and the
grand mean (0.4)

2 The derivative of a function is equalled to 0 to find out the minimum or the maximun; in this case the
minimun.

10 BEST ALTERNATIVES
FOR MORE THAN

ONE VARIABLE
ANALYSIS FOR FACTORIAL

DESIGNS
10.1. INTRODUCTION

As discussed in Chapter 5, the design to be used when all the factors involved in the
experiment are of interest to the investigation, that is, we want to find out what
impact they have on the response variable, is a factorial design. Designs of this sort
study the effect of each factor individually, as well as any interactive influence
some factors combined with others could have on the response variable.

A factorial design generally involves the experimenter selecting a fixed number of
alternatives for each factor and then running experiments with all the possible
combinations. Remember that in Chapter 6 we mentioned that we would examine
experiments with fixed effects, that is, where the alternatives were explicitly chosen
at the beginning of the experiment, although there are other experiments where the
alternatives are a random sample of a larger population of alternatives and are
called random-effects models. If there are l1 alternatives for the first variable, l2 for
the second ... and lk for the k-th, the set of all the l1×l2× ... ×lk experimental
conditions is called a l1×l2× ... ×lk factorial design. For example, a 2×3×5 factorial
design is composed of 2×3×5=30 unitary experiments, and a 2×2×2=23 factorial
design includes 8 unitary experiments.

One special case of factorial design arises when running experiments where the
factors have only two alternatives. These experiments are usually used as a first step
towards finding out whether the effect on the response variable is important enough
to warrant an examination with more alternatives. It is reasonable to assume that if a
factor has little influence on the response variable, time should not be wasted on
examining a lot of alternatives. The use of this sort of designs will be an aid for
implementing the strategy of successive refinement discussed in Chapter 3.

We approach this chapter by firstly addressing the analysis of a general factorial
design, in which several alternatives are studied for each factor involved (section
10.2). We will then discuss designs where two alternatives per factor are studied
(section 10.3), as the method of analysis is more straightforward than the general-
purpose method examined previously. As indicated in Chapter 5, these design types
are termed 2k designs, where k is the number of factors for examination. This study
commences with the analysis where k=2, that is, 22 designs, each with two factors

236 The Best Alternatives for More than One Variable

and two alternatives. We will then generalise the analysis for k factors, each with 2
alternatives, that is 2kdesigns. In this chapter, we also look at how to analyse
experiments with and without internal replication. The analyses discussed so far
include replication, but we will also study the analysis for designs without
replication for two-factor experiments (section 10.4). We will end by briefly
outlining some “shortcuts” for conducting the analysis when the number of
replications varies with each alternative combination (section 10.5). Finally,
factorial analyses are described for a series of real experiments.

10.2. ANALYSIS OF GENERAL FACTORIAL DESIGNS

Consider the case of k factors, where each factor can have any number of
alternatives. We will illustrate the analysis by means of an example. Suppose we
have an experiment in which we aim to measure the accuracy of different estimation
techniques on problems from different domains. Thus, we are dealing with two
factors (domain and estimation technique). The first factor will have three
alternatives and the second four alternatives. This arrangement is termed 3x4
factorial design (three alternatives for one variable and four for another) and has, in
this case, been repeated four times. Table 10.1 shows the results of the
experimentation. The response variable considered is the percentage accuracy in
respect of the real duration of the project against the estimate provided by each
technique.

Table 10.1. Data collected in a 3x4 experimental design

Technique

Domain R S T U
I

II

III

0.31
0.45
0.46
0.43

0.36
0.29
0.40
0.23

0.22
0.21
0.18
0.23

0.82
1.10
0.88
0.72

0.92
0.61
0.49
1.24

0.30
0.37
0.38
0.29

0.43
0.45
0.63
0.76

0.44
0.35
0.31
0.40

0.23
0.25
0.24
0.22

0.45
0.71
0.66
0.62

0.56
1.02
0.71
0.38

0.30
0.36
0.31
0.33

The null hypothesis of our experiment will be H0: “the fact that different estimation

Basics of Software Engineering Experimentation 237

techniques are used, the estimated problems belong to different domains and there is
an interaction between techniques and domains makes no difference to the accuracy
of the estimation”. A more detailed form of describing this hypothesis would be to
divide it into several subhypotheses, one for each factor and another owing to the
interaction:

• H01: the fact that different estimation techniques are used makes no difference
to the accuracy of the estimation;

• H02: the fact that problems estimated belongs to different domains makes no
difference to the accuracy of the estimation;

• H03: the fact that different techniques are used with different problem domains
makes no difference to the accuracy of the estimation.

The analysis to be performed is equivalent to the one performed for the one-factor
design and for the block design. These steps are summarised as follows:

1. Identify the mathematical model according to which the analysis is to be
conducted.

2. Validate the model by examining the residuals or experimental errors.
3. Calculate the variation in the response variable due to factors, interactions

and errors.
4. Calculate the statistical significance of the variation due to factors and

interactions.
5. Establish recommendations on the best factor alternatives.

We will proceed with this analysis below. However, we are going to put off model
testing, that is, step 2 (which follows a similar process to the one-factor and block
analysis) until the end of the process to show that even though we might get
significant results, no results can be trusted unless the model is suitable and, if the
model is unsuitable, the experiment has to be restated or other procedures of
analysis applied (for example, non-parametric analysis, as we will see in Chapter
14).

10.2.1. Identifying the Mathematical Model

As discussed in preceding chapters, the effect of a factor is defined as the change in
the response variable caused by a change in the factor alternatives. This is often
known as the principal effect in factorial designs, because it refers to the factors of
primary interest in the experiment. Thus, we should study the effect of the problem
domain and the estimation technique in our example. The effects due to factor
interactions also have to be examined. As we have only two factors, we will work
with a single interaction in the example in question, which is caused by the problem
domain combined with the estimation technique. The effects of the interactions
have on the response variable are called secondary effects (if two factors are
involved), effects of order 3 (if three factors are involved), etc.

238 The Best Alternatives for More than One Variable

A factorial design with k factors generally contains k principal effects due to a

single factor, effects due to interactions of 2 factors, effects due to

interactions of 3 factors, and so on up to effects of interactions among k

factors. So, the mathematical model should include all these elements. For example,
if we consider a three-factor design with a, b and c alternatives and r replications,
the mathematical model that represents each observation would be:

)k
2()k

3(

)k
k(

 yijkl = µ + α i + βj + ωk + (αβij) + (αωik) + (βωjk) + (αβωijk)+ eijkl

 i=1, …a; j=1, …b; k=1, …c; l=1, …r

For our two-factor example, the observations can be described by means of the
linear statistical model

 yijk = µ + α i + βj + (αβij) + eijk

where µ is the grand mean, αi is the effect of the ith alternative of the row factor
(domain), βj is the jth level of the column factor (technique), αβij is the effect of the
interaction between αi and βj, and eijk is the error associated with the unitary
experiment concerned with the ith and jth alternatives.

Denoted in this manner, αi and βj are termed the principal effects of the estimation
techniques and of the domains, respectively, and αβij is the interaction effect. The
procedure for calculating the effects is similar to the one used in Chapter 8 for the
one-factor design and in Chapter 9 for the block design. The values of the
parameters of the model are calculated so as the mean error is zero. This means that
the sum of the error along each row and each column is zero. So,

.)(..)..(...).j.(...)..(.... ijijkijiij yyyyyyyyyy −++−−+−+−+= ..iy .j.y

The calculation of the principal effects in our example is shown in Table 10.2. This
table shows that:

 0.150.470.62...y..y11 ==−= −α

similarly,

 0.150.470.32...y..y 11 −==−= −β

Basics of Software Engineering Experimentation 239

and so on.

The effects calculated in Table 10.2 are interpreted as follows. The mean accuracy
of the estimates produced by the four techniques for all the domains is 47%. For
example, the estimation technique R can be said to be 15% less accurate against the
mean, whereas technique S is 20% more accurate against the mean. With regard to
the different domains, we find that the estimate is 15% more accurate in domain I,
whereas it is 20% less accurate against the mean in domain III.

Table 10.2. Principal effects of the technique and domain

Technique
Domain R S T U Row sum Row mean Row effect
I 0.41 0.88 0.57 0.61 2.47 0.62 0.15
II 0.32 0.82 0.38 0.67 2.19 0.55 0.08
III 0.21 0.33 0.24 0.32 1.1 0.27 -0.2

Column sum 0.94 2.03 1.18 1.6 5.74
Column
mean

0.32 0.67 0.4 0.53 0.47

Column
effect

-0.15 0.2 -0.07 0.06

The effect of the interactions is calculated by subtracting µ+α i+βi from each mean
observation ijy . The effect of the interaction is shown in Table 10.3. These effects
can be interpreted as, for example, applied to domain I problems, technique R being
6% less accurate against the mean.

Table 10.3. Effects of interactions αβ for
our example.

 R S T U
I -0.06 0.06 0.02 -0.07
II -0.08 0.07 -0.10 0.07
II -0.13 -0.14 0.04 -0.01

10.2.2. Calculating the Variation in the Response Variable

As discussed in preceding chapters, the variation in the response variable is

240 The Best Alternatives for More than One Variable

calculated by means of the sum of squares total SST. In a general factorial design,
the SST will be obtained by calculating the sums of squares of each factor, the sums
of squares of all the interactions and the sum of square error. In this example, as we
are working with two factors and one interaction, SST is represented as:

 SST= SSA+SSB+SSAB+SSE

where:

2
.)(∑∑∑ −=

=

i j k
ijijk

i

yySSE

2
... ...)..(∑∑ +−−= jiij yyyyrSSAB

2..)...(∑ −=
j

j yyarSSB

2...)..(∑ −i yybrSSA α
2∑br=

i
i

2∑=
 j

ar β
 j

2∑∑= r α β

i j
ij

Remember that a is the number of alternatives related to factor A, b is the number of
alternatives of factor B and r is the number of replications.

Specifically, for our example, the calculation of these values will be multiplied by
1000 for ease of calculation. Thus, the values of these sums of squares are:

 SSA (x 1000) = 1033
 SSB (x 1000) = 922.4
 SSAB (x 1000) = 250.1
 SSE (x 1000) = 800.7
 SST (x 1000) = 3006.2

The percentage variations in the response due to each factor and factor interaction
can be obtained by:

 A (Domain) = (1033/3006.2) x 100 = 34.35%
 B (Technique) = (922.4/3006.2) x 100 = 30.74%
 AB (Domain x Technique) = (250.1/3006.2) x 100 = 8.30%
 Error = (800.7/3006.2) x 100= 26.63%

In this experiment, we find that there is a percentage error of 26.63%, that is,
26.63% of the variation in the response variable cannot be explained and could be
due to other variables not considered in the experiment. Of the remaining explained
variation, factors A and B explain over 65%, therefore, they merit further
examination, as the value of these factors could improve the response variable in a
substantial measure if the above variation were due to the alternatives (that is, the
variation were statistically significant). The same cannot be said of the interaction
AB, whose low share in the variation of the response variable (8.3%) is an
indication that this interaction is not really important for the experiment. Let’s

Basics of Software Engineering Experimentation 241

continue investigating both the factors and the interaction, however. As in
preceding chapters, the next step is to use the analysis of variance to determine
whether the calculated variation is really due to the alternatives or can be put down
to chance, that is, to determine whether or not the variation is significant.

10.2.3. Statistical Significance of the Variation Due to Factors and Interaction

Assuming that the model is suitable (a detailed validation of the model will be given
later) and, in particular, that the errors are distributed independently and normally
with constant variance, we can identify whether the calculated variation is
statistically significant using the analysis of variance table shown in Table 10.4.

Table 10.4 shows the analysis for a levels of factor A, b levels for factor B and r
replications. The values of this analysis for our example are as shown in Table 10.5.

Table 10.5. Result of the analysis of variance for our example

Component Sum of
squares
(x 1000)

Degrees of
freedom

Mean
square

 (x 1000)

F- Computed F-Table

Y
..Y

..YY −
A
B

AB
e

1033
922.4
250.1
800.7

48
1

47
3-1
4-1

(3-1)(4-1)
12(4-1)

516.5
307.5
41.7

23.2
13.8
1.9

≅ 5,30
≅ 8.4

≅ 3.34

On the basis of this analysis, we can conclude that the effects of the estimation
techniques and the problem domains are statistically significant at 99%, whereas the
effect or the interaction is not statistically significant. This means that the variation
produced by these two factors on the response variable is really due to the different
alternatives under examination and not to chance. However, the variation caused by
the interaction is due to chance.

Thus, we could reject H01 (the fact that different estimation techniques are used
makes no difference to the accuracy of the estimates) and H02 (the fact that problems
estimated belong to different domains makes no difference to the accuracy of the
estimates), but we cannot reject H03 (the fact that different techniques are used with
different problem domains makes no difference to the accuracy of the estimates).

Hence, we would like to know which of the estimation techniques and domains
output the best values in the response variable, estimate accuracy. This question is

242 The Best Alternatives for More than One Variable

addressed in the following section.

10.2.4. Recommendations on the Best Alternative of Each Factor

This section is concerned with determining which alternatives improve the response
variable. For this purpose, we have to study what effect the above alternatives have
on the response variable. These effects can be represented graphically by what are
known as principal effects and interactions graphs. These graphs represent the
means of marginal response of the factor alternatives.

It is important to take into account that the principal effect of a factor can be
interpreted individually only when there is no evidence that this factor interacts with
others. When there is evidence of one or more interactions, the factors that interact
must be interpreted jointly. When there is no evidence there is no need for the
interaction graphs.

In our example, we have two principal effects (which have been shown to be
significant) and one interaction (which has been shown to be insignificant).
Therefore, we will focus on the graphs of principal effects (we will study the use of
the interaction graphs in later sections of this chapter). The graphs of the principal
effects for our example are shown in Figure 10.1.

As our response variable is estimate accuracy, we are looking for the alternatives
that provide the greatest value for this variable. Thus, from these graphs, we can
determine that estimation is more accurate in domain I (Figure 10.1(a)); and that
techniques S and U are more accurate than the others (Figure 10.1(b)).

As the interaction between domain and technique is not significant, we can add to
the above deductions by saying that estimation in domain I is more accurate
irrespective of the technique that is applied and that techniques S and U are more
accurate irrespective of the domain which they are applied. If the interaction
between technique and domain had been significant, then we could find, for
example, that technique S is more accurate for a particular domain but not for
another (examples of these interactions and the resulting graphs are examined in
later sections).

Basics of Software Engineering Experimentation 243

 Component Sum of squares Degrees of
freedom

Mean square F- Computed. F-Table

Y SSY= Yij
2∑

abr

..Y 2µabrSSO=
1

..YY − SST = SSY− SSO abr-1

A ∑= 2
ibrSSA α

a-1

1a

SSA
MSA

−
=

MSE
MSA

 [])1(),1(;1 −−− rabaF α

B ∑= 2
jarSSB β

b-1

1b
SSB

MSB
−

= MSE
MSB

[])1(),1(;1 −−− rabbF α

AB ∑= 2
ijrSSAB αβ

(a-1)(b-1)
)1b)(1a(

SSAB
MSAB

−−
=

MSE
MSAB

[])1(),1)(1(;1 −−−− rabbaF α

e ∑= ijke2SSE

ab(r-1)

)1r(ab
SSE

MSE
−

=

Table 10.4 Analysis of variance table for two factors

244 The Best Alternatives for More than One Variable

I II III

0.27

0.55

0.62

Domain

Response
variable

R S T U

0.32

0.53
0.67

Technique

Response
variable

0.4

(a) (b)

Figure 10.1. Domain and estimation technique effects

As already specified, these results are subject to model validity. Therefore, model
validity is usually examined before calculating the variation and testing its statistical
significance. This has been postponed in this case to teach readers how to work with
k-factor experiments but also to illustrate how important it is to validate the
mathematical model that represents the relationship between factors and the
response variable. Let’s take a look at why it is necessary to test model validity
before trusting the results.

10.2.5. Testing Model Validity

The above results will be valid provided that the model used is valid. Like the
model discussed for the one-factor experiments, the model described in section
10.2.1 is valid assuming that the errors eijk are distributed identically and
independently with a normal distribution of mean zero and constant, albeit
unknown variance NIID(0, σ2). This means that the observations are random
samples of normal populations of equal variance, possibly having different means.

Additionally, the model used represents an additive model, which means that the
effects of the factors, their interactions and the errors are additive. As discussed in
Chapter 9, additivity means that, for example, if an increase in the factor A causes
an increase of 6 units in the response and an increase in factor B causes in increase
of 1 unit and a particular value of the interaction causes an effect of 2 units, the total
increase produced in the response will be 9 units.

Basics of Software Engineering Experimentation 245

There are a range of tests for testing these hypotheses. If any of them fail, the
experimenter can resort to examining model transformations or to the use of non-
parametric methods.

As in earlier chapters, the errors eijk have been represented as a function of the
estimated response variable in order to examine error independence and

constant variance. In the factorial model,

ijkŷ
.yŷ ijijk = , that is, the estimated response

variable is equal to the average of each replication. As shown in Figure 10.2, which
shows the graph of residuals plotted against the estimated value, the cloud of points
obtained is clearly funnel shaped. This suggests, contrary to the hypothesis, that the
standard deviation grows as the response variable increases. Therefore, the results
that we have extracted from the calculations made in the preceding sections are
irrelevant, as they are based on a model that incorrectly represents that data yielded
by the experiment. Hence the importance of validating the model before making any
calculations and not blindly trusting in the results unless this validation has been
completed. In the following sections, we will examine how to validate the other
assumptions, including, for example, model additivity.

..

-0.4

-0.2

0

0.2

...
.

0.4

..
......
......... y ij.yijk − y ij.

0.1 0.3 0.5 0.7 0.9

Figure 10.2. Graph of errors and estimated values of the response variable in the
unreplicated 24 example

In this section, we have described how to analyse a factorial design with any
number of factor alternatives. We described an example with two factors. However,
the same procedure can be applied for more factors, although the complexity of the
analysis gradually increases. Therefore, most real experiments where there is a
variable number of alternatives for each factor do not usually address more than two
factors, as we will see in the real experiments discussed in section 10.7.

246 The Best Alternatives for More than One Variable

Below, we focus on the analysis of a special case of factorial designs, in which each
factor has two alternatives.

10.3. ANALYSIS FOR FACTORIAL DESIGNS WITH TWO
ALTERNATIVES PER FACTOR

In the above section, we considered the case in which each factor has a different
number of alternatives. As outlined in Chapter 5, a special case of factorial designs
arises when each factor has two alternatives. These are what are known as 2k
factorial designs, where k is the number of factors under consideration. As they
address only two alternatives, this sort of design simplifies the analysis. In this
section, we are going to study how to undertake these analyses. We will start by
analysing designs in which there are only two factors, that is 22 designs, and then
generalise the analysis for k-factor designs, that is, 2k designs.

10.3.1. Analysis for 22 Factorial Designs

The steps to be taken generally to analyse a 2k design and, particularly, a 22 design
are similar to those used to analyse a general factorial design. Remember that these
steps are:

1. Identify the mathematical model to be followed to conduct the analysis;
2. Validate the model by studying the residuals or experimental errors;
3. Calculate the variation in the response variable due to each factor and each

factor interaction, and due to errors;
4. Calculate the statistical significance of the variation due to each factor and

factor interactions;
5. Establish recommendations on the best alternative of each factor.

As there are two factors for each alternative, however, these steps can be simplified.
Consider the following example to illustrate this analysis. Suppose that we want to
test a new development paradigm that is nothing like either the structured or the
object-oriented paradigm. Our aim is to confirm that our innovation makes
improvements to the development projects. In particular, we think that our
innovation should have an impact on improving software correctness and
maintainability, as our paradigm makes it much easier to detect errors and add or
modify functionalities. There are many parameters that influence this response
variable: problem complexity, problem type, process maturity, team experience,
domain knowledge, integration with other software, etc. However, we are going to
set all of these at an intermediate value, except domain knowledge about the
problem in question and the development paradigm, which will be factors. In this
first experimentation, we will focus on maintainability, measured as the effort
(person/minute) involved in adding a small functionality to modify the application.
This first experiment is going to address two factors (development paradigm and
domain knowledge), each with two alternatives (new and OO, and knowledgeable

Basics of Software Engineering Experimentation 247

and unknowledgeable, respectively). The response variable in question will be the
person/minutes spent on adding one and the same functionality to an application
developed using the two paradigms.

The null hypothesis of our experiment will be H0: “the fact that different approaches
are used, whether or not developers have domain knowledge or there is an
interaction between the two factors, makes no difference to the maintenance effort”,
or:

• H01: the fact that different approaches are used makes no difference to the
maintenance effort;

• H02: the fact that developers possess different domain knowledge makes no
difference to the maintenance effort;

• H03: the fact that different approaches are used with different domain
knowledge makes no difference to the maintenance effort.

Given that there are two factors each with two levels, we will need 22=4 unitary
experiments to run a complete factorial design. Let’s consider three replications on
three similar projects for each combination of alternatives. So, the total number of
unitary experiments will be twelve.

We run the twelve experiments using three similar projects and twelve similar
subjects (all the parameters, except the factors, having the same or similar values),
varying the factor alternatives. We measure the response variable at the end of each
experiment. The observations of the response variable are set out in Table 10.6.

 Table 10.6. Experimental response variables

Paradigm Knowledge Y
New
OO
New
OO

With
With

Without
Without

(15, 18, 12)
(45, 48, 51)
(25, 28, 19)
(75, 75, 81)

We are now going to go ahead with the analysis of the experiment according to the
specified steps.

10.3.1.1. Identification of the Mathematical Model

In section 10.2.2, we examined the mathematical model that described the
observations of a general factorial design, which was specified for a two-factor
factorial design. Remember that this model is:

 yijk = µ + α i + βj + (αβij) + eijk

248 The Best Alternatives for More than One Variable

where µ is the grand mean, αi is the effect of the ith alternative of one factor βj is
the jth alternative of the other factor , αβij is the effect of the interaction between αi
and βj, and eijk is the error associated with the unitary experiment concerning the ith
and jth alternatives. The analysis carried out in section 10.2.2 was based on this
model, that is, we calculated the value of the effects, the variation in the response
variable, etc., taking this model as a reference. Now let’s look at another form of
representing the above observations and, therefore, a similar, albeit somewhat
simplified, way of conducting the above analysis.

The observations in Table 10.6 can also be represented by means of a linear
regression model:

 yijk= C0 + CAXAi + CBXBj + CABXAiXBj + eijk

where eijk is the experimental error of each observation, XAi is the i-th alternative of
the factor A: development paradigm, XBj is the j-th alternative of the factor B:
domain knowledge and Ci are the coefficients of the regression model.

Generalised for all the observations, this model can be represented as:

 Y= C0 + CAXA + CBXB + CABXAXB + e

where e is the experimental error, XA is the development paradigm, XB is the
domain knowledge and Ci are the coefficients of the regression model.

As each factor has only two alternatives, we can take a shortcut to solve this
equation and conduct the analysis. This shortcut involves randomly assigning a
value of –1 or +1 to each alternative. A possible assignation would be as shown in
Table 10.7

Table 10.7. Alternatives of the factors for our example

FACTOR NAME ALTERNATIVE -1 ALTERNATIVE +1
Paradigm
Domain Knowledge

A
B

New
With knowledge

OO
Without knowledge

Hence, the value of XA and XB in the above equation would be –1 or +1 depending
on the alternative in question. Thus, if we denote the means of the replications for
each of the twelve unitary experiments as Y1, Y2, Y3, Y4 and substitute the four
combinations from Table 10.6. in the model, we get:

 Y1 = C0 - CA - CB + CAB
 Y2 = C0 + CA - CB - CAB
 Y3 = C0 - CA + CB - CAB
 Y4 = C0 + CA + CB + CAB

Basics of Software Engineering Experimentation 249

Solving these equations for the Ci’s, we get:

 C0 = 1/4 (Y1 + Y2 + Y3 + Y4)
 CA = 1/4 (- Y1 + Y2 - Y3 + Y4)
 CB = 1/4 (- Y1 - Y2 + Y3 + Y4)
 CAB = 1/4 (Y1 - Y2 - Y3 + Y4)

Note that C0 represents the mean of all the observations and that the expressions for
CA, CB and CAB are linear combinations of the responses so that the sum of the
coefficients is zero (for CA, for example, the sum of the coefficients that multiply Yi
is: - 1 + 1 - 1 + 1 = 0). This type of expression is termed a contrast. Thus, if we
substitute the value of the coefficients, we get:

 C0 = 41
 CA = 21.5
 CB = 9.5
 CAB = 5

The calculation of the regression coefficients Ci is useful in two respects: (1) it will
be used to calculate the sum of squares and (2) it is a way of calculating the effects
of the factors. Actually, the regression coefficient is half the estimate of the effect
because a regression coefficient measures the effect of a unit change in the variable
X over Y , and the estimate of the effect is based on a change of two units in X
(from -1 to +1).

So, the calculation of the regression coefficients is a way of calculating the effects.
All we have to do is multiply the coefficients related to the factors and interactions
by two.

But there is a simpler procedure for calculating the effects and, therefore, the
regression coefficients, by means of what is known as the sign table. For a 22
design, the effect of the factors can be easily computed in a 4x4 sign matrix, as
shown in Table 10.8.

The first column of the matrix is labelled I and contains all 1s. The next two
columns, called A and B (after the two factors) contain all the possible combinations
of 1 and –1. Column four, called AB, is the product of the entries in column A and
B. The replicated observations are placed in the next column of the matrix. Column
five contains the values of the response variable for the alternatives of each factor
that appears in columns A and B. For example, the observations (15, 18, 12)
correspond to alternatives –1 of the two factors A and B, that is, the new paradigm
and with domain knowledge. Finally, another column is added that contains the
mean of each replication.

 Table 10.8. Sign table for the 22 design of our example

250 The Best Alternatives for More than One Variable

I A B AB Y Mean Y
1 -1 -1 1 (15, 18, 12) 15
1 1 -1 -1 (45, 48, 51) 48
1 -1 1 -1 (25, 28, 19) 24
1 1 1 1 (75, 75, 81) 77
164 86 38 20 Total
41 43 19 10 Total/Divisor

The next step is to multiply column I by column Y entries and place their sum
under column I. Column A entries are multiplied by the entries in Y and their sum is
placed under column A. This column multiplication operation is also performed for
columns B and AB.

The sum placed under column I is divided by 2k, in this case four (note that this is
the mean) of all observations, and the other three sums are divided by 2k/2. Note
that these latter three sums correspond, respectively, to the value of effects A and B,
and the interaction AB. This is a general-purpose method and can be applied to
calculate the effects of any 2k factorial design, as we shall see later. By calculating
these effects, we can determine, for example, that a change of 43 units takes place in
the mean response by increasing factor A from –1 to 1. Or, alternatively, when we
switch from the new approach to the OO approach, there is an increase of 43 in the
average number of errors produced at the end of three months. The case of factor B,
or domain knowledge, can be reasoned similarly.

Note also that the coefficients of the Yi in the equation for CA, for example, are
identical to the alternatives of Table 10.8. Therefore, CA can be obtained by
multiplying columns XA and Y in Table 10.8. This is also true for CB and CAB,
which can both be obtained by multiplying the respective level column with the
mean response column. So, having obtained the principal effects and the effects of
the interactions using the sign table, it is possible to calculate the regression
coefficients by dividing the above effects by two.

Let’s make a parenthesis to justify the use of the sign table for calculating the
effects. As we have said, the effect of a factor is defined as the change in the
response variable caused by a change in the factor alternative. As mentioned earlier,
this is often known as the principal effect, because it refers to the factors of primary
interest in the experiment. Thus, in our example, we would have to study the effect
of the development paradigm and domain knowledge. Also, the effects due to the
factor interactions have to be studied. As we have only two factors in the example
in question, we will have just one interaction, produced by the paradigm and
domain knowledge.

The principal effects can be calculated as the difference between the mean response
variable for the first and second alternatives of the factor under consideration. Thus,

Basics of Software Engineering Experimentation 251

the effect of factor A would be obtained as follows:

 43
2

2415

2

4877
A =

+
−

+
=

where 77, for example, is the mean of the response variable for the three
observations, assuming that the value of A is –1 and the value of B is –1. The other
numerators have been obtained similarly from the above expression. Note that this
effect has the same value as calculated by means of the sign table procedure, as the
signs of the numerators do indeed match the signs in column A of Table 10.8 and
the divisor that we use in the above expression (2) matches the divisor used in the
sign table method (22/2).

The effect of factor B can be calculated in the same way:

 19
2

4815

2

7724
B =

+
−

+
=

This effect is also the same as calculated using the sign table, as the numerators and
denominator match those used in the latter procedure.

Now, let’s study the case of the factor interactions. These occur when the difference
in the response variable from one factor alternative to another is not the same for all
the alternatives of the other factors. For example, the effect of A for B is equal to -1
is:

 A = 48-15 = 33

whereas the effect of A for B is equal to 1 is:

 A = 77-24 = 53

We can see that factors A and B interact, because the effect of A depends on the
selected alternative of B. In this case, the effect of the interaction AB can be
calculated as follows:

 01
2

1548

2

2477
AB =

−
−

−
=

which is, again, the same value as obtained by means of the sign table.

Let’s go back to the analysis process now. Briefly, what we have done during this

252 The Best Alternatives for More than One Variable

step of the analysis process is to define the respective regression model and
calculate the value of the coefficients. These coefficients can be rapidly calculated
using the sign table to calculate the effects and then dividing the above effects by
two to get the value of the respective coefficients. These coefficients will be used in
the following steps to simplify the analysis.

Before continuing with the analysis, the model needs to be validated, as we already

10.3.1.2. Examining Residuals to Validate the Model

The fitness of the proposed model must be tested before we can trust in the results

There are a range of tests for testing these hypotheses. As we know, if any of them

As for one-factor, block and general factorial design, the main tool for validating

know. The following section addresses this question.

of the analysis with the above model. Like the model discussed for general factorial
experiments, the model described in section 10.3.1.1 is valid assuming that the
errors e are distributed identically and independently with a normal distribution of
mean zero and constant, albeit unknown variance NIID(0, σ2). This means that the
observations are random samples of normal populations of equal variance, possibly
having different means. Additionally, the model used represents an additive model,
which must also be justified.

fail, the experimenter can resort to model transformations or to the use of non-
parametric methods.

the model is residual analysis. As discussed in section 10.2, the residuals for the
two-factor model are ijkijkijk ŷye −= , where the adjusted values are .yŷ ijijk =
(the mean of each replication), so:

.yye ijijkijk −=

The residuals of the data from our example can be obtained using the above

Table 10.9. Residual calculation for our example

red Error

formula, as shown in Table 10.9.

Effects Estimated Measu
response response

 I A B AB
i 41 43 19 10 Y i y y y e e ei1 i2 i3 i1 i2 i3

Basics of Software Engineering Experimentation 253

1
2
3
4

1
1
1
1

-1
1

-1
1

-1
-1
1
1

1
-1
-1
1

15
48
24
77

15
45
25
75

18
48
28
75

12
51
19
81

0
-3
1

-2

3
0
4

-2

-3
3

-5
4

Having obtained the residuals, let’s discuss some tests to validate the assumptions
explained above.

10.3.1.2.1. Testing for Normal Residual Distribution

This test can be run by plotting a residual normal probability graph. Figure 10.3
shows the normal probability graph for our development paradigm example. As
discussed earlier, if this graph is linear, as shown in the example, we will not reject
the assumption that the error distribution is normal.

.
0

-2

-4

4

8

.

-8 -1

.
.

.

Normal quantile

.

0 1 2

.
.

.

...

R
es

id
ua

ls

Figure 10.3. Residual normal probability graph

10.3.1.2.2. Testing for Error Independence

Error independence can be tested by means of a graph that represents the residuals
as a function of the estimated values, as shown in Figure 10.4.

If the errors are independent, there should be no obvious pattern in the resulting
graph, as shown in Figure 10.4.

254 The Best Alternatives for More than One Variable

10.3.1.2.3. Testing for Constant Error Variance

From Figure 10.4 the error variance does not appear to grow as the response level
increases, that is, the graph is not apparently funnel shaped. Therefore, in this
respect, our model also appears to be suited for the data under analysis, revealing
constant variance.

.

0.0

0

-2.5

2.5

5.0

.

-5.0
20

.

.

.

Predicted response

.

40 60 80

.

.

. .

R
es

id
ua

ls

.

Figure 10.4. Graph of residuals plotted against estimated responses

10.3.1.2.4. Testing for Model Additivity

There are a variety of ways in which an experimenter could detect that an additive
model does not represent the data for analysis. These include the following:

• The first is experimenters’ intuition and knowledge of the domain. A computer
scientist can sense whether or not the factors are additive. For example, let’s

Basics of Software Engineering Experimentation 255

suppose that we intend to compare the performance of processors on different
workloads. If we have only two processors and two workloads, we can use a 22
design. Suppose that the response variable yij represents the time required to
execute a workload with wj instructions on a processor capable of executing vi
instructions per second. Accordingly, if there were no interactions or errors
knowledge of computer science would tell experimenters that the response
variable is the result of a multiplication of factors:

yij=viwj

The effects of the two factors are not additive, they are multiplicative. In this
case, the additive model discussed can still be used, provided the logarithm, for
example, is applied to both sides of the equation to make the model additive, as
discussed in section 9.2.2.

• Another test involves analysing whether there is a large range of values covered
by y. For example, suppose that the values of the response variable were
between 147.90 and 0.0118. The ratio ymax/ymin is 12,534. It is not representative
to work with arithmetic means in this case. In our example, this ratio is 5.4 and,
hence, there is no sign of there being any problems with the model.

• Analysing the graph of residuals plotted against the response variable, non-
additivity can be detected if the order of magnitude of the errors is one or more
degrees lower than the response variable. In the graph illustrated in Figure 10.4,
we can see how the scale on the vertical axis is much lower than the scale of the
ordinate axis. Hence, there is no sign of any problems with this test.

10.3.1.3. Calculation of the Variation in the Response Variable Due to Each
Factor, Factor Interactions and Errors

In a design with multiple factors, the total variation in the response variable can be
attributed to each factor, factor interactions and errors. The bigger the variation
explained by a factor or interaction, the greater the impact of the above factor or
interaction on the value of the response variable. As soon as we know the variation
explained by each factor or interaction, we will proceed, as we did earlier, to
determine the statistical significance of the above variations by means of an analysis
of variance.

Below, we are going to calculate the variation in the response variable due to each
factor and combination of factors and to experimental error. For this purpose, we
calculate the sum of square total, SST. This value can be calculated as follows,
having recourse to the regression coefficients calculated in section 10.2.1:

256 The Best Alternatives for More than One Variable

 SST = SSA+SSB+SSAB+SSE = 22r CA
2 + 22r CB

2 + 22r CAB
2 + ∑

kji ,,

ei,j,k 2

Note that it is much easier to calculate the SST this way than as for the general
factorial design, explained in section 10.2.2.

For our example, SST= 5,547 + 1,083 + 300 + 102 = 7,032

Hence, factor A explains 78.88% (5,547/7,032) of the variation, factor B explains
15.04% and the interaction AB explains 4.27%. The remainder of the variation,
1.45%, is an unexplained variation and is, therefore, due to experimental error.
Additionally, taking into account that there is very little error-induced variation, we
can say that the experiment run is correct, as there do not appear to be variables not
accounted for by the design or, if there are any, they have very little impact on the
response variable (remember that experimental error includes not only measurement
errors but also experimental design errors, such as, unexamined variables).
Furthermore, we find that factor A is much more important than factor B.
Therefore, if we intend to focus on improving the response variable, we would
work on factor A rather than on factor B, as this has much less impact and the
interaction is small.

Moreover, taking into account the importance of A, it may be worthwhile (provided
it is compatible with the goal of the investigation) to run more experiments with A,
increasing the number of alternatives or considering other factors to examine
possible interactions. So, in the context under examination, A is the main cause of
the variation in the response variable, provided the above variation is statistically
significant, which we will test for in the following section.

10.3.1.4. Calculation of the Statistical Significance of the Variation Due to Each
Factor and Factor Interactions

If we want to know whether the above portions of variations are statistically
significant, we need to apply the F-test-based analysis of variance. However, the
conclusions of the F-test for a 2k design with replication are always identical to
what we would get by calculating confidence intervals. So, we will first carry out
the analysis of variance and we will then calculate the confidence intervals so that
the readers can see how we reach the same results.

Table 10.10 presents the calculations to be made to apply the analysis of variance
for a 22 factorial design. Remember that r is the number of replications. Table 10.11
presents the application of the analysis of variance to our example. As we can see
from Table III.6 (Annex III), the F calculated is greater than the quantile taken from
the table at a confidence level of 95%. This means that A, B and AB can be said to

Basics of Software Engineering Experimentation 257

be statistically significant at a confidence level of 95%. This means that the
variation provoked by these factors and by the interaction are really due to having
varied the alternatives and not to chance. Thus, although in the above section we
said that factor B and the interaction were not very important, that is, explained
little of the variation of the response variable, this small variation is not really due
to chance but to the fact that one alternative improves the response variable. The
same can be said of factor A, except that, as mentioned, this factor explains a larger
proportion of the response variable and, therefore, the improvement in the response
variable will be much more patent if the right alternative of A is chosen.

Consequently, we could reject H0, or, alternatively, H01, H02 and H03.

258 The Best Alternatives for More than One Variable

Table 10.10. Analysis of variance table for 22 design

Component Sum Of Squares Percentage
Variation

Degrees of
Freedom

Mean Square F-
Computed

F-Table

Y ∑= 2
ijYSSY

 2 2r

..Y 22 r2SS0 µ= 1

..YY − SS0SSYSST −= 100 22r-1

A 2
A

2 rC2SSA = ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSA001 1 = SSAMSA

MSE
MSA [])1(,1;1 −− rF α

B 2
B

2 rC2SSB = ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSB001 1 = SSBMSB

MSE
MSB [])1(,1;1 −− rF α

AB 2
AB

2 rC2SSAB = ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSAB100 1 =SSABMSAB

MSE
MSAB [])1(,1;1 −− rF α

e SSE=SST-SSA-
SSB-SSAB ⎟

⎠
⎞

⎜
⎝
⎛

SST
SSE100 22(r-1)

)1(−
=

r22

SSEMSE

Basics of Software Engineering Experimentation 259

Component Sum of Squares Percentage
Variation

Degrees of
Freedom

Mean Square F-
Computed

F-Table

Y ∑= 2
ijYSSY

 223

..Y 22 r2SSO µ= 1

..YY − SSOSSYSST −=

100

223-1

A 2
A

2 rC2SSA = ⎟
⎠
⎞

⎜
⎝
⎛

SST
SSA001 1 5547 435 5.32

B 2
B

2 rC2SSB =

⎟
⎠
⎞

⎜
⎝
⎛

SST
SSB100 1 1083 84.9 5.32

AB 2
AB

2 rC2SSAB =

⎟
⎠
⎞

⎜
⎝
⎛

SST
SSAB100 1

300 23.52 5.32

e SSE=SST-
SSA-SSB-

SSAB
⎟
⎠
⎞

⎜
⎝
⎛

SST
SSE100

22(3-1) 12.75

Table 10.11. Results of the analysis of variance for our example

260 The Best Alternatives for More than One Variable

Another form of judging the significance of the effects and interactions is to
calculate their confidence interval. This procedure involves calculating the standard
error of the effects. This estimate is calculated by means of the variance of the
above effects. The variance of each estimate of an effect can be calculated as
follows:

V(effect) = V(Contrast
r2k−1

) = 1
(r 2k−1)2

V(Contrast)

where r is the number of replications and k is the number of alternatives of the
factors under consideration. Each contrast is a linear combination of 2k alternative
totals, and each total consists of r observations. Hence,

2kn2)V(Contrast σ=

and the variance of an effect is:

2

2k

2k
21k r2

1n2
)(r2

1V(effect) σσ
−− ==

the estimated standard error would be found by replacing σ2 by MSE and
calculating the square root of the above equation, that is,

MSE
r2

1SE(effect) 2k−=

In our example, the standard error or standard deviation of the effects is equivalent
to 4.25. Hence, the confidence intervals for the estimates of the effects are
calculated as:

A= 43 ± 4.25 B=19±4.25 AB=10±4.25

As none of these includes 0, we can deduce that both A, B and their interaction are
significant. Note that if the confidence interval of any factor or interaction included
0, then the effect of that factor could be 0, which means that it would not be
significant for our experiment in which we aim to determine the factors that really
do influence the response variable.

10.3.1.5. Recommendations on the Best Alternative of Each Factor

Finally, once we have determined that the factors and their interaction are
statistically significant, conclusions should be drawn as to which factor alternatives

Basics of Software Engineering Experimentation 261

improve the response variable. As discussed in section 10.2.4, graphs of the
principal effects and their interactions can be plotted for this purpose. Figure 10.5
shows these graphs for our example. Remember that the principal effect of a
variable must be interpreted individually only when there is no evidence that this
variable interacts with others. When there is evidence of one or more interactions,
the variables that interact must be interpreted jointly, as in the case of the example
in question. Hence, our conclusions are based on Figure 10.5(c), which shows the
effect of the interaction of the two factors on the response variable.

New OO

20

60

With
knowkedge

Without
knowledge

30

60

New OO

20

60

With knowledge

(a) (b)

(c)

Paradigm

Paradigm

Response
variable

Without knowledge

Response
variable

Response
variable

Domain knowledge

Figure 10.5. Graphs of effect and interaction for our example

Let’s briefly remark on the graphs of the principal effects. Note that the two
variables have a positive effect, that is, an increase in the variable raises the value of
the response variable (Figure 10.5(a) and (b)).

The interaction between the paradigm and domain knowledge is fairly small, as
indicated by the fact that the slope of the two lines is similar in Figure 10.5(c).
Thus, the graphs of interaction can also be used to graphically illustrate the
interaction between two factors. Parallel straight lines indicates that the represented
factors do not interact. See, for example, the graph of interaction shown in Figure
10.6, which would indicate that the two factors do not interact. So, the bigger the

262 The Best Alternatives for More than One Variable

difference in the slope of the two lines, the bigger the interaction between the
represented variables.

A1

60

40

20 .
..
.

A2

50

30

10

Factor A

B1

B1

B2

B2

Response
variable

Figure 10.6. Graph without interaction between factor A and B, each with two

alternatives

Returning to our example, we are looking for the lowest possible response variable,
and we need to analyse Figure 10.5(c) to get the best alternatives, as we found in
the preceding section that there was a significant interaction between them. So, the
conclusion drawn after this experiment would be that the maintenance effort is
lower when the new paradigm is used and there is domain knowledge, although
there is not really a big difference using the new paradigm either with or without
background knowledge.

Let’s finish this section with a comment on effects graphs. These graphs can often
be useful for interpreting significant interactions and presenting results to managers
with little knowledge of statistics. However, it must not be the only technique used
to analyse the data, because its interpretation is subjective and its appearance can be
deceptive.

10.3.2. Analysis for 2k Factorial Design

As we already know, a 2k design is used when we aim to determine the effect of k
factors, each with two alternatives, on the response variable. The analysis
techniques studied so far for 22 can easily be extended to a 2k design. As discussed
above, given k factors, the analysis outputs 2k effects, of which k are principal

effects due to a single factor,) effects due to the interaction of 2 facto)k
3(k

2(rs,

Basics of Software Engineering Experimentation 263

o (due to the interaction of 3 factors, and so on up t)k
k effects of interactions among

k factors. The sign table method is also valid for analysing this sort of experimental
design.

We are going to illustrate this analysis by considering the results of an
experimentation performed to ascertain the best combination of: testing strategy,
system size and time spent on testing in order to get the best reliability.
Accordingly, we have three factors, each with two alternatives, and the response
variable will represent the faults detected in time t. This approach gives rise to a 23
design. The null hypothesis would be H0: “there is no difference in the number of
errors found in time t, due to different validation strategies, different systems size or
different time spent on validation or due to any interaction among these three
factors”. Table 10.12 shows the alternatives of the factors.

 Table 10.12 Alternatives for three factors in our example

FACTOR NAME LEVEL -1 LEVEL 1
Strategy
Size
Validation time

A
B
C

λ
Large
Long

π
Small
Short

Two replications of each observation were made for this experiment. Therefore, this
design calls for 23x2 elementary experiments using two similar programs. Table
10.13 represents the sign table of this experiment, reflecting the 16 observations.

 Table 10.13. Sign table for a 23 design

I A B C AB AC BC ABC Y Y
1 -1 -1 -1 1 1 1 -1 (59, 61) 60
1 1 -1 -1 -1 -1 1 1 (74, 70) 72
1 -1 1 -1 -1 1 -1 1 (50, 58) 54
1 1 1 -1 1 -1 -1 -1 (69, 67) 68
1 -1 -1 1 1 -1 -1 1 (50, 54) 52
1 1 -1 1 -1 1 -1 -1 (81, 85) 83
1 -1 1 1 -1 -1 1 -1 (46, 44) 45
1 1 1 1 1 1 1 1 (79, 81) 80
514 92 20 6 6 40 0 2
64.25 23 5 1.5 1.5 10 0 0.5

The statistical significance of these effects is calculated, as for a 22 design using the
analysis of variance. A similar analysis to the one discussed in section 10.3.1 would
have to be conducted. Accordingly, the mathematical model associated with this
type of design is as follows:

264 The Best Alternatives for More than One Variable

Y = C0 + CAXA + CBXB + CCXC + CABXAXB + CACXAXC + CBCXBXC +
CABCXAXBXC + e

This model is valid supposing that the errors e are identically and independently
distributed with a normal distribution of mean zero and constant, albeit unknown,
variance. As in the two-factor model, discussed in section 10.3.1.1, the residuals for
the three-factor model are ijklijklijkl ŷye −= . As the adjusted values are

.yŷ ijkijkl = (the mean of each replication),

.yye ijkijklijkl −=

Hence, the residuals of the data of our example are shown in Table 10.14.

Table 10.14. Residual calculation

Effects Measured
response

Estimated
response

Errors

A B C AB AC BC ABC yi1 yi2 y i ei1 ei2

-1 -1 -1 1 1 1 -1 59 61 60 -1 1
1 -1 -1 -1 -1 1 1 74 70 72 2 -2

-1 1 -1 -1 1 -1 1 50 58 54 -4 4
1 1 -1 1 -1 -1 -1 69 67 68 1 -1

-1 -1 1 1 -1 -1 1 50 54 52 -2 2
1 -1 1 -1 1 -1 -1 81 85 83 -2 2

-1 1 1 -1 -1 1 -1 46 44 45 1 -1
1 1 1 1 1 1 1 79 81 80 -1 1

23 -5 1.5 1.5 10 0 0.5

Once the residuals have been obtained, the tests mentioned in section 10.3.1.2 have
to be run. In this section, we are going to focus on the calculations for determining
the significance of the effects, and the above tests are left as an exercise for the
reader.

Remember that the next step is to calculate the variation in the response. This
variation is calculated by means of the sum of squares total SST. For the three-
factor model, this value is calculated as follows:

 SST = SSA+SSB+SSAB+SSAC+SSBC+SSABC= 2kr CA
2 + 2kr CB

2 + 2kr

CAB
2 + 2kr CAC

2 +2kr CBC
2 +2kr CABC

2 + ∑
lkji ,,,

ei,j,k,l 2

Remember that the coefficients can be obtained by dividing the value of the
respective effects by two. Thus, the SST can be calculated as:

Basics of Software Engineering Experimentation 265

2116
2699

SST = 232 (11.52+2.5 2+0.752+0.752+52+0+0.252) + 64 =
2116+100+9+9+400+0+1+64=2699

The portion of variation explained by each factor and its interactions are:

 A (Strategy) : = 78%
100
2699

 B (System Size) : = 3.7%

 C (Validation Time):

%03.02699
1

:ABC%;0
2699

0
:BC%;14

2699
400

:AC%;3.0
2699

9
:AB

=
===

From these data, we deduce that the factors that are really important in this
experiment are A and AC and to a lesser extent B. Note that A explains 78% of the
variation in the response variable, which means that if the above variation turns out
to be significant, the choice of the best alternative of factor A can lead to an
improvement in the above response variable.

For the purpose of studying whether the variation produced by these factors is
statistically significant, we have to continue with the analysis of variance. Table
10.15 shows the analysis of variance for the 2k design with r replications, when
k=3. Note that this table could be easily generalised for more than three factors.

According to Table 10.16, which shows the result of the analysis of variance for the
experiment under consideration, the effects that are statistically significant at 99%
are A, B and the interaction AC. This means that the response variable variation
they produce is really caused by having varied the alternatives and is not due to
chance.

The best values for these factors can be obtained by means of the graph of effects
and interactions, shown in Figure 10.7. Figure 10.7(a) represents the effect of factor
A, that is, the validation strategy. As indicated by the graph, the number of faults
detected is greater with strategy π than with strategy λ. Figure 10.7(b) shows the
effect of factor B, that is, size. Note how the straight line is almost parallel to the
ordinate axis, depicting that the effect on the response is low, as indicated by the
fact that the variation in the response caused by this factor was 3.7%. On the other
hand, the graph shown in Figure 10.7(c) represents the effect of the interaction
between the validation strategy and validation time. The fact that the lines cross
means that there is an interaction and, hence, its impact on the response variable
(14%).

%3.0
2699

9
=

266 The Best Alternatives for More than One Variable

Table 10.15 Analysis of variance table for 2k fixed-effects model

Component Sum of squares Degrees of

freedom

Means square F- Computed F-Table

Y SSY = Yij
2∑

2kr

Y ••
2µ2krSS0 =

1

Y− Y ••
SST = SSY-SS0 2k -1

A = 2
AC2krSSA 1 SSAMSA =

 MSE
MSA

 []1−F α; 1, 2k (r-1)

B = 2
BC2krSSB 1 SSBMSB =

MSE
MSB

[]1−F α; 1, 2k (r-1)

Basics of Software Engineering Experimentation 267

C

= 2
CC2krSSC 1 SSCMSC =

MSE
MSC

[]1−F α; 1, 2k (r-1)

AB = 2
ABC2krSSAB 1 SSABMSAB =

MSE
MSAB

[]1−F α; 1, 2k (r-1)

AC = 2
ACC2krSSAC

1 SSACMSAC =

MSE
MSAC

[]1−F α; 1, 2k (r-1)

BC = 2
BCC2krSSBC

1 SSBCMSBC =

MSE
MSBC

[]1−F α; 1, 2k (r-1)

ABC = 2
ABCC2krSSABC 1 SSABCMSABC =

 MSE
MSABC

[]1−F α; 1, 2k (r-1)

e ∑= 2
ijkeSSE 2k(r-1)

268 The Best Alternatives for More than One Variable

Table 10.16. Values of the analysis of variance for our example
Component Sum of squares Degrees of

freedom
Mean square F- Computed F-Table

Y SSY = Yij
2∑

16

Y ••
2µ2krSS0 =

1

Y− Y ••
SST = SSY− SS0

15

A = 2
AC2krSSA 1 MSA = 2116

264.5 11.26

B = 2
BC2krSSB 1 MSB = 100

12.5 11.26

C

= 2
CC2krSSC 1 MSC = 9 1.125

11.26

AB = 2
ABC2krSSAB 1 MSAB = 9 1.125 11.26

AC = 2
ACC2krSSAC

1 MSAC = 400 50 11.26

BC = 2
BCC2krSSBC

1 MSBC = 0 0 11.26

ABC = 2
ABCC2krSSABC 1 MSABC= 1 0.125 11.26

e ∑= 2
ijkeSSE 8

8
8
64 ==MSE

Basics of Software Engineering Experimentation 269

λ π

25

75

Large Small

25

75

Short validation time

Long validation time

(a) (b)

(c)

25

75

50

100

Strategy System Size

λ π Strategy

Figure 10.7. Effects of A, B and AC

The findings of this analysis are that slightly better results are obtained, that is,
more errors are detected, for small-size problems, and this happens irrespective of
the alternatives of the other factors. On the other hand, it can be inferred that a
better response is obtained for strategy π than for strategy λ, particularly if a lot of
time is spent on validation. Note that the effects of the size and the strategy cannot
be interpreted separately owing to the existence of the interaction AB.

10.4. ANALYSIS FOR FACTORIAL DESIGNS WITHOUT REPLICATION

The total number of combinations of alternatives in a factorial design is large even
for a moderate number of factors. For example, a 25 design has 32 combinations of
alternatives, a 26 design has 64 and so on. Resources are usually curbed, which can
limit the number of replications of an experiment. Often there are only enough
resources to run the experiment once, unless the researcher is prepared to disregard
some factors.

Error cannot be estimated when there is only one replication of the experiments.
One approach to the analysis of a non-replicated factorial design is to suppose that
some higher order interactions are negligible and use their mean squares to estimate
the error. This is an application of the principle of effect dispersion. As mentioned
in Chapter 5, the principle of effect dispersion says that most systems are dominated
by some of the lower order principal effects and interactions, and most higher order

270 The Best Alternatives for More than One Variable

interactions are negligible. The problem lies then in determining which of these
interactions are significant and which are not. Let’s look then at how to analyse
factorial designs without replication.

The steps for performing an analysis of this sort can be identified as follows:

1. Determine the significance of factors and interactions that will be considered
in the analysis.

2. Validate the model using the residuals.
3. Establish recommendations on the best alternatives of the factors.

These steps are addressed in detail in the following sections. In section 10.4.4,
however, we will study an alternative procedure for conducting this analysis.

10.4.1. Determining the Significance of the Factors and Interactions

An approximate approach to determining which interactions are negligible and
which are not is to plot the estimates of the effects on normal probability paper. The
effects that are negligible are normally distributed with mean zero and variance σ2
and tend to be positioned along a straight line of this graph, whereas the significant
effects will have means other than zero and will not be positioned along a straight
line.

Let’s illustrate this method with an example. Suppose that we want to determine
whether the number of errors detected using an inspection technique is greater when
the inspection is performed by the team of developers or when performed by
individuals who had nothing to do with that development. For this purpose, we are
going to consider as factors the team of developers (factor A: in-house, external),
development process maturity (factor B: high, low), developer experience (factor C:
inexperienced, experienced) and problem complexity (factor D: difficult, simple).
The response variable will, of course, be the number of errors detected. The null
hypothesis is H0: “the number of errors is affected neither by the inspection team,
nor by the development process, nor by developer experience, nor by problem
complexity, nor by any interaction among these variables”. Hence, we have a 24
design. Table 10.17 shows the data collected from this experiment.

 Table 10.17. Results of the specimen 24
experimental design

Basics of Software Engineering Experimentation 271

Factor
A B C D Errors detected
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+

-
-
-
-
+
+
+
+
-
-
-
-
+
+
+
+

-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+

45
71
48
65
68
60
80
65
43

100
45

104
75
86
70
96

The effects can be calculated using the sign table method. The signs for each
experiment are shown in Table 10.18. From this table, we can get the effects of the
factors and interactions using the procedure explained above, which are shown in
Table 10.19.

272 The Best Alternatives for More than One Variable

Table 10.18. Sign table for a 24 design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+

+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+

-
-
-
-
+
+
+
+
-
-
-
-
+
+
+
+

+
-
+
-
-
+
-
+
+
-
+
-
-
+
-
+

+
+
-
-
-
-
+
+
+
+
-
-
-
-
+
+

-
+
+
-
+
-
-
+
-
+
+
-
+
-
-
+

-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+

+
-
+
-
+
-
+
-
-
+
-
+
-
+
-
+

+
+
-
-
+
+
-
-
-
-
+
+
-
-
+
+

-
+
+
-
-
+
+
-
+
-
-
+
+
-
-
+

+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+

-
+
-
+
+
-
+
-
+
-
+
-
-
+
-
+

-
-
+
+
+
+
-
-
+
+
-
-
-
-
+
+

+
-
-
+
-
+
+
-
-
+
+
-
+
-
-
+

 Table 10.19. Effects of the factors and interactions of our 24 design

Order (j) Effect

Estimation (j - .5)/15

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

A
AD
D
C
ABD
B
BC
ABC
ABCD
AB
CD
BD
ACD
BCD
AC

21.63
16.63
14.63

9.88
4.13
3.13
2.38
1.88
1.38
0.13

-0.38
-1.13
-1.63
-2.63

-18.13

0.9667
0.9000
0.8333
0.7667
0.7000
0.6333
0.5667
0.5000
0.4333
0.3667
0.3000
0.2333
0.1667
0.1000
0.0333

Basics of Software Engineering Experimentation 273

Let’s start to analyse these data by plotting the estimates of the effects on normal
probability paper. Figure 10.8 shows the respective graph. All the effects that are
positioned along a line are negligible, whereas the large effects are at some distance
from the line. The important effects that are discovered in this analysis are the
principal effects of A (inspection team), C (developer experience), D (problem
complexity) and interactions AC and AD.

Thus, we will use the effects of the negligible variables and interactions to get an
estimate of experimental error and thus be able to investigate the statistical
significance of the non-negligible effects and interactions.

.
.

95

90

80

70

50

30

20

10

5
AC

-20 -15 -10 -5 0 5 10 15 20 25

C
D

AD

A.
.............

.

95

90

80

70

50

30

20

10

5

%%

Figure 10.8. Effect of the factors and interactions on normal probability paper

10.4.2. Validating the Model

274 The Best Alternatives for More than One Variable

Before proceeding with this analysis, we have to apply the usual diagnostic tests
described in section 10.3.1.2, for example. In this case, we have determined that the
significant effects are A = 21.63, C = 9.88, D =14.63, AC = -18.13 and AD = 16.63.
If this is true, the estimated response variable, that is, the number of errors detected
in the inspections will be as follows:

ˆ y = 70.06 + (
21.63

2
)XA + (

9.88
2

)XC + (
14.63

2
)XD − (

18.13
2

)XAC + (
16.63

2
)XAD

where 70.06 is the mean response and the alternatives of the variables XA, XC and
XD (related to the significant effects) are +1 and –1. Note that this expression does
not account for the negligible effects of the factors and interactions, as shown in
Figure 10.8.

The residuals are calculated as usual by subtracting from each observed value y the
respective estimated value . The residuals for the 16 observations of our example
are shown in Table 10.20. Briefly, what we are doing is to use the effect of the
negligible factors and interactions as a measure of experimental error e.

ŷ

Table 10.20. Residuals related to the non-
replicated 24 design in question

y

ŷ e = y - ŷ

45
71
48
65
68
60
80
65
43

100
45

104
75
86
70
96

46.22
69.39
46.22
69.39
74.23
61.14
74.23
61.16
44.22

100.65
44.22

100.65
72.23
92.40
72.23
92.40

-1.22
1.61
1.78
-4.39
-6.23
-1.14
5.77
3.86
-1.22
-0.65
0.78
3.35
2.77
-6.40
-2.23
3.60

Figure 10.9 shows the graph of these residuals plotted on normal probability paper.

Basics of Software Engineering Experimentation 275

The points of this graph are reasonably close to a straight line. Furthermore, Figure
10.10 shows the graph of residuals plotted against estimated values. There is no
significant pattern in this graph, nor is it apparently funnel shaped. Again the errors
are of a lower order of magnitude than the response variable and the ratio ymax/ymin
is 2.41. Therefore, the results support our findings that A,C,D, AC and AD are the
only significant effects and that they satisfy the underlying assumptions of the
analysis.

10.4.3. Recommendations on the Best Alternatives of the Factors

The principal effects A, C and D are plotted in Figure 10.11 (a). The three effects
are positive, and if we consider these three principal effects only, the alternative +1
in each one would give us a higher number of detected errors. However, it is always
necessary to examine the important interactions. Remember that the principal
effects do not make much sense on their own when the factors that cause the above
effects are involved in significant interactions.

Figure 10.11(b) plots the interactions AC and AD. Note that, in the case of
interaction AC, the team effect (in-house or external) is small when the developers
are experienced and very large otherwise. This means that more errors are identified
for inexperienced developers and an in-house development team. The interaction
AD indicates that the source of the team has little effect when the problem is simple
and has a big positive effect when the problem is complex. Having examined this
analysis, the next section looks at another means of conducting the analysis of an
unreplicated 2k design.

276 The Best Alternatives for More than One Variable

.

.

99

98

96

90

80

70

60

50

40

-8 -6 -4 -2 0 2 4 6

........

.
.

.

.

..

.

.
.

30

20

10

5

2

1

0.20

0.10

0.01

...

99

98

96

90

80

70

60

50

40

30

20

10

5

2

1

0.20

0.10

0.01

%%

Figure 10.9. Normal probability residuals graph

Basics of Software Engineering Experimentation 277

20 60 80 100

 0
-2
-4
-6
-8

 8
 6
 4
 2

y

Figure 10.10. Graph of residuals against estimated response

(a) Principal effects

.

Team

.

90

80

70

60

50

.
.

90

80

70

60

50

.
.

90

80

70

60

50

N
um

be
r o

f e
rr

or
s d

et
ec

te
d

(b) Interaction

.

.

90

80

70

60

50N
um

be
r o

f e
rr

or
s d

et
ec

te
d

40

100

. .
Experienced Developer

Inexperienced Developer

Interaction AC .

.
90

80

70

60

50

40

100

. .
Difficult Problem

Simple Problem
Interaction AD

 in-house external inexperienced experienced

Developer Experience Problem Complexity

difficult simple

Team
 in-house external

Team
 in-house external

Figure 10.11. Graphs of principal effects and interactions.

278 The Best Alternatives for More than One Variable

The same steps as discussed in section 10.3.2 for a 2k design, where k=3, would be
taken to analyse this design. Thus, in this case, the mathematical model to be used
would be:

Y = C0 + CAXA + CCXC + CDXD + CACXAXC + CADXAXD + CCDXCXD +
CACDXAXCXD + e

for which we would have to check the respective validity, calculate the variation in
the response variable and determine the statistical significance of the above
variation applying the analysis of variance. These calculations are left as an exercise
for readers, who will find that the table of analysis of variance to be applied is as
shown in Table 10.22.

10.4.4. Model Mapping

Alternatively, this analysis could be run by interpreting the data from Figure 10.8
differently. Given that neither B (maturity) nor any interactions in which it is
involved are significant, it can be discarded and the experiment then becomes a 23
design (A, C and D) with two replications. Looking at columns A, C and D in Table
10.17 only, you will see that the above columns form two replications of a 23
design. Table 10.21 shows the values of the response variable for this example, as
well as the expected response.

Table 10.21. Residual calculation for our example

 Measured
 response

Estimated
response

Errors

A C D yi1 yi2 y i ei1 ei2

-1 -1 -1 45 48 46.5 -1.5 1.5
1 -1 -1 71 65 68 3 -3
1 1 -1 68 80 74 6 -6

-1 -1 1 60 65 62.5 2.5 -2.5
1 -1 1 43 45 44 1 -1

-1 1 1 100 104 102 2 -2
-1 1 1 75 70 72.5 -2.5 2.5
1 1 1 86 96 91 5 -5

Basics of Software Engineering Experimentation 279

Table 10.22.Table of analysis of variance for our example
Component Sum of squares Degrees of freedom Means square F- Computed F-Table

A = 2
AC2krSSA 1 SSAMSA =

 MSE

MSA []1−F α; 1, 2k (r-1)

C

= 2
CC2krSSC

1 SSCMSC =

MSE
MSC

[]1−F α; 1, 2k (r-1)

D

= 2
DC2krSSD

1 SSDMSD =
MSE
MSD

[]1−F α; 1, 2k (r-1)

AC = 2
ACC2krSSAC

1 SSACMSAC=

MSE
MSAC

[]1−F α; 1, 2k (r-1)

AD = 2
ADC2krSSAD 1 SSADMSAD=

MSE
MSAD

[]1−F α; 1, 2k (r-1)

CD = 2
CDC2krSSCD

1 = SSCDMSCD
 MSE

MSCD

 []1−F α; 1, 2k (r-1)

ACD = 2
ACDC2krSSACD 1 = SSACDMSACD MSE

MSACD

)1r(2
SSEMSE k −

=

e ∑= ijkle 2SSE

2k(r-1)
)1r(2

SSEMSE k −
=

280 The Best Alternatives for More than One Variable

This is similar to the analysis of variance explained in section 10.3.2 for a 2k
factorial design, not considering, however, the components related to factor B.

The results of the analysis of variance are shown in Table 10.23. Note that by
mapping the single replication of the 24 design to a replicated 23 design, we have an
estimate of the interaction ACD and an estimate of the error based on the
replication, which is useful.

As a general rule, if you have only one replication of a 2k design and you find that
the factors (h<k) are negligible and can be disregarded, the original data correspond
to a factorial design with two levels and k-h remaining factors with 2h replications.

Table 10.23. Analysis of variance for the replicated data of Table 10.21.

Component Sum of
squares

Degrees of
freedom

Mean
square

F- Computed

A
C
D

AC
AD
CD

ACD
e

1870.56
390.06
855.56

1314.06
1105.56

5.06
10.56

179.52

1
1
1
1
1
1
1
8

1870.56
390.06
855.56

1314.06
1105.56

5.06
10.56
22.44

83.36a

17.38 a

38.13 a

58.56 a

49.27 a

<1
<1

a Significant at 1%

10.5. HANDLING UNBALANCED DATA

Most of this chapter has focused on analysing balanced factorial designs, that is,
cases in which the same number n of observations are gathered in each cell.
However, it is not unusual to come up against situations in which the number of
observations in the cells differs. These factorial designs can occur on several
grounds. For example, the experimenter could originally have designed a balanced
experiment, but some of the information may have been lost because of unforeseen
problems during data collection. The end product is an unbalanced design.
Moreover, some experiments are purposely designed as unbalanced, such as when
some treatment combinations are more expensive and more difficult and fewer
observations are made for these cells. Furthermore, the experimenter may be
interested in certain alternative combinations, because they represent new or
unexplored conditions. In this case, the investigator may opt to get additional
replications in such cells.

Basics of Software Engineering Experimentation 281

The usual analysis of variance techniques cannot be applied in these cases. In this
section, we briefly outline the methods for analysing unbalanced factorial designs.
For the above-mentioned reasons, more emphasis will be placed on the two-factor
model. The number of observations in the ijth cell is assumed to be nij and

is the number of observations of the ith row (ith alternative of factor

A), is the number of observations of the jth column (the jth

alternative of factor B), and is the total number of

observations.

∑ == b
1j ij

n
i

n

∑ == a
1i ij

nnj

∑ =∑ == b
1j ij

na
1in

10.5.1. Proportional Data: A Simple Case

One situation that includes unbalanced data and whose analysis is fairly
straightforward is when the data are proportional. In other words, when the number
of observations in the ijth cell is:

..

.ji.
ij n

nn
n =

That is, the number of observations in each cell must be equal to the product of the
number of observations in the respective row and the number of observations in the
respective column of the cell, divided by the total number of observations. This
condition means that the number of observations in any pair of rows and columns
are proportional.

As an example of proportional data, consider an experiment in which we aim to
evaluate the maintainability of OO software with differing degrees of inheritance (1,
3 and 5 inheritance levels) by programmers with differing experience
(inexperienced in object orientation, one year’s experience, over one year’s
experience). The response variable in this two-factor design is the time spent on
making a change to the code. These data are shown in Table 10.24 and are clearly

proportional; for example, we have 4
20

10(8)
n
nn

n .11.
11 === observations in cell

(1, 1). We have 2
20

5(8)
n
nn

n .22.
22 === observations in cell 2,2 and so on.

282 The Best Alternatives for More than One Variable

Table 10.24. Experiment on how long it takes to make a change yielding
proportional data

 Level of inheritance
Experience 3 levels 2 levels 1 level
Over 1 year n11 = 4

130 155
74 180

n12 = 4
34 40
80 75

n13 = 2

70 58

n1. = 10

y1.. = 896
1 year n21 = 2

159 126
n22 = 2

136 115
n23 = 1

45
n2. = 5

y2.. = 581
Inexperienced n31 = 2

138 160
n32 = 2

150 139
n33 = 1

96
n3. = 5

y3.. = 683
 n.1 = 8

y.1. = 1122

n.2 = 8
y.2. = 769

n.3 = 4
y.3. = 269

n.. = 20
y.... = 2160

Standard analysis of variance can be used when working with proportional data. All
we have to do is to slightly amend the formulas for calculating the sum of squares
as follows:

∑∑∑∑∑

∑∑

∑

∑

∑∑∑

= == = =

= =

=

=

= = =

−=−−−=

−−−=

−=

−=

−=

a

1i

b

1j ij

2
ij.

a

1i

b

1j

n

1k

2
ijk

BA
..

2
...

a

1i

b

1j ij

2
ij.

..

2
...

b

1j .j

2
.j.

..

2
...

a

1i i.

2
i..

..

2
...

a

1i

b

1j

n

1k

2
ijk

n
y

ySSABSSBSSASSTSSE

SSSS
n
y

n
y

SSAB

n
y

n
y

SSB

n
y

n
y

SSA

n
y

ySST

ij

ij

The result of applying the usual analysis of variance to the data of Table 10.24 is
shown in Table 10.25. Both the inheritance level and experience are significant.

Table 10.25. Analysis of variance for the maintainability data in Table 10.23.

Basics of Software Engineering Experimentation 283

Source of variance Sum of squares Degrees of
freedom

Mean
square

F0

Experience
Level of inheritance
Interaction
Error
Total

8,170.400
16,090.875

5,907.725
8,981.000

39,150.000

2
2
4

11
19

4,085.20
8,045.44
1,476.93

816.45

5.00
9.85
1.18

10.5.2. Approximate Methods

If the number of replications per cell are not proportional and provided the data are
not very unbalanced, approximate methods can sometimes be used to convert this
problem into a balanced problem. Of course, this is only a rough analysis. However,
the analysis of the balanced data is so simple that there is often a tendency to use
this method. In practice, we have to decide when the data are not far removed from
a balanced case to assure that the degree of approximation introduced is
insignificant. Some of these approximate methods are described below. Each cell is
assumed to contain at least one observation (in other words, nij≥1).

10.5.2.1. Estimation of Missing Observations

If there are only a few different nij, one reasonable procedure is to estimate the
missing values. Consider, for example, the unbalanced design shown in Table
10.26, where the number of available observations is shown in each cell. A
reasonable procedure in this case, where there is the same number of observations
in all the cells, except (2.2), is to estimate the value missing from cell (2,2). We use
a model in which the sum of square error should ideally be minimised in order to
investigate the effect of the factors and the interaction. Thus, the estimation of the
missing value for the ijth cell will be y ij . In other words, the missing value is
estimated using the mean observations of the data available the cell in question.

 Table 10.26. Values of nij for an unbalanced design.

 Columns
Rows 1 2 3

1
2
3

4
4
4

4
3
4

4
4
4

The estimated value is dealt with as if it were an observed datum. The only change
made to the analysis of variance is to reduce the degrees of freedom of the error by
the number of missing observations estimated. For example, if the value missing
from cell (2,2) in Table 10.10 is estimated, we have to use 26 instead of 27 degrees

284 The Best Alternatives for More than One Variable

of freedom of the error.

10.5.2.2. Elimination of Data

Consider the data from Table 10.27, which again represents the number of
observations per cell. Note that cell (2,2) has only one more observation than the
others. It is not a good idea to estimate the values missing from the other 8 cells, as
this would mean estimating almost 18% of the end data. A reasonable alternative is
to remove or eliminate one of the observations from cell (2,2), thus producing a
balanced design with n=4 replications.

Table 10.27. Values of nij for an unbalanced design

 Columns
Rows 1 2 3

1
2
3

4
4
4

4
5
4

4
4
4

The observation to be eliminated must be selected at random. Moreover, instead of
completely eliminating the above observation, it can be added again to the design in
place of another observation and the analysis can be repeated. The interpretations of
these two analyses should not be contradictory. If they are, the eliminated
observation is likely to be a far-off residual or a datum with a serious collection
error and must be dealt with in accordance with these circumstances. In practice, it
is very unlikely for this problem to occur when a few data are removed and there is
little variability from one cell to another.

10.5.2.3. “Unweighted” Means Method

According to this method, introduced by Yates (Yates, 1934), the means of the cells
are considered as if they were data and they are subjected to a standard analysis of a
balanced design to get the sums of squares of each row, column and interaction.
The mean square error is determined by:

abn..

)y(y
MSE

a

1i

b

1j

n

1k

2
ij.ijk

ij

−

−
=

∑∑∑
= = =

Then the MSE is used to estimate σ2, the variance of the individual observations
yijk. However, the mean square error used in the analysis of variance must estimate
the variance of the mean ijy ,)y(V .ij , because it is the means of the cells that have

Basics of Software Engineering Experimentation 285

been analysed, and the variance of the mean of the ijth cell is . Hence, ij
2/nσ

 ∑∑
∑∑

= =

= = ==
a

1i

b

1j ij

2

a

1i

b

1j
ij

2

ij. n
1

abab

/n
)y(V σ

σ

If the proportional MSE is used to estimate σ2, we get:

 ∑∑
= =

=
a

1i

b

1j ijn
1

ab
MSE

MSE'

as the mean square error (with n-ab degrees of freedom), which must be used in the
analysis of variance.

This method is an approximate procedure, because the sums of squares of the row,
column and interaction do not have a chi-square distribution. The main advantage
of this method is the ease of calculation. However, the method of unweighted
means often works reasonably well when there is not much difference between the
nij.

A related technique is the method of weighted mean squares, also proposed by
Yates (Yates, 1934). This technique is also based on the sums of mean squares of
the cells. However, the weighting of the terms of the sums of squares is inversely
proportional to their variances. For further details on this procedure, see (Searle,
1971) and (Speed, 1978).

10.5.3. The Exact Method

When approximate methods are unsuitable, for example, when there are empty cells
(some nij = 0) or when there is a big difference between nij, the experimenter must
use an exact analysis. The approach used to develop the sums of squares for the
purpose of testing the principal effects and interactions involves representing the
analysis of variance model by means of a regression model, adjusting this model to
the data and using the general-purpose regression significance testing technique.
However, there are different ways of doing this, and each method can output
different results for the sums of squares. Additionally, the hypotheses that are
proven are not always the same as in the balanced case, and the results are not
always easy to interpret. For more information on this subject, see (Searle, 1971), or
(Speed, 1976).

10.6. ANALYSIS OF FACTORIAL DESIGNS IN REAL SE EXPERIMENTS

286 The Best Alternatives for More than One Variable

Research into software inspection techniques has given rise to a series of interesting
experiments. In the following, we will take a look at the results from some of these
yielded by the analysis techniques described in this chapter.

10.6.1. Analysis for a 3x3 Factorial Design to Examine Different Inspection
Techniques on Different Programs

We described the 3x3 factorial design run by Wood et al. (Wood, 1997) for the
purpose of examining the efficiency of three inspection techniques (code reading,
functional testing and structural testing) on three different programs in Chapter 5,
section 5.5.3.1. A summary of the analysis of variance for this design is given in
Table 10.28, considering the percentage of faults detected as the response variable.
This table shows a significant effect of factors (inspection techniques and program
types) and interaction. An initial reaction to this might be to consider it as a flaw in
the experiment, the three chosen programs were not similar enough. Considered at
more length, a technique does not perform uniformly well over all programs.
According to the above authors, the drawback of this result is that it is not possible
to further investigate any possible significant differences between the defect-
detecting capabilities of the three techniques, as it is impossible to separate their
effect from that of the program. The strong message that comes over is that no
single technique is best and that, to obtain any real effectiveness, a combination of
approaches would appear to be fruitful. Additionally, the experimenters suggest that
other empirical investigations be run as an aid for classing programs and, perhaps,
finding out the best technique for a given defect type.

Table 10.28. Analysis of variance summary (Wood, 1997)

Effect Sum of
Squares

Degrees of
Freedom

F- Computed Significance
Level

Program 17943.45 2 33.05 <0.01
Technique 2993.17 2 5.51 <0.01
Prog x Tech 7179.12 4 6.61 <0.01
Errors 23889.6 88

10.6.2. Analysis for a 3x2 Factorial Design to Examine Different Inspection
Techniques with Different Software Requirements Specification Documents

Basics of Software Engineering Experimentation 287

An analysis of variance applied to a 3x2 design was completed by Porter (1995) to
examine the effect of three inspection techniques (ad hoc, checklist and scenarios)
using two different software requirements specification (SRS) documents. The
results are shown in Table 10.29, from which it is clear that the principal effects are
significant, whereas the interaction TechniquexSRS is not. The result of a more
exhaustive study about which technique is the best is scenarios, providing a 35%
improvement in the rate of fault detection. This same experiment was replicated by
Porter et al. (1998) using practitioners instead of students as was the case in the
preceding experiment. The findings of this replication were the same with regard to
the significance of the techniques and documents.

Table 10.29. Analysis of Variance of Inspection Technique and Specification

Effect Sum of
Squares

Degrees of
Freedom

F-Computed Significance level

Inspection
Technique

0.2 2 12.235 <0.01

Specification 0.143 1 17.556 <0.01
Technique x
Specification

0.004 2 0.217 0.806

Error 0.212 26

10.6.3. Analysis for a 2x3 Factorial Design to Compare the Perspective from
which a Code Inspection is Run in Different Problem Domains

Another analysis of variance for a 2x3 experiment (Laitenberger, 1997) was
conducted according to the design described in section 5.5.3.2 aimed at studying
whether the perspective-based-reading (PBR) technique in particular, when applied
to code, is more effective than ad hoc or checklist-based reading inspections.
Remember that in this experiment, the authors of the experiment work with two
factors: problem domain (generic, specific to the company for which the persons
who run the experiment work) and perspective from which the inspection is run
(analyst, module test, integration test). As a response variable, the authors
considered the number of defects found by each subject divided by the total number
of defects that is known.

The results of the analysis of variance applied to this experiment indicated that
neither Hd0 (there is no significant difference between subjects reading documents
from their domain and subjects reading documents not from their domain with
respect to their mean defect detection rate), nor Hp0 (there is no significant
difference between subjects using the analyst, module test and integration test
perspective with respect to their mean defect detection rate) can be rejected.
However, a significant effect is detected for the interaction, which means that the
hypothesis Hdp0 can be rejected with α<0.01. This interaction is explained in the

288 The Best Alternatives for More than One Variable

paper by the fact that, for example, the PBR technique has not been tailored to the
documents, i.e. including specific aspects of the application domain, specific
characteristics of the specification step, like notation, or specific characteristics of
the code, like coding standards. The experimenters also carried out a one-way
analysis of variance separately for each domain, but the analysis did not turn out to
be significant.

10.6.4. Analysis for a Possible Learning Effect

As explained in Chapter 5, one of the more critical questions in SE is what is known
as the learning effect. This is the effect produced when the same subject applies the
same technique in different unitary experiments. We could suspect that after
applying the technique n times, the results will be more satisfactory than when it is
applied the first time. Another possibility would be, for example, if the same subject
applied different techniques to the same problem, this person would become more
acquainted with the problem as time passed, and this could lead to better results.
Effects of this sort are often detected by considering the order in which the
experiments have been performed as a factor and designing a factorial together with
the principal factor under examination. Designs of this kind were applied, for
example, by Daly (1995) or by Macdonald and Miller (1998). The former examines
the effect of inheritance on software maintainability. In this case, these authors
work with code containing inheritance hierarchies and code that implements the
same functionality without such hierarchies. To be sure that no learning effect was
present, an analysis of variance test was done to discover if the sequence in which
the subjects received the program version (flat first or inheritance first) had any
effect on the maintenance task times. The results are presented in Table 10.30. The
results do not show significance for a sequence effect or for an interaction effect
between sequence and code. In that way the authors can conclude that if any
learning effect was present, it was sufficiently weak that it has had an insignificant
impact on the statistical analysis. Macdonald and Miller (1998) perform similar
analyses to study the existence of a possible learning effect concerning the
application of inspections manually and with the aid of a tool. This analysis also
confirmed the absence of any such effect.

Basics of Software Engineering Experimentation 289

Table 10.30. Analysis of variance testing for sequence and interaction effects

Component Sum of
Squares

Degrees of
freedom

Mean
Square

F-Computed F1,46,95

Sequence 82.04 1 82.04 0.17
Code 1594.89 1 1594.89 3.31 4.05
Sequence
x Code

30.24 1 30.24 0.06

Error 22118.75 46 482.36

10.6.5. Real Case of Model Mapping

In section 10.4.4, we discussed the concept of mapping the model by increasing the
number of replications in a factorial design when any factor has an insignificant
effect. Lewis et al. (1992) also applied this idea of increasing the number of
experiment replications by three factors (Language Paradigm, Managerial Influence
and Task Performed), in which one of these (Task Performed) did not have a
significant effect. The experiment was thus converted into a two-factor design with
double the replications, and, hence, the statistical analysis was more powerful. The
result of the analysis is not presented, as the above authors carried out a separate
analysis for each factor. The results of this analysis were described in section 7.5.4.

10.7. SUGGESTED EXERCISES

10.7.1. Table 10.31 shows the improvement in productivity of 60 novice, fairly
and very experienced developers using five different development
methodologies. Which variables are significant at 90%? What percentage
of the variation is explained by the interaction?

290 The Best Alternatives for More than One Variable

 Table 10.31. Improvement in productivity
 with five methodologies

 low medium high
M1

M2

M3

M4

M6

3,200
3,150
3,250

4,700
4,740
4,660

3,200
3,220
3,180

5,100
5,200
5,000

6,800
6,765
6,835

5,120
5,100
5,140

9,400
9,300
9,500

4,160
4,100
4,220

5,610
5,575
5,645

12,240
12,290
12,190

8,960
8,900
8,840

19,740
19,790
19,690

7,360
7,300
7,420

22,340
22,440
22,540

28,560
28,360
28,760

Solution: All the factors
and interactions are significant;

16.8%

10.7.2. Table 10.32 shows the percentage of reuse for a given four-module
application. What we aim to do is determine the significance of two
reusable component construction techniques (I, J) applied by inexperienced
and experienced developers. What effects are significant? What factor
alternatives lead to improvements in the response variable?

Table 10.32. Percentage of reuse in a given application

Technique Inexperienced Experienced

I

J

(41.16, 39.02, 42.56)

(51.50, 52.50, 50.50)

(63.17, 59.25, 64.23)

(48.08, 48.98, 47.10)

Basics of Software Engineering Experimentation 291

Solution: The effect of experience and of the interaction
is significant, whereas the effect of the technique is not;

Technique I used by an experienced developer

10.7.3. The effect of two modelling techniques (-A, +A), used by experienced and
inexperienced people (-B, +B), working in two different domains (-C, +C),
on small-sized problems (-D, +D) is to be examined. Table 10.33 contains
a measure of the effort put into given development projects with these
characteristics. What factors and interactions have significant effects?

Table 10.33. Effort employed

A B C D Effort
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+

-
-
-
-
+
+
+
+
-
-
-
-
+
+
+
+

-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+

471
61
90
82
68
61
87
80
61
50
89
83
59
51
85
78

Solution: technique, experience,
problem size, experience X technique

11 EXPERIMENTS WITH
INCOMPARABLE FACTOR

ALTERNATIVES
ANALYSIS FOR NESTED

DESIGNS
11.1. INTRODUCTION

Nested or hierarchical designs were described in Chapter 5 as particular cases of
multiple-factor designs in which not all the alternatives of the factors can be studied
together, as is the case in factorial designs.

This chapter describes how to analyse the data collected from experiments of this sort.
For the purpose of this chapter, we are going to use a set of observations gathered for
the experiment explained in section 5.6., aimed at investigating two development
methods (A and B) with and without tool use. As discussed in Chapter 5, this is a nested
design with two factors, each with two alternatives. The tools to be applied to the two
methods (tool A and tool B, respectively) differ, so the alternatives of the tool factor are
not comparable. This chapter does not include a section describing real experiments, as
none were found in the SE literature we reviewed. However, we thought it worthwhile
to examine the analysis of these designs.

Suppose that we carry out two projects for each possible combination of alternatives, as
discussed in section 5.6., and that the response variable of this experiment is the
development effort in each project measured as persons.hour. The design in question
was outlined in Table 5.5. Table 11.1 shows the data collected after running this
experiment.

Table 11.1. Data gathered in a nested design

Method A Method B
With Tool A Without Tool A With Tool B Without Tool B
10, 13 14, 17 13, 11 15, 12

The process of analysis for this type of designs is similar to what we have described for
one or multiple factors. The steps can be summarised as:

1. Determine the mathematical model that explains the response variable.
2. Validate the model examining residuals.
3. Calculate the variation in the response variable due to the nested and nest factor,

and error.
4. Determine the statistical significance of the variation due to factors.

294 Experiments with Incomparable Factor Alternatives

5. Establish recommendations on the best alternative of the factor.

Note that we are not referring to possible interactions among factors in this case, since,
as mentioned in Chapter 5, it is meaningless to study interactions among the alternatives
of the two factors, as they are incompatible.

11.2. IDENTIFICATION OF THE MATHEMATICAL MODEL

The linear statistical model for a hierarchical design, where factor B occurs in
conjunction with an alternative of A, is:

yijk = µ + τ i + β j (i) + e(ij)k

i = 1,2,...,a
j = 1,2,...,b
k =1,2, ...,r

⎧
⎨
⎪

⎩⎪

In other words, there are a alternatives of factor A and b alternatives of factor B,
organised hierarchically under each level of A, and r replications. The subindex j(i)
indicates that the jth alternative of factor B is nested under the ith alternative of factor
A. The replications should be nested within the combinations of alternatives A and B.
Thus, the subindex (ij)k is used for the error term. This is a balanced nested design, as
there is the same number of alternatives of B within each alternative of A and all the
alternatives are replicated the same number of times. This is the most common form of
nested design, which explains why we focus on its analysis. As each alternative of B
does not appear with each alternative of A, there is no interaction among A and B.

11.3. VALIDATION OF THE MODEL

For this model to be valid, the residuals must be NIID(0,σ2). Accordingly, the following
step would be to validate the model by means of the analysis of residuals. For our
hierarchical design, the residuals are:

eijk = yijk − ˆ y ijk

and, as usual, the residuals are obtained from the expression:

eijk = yijk − y ij .

The observations, adjusted values and residuals for the effort data are shown in Table
11.2.

Table 11.2. Examples of residuals

Basics of Software Engineering Experimentation 295

Observed value yijk eijk = yijk − y ij .
10
13
14
17
13
11
15
12

-1.5
1.5

-1.5
1.5

1
-1

1.5
-1.5

The usual diagnostic tests that we discussed in earlier chapters can be run. These
include normal probability graphs and graphs of residuals plotted against adjusted
values. These graphs are left as an exercise for the reader, who will find that they reveal
no sign of non-normality.

Now, let’s move on to the next point, the calculation of the variation in the response
variable.

11.4. CALCULATION OF THE VARIATION IN THE RESPONSE VARIABLE
DUE TO FACTORS AND ERROR

The variation is obtained, as in earlier chapters, by means of the sum of squares total
(SST). We get the following expression by applying the sum of squares to the
mathematical model:

(yijk − y ...)
2

k=1

r

∑
j=1

b

∑
i=1

a

∑ = br (y i .. − y ...)
2

i=1

a

∑ + r (y ij. − y i ..)
2

j=1

b

∑
i=1

a

∑
+ (yijk − y ij.)2

k=1

r

∑
j=1

b

∑
i=1

a

∑

This equation indicates that the sum of squares total in our nested design can be divided
into a sum of squares due to factor A, a sum of squares due to factor B under the
alternatives of A and a sum of squares due to error. That is:

 SST = SSA + SSB(A) + SSE

The values of these sums of squares are as follows:

296 Experiments with Incomparable Factor Alternatives

∑∑∑

∑∑∑

∑∑

∑

= ==

= ==

= =

=

−=

−=

−=

−=

a

1i

2
ijk

b

1j

r

1k

a

1i

2
iijk

b

1j

r

1k

a

1i

2
iij

b

1j

a

1i

2
i

...)y(ySST

..)yy(SSE

..)y.y(rSSB(A)

...)y..y(brSSA

So, for our example,

 SSA= 2 x 2 x ((-0.375)2+(0.375)2)= 1.125
 SSB = 2 x ((-2)2+ (2)2+ (-0.75)2+ (0.75)2 = 18.25
 SSE = 15.5

These results indicate that the variation in the response variable is mainly due to the use
or non-use of the tools within each method. This variation actually amounts to 52%
(18.25/(1.125+18.25+15.5)=0.52). This datum means that if the above variation were
significant, as we will see in the next section, the response variable would improve
considerably if the best alternative of the above factor were chosen. On the other hand,
the low variation in the response variable due to the method, namely 3%, indicates that
if this variation were significant, the choice of the best alternative for this factor would
not improve the response variable very much. Note also that a high percentage of the
variation (45%) is due to experimental error. This means that the variation produced by
unknown causes not accounted for in this experiment is high and, if we wanted to gain
a better understanding of the improvement in the response variable, we would have to
identify other factors that affect this variable and have not been accounted for in this
case.

11.5. STATISTICAL SIGNIFICANCE OF THE VARIATION IN THE
RESPONSE VARIABLE

As usual, we will apply the variance procedure to determine this significance. Table
11.3. shows the analysis of variance table to be applied. There are abr–1 degrees of
freedom for SST, a–1 for SSA, a(b–1) degrees for SSB(A) and ab(r–1) degrees of
freedom for the error. Note that abr–1 = (a–1) + a(b–1) + ab(r-1).

Basics of Software Engineering Experimentation 297

Table 11.3. Table of analysis of variance for the two-stage nested design

Source of variation Sum of
squares

Degrees of
freedom

Mean
square

F- Computed F-Table
(α=0.5)

Methods
Tool (within method)
Error
Total

1.0125
18.25

15.5
34.7625

1
2
4
7

1.0125
9.125
2.21

0.45
4.12

7.17
6.94

Table 11.4 contains the result of the analysis of variance for our example. These results
show that neither the methods nor the use of the tool within each method are significant.
This means that the variation observed in the response variable (52%) due to tool use is
not the result of varying the alternatives of this factor and can be put down to chance.
Therefore, the variation has to be explained by other possible factors not controlled in
the experiment, such as project types or individuals who have worked on the projects.

11.6. SUGGESTED EXERCISES

11.6.1. Suppose a company purchases hard disks from three different suppliers and
intends to determine whether the disks of each supplier are equally reliable.
Suppose that we have four disks from each supplier. The coded reliability data
are given in Table 11.5. Is there a significant difference at 5% between the
disks from different suppliers? And between the disks from the same supplier?

Table 11.5. Reliability of disks from different suppliers

 Supplier 1 Supplier 2 Supplier 3
Disks 1 2 3 4 1 2 3 4 1 2 3 4

 1
-1
0

-2
-3
-4

-2
0
1

1
4
0

1
-2
-3

0
4
2

-1
0

-2

0
3
2

2
4
0

-2
0
2

1
-1
2

3
2
1

Solution: No (F- Computed 0.97);
Yes (F- Computed 2.94)

Basics of Software Engineering Experimentation 298

Table 11.4. Analysis of variance for the data of example 12.1

Source of
variation

Sum of squares Degrees of
freedom

Mean square F-
Computed

F-Table

A

B within A

Error

Total
 ∑∑∑

∑∑∑

∑∑

∑

= ==

= ==

= =

=

−=

−=

−=

−=

a

1i

2
ijk

b

1j

r

1k

a

1i

2
iijk

b

1j

r

1k

a

1i

2
iij

b

1j

a

1i

2
i

...)y(ySST

..)yy(SSE

..)y.y(rSSB(A)

...)y..y(brSSA

a–1

a(b–1)

ab(r–1)

abr–1

1)ab(r
SSEMSE

1)a(b
SSBMSB(A)

1a
SSAMSA

−
=

−
=

−
=

SSE
MSB(A)
SSE
MSA

F[1-α;(a-1),ab(r-1)

F[1-α;a(b-1),ab(r-

1)

12 FEWER EXPERIMENTS
ANALYSIS FOR FRACTIONAL

FACTORIAL DESIGNS
12.1. INTRODUCTION

As the number of factors in a 2k factorial design increases, the number of
experiments required to get a full replication soon exceeds the resources of most
experimenters. For example, a full replication of a 26 design calls for 64
experiments. Only 6 of 63 degrees of freedom correspond to principal effects in this
design and only 15 to two-factor interactions; the other 42 correspond to
interactions of three or more factors.

If the experimenter can reasonably assume that some higher order interactions are
negligible, the information on the principal effects and the lower order interactions
can be obtained by running only a fraction of the full factorial experiment. As
discussed in Chapter 5, designs of this sort are called fractional factorial designs.
For example, for designs where all the factors have two levels, k factors with two
levels can be analysed by means of a 2k-p fractional design. A 2k-1 design calls for
half as many experiments than a 2k design does. Similarly, a 2k-2 design calls for
only a quarter of the experiments required by a 2k design.

The use of fractional factorial designs is based on the above-mentioned principle of
effect dispersion. This principle states that when there is more than one variable, the
response is likely to be influenced mainly by some of the principal effects and lower
order interactions, whereas the higher order interactions will generally be less
significant.

Fractional designs are an aid for implementing the experimental strategy of step-
wise refinement addressed in Chapter 3. A lot of use is made of fractional factorial
experiments at the start of an experimental cycle when it is not very clear which
factors are involved in the experiment. Several factors can first be analysed using a
fractional factorial design to identify which of those factors have an important effect
on the response. These factors are then investigated in more detail in successive
cycles of experimentation, when much fewer factors are examined, because the
factors discarded in the first cycle are no longer considered, as they are unimportant.

This chapter examines the process of analysis for experiments run according to a
fractional factorial design. We will start by describing some concerns regarding the
number of experiments involved in these designs (section 12.2.) and we will then
look at how they are to be analysed (section 12.3.). This chapter does not include a
section discussing real SE experiments, as we have not found any references to
fractional factorial designs in the SE literature we have examined.

300 Fewer experiments

12.2. CHOOSING THE EXPERIMENTS IN A 2k-p FRACTIONAL
FACTORIAL DESIGN

Only 2k-p elementary experiments are used in a 2k-p fractional factorial design of the
2k that we would use in a full factorial design. Nevertheless, a 2k-p design is not
unique. This means there are 2p possible fractional factorial designs for the same
number of factors k and the same number of experiments 2k-p or, alternatively, 2p
different ways of choosing the 2k-p unitary experiments that are part of the design.
The question is how to choose the 2k-p experiments to ensure that the analysis of the
observations provides us with meaningful information.

12.2.1. Sign Table for 2k-P Design

As mentioned earlier, sign tables are a key element in the analysis of factorial
experiments. The procedure for building a sign table for a 2k-p design is as follows:

1. Select k-p factors and prepare a full sign table for a factorial design with k-p
factors as explained in Chapter 10. This table will have 2k-p rows and 2k-p
columns; the first column will be marked with I and will contain 1s; the next k-
p columns will be labelled with the selected k-p factors; the other columns are
the products of these factors.

2. Select p columns from the 2k-p-k-p-1 right-hand columns and label them with
the p factors that were not selected in step 1.

For example, suppose we have an experiment with seven factors (A, B, C, D, E, F,
and G). As shown in Table 12.1 (a), a sign table for a 27-4 design can be built by first
preparing a sign table for a 23 design with factors A, B and C (step 1). We then label
the four columns furthest to the right with D, E, F and G (instead of AB, AC, BC
and ABC). The result of this step 2 is shown in Table 12.1(b).

Now let's prepare a sign table for a 24-1 design. Again we start with a sign table for a
23 design. We select at random and label with factor D one of the four right-hand
columns. Thus, we can get the designs shown in Tables 12.2, 12.3, 12.4 or 12.5.

The alternatives of the factors to be considered in each of these experiments can be
obtained by the respective combinations of +1 and –1, which are taken from the
above tables. For example, the first row of Table 12.2 identifies an experiment
where the value of the alternative of the factors A, B, C and D will be–1. Similarly,
the second row of this table identifies a unitary experiment in which the alternatives
of factors B and C are –1 and the factors A and D are 1.

 Table 12.1(a). Sign table for a 23 Experimental Design

I A B C AB AC BC ABC
1 -1 -1 -1 1 1 1 -1

Basics of Software Engineering Experimentation

301

1
1
1
1
1
1
1

1
-1
1

-1
1

-1
1

-1
1
1

-1
-1
1
1

-1
-1
-1
1
1
1
1

-1
-1
1
1

-1
-1
1

-1
1

-1
-1
1

-1
1

1
-1
-1
-1
-1
1
1

1
1

-1
1

-1
-1
1

 Table 12.1(b). Sign table for a 27-4 Experimental Design

I A B C D E F G
1
1
1
1
1
1
1
1

-1
1

-1
1

-1
1

-1
1

-1
-1
1
1

-1
-1
1
1

-1
-1
-1
-1
1
1
1
1

1
-1
-1
1
1

-1
-1
1

1
-1
1

-1
-1
1

-1
1

1
1

-1
-1
-1
-1
1
1

-1
1
1

-1
1

-1
-1
1

 Table 12.2. Sign table of a 24-1 design (option 1)

I A B C AB AC BC D
1
1
1
1
1
1
1
1

-1
1

-1
1

-1
1

-1
1

-1
-1
1
1

-1
-1
1
1

-1
-1
-1
-1
1
1
1
1

1
-1
-1
1
1

-1
-1
1

1
-1
1

-1
-1
1

-1
1

1
1

-1
-1
-1
-1
1
1

-1
1
1

-1
1

-1
-1
1

 Table 12.3. Sign table of a 24-1 design (option 2)

I A B C D AB BC ABC
1
1
1
1
1
1
1
1

-1
1

-1
1

-1
1

-1
1

-1
-1
1
1

-1
-1
1
1

-1
-1
-1
-1
1
1
1
1

1
-1
-1
1
1

-1
-1
1

1
-1
1

-1
-1
1

-1
1

1
1

-1
-1
-1
-1
1
1

-1
1
1

-1
1

-1
-1
1

 Table 12.4. Sign table of a 24-1 design (option 3)

302 Fewer experiments

I A B C AB D BC ABC
1
1
1
1
1
1
1
1

-1
1

-1
1

-1
1

-1
1

-1
-1
1
1

-1
-1
1
1

-1
-1
-1
-1
1
1
1
1

1
-1
-1
1
1

-1
-1
1

1
-1
1

-1
-1
1

-1
1

1
1

-1
-1
-1
-1
1
1

-1
1
1

-1
1

-1
-1
1

 Table 12.5. Sign table of a 24-1 design (option 4)

I A B C AB AC D ABC
1
1
1
1
1
1
1
1

-1
1

-1
1

-1
1

-1
1

-1
-1
1
1

-1
-1
1
1

-1
-1
-1
-1
1
1
1
1

1
-1
-1
1
1

-1
-1
1

1
-1
1

-1
-1
1

-1
1

1
1

-1
-1
-1
-1
1
1

-1
1
1

-1
1

-1
-1
1

The design that should be selected is the sign table with the D column furthest to the
right. Section 12.2.3 explains why, but, beforehand, we will proceed to discuss how
effects can be confounded when using fractional designs.

12.2.2. Confounding of effects

One problem with fractional experiments is that not all the effects can be
determined. Only the combined influence of two or more effects can be calculated.
This problem is known as confounding, and, as discussed in Part II of this book, the
effects whose influence cannot be separated are said to be confounded or aliases.
This is what happens in Table 12.1(b) with the effect of D and AB, and E or G and
ABC or in Table 12.2 with D and ABC.

Let’s examine, for example, the design shown in Table 12.2. If yi represents the
observed response variable value, the effect A can be obtained by multiplying
column A by column Y and dividing the sum by 4. Note that this is the same
procedure as we used in Chapter 10 to calculate the effect of a factor by means of a
sign table in a 23 design. Thus,

4

yyyyyyyyl 87654321
A

−−+−+−+−
=

Similarly, the effect of D is given by

Basics of Software Engineering Experimentation

303

4

yyyyyyyyl 87654321
D

+−−+−++−
=

The effect of the interaction ABC would be obtained by multiplying the respective
elements of columns A, B, C and Y. This means:

4

yyyyyyyyl 87654321
ABC

+−−+−++−
=

Note that the expressions for lD and lABC are identical. The expression would
actually be neither the effect of D nor the effect of ABC, it would be the sum of
both effects. In statistical terms, the effects of D and of ABC are confounded (or D
and ABC are aliases). This is not a problem, especially if, according to the principle
of effect dispersion, the interaction caused by ABC is considered to be small
compared with the effect of D. In this case, the above expression is basically lD.

Indeed, each column of this design represents the sum of two effects. There are 16
effects (including column I) with four variables, each at two levels. Thus, only eight
quantities can be calculated in a 24-1 design. Each quantity represents two effects.
The full list of aliases is as follows:

 A=BCD
 B=ACD
 C=ABD
 D=ABC
 AB=CD
 AC=BD
 AD=BC

where I =ABCD is used to denote the confounding of ABCD with the mean. This
design is called a I=ABCD design. The reason is that given one alias, the others can
be identified by multiplying the two sides of the expression by the different factors
and using two simple rules:

1. The mean I is treated as 1. For example, I multiplied by A is A.
2. Any term raised to 2 is disregarded. For example, AB2C is the same as AC.

Let’s illustrate this in our example, where I=ABCD. Multiplying both sides by A,
we have:

 A=BCD

Multiplying both sides by B, C, D and AB, we have:

 B=AB2CD=ACD
 C=ABC2D=ABD

304 Fewer experiments

 D=ABCD2=ABC
 AB=A2B2CD=CD

The polynomial I=ABCD used to generate the aliases for this design is called
polynomial generator for this design.

Generally speaking, 21 effects are confounded in a 2k-1 design; 2p effects are
confounded in a 2k-p design.

12.2.3. Using Design Resolution to Choose the Unitary Experiments

The resolution of a design is R if none of the effects of p factors are confounded
with another effect that has less than R-p factors. A Roman numeral is usually used
as a subindex to indicate the design resolution. Thus, the design shown in Table
12.2 and defined by I=ABCD is a 2IV k-1 design. In other words, not one effect of
one factor is confounded with another that has fewer than 4-1 factors (A is
confounded with BCD, B is confounded with ACD, C is confounded with ABD,
and D is confounded with ABC).

A quick way of finding out the resolution of a 2k-p design is to determine the least
number of factors of the effects that are confounded with the mean response. In the
example shown in Table 12.2, the polynomial generator is such that I=ABCD. Only
one effect, ABCD, is confounded with the mean response. This effect is equivalent
to the interaction of four factors and, therefore, the resolution of this design is IV.

Fractional designs with the highest possible resolution should generally be used. As
fractional designs are founded on the assumption that the higher order interactions
are smaller than the lower order interactions, the assumptions concerning the
interactions that must be disregarded to ensure that there is only one interpretation
of the data are less restrictive at a higher resolution.

Thanks to design resolution, we can determine which elementary experiments
should make for a better design. For example, the design shown in Table 12.2 would
be the best of the 24-1 designs illustrated in Tables 12.2, 12.3, 12.4 and 12.5. The
resolution of this design is 4 (as its generator is I=ABCD), while the designs shown
in Tables 12.3, 12.4 and 12.5 have a resolution of 3 (I=ABD, I=ACD and I=BCD,
respectively). So, step 2 of the sign table construction procedure, explained in
section 12.2.1, should read “select the p columns furthest to the right from the 2k-p-
k-p-1 right-hand columns” to get the best design.

12.3. ANALYSIS FOR 2k-p DESIGNS

The process for analysing a fractional factorial design is similar to the procedure we
examined for the 2t design, where t is replaced by k-p. However, we have added a

Basics of Software Engineering Experimentation

305

preliminary step, which involves identifying the important factors, as described in
section 12.1. Briefly, the steps to be taken in this analysis can be divided into:

1. Identify important effects to be further studied.
2. Identify and validate the mathematical model.
3. Determine the statistical significance of the important effects.
4. Establish recommendations on the best alternative of the factors.

Let’s illustrate this analysis by examining how these steps would be taken for a 25-1
design. Suppose we aim to determine whether the use of particular usability-related
techniques increase user satisfaction with the end products. For this purpose, we are
going to consider the degree of user satisfaction measured within a range of 0 to 100
as the response variable of our experiment. This range is obtained through a
questionnaire to which the above users respond once the product has been delivered.
We will work with five factors in this experiment; A: use of usability techniques in
the development process (without techniques, with techniques), B: interaction with
the user during development (little, a lot), C: user experience in the use of computer
systems (little, a lot), D: development process maturity (low, high) and E: quantity
of documentation to be generated (without documentation, full documentation).

In principle, this experimentation should be designed as a 25 factorial with 32
elementary experiments. Let’s consider a 25-1 design by means of which we will
perform only 16 experiments to try to ascertain which factors are important.
Therefore, the null hypothesis that we aim to test is H0: “none of the five factors or
their interactions have a significant effect on user satisfaction”.

12.3.1. Identifying Important Effects

The structure of the 25-1 designed is shown in Table 12.6. Note that the above
structure involved writing the basic 16-experiment design (a 24 design in A, B, C
and D), selecting ABCDE as the generator and establishing the alternatives of the
fifth factor E=ABCD (column furthest to the right of the sign table of a 25 design).

The effects of the variables and interactions are calculated according to the sign
table procedure described in Chapter 10; that is, by multiplying each column by
column Y and dividing the result by 8. The effects obtained are:

A = 11.125 B = 33.875 C = 10.875 D = -0.875 E = 0.625
AB= 6.875 AC = 0.375 AD = 1.125 BC = 0.625 BD = -0.125
CD = 0.875 CE = 0.875 ABC = -1.375 ACD = -0.375
BCD = 1.125

 Table 12.6. 25-1 design

306 Fewer experiments

A B C D E = ABCD Results collected
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+

-
-
-
-
+
+
+
+
-
-
-
-
+
+
+
+

-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+

+
-
-
-
-
+
+
-
-
+
+
-
+
-
-
+

8
9

34
52
16
22
45
60
6

10
30
50
15
21
44
63

Estimation of effects

C

0 5 10 15 20 25 30

99

95

90

80

70

50

30

20

10

5

1

•
••
••
•
•••
••

• •
•

•

AB

A
B

99

95

90

80

70

50

30

20

10

5

1

%%

Figure 12.1. Normal probability graph of the effects of a 25-1 design

As there are no replications, we will follow the procedure explained in section
10.4.4 to identify which factors will form an explicit part of our mathematical model
and we will use the remainder to estimate error. Remember that all the effects will
have to be plotted on normal probability paper for this purpose. The effects that are

Basics of Software Engineering Experimentation

307

positioned on a straight line are not important, whereas the others are what really
influence the response variable. Figure 12.1 shows the normal probability graph for
the above effects. The principal effects, A, B, C and the interaction AB are relevant
effects. Remember that, as there are aliases, these effects are really A+BCDE,
B+ACDE, C+ABDE and AB+CDE.

12.3.2. Identification and Validation of the Mathematical Model

Now that the important effects are known, the model can be represented more
concisely. The mathematical model by means of which the values of the response
variable could be obtained is as follows:

 Y = C0+ CAXA+CBXB+CCXC+CABXAB + e

Note that only the variables related to the effects and interactions that turned out to
be important are considered.

This model is validated like factorial designs, by examining the residuals. The
residuals are calculated as:

 e = y - ŷ
where = Cŷ 0+ CAXA+CBXB+CCXC+CABXAB , that is,
 = 29.69+ (11.125/2) Xŷ A + (33.875/2) XB+(10.875/2)XC+ (6.875/2)XAB

 = 29.69+ 5.625Xŷ A + 16.94 XB+5.44XC+ 3.4375XAB

Figure 12.2 shows a normal probability graph for the residuals and Figure 12.3
illustrates the graph of residuals plotted against the predicted values. Both graphs
satisfy the constraints mentioned in earlier chapters, that is: (1) the points of Figure
12.2 are close to a straight line; (2) the points plotted on the graph in Figure 12. 3
neither obey a pattern, nor does the variance increase as the values of the response
increase; and (3) the scale of the residuals is quite a lot lower than the response.
Therefore, we can trust in the results yielded by this model.

308 Fewer experiments

Residuals

-3 -2 -1 0 1 2

99

95

90

80

70

50

30

20

10

5

1
•

•
•• • •

••
•

•
•

••
•

•
•

99

95

90

80

70

50

30

20

10

5

1

% %

Figure 12.2. Graph of normal probability of the 25-1 experiment residuals

.
0

-2

1

2

.

-3 20

.

.

.

User satisfaction predicted

.

30 40 50

.

.

.

.

R
es

id
ua

ls

.
10 60

-1

.

. . .

.

Figure 12.3. Graph of residuals plotted against predicted values for the 25-1 design
described

Basics of Software Engineering Experimentation

309

12.3.3. Significance of the Observed Variations

The statistical significance of the effects of A, B, C and AB is obtained by means of
the same sort of analysis of variance as discussed for factorial designs. Table 12.7
shows the results for our example. Thus, we find that user interaction, user
experience, and the interaction between the usability techniques and user interaction
are significant in the variation caused by the use of usability techniques at 99%, and
the null hypothesis can, thus, be rejected with 99% confidence.

Table 12.7. Result of the analysis of variance for the example 25-1 design

Source of
variation

Sum of
squares

Degrees of
freedom

Mean square F
Calculated

F
Table

A
B
C
AB
Error
Total

495.0625
4590.0625

473.0625
189.0625

20.1875
5775.4375

1
1
1
1

11
15

495.0625
4590.0625

473.0625
189.0625

2.5625

193.20
1791.24

184.61
73.78

8.68

The experimenter could use these data to run other experiments to further examine
the results. The factors process maturity (D) and quantity of documentation (E)
would not be investigated in these experiments, as, in this first round of
experiments, they turned out to be factors without a significant influence on the
response variable. On the other hand, other alternatives could be added to factors A,
B and C by means of which they could be examined more thoroughly.

12.3.4. Recommendations on the Best Alternatives of the Factors

Figure 12.4 represents the effects of A, B, C and AB. Note how the principal effects
are positive, that is, as the factor alternative increases, the response variable
increases. As a recommendation on the experiment run, we can tell from the figure
that users are more satisfied when they are experienced in the use of computer
systems (Figure 12.4 (c)) and when usability techniques are used and there is a lot of
interaction with the user simultaneously (Figure 12.4 (d)). Note that the factors A
and B have to be interpreted jointly, as the interaction AB has a significant effect.

310 Fewer experiments

6

63

no use use

6

63

little a lot

6

63

little a lot

6

63
(a) (b)

(c) (d)

Usability
technique

Interaction
with user

a lot of interaction

little interaction

no use use

Usability
technique

User
experience

Figure 12.4. Graph of effects A, B, C and AB

12.4. SUGGESTED EXERCISES

12.4.1. Table 12.8 shows the results of a 25-1 design detailing the number of errors
detected in 16 programs in two different domains (-A, +A) that are either large
or small (-B, +B), by programmers with 3 and 8 month’s experience (-C, +C),
using two different testing techniques (-D, +D), employing modular or
monolithic programming (-E, +E). What effects and interactions are significant?

Basics of Software Engineering Experimentation

311

 Table 12.8. Number of errors detected in 16 program

A B

C

D

E AB AC AD AE BC BD BE CD CE DE y

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+

-
-
-
-
+
+
+
+
-
-
-
-
+
+
+
+

-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+

+
-
-
+
-
+
+
-
-
+
+
-
+
-
-
+

+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+

+
-
+
-
-
+
-
+
+
-
+
-
-
+
-
+

+
-
+
-
+
-
+
-
-
+
-
+
-
+
-
+

-
-
+
+
+
+
-
-
+
+
-
-
-
-
+
+

+
+
-
-
-
-
+
+
+
+
-
-
-
-
+
+

+
+
-
-
+
+
-
-
-
-
+
+
-
-
+
+

-
+
-
+
+
-
+
-
+
-
+
-
-
+
-
+

+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+

-
+
+
-
-
+
+
-
+
-
-
+
+
-
-
+

-
+
+
-
+
-
-
+
-
+
+
-
+
-
-
+

56
53
63
65
53
55
67
61
69
45
78
93
49
60
95
82

Solution: program size, testing technique,
modular/monolithic programming, size X technique,

technique X modular/monolithic programming

12.4.2. Build a fractional factorial design for 31 variables at two levels with 32
elementary experiments. This is a 2k-p design. What is the value of k and p?

Solution: k=31, p=26

13 SEVERAL
DESIRED AND UNDESIRED

VARIATIONS
ANALYSIS FOR FACTORIAL

BLOCK DESIGNS
13.1. INTRODUCTION

As mentioned in Chapter 5, it may not be possible to experiment with all the
combinations of alternatives required by a factorial design under homogeneous
conditions. This situation is managed using blocks. As discussed in preceding
chapters, blocks can refer to the subjects running the experiment, the times at which
they are run, variations in the projects used as experimental units or any other
undesired variation that occurs from one unitary experiment to another.

The use of blocks in factorial design indicates that fewer combinations of factor
alternatives than the total number of combinations called for by the pure factorial
design are used in each block. Remember that in these designs the number of
combinations that can be made per block is called block size. We discussed how to
design factorial block experiments in Chapter 5 taking into account block size. In
this chapter, we will focus on the analysis of the data yielded by executing the
experiments.

The process of analysis is very similar to the one we examined for factorial designs.
Remember that the steps to be taken are as follows:

1. Identify the mathematical model that describes the observations.
2. Validate the model using the residuals.
3. Calculate the variation in the response variable due to factors, blocks and

error.
4. Determine the statistical significance of the variation.
5. Establish recommendations on the best alternatives of the factors.

We are going to use the data taken from an experiment to illustrate this analysis.
This experiment accounts for three factors: use of tool T during development,
maturity of the development process and clarity of the requirements. Table 13.1
shows the values of the alternatives for the above factors.

314 Several Desired and Undesired Variations

Table 13.1. Factor alternatives to be considered

Factor Alternative -1 Alternative +1
Tool Use of tool T Non-use
Maturity Mature Immature
Requirements Clear Ambiguous

The response variable will be the number of days (six working hours) used to
develop the same system.

It is planned to replicate this experiment twice, which means a total of 16 subjects
will be required (23x2). Suppose that the subjects of this experiment are a group of
final-year computer science students from a particular university and that of the 16
students 8 come from one class and 8 from another. These two classes were taught
by different professors, which means that some variability among the subjects can
be predicted. Hence, we will define a 23 design with two replications and two
blocks.

The design shown in Table 13.2 was defined with two blocks of size 4 to prevent
the difference between groups affecting the main effects and second-order
interactions. Remember that, as discussed in Chapter 5, the effect of these blocks is
totally confounded with the interaction ABC in this design. The values of the
response variable collected for each combination are also shown in this table.

Table 13.2. Combination of alternatives related to 23 design with
two blocks of size 4

 A B C AB AC BC ABC Y Y
Block 1 -1 -1 -1 1 1 1 -1 (2, 3) 2.5
 -1 1 1 -1 -1 1 -1 (18, 22) 20
 1 -1 1 -1 1 -1 -1 (15, 25) 20
 1 1 -1 1 -1 -1 -1 (4, 6) 5
Block 2 1 -1 -1 -1 -1 1 1 (6, 14) 10
 -1 1 -1 -1 1 -1 1 (10, 15) 12.5
 -1 -1 1 1 -1 -1 1 (6, 9) 7.5
 1 1 1 1 1 1 1 (8, 12) 10

In the following sections, we are going to proceed to analyse the data collected in
this experiment.

13.2. IDENTIFICATION OF THE MATHEMATICAL MODEL

The form of the mathematical model to be applied in this sort of analysis is:

ijklmijkjkikijkjiijklm ey block +++++++++=)(αβγβγαγαβγβαµ

Basics of Software Engineering Experimentation 315

which is similar to the model of a general factorial design in which the block effect
also has to be considered.

In this case, we are considering a 23 design, which means that we can calculate the
effects of the factors and interactions by means of the simplified method of analysis
that is based on the sign table and discussed in section 10.3.1.1. The effects for our
example are shown in Table 13.3.

This model has the same constraints on residual independence and normality as the
factorial designs that we examined in Chapter 10 and are, therefore, not discussed
again. Let’s just recall what the constraints are and what tests we can use to check
that they are met:

• Normal distribution of residuals: Use the normal probability graph of residuals
and check that the residuals plotted are close to a straight line.

• Independence of the residuals: Use the graph of residuals plotted against
estimated values and check that there is no obvious pattern in the residuals
plotted.

• Constant variance of the errors: Use the graph of residuals plotted against
estimated values and check that the graph is not apparently funnel-shaped.

• Model additivity: Use the graph of residuals plotted against the response variable
and check that the order of magnitude of the errors is not less than the response
at 1 or more degrees.

Table 13.3. Calculation of the effects in a 23 design

 A B C AB AC BC ABC Y Y
Block 1 -1 -1 -1 1 1 1 -1 (2,3) 2.5
 -1 1 1 -1 -1 1 -1 (18,22) 20
 1 -1 1 -1 1 -1 -1 (15,25) 20
 1 1 -1 1 -1 -1 -1 (4,6) 5
Block 2 1 -1 -1 -1 -1 1 1 (6,14) 10
 -1 1 -1 -1 1 -1 1 (10,15) 12.5
 -1 -1 1 1 -1 -1 1 (6,9) 7.5
 1 1 1 1 1 1 1 (8,12) 10
 2.5 7.5 27.5 -37.5 2.5 -2.5 -7.5 Total
 0.625 1.875 6.875 -9.375 0.625 -0.625 -1.875 Effect

13.3. CALCULATION OF RESPONSE VARIABLE VARIABILITY

316 Several Desired and Undesired Variations

The variability in the response variable is obtained by calculating the sum of
squares. The sum of squares of the main effects and interactions is obtained as
shown in Chapter 10. Remember that a quick way of calculating the sum of squares
for a factorial design with two alternatives per factor was to use the regression
coefficients that had been explained as half of the respective effects, as follows:

CA = ½ (0.625) = 0.3125; CB = ½ (1.875) = 0.9375 CC = ½ (6.875) = 3.4375
CAB = ½ (-9.375) = -4.6875; CAC = ½ (0.625) = 0.3125 CBC = ½ (-0.625) = -0.3125
CABC = ½ (-1.875) = -0.9375;

Hence, we can get the sums of squares as follows:

2605ySSY 2
ij =∑=

61914.0r2SS0 23 == µ
690.94SS0SSYSST =−=

1.56rC2SSA 2
A

3 ==

614.0rC2SSB 2
B

3 ==

189.06rC2SSC 2
C

3 ==

351.56rC2SSAB 2
AB

3 ==

1.56rC2SSAC 2
AC

3 ==

1.56BCrC2SSBC 23 ==

614.0rC2SSABC 2
ABC

3 ==

According to the mathematical model described in the preceding section, the within-
blocks sum of squares (in this case, the within-groups sum of squares, SSwithin-groups)
has to be determined. This value is obtained by subtracting the between-blocks sum
of squares (in this case, SSbetween-groups) from the total sum of squares. The between-
blocks sum of squares is obtained by summing the total squares of the values of the
observations for each block in each replication as follows:

100.19SSO
2

4

)1291514(

4

2
8)610(6

2
6)2522(3

2
4)1518(2

groupsbetweenSS

=−
+++

+

+++++++++++
=−

Thus,

75590.100.19690.94SSSSTSS groupsbetweengroupswithin =−=−= −−

Basics of Software Engineering Experimentation 317

559.40590.75ons)_interacti

_and_two_fin_effects(sum_of_mablockswithinblockswithin SSSSE

−=

Table 13.5 shows the result of applying the analysis of variance on the example
considered in this chapter. Thus, the F-test does not determine significant
interactions related to factor C (requirements ambiguity). It does, however, reveal
one significant result, that is, C on its own is a significant factor, from which we can
infer that the requirements are important irrespective of the process or the tools
used.

This value, divided by the number of respective degrees of freedom, is used as the
F-test denominator to determine the significance of the effects within blocks, that is,
the main effects and the double interactions. However, the sum of square error
between blocks is used as the denominator to study the significance of the effect of
the blocks or the interaction ABC. (This test is less powerful than the above for the
reasons explained in Chapter 9 regarding the significance of the effect of blocking
variables.)

The sum of square error within blocks was calculated as:

Table 13.4 shows the table of analysis of variance for k factors, each with two
alternatives, one block with two alternatives and r replications.

13.4. STATISTICAL SIGNIFICANCE OF THE VARIATION IN THE
RESPONSE VARIABLE

According to these calculations, it is the interaction AC (tool x requirements) that
causes a greater variation in the response variable: 50.8% (351.56/690.94=0.508),
followed by factor C, which produces a variation of 27.36%. Therefore, it would be
these factors that would have to be taken into account to improve the response
variable, provided the variation they caused turned out to be significant.

Again, we will resort to the analysis of variance to determine whether the variations
calculated are statistically significant. This analysis is shown in the following
section.

Note, on the other hand, that the variation produced by the blocking variable, 85.5%,
is high. Therefore, we have done well to use a block design as a means of
eliminating its impact.

−−− = actor

318 Several Desired and Undesired Variations

Component Sum of squares Degrees of
freedom

Mean square F- Computed F-Table
(α=0.99)

Between groups SS between—groups 3
 Groups or ABC = 2

ABCC2krSSABC

1 MSABC=SSABC
groupsMSEbetween

MSABC
−

[]1−

F
α; 1, 2

 Error SSEbetween-groups= Difference 2

2

groupsSSEbetween
groupsMSEbetween

−
=−

Within groups
 A = 2

AC2krSSA

2kr-4 MSA= SSA
groupsMSEwithin

MSA
−

[]1−

F
α; 1, 2kr−10

B = 2
BC2krSSB

1

MSB = SSB
groupsMSEwithin

MSB
−

C = 2
CC2krSSC

1 MSC = SSC
groupsMSEwithin

MSC
−

AB = 2
ABC2krSSAB

1 MSAB =SSAB
groupsMSEwithin

MSAB
−

AC = 2
ACC2krSSAC

1 MSAC = SSAC
groupsMSEwithin

MSAC
−

BC = 2
BCC2krSSBC

1 MSBC= SSBC
groupsMSEwithin

MSBC
−

Error SSEwithin-groups= Difference

2kr-10

Table 13.4. Table of analysis of variance for k factors with two alternatives, one block with two alternatives and r replications

Basics of Software Engineering Experimentation 319

Table 13.5. Analysis of variance for our example

Component Sum of squares Degrees of
freedom

Mean
square

F- Computed F-Table
(α=0.01)

Between groups
 Groups or ABC
 Error

100.19
 14.63
 85.56

3
1
2

14.63
42.78

0.34

21.2

Within groups
 A
 B
 C
 AB
 AC
 BC
 Error

590.75
 1.57

 14.06
 189.06
 351.57
 1.57
 1.57
 31.35

12
1
1
1
1
1
1
6

1.57
14.06

189.06
351.75

1.57
1.57
5.22

0.3
2.69

36.22
67.35

0.3
0.3

13.74

On the other hand, a significant interaction between process maturity and tool use
was identified. Figure 13.1 shows the graph of interaction between the two effects.
As can be observed in immature processes, the use of the development tool has a
negative impact on time, whereas the use of the tool significantly improved this time
for the mature process. This experiment indicates, for example, that the efforts to
improve development time must focus on properly defining the requirements and
improving the process. The use of the tool would not be recommendable until the
process had been defined.

with tool without tool

20

15

10

5

mature process

immature process

Figure 13.1. Graph of interaction AB

320 Several Desired and Undesired Variations Se

This analysis can be generalised for more replications, more factors and other block
sizes. For a very detailed explanation of this sort of analysis, see (Winer, 1992) for
example.

This sort of analysis could be used for more than one blocking variable. However,
the calculations to be made are fairly complicated, which means experiments with
more than one blocking variable and several factors are uncommon and we are,
therefore, not going to focus on the analysis of these experiments. Readers
interested in this subject are referred to the above-mentioned literature for more
details.

13.5. ANALYSIS OF FACTORIAL BLOCK DESIGNS IN REAL SE
EXPERIMENTS

In section 5.8.2, we described the experiment run by Basili et al. (Basili, 1996) as an
experiment in which a 22 factorial design with two blocks of size 2 was chosen. The
design of this experiment has been reproduced in Table 13.6.

Table 13.6. Design of the experiment described in (Basili, 1996)

Generic Domain NASA Domain
Group 1 Group 2 Group 1 Group 2
Usual/generic1 Usual/generic2 Usual/NASA1 Usual/NASA2
PBR/generic2 PBRl/generic1 PBR/NASA2 PBR/NASA1

Remember that the objective of this experiment was to determine the extent to
which the use of the PBR reading technique produced improvements with regard to
the defect rates compared with the usual technique used at NASA/SEL. Let us
focus, for example, on the first of the experiments run by the above authors, called
the pilot experiment. Six subjects were considered within each block in this
experiment.

For the purpose of answering the above question, the authors examined both
problem domains separately. Thus, they performed two separate analyses each
corresponding to a 2x2 factorial experiment with repeated measures in blocks of
size 2. Tables 13.7 and 13.8 show the results of the analysis of variance for both
domains, concluding that there is no significant difference between the techniques,
between the documents or between the groups (techniquexdomain). Therefore, (1) it
could not be confirmed that the PBR technique produced significant improvements
with regard to the defect rates compared to the usual technique applied at the SEL;
(2) neither was any significant difference observed with regard to the defect rate in
the different problem domains; and (3) no interaction between the techniques and
domains studied were detected.

Basics of Software Engineering Experimentation 321

Table 13.7. Results of the analysis of variance for the generic domain
problems

Component Degrees of
freedom

Sum of
squares

Mean
Square

F- Computed F-Table
(α=0.99)

Between Subjects
 Group (TechXDoc)
 Error

11
1
10

1205.50
 42.67
1162.83

42.67
1162.83

0.37

10.04

Within Subjects
 Technique
 Document
 Error

12
1
1
10

803.01
112.01
 48.17
642.17

112.01
 48.17
 64.21

1.75
0.75

10.04

Table 13.8. Results of the analysis of variance for the NASA problem
domain

Component Degrees of
freedom

Sum of
squares

Mean
Square

F- Computed F-Table
(α=0.99)

Between Subjects
 Group (TechXDoc)
 Error

11
1
10

1606.00
 337.50
1268.50

337.50
126.85

0.37

10.04

Within Subjects
 Technique
 Document
 Error

12
1
1
10

744.01
 0.17
 10.67
733.17

 0.17
10.67

73.317

0.00
0.15

10.04

13. 6. SUGGESTED EXERCISES

13.6.1. Suppose we have an external replication of exercise 12.4.1, discarding the
problem domain, as it did not turn out to be significant in the above-
mentioned experiment. The factors for consideration are: program size,
large or small (-B, +B), programming without experience (under three
months) and with experience (over three months), testing techniques (-C,
+C) and monolithic/modular programs (-D, +D). Owing to design
constraints, not all the elementary experiences can be run at the same time,
and 8 elementary experiments have to be run on one day and the other
eight on another day. A significant change in the organisation is scheduled
between the two days, which could have an effect on the experiment,
which means that the days on which the experiments are run are going to
be considered as a size-8 blocking variable. The data collected are as
follows:

322 Several Desired and Undesired Variations Se

Block 1
 -A-B-C-D = 45
 +A+B = 105
 +A+C = 60
 +B+C = 80
 +A+D = 100
 +B+D = 45
 +C+D = 75
+A+B+C+D = 105

Block 2
 +A = 71
 +B = 48
 +C = 68
 +D = 43
 +A+B+C = 100
 +B+C+D = 70
 +A+C+D = 86
 +A+B+D = 104

What effects and interactions are significant at 95%?

Solution: program size, testing technique,
monolithic/modular programming,

size X technique,
size X monolithic/modular programming

14 NON-PARAMETRIC ANALYSIS
METHODS

14.1. INTRODUCTION

As mentioned in Chapter 6, non-parametric tests are applicable in two
circumstances: (1) when parametric tests cannot be used owing to the scale of the
response variable, that is, the scale is nominal or ordinal, and (2) when, even when
the scale of the response variable admits the use of parametric tests, that is, it is an
interval or ratio scale, the observations gathered do not meet the constraints on
normality called for by parametric tests. Remember that the methods of analysis that
we discussed in earlier chapters (parametric methods) are subject to a series of
constraints. Therefore, one of the steps taken in earlier chapters during the analysis
process was to validate the mathematical model that explained the observations
gathered from the experiment. An explanation of how to run these tests was given in
these chapters. When these constraints are not met, the analysis of the data collected
during experiments must switch to non-parametric methods.

Non-parametric methods have the advantage of being independent of the population
and of the parameters associated with the population (mean, variance, etc.).
Therefore, the data for analysis are not subject to strict constraints. Nevertheless, as
we already said in Chapter 6, they generally have the drawback of being statistically
less powerful than parametric tests. Remember that, as discussed in Chapter 6, the
statistical power of a test is related to type II error (β) and is represented as 1-β.
Therefore, the lower the statistical power of a test, the more likely it is that a type II
error will be made. Consequently, it would be more difficult to detect a significant
effect on the response variable, leading to the acceptance of the null hypothesis
when it should be rejected. The power of these tests could be raised, without
increasing the type I error (the probability of rejecting the null hypothesis when it is
true), by increasing the number of replications of an experiment. (The next chapter
examines how to calculate the minimum number of replications for a particular
experiment with a given α and β.) However, this is not always possible in SE
experiments where time and resources are limited. Therefore, non-parametric tests
should only be used when it is impossible to apply a parametric test.

Remember also that Chapter 6 discussed one of the difficulties with which we are
faced when selecting the method of analysis, namely, that it is often not easy to
determine the scale type of a measure in SE. The example described by Briand et al.
(Briand, 1996) regarding the scale type of cyclomatic complexity was mentioned.
Can we assume that the distances on the cyclomatic complexity scale are preserved
across all of the scale and that, therefore, the scale is an interval?

324 Non-parametric Analysis Methods

For the above reasons, Chapter 6 considered the application of both parametric and
non-parametric tests when it was unclear whether parametric methods can be
applied. Readers are advised to return to this chapter to recall the details of this
discussion.

This chapter presents some of the non-parametric methods that are likely to most
often be used in SE experiments. These methods are divided into two groups,
depending on whether they are used to search for significant differences in
independent (section 14.2) or related (section 14.3) samples; that is, whether there is
no relationship between the observations gathered or whether, on the other hand, the
above observations are related in any way. Consider pairs of observations gathered
by testing the same modules with two different techniques. Finally, we will present
some non-parametric methods used in real SE experiments (section 14.4).

14.2. NON-PARAMETRIC METHODS APPLICABLE TO INDEPENDENT
SAMPLES

Suppose we want to determine whether there are significant differences in
development time among individuals working with different CASE tools. One
possible experimental design might be to randomly distribute the tools among
several subjects with similar experience and ask them to solve a particular problem.
Thus, the same tool should be used by several subjects. The experimental analysis
would involve determining whether there are significant differences in the mean
development time per group of individuals who work on the same tool. Each group
is a sample that is independent of the others, as randomness, in principle, rules out
any sort of relationship among the individuals who apply the different tools. This
experiment could have been designed differently. Suppose, for example, that one
subject tested all the tools. In this case, the response variables collected from this
subject would be related. In this section we will study how to analyse independent
samples, whereas the following section focuses on dependent samples. Returning to
our example, different non-parametric methods can be applied depending on how
many tools we aim to evaluate. Basically, a distinction has to be made between the
investigation of 2 samples and n>2 samples. In this book, we are going to consider
the Mann-Whitney U, or U test, for 2 samples and the Kruskal-Wallis test, or H-test,
for n>2 samples, as they are most often applied in the literature on SE
experimentation.

14.2.1. Mann-Whitney U or U Test

The Mann-Whitney U, also known as the U test, is the non-parametric equivalent of
Student’s test or the t-test for two samples discussed in Chapter 7, but it doesn’t
define any restrictions about the normality of the data and is also applicable to
response variables measured in ordinal scales.

Basics of Software Engineering Experimentation 325

The Mann-Whitney U is applied by organising the observations yij in ascending
order and replacing them by their rank Rij, where the rank 1 is the smallest
observation. If there is a tie (the value of more than one observation is the
same), the mean rank is allocated to each tied observation. Let R1 and R2 be
the sum of the ranks of the observations of each alternative and N1, N2 the
respective replications of each alternative (for convenience’s sake, let N1 be
the lower if they are unequal). The test statistic is:

 1
11

21 R
2

1)(NNNNU −
+

+=

The sample distribution U is symmetric and has a mean and variance given
by:

12

1)N(NNN;
2
NN 2121221 ++

== UU σµ

If N1 and N2 are both at least equal to 8, the resulting U distribution is
approximately normal such that:

 2

Uz
σ
µU−

=

is normally distributed with mean 0 and variance 1. Thus, depending on whether the
alternative hypothesis specifies that the two alternatives are merely different or that
one is greater than the other, either a two-tailed or one-tailed test will be called for,
respectively, as discussed in Chapter 6.

Suppose that we want to analyse two of the above-mentioned CASE tools, for
example. Instead of investigating development time, however, we are going to look
at the percentage of errors detected automatically by both tools during analysis and
design. Our H0 is: “there is no difference between the two tools”, and H1 indicates
that there is a difference. Table 14.1 shows the observations, as well as the sum of
ranks.

Table 14.1. Data on the percentage of errors detected by the

326 Non-parametric Analysis Methods

two tools

Tool 1 Tool 2
Errors detected
(%)

Rank Errors
detected (%)

Rank

18.3
16.4
22.7
17.8
19.9
25.3
16.1
24.2

12
10
16
11
13
18
9
17

Sum 106

12.6
14.1
20.5
10.7
15.9
19.6
12.9
15.2
11.8
14.7

3
5
15
1
8
14
4
7
2
6
Sum 65

From this table, we deduce that:

10106
2

(8)(9)(8)(10)R
2

1)(NNNNU 1
11

21 =−+−
+

+= =

126.67
12

8)(10)(19)
12

1)N(NNN40
2
108

2
2121221

==
++

==== UU ;))((NN σµ

Hence, z = -2.67. We will accept H0 if –1.96 ≤ z ≤ 1.96 and reject it otherwise, as
discussed in Chapter 6. In this case, then, we reject H0 and find that there is a
difference between the two tools. If we wanted to know which of the two tools was
the better, we would have to alter the null hypothesis of the experiment run, that is,
instead of merely indicating that there is a difference between the tools, H1 would
have to specify that tool 1 detects more errors than tool 2. In this case, we would
accept H0 if z ≥ -1.645 and would reject it otherwise. So, we would have rejected H0
in favour of the number of errors detected by tool 1 being greater than the number
of errors detected by tool 2. Thus, in this case, we would conclude that tool 1 is
better than tool 2 with regard to the number of errors automatically detected by the
tools.

14.2.2 Kruskal-Wallis Test or H-Test

The Kruskal-Wallis test, also called H-test, is an alternative procedure to the
analysis of variance F-test to test the null hypothesis that n alternatives are equal
against the alternative hypothesis that some cause greater observations than others.

Basics of Software Engineering Experimentation 327

The Kruskal-Wallis test is run by organising the observations in the same way as
explained above for the U test, that is, in ascending order and replaced by their rank
Rij, where the rank 1 is the smallest observation. If there is a tie (the value of more
than one observation is the same), the mean rank is allocated to each tied
observation. Let Ri be the sum of the ranks of the observations of the ith treatment.
The test statistic is:

⎥
⎦

⎤
⎢
⎣

⎡ +
−= ∑

=

a

1i

2

i

2
i.

2 4
1)N(N

n
R

S
1H

where ni is the number of the observations of the ith treatment, N is the total number
of observations and:

⎥
⎦

⎤
⎢
⎣

⎡ +
−

−
= ∑∑

= =

a

1i

n

1j

2
2
ij

2
j

4
1)N(NR

1N
1S

It is important to note that S2 is equal to the variance of the ranks. If there is no tie,
S2 = N(N + 1)/12 and the test statistic is simplified to:

)1N(3

n
R

)1N(N
12H

a

1i i

2
.i +−

+
= ∑

=

When there is a moderate number of ties (less than 25% of observations), there will
be little difference among the equations of H and the simpler equation can be used.
If ni is reasonably large, as would be the case if ni= 5, then H has a distribution of

approximately , if the null hypothesis is true. Therefore, if:
2

1−ax

2

1a,xH −α>

the null hypothesis has to be rejected.

For example, suppose that the response variables (measured in days of effort
employed in developing similar small applications) collected by testing five
different tools are as presented in Table 14.2, alongside their respective ranks.

328 Non-parametric Analysis Methods

Table 14.2. Data and ranks of the CASE tools testing experiment

Development Tool
A B C D E

y1j R1j y2j R2j y3j R3j y4j R4j Y5j R5j

7
7
15
11
9

Ri.

2.0
2.0

12.5
7.0
4.0

27.5

 12
17
12
18
18

9.5
14.0

9.5
16.5
16.5

66.0

 14
18
18
19
19

11.0
16.5
16.5
20.5
20.5

85.0

 19
25
22
19
23

20.5
25.0
23.0
20.5
24.0

113.0

 7
10
11
15
11

2.0
5.0
7.0

12.5
74.0

33.5

As quite a lot of the observations are tied, the second equation described as a test
statistic must be used:

03.53
4

)26(2579.5497
24
1

4
)1N(NR

1N
1S

2a

1i

n

1j

2
2
ij

2
i

=⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ +
−

−
= ∑∑

= =

And the test statistic is:

25.19
4

)26(250.5245
03.53

1
4

)1N(N
n
R

S
1H

2a

1i

2

i

2
.i

2 =⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ +
−= ∑

=

It follows from Table III.8 in Annex III that , which means that
the null hypothesis must be rejected and the tools must be classed as
different with regard to the effect they cause on the development effort. To
find out which tool calls for the least development effort, we could analyse the
above tools pairwise, as discussed in the preceding section. One practical way of
speeding up this analysis would be to compare the tool having the lowest mean (tool
A) with the other tools to check whether the effort called for is lower.

28.132
4.01 => xH

14.3. NON-PARAMETRIC METHODS APPLICABLE TO RELATED
SAMPLES

Related samples are samples in which there is a relationship among the sample
items. Consider the example discussed in section 8.4, for example, which aimed to
determine the estimation accuracy of two different techniques applied to 10 similar
projects. This experiment was run by selecting subject pairs of the same
characteristics for each project and randomly assigning the technique to be applied
to each one. This is an example of linked, related or parallel samples. It has the

Basics of Software Engineering Experimentation 329

advantage of the comparison being more accurate, as the dispersion among the
subjects is reduced.

There are different tests for analysing the data of samples of this kind depending on
how many samples are to be analysed, that is, two or more than two. In this book,
we are going to focus on one of the most commonly applied tests for two samples:
the Wilcoxon test or matched-pairs signed-ranks test. This test can be generalised
for more samples and is then known as the Friedman test. Interested readers are
referred to (Gibbons, 1992) for a detailed analysis of these tests. This test is not
addressed in this book, as there are not many references to real SE experiments in
which it has been applied.

The Wilcoxon test or matched-pairs signed-ranks test is the non-parametric
equivalent of the paired t-test, described in Chapter 7. This test is applied by
overlooking the pairs whose two values are equal and defining the differences:

 2ixilxid −=

The absolute values ⎢di⎢ are then placed in ascending order and ranked. The lowest
value will be ranked 1 and the highest n. If any values are repeated, each would be
assigned a mean rank.

Alongside each rank number, the respective difference is stated as having a positive
or negative sign. The positively ranked numbers (Rp) and negatively ranked
numbers (Rn) are added together, and the sum is tested with the formula:

 Rp + Rn = n(n+1)/2

The least of the two sums of the ranks R will be used as a statistic. The null
hypothesis will be rejected when the value of R obtained is less than or equal to the
critical value R (n; α) specified in Table III.8 of Annex III, where n is the value of
the number of pairs whose difference is not 0.

As an example of applying this test, let’s look at the number of errors detected per
time unit by two testing techniques across nine programs shown in Table 14.3.

330 Non-parametric Analysis Methods

Table 14.3. Errors detected per time unit across nine programs

Project 1 2 3 4 5 6 7 8 9
Technique
A

0.47 1.02 0.33 0.7 0.94 0.85 0.39 0.52 0.47

Technique
B

0.41 1.00 046 0.61 0.84 0.87 0.36 0.52 0.51

A-B=di 0.06 0.02 -
0.13

0.09 0.10 -
0.02

0.03 0 -
0.04

Rank 5 1.5 8 6 7 1.5 3 4
Rp=22.5 +5 +1.5 +6 +7 +3
Rn=13.5 -8 +1.5 -4
Test = 22.5+13.5 = 36 = 8 (8+1)/2

The value of the statistic is Rn= 13.5. This value is greater than R (8, 0.05),
which means that the null hypothesis cannot be rejected and, therefore, we
cannot say that both techniques detect a different number of errors.

14.4. NON-PARAMETRIC ANALYSIS IN REAL SE EXPERIMENTS

14.4.1. Analysis for Studying the Effect of Cleanroom Development

Selby, Basili and Barker (Selby, 1987) applied the Mann-Whitney U to get
significant results for the experiment whose design was described in section 5.3.3.
Remember that this experiment was developed in order to investigate the effect of
cleanroom development on the delivered product, on the software development
process and on the developers. As a result of the application of this test, several
results can be obtained concerning the product and process (the results concerning
the developers were not obtained by means of statistical techniques and have,
therefore, not been included).

Effect on the product developed: “Cleanroom developers delivered a
product that (1) met system requirements more completely, (2) had a higher
percentage of successful test cases, (3) had more comments and less dense
control-flow complexity and (4) used more non-local data items and a
higher percentage of assignment statements”.

Effect on the development process: “Cleanroom developers (1) felt they
applied off-line review techniques more effectively, (2) spent less time on-
line and used fewer computer resources and (3) made all their scheduled
deliveries”.

By way of an example, the data and the result of the non-parametric test used to

Basics of Software Engineering Experimentation 331

arrive at the assumption on the schedule are shown in Figure 14.1, where the capital
letters represent the groups that used and the small letters the groups that did not use
a Cleanroom process. The hypothesis was tested by having all teams from both
groups plan four releases of their evolving system, except for team “G”, which
planned five. Recall that at each delivery an independent party would operationally
test the functions currently available in the system, according to the team’s
implementation plan. Figure 14.1 shows that all the teams using Cleanroom kept to
their original schedules by making all planned deliveries; and only two non-
Cleanroom teams made all their scheduled deliveries. The significance level for the
Mann-Whitney test statistics report the probability of reject H0 being true in a one-
tailed test.

0 1 2 3 4 5 6

e
d a

J
I
H
F
E
D
C
B
A
c
b

G

Mann-Whitney signif.= 0.006

Figure 14.1. Number of system releases

14.4.2. Analysis for Studying the Effect of Methods to Test PL/I Code

The H-test or Kruskal-Wallis test was applied by Myers (Myers, 1978), for
example, to investigate methods to test PL/I code. Myers discusses two experiments.
The first examines a PL/I program using three approaches and variations: (1)
computer-based testing where the tester has access to only the program’s
specification, (2) computer-based testing where the tester has access to the
program’s specification and source-language listing, and (3) non–computer-based
testing by teams of programmers employing the walkthrough/inspection method.
The subjects of this experiment were 59 students with the same average testing
experience. The author applied the Kruskal-Wallis test on the number of errors
detected in the program and found no significant difference among them. However,

332 Non-parametric Analysis Methods

if applied to the mean man.minutes per error, this same test shows a significant
difference among the methods, where the walkthrough/inspection method is found
to be the most costly. A second experiment aims to investigate whether any
combination of the above methods would be more effective. Accordingly, four new
possibilities were added: (4) two people independently testing the program using
method 1 and then pooling their results when completed, (5) similar to 4 but
independent testers use method 2, (6) two independent testers, one using 1 and the
other using 2, and (7) three people use method 3 and the fourth person
independently uses method 1.

Combining the results of the first experiment, the author gets data on these new
combinations. A Kruskal-Wallis test on the seven mean-number of errors found
indicates that the null hypothesis can be rejected, implying that methods 4-7 are
better than methods 1-3. However, a test on the means for methods 4-7 does not
indicate any difference between these four methods. Again there is a difference with
regard to cost, and the cost in terms of effort of methods 1, 2, 4, 5 and 6 is
significantly better than for 3 and 7.

14.4.3. Analysis for Studying the Effect of a Functional Language
Versus an Object-Oriented Language

Although mainly applied with n>2 samples, the Kruskal-Wallis test can also be
applied to two samples. This is what Harrison, Samaraweera and Dobie (Harrison,
1996) did, where they sought to investigate whether the quality of code produced
using a functional language was significantly different from that produced using an
object-oriented language. Twelve sets of algorithms were developed in SML and
C++. The statistical test does not reveal any significant differences for direct
measures of the quality-related development metrics used, such as the number of
known errors, the number of modification requests, a subjective complexity
assessment, etc. (the response variables used in this experiment are detailed in Table
4.17 in Chapter 4, some of which are also used in the experiment described in
(Samaraweera, 1998)). However, significant differences are found for an indirect
measure, the number of known errors per thousand non-comment source lines, and
for various code metrics, including the number of distinct functions called and their
ratio, which is a measure of code reuse (SML programs have a higher ratio of
functions called). Table 14.4 shows, by way of an example, the values obtained for
the development-related response variable and the value of the respective Kruskal-
Wallis test. As you see, the test only outputs a significant difference at 5% for
(KE/ncsl) x 1000.

Basics of Software Engineering Experimentation 333

Table 14.4. Kruskal-Wallis test results for development response
variables

Response variable SML C++ Kruskal-Wallis
number of known
errors found during
execution of test scripts
(KE)

66 37 2.20

(KE/ncsl) x 1000 41 16 4.20
number of
modifications
requested during code
reviews, testing and
maintenance

164 122 0.17

complexity 34 35 0.04
time to fix errors 540 768 0.12
time to implement
modifications

687min 473min 0.00

development time 4324min 3629 min 0.65
testing time 2349 min 1148 min 2.29

14.4.4. Analysis for Studying the Effect of Ad Hoc Development on
Software Products

Basili and Reiter .(Basili, 1981) also applied the Mann-Whitney U and the H-test to
determine the effect of ad hoc development and development according to a series
of techniques applied to the products generated. In particular, the alternatives under
analysis were: (1) single individuals using an ad hoc development approach, (2)
three-person teams using an ad hoc approach, and (3) three-person teams using a
particular disciplined methodology. The application of these tests indicates that the
application of a disciplined methodology effectively improves both the process and
the product of software development. With regard to the process, for example, the
effectiveness of a particular programming methodology can be identified via the
number of bugs in the delivered system. The test indicates that the disciplined
programming teams scored lower than either the ad hoc programming teams, which
both scored about the same.

14.4.5. Analysis of Studying the Effect of Maintaining Modular Code
against Monolithic Code

An example of the application of the ranked Wilcoxon test is presented by Korson
and Vaishnavi (Korson, 1986) to investigate the benefits to maintenance of using
modular code against non-modular (monolithic code). The experiment was run on
two types of modular and monolithic code that implemented the same functionality.

334 Non-parametric Analysis Methods

The monolithic version was developed by replacing the function or procedure calls
in the modular version by the body of subroutines. The response variable collected
during the experiments was the time taken to make a change to both code versions,
and the changes meet the condition of affecting the information hidden in the
modular version. The results of applying the Wilcoxon test determine that a modular
program could be maintained significantly faster than an equivalent monolithic
version of the same program, under the condition that modularity has been used to
implement information hiding, which localises changes required by a modification.
This experiment was later criticised and replicated by other authors (Daly, 1994)
who found from the replication run that there were no significant differences in
maintainability between the two program types. These criticisms, related to the
design, not to the analysis of the experiment, were described in section 5.9.

14.4.6. Analysis for Studying the Effect of an Object-Oriented
Framework for Building Software Applications

Shull, Lanubille and Basili (Shull, 1998) investigate the possible advantages
afforded by the use of an object-oriented framework for building new applications.
In this experiment, object-oriented framework means a set of objects derived from a
hierarchy, which interact with each other to implement a functionality of some kind.
These frameworks are used as sources of reuse. Of the qualitative and quantitative
studies conducted by the authors, the use of the ranked Wilcoxon test for a
somewhat original purpose deserves a special mention: “analyse whether teaching
two different procedures for using a specific object-oriented framework to a group
of students provides any kind of difference in terms of understanding of the
framework itself”. The two techniques are teaching on the basis of examples
contained in the framework itself (example-based technique) and teaching the
framework object hierarchy and functionality (hierarchy-based technique). The
response variable used was the grade attained by the students taught according to
the two techniques across several questionnaires on framework operation. The test
reveals no difference with regard to the results obtained for the different techniques.
Therefore, neither group of subjects were at a disadvantage compared to the other in
terms of their understanding of the framework itself. Note that similar experiments
can be run to investigate possible sources of variability among the subjects who are
involved in an experiment. In this example, the similarity of the subjects rules out
any possible source of variability.

14.5. SUGGESTED EXERCISES

14.5.1. A software development professor applied two DFD construction
approaches to two different groups of students. The grades attained in a
common examination are as shown in Table 14.5. Can we deduce at the
level of significance of 95% that the class in which technique 1 was applied
attained poorer results than the class in which technique 2 was applied?

Basics of Software Engineering Experimentation 335

Table 14.5. Grades attained by two groups of students

Technique 1 73 87 79 75 82 66 95 75 70
Technique 1 86 81 84 88 90 85 84 92 83 91 53 84

Solution: Yes, z= 1.85 > 1.645

14.5.2. An organisation intends to adopt one of five (A, B, C, D, E) formal
specification techniques. Table 14.6 shows the time usually taken by
novice users to specify an employee requirement at a given organisation. Is
there any difference between the specification techniques at 5% and 1%?

 Table 14.6. Time taken to specify a requirement

A 68 72 77 42 53
B 72 53 63 53 48
C 60 82 64 75 72
D 48 61 57 64 50
E 64 65 70 68 53

Solution: No; No

14.5.3. Two programming languages applied to the same programs yield the
number of lines of code described in Table 14.17. Is there a significant
difference between both at 95%?

 Table 14.17. Lines of code with two different languages

 A B C D E
Language 1 40 28 19 15 30
Language 2 35 13 29 10 22

Solution: Yes (Rn=15)

15 HOW MANY TIMES
SHOULD AN EXPERIMENT

BE REPLICATED?

15.1. INTRODUCTION

An important decision in any problem of experimental design is to determine how
many times an experiment should be replicated. Note that we are referring to the
internal replication of an experiment. Generally, the more it is replicated, the more
accurate the results of the experiment will be. However, resources tend to be
limited, which places constraints on the number of replications. In this chapter, we
will consider several methods for determining the best number of replications for a
given experiment. We will focus on one-factor designs, but the general-purpose
methodology can be extended to more complex experimental situations.

How many times to replicate an experiment is actually a design decision. However,
it calls for knowledge and application of some statistical concepts examined in Part
III of this book, which is why this chapter has been placed at the end of the book,
although it is conceptually related to Part II.

The sections of this chapter describe how to identify the number of replications of
an experiment depending on the information we have about the alternatives under
consideration. Section 15.2, however, briefly recalls the importance of getting the
number of replications for an experiment right. Section 15.3 then describes the
procedure for outputting the above number of replications to be applied when the
means of the alternatives to be used to reject H0 are known. As these mean values
are often difficult to identify, section 15.4 describes an alternative procedure that
can be used when the value of the difference between any pair of means to be used
to reject H0 is known. Section 15.5 shows us what to do when we know the
percentage value not to be exceeded by the standard deviation so as not to reject H0.
Finally, section 15.6 indicates how to proceed when we have more than one factor
and we know the difference between the means of the alternatives to be used to
reject H0.

As we will see throughout the chapter, we need to have some information about the
population in question to determine how many replications to run. This information
is known only to experimenters who are somewhat experienced in the experimental
domain, either because they have run experiments before or have actually worked in
the domain. If no such information is available, one possibility is to set a given
number of replications (depending, for example, on the available resources) and

338 How many times should an experiment be replicated?

afterwards evaluate, using the methods discussed in this chapter, whether this
affords the right Type II error. The experience gathered from these early
experiments can be used to set this number beforehand in subsequent experiments in
the same domain.

15.2. IMPORTANCE OF THE NUMBER OF REPLICATIONS IN
EXPERIMENTATION

As discussed in Chapter 6, there are two error types associated with statistical
hypotheses. If we reject the null hypothesis when it should be accepted, we will say
that a type I error has been made. On the other hand, if we accept the null
hypothesis when it should be rejected, we will say that a type II error has been
made. The ideal thing would be to be able to minimise both error types. However,
this is not a simple matter, because any attempt at reducing one error type in a given
sample size is usually accompanied by an increase in the other type. The only means
of reducing both at once is to increase the sample size. Hence, the importance of
properly determining the number replications in experimentation.

As discussed in earlier chapters, type I error is associated with the significance level
(α). As explained in section 6.3.2, however, type II error (β) depends on the sample
size, the value of the difference between the observations of the different
alternatives being tested and the power of the statistical test (1-β), which defines the
probability of a statistical test correctly rejecting the null hypothesis. Therefore, we
are interested in running experiments that raise the statistical power of the applied
tests and, hence, reduce type II error. This can only be done by calculating the right
number of replications to be run. We will look at how to complete this process in
the following sections.

15.3. THE VALUE OF THE MEANS OF THE ALTERNATIVES TO BE
USED TO REJECT H0 IS KNOWN

One way of determining the number of replications of an experiment is to use
operating characteristic curves. An operating characteristic curve is a graph that
plots the likelihood of a statistical test yielding a type II error for a particular sample
size against the parameter that reflects when the null hypothesis is false.

Operating characteristic curves can be used as a guide for experimenters to decide
on the number of replications of an experiment needed to assure that the design is
sensitive to potentially important differences between alternatives and that the null
hypothesis can be correctly rejected during the analysis. Briefly, operating
characteristic curves can be used to select the number of replications of an
experiment so as to increase statistical power.

Basics of Software Engineering Experimentation 339

Firstly, consider the probability of a type II error in the fixed-effects model, where
the sample size is the same for each alternative. This error can be represented as:

β = 1 − P Reject H 0 H0 is false{ }= 1 − P F0 > Fα ,a −1,N − a H 0 is false{ }

This probability can be evaluated if we know the distribution of the statistic F0 when
the null hypothesis is false. It can be shown that if the null hypothesis is false, the
statistic F0=MSalternatives/MSE has a decentred distribution F, with a-1 and N-1
degrees of freedom and a parameter of decentring equal to δ, where a is the number
of factor alternatives addressed and N is the total number of observations made. If δ
=0, the decentred F distribution becomes the usual F distribution, which is discussed
throughout the book. This parameter of decentralisation determines the source of the
graphical representation of the F distribution. So, for example, this parameter is 0 in
Figure 6.3, which means that the curve that represents this distribution starts at 0 on
the x-axis. As the value of this parameter increases, the curve would move to the
right.

The operating characteristic curves set out in Annex III are used to evaluate the
probability of the above equation. The curves are provided for α = 0.01 and α =
0.05 and for a range of values of numerator and denominator degrees of freedom.
These curves indicate the probability of a type II error (β) against the parameter φ,
where:

 φ2 =

n τ i
2

i =1

a

∑
aσ2

and n is the number of replications, τi is the average of the individual means of the
alternatives and σ2 is the standard deviation of the observations.

Experimenters must specify the value of φ when operating characteristic curves are
used. This is often difficult in practice. One way of determining φ is to choose the
values of the means of alternatives for which the null hypothesis is to be rejected
with a high probability. Therefore, the above equation can be used to find out the
value of τi if µ1, µ2, …, µn are the means of the proposed alternatives, where
τ i = µi − µ = (1 / a) µii =1

a∑ is the average of the individual means of the alternatives. An

estimation of σ2 is also required. This can sometimes be taken from past experience,
previous experiments or a proposed estimation. When the value of σ2 is uncertain,
the number of replications can be determined for an interval of possible values of σ

340 How many times should an experiment be replicated?

2, and the effect of this parameter on the number of replications can be examined
before making a final decision.

The following example illustrates these ideas. Consider an experimenter who is to
investigate five testing techniques and is going to evaluate the percentage error
detected by each one. Suppose that the experimenter intends to reject the null
hypothesis with a probability of 90%, which means that the variation in the result
due to alternatives will be detected at least 90 out of the 100 times the experiment is
run, and the mean of each technique is 11%, 12%, 15%, 18% and 19%, respectively.
These values could be obtained by running a cost/benefit analysis of the deployment
of the five techniques, for example, used by experts to determine the percentages as
of which it is worth deploying the most expensive techniques (which detect more
errors).

How could we determine how many times the experiment had to be replicated to be
able to reject the null hypothesis with the required 90% probability?

We know that
 µ1 = 11 µ2 = 12 µ3 = 15 µ4 = 18 and µ5 = 19

We plan to use α = 0.01. Hence, , because µii =1

5
∑ = 75 µ = (1/5)75 = 15 and

 τ1 = µ1 - µ = 11 – 15 = -4

 τ2 = µ2 - µ = 12 – 15 = -3

 τ3 = µ3 - µ = 15 – 15 = 0

 τ4 = µ4 - µ = 18 – 15 = 3

 τ5 = µ5 - µ = 19 – 15 = 4

Therefore, . Suppose also that the experimenter believes that the

standard deviation in the percentage of defect detection is under σ = 3%. This value
may have been obtained from his/her experience, consultation with experts or
information gathered from earlier experiments. Hence:

τ i
2

i =1

5∑ = 50

 φ2

n τ i
2

i =1

5

∑
aσ 2 =

n(50)
5(3)2 = 1.11n

The operating characteristic curve in Annex III for n–1 = 5–1 = 4, N–a = a(n –1) =
5(n–1) degrees of freedom of the error and α = 0.01 yields n = 4 as a rough estimate

Basics of Software Engineering Experimentation 341

of the number of replications. This yields φ2 = 1.11(4) = 4.44, φ = 2.11 and 5(3) =
15 degrees of freedom of error. Therefore, β ≅ 0.30. Thus, we conclude that n=4
replications are insufficient because the power of the test is approximately 1-β = 1–
0.30 = 0.70, which is under the required 0.90. Table 15.2 can be built according to a
similar procedure.

Table 15.2. Number of replications generated according to
operating characeristic curves for one-factor experiments

n φ2 φ a(n – 1) β Power (1 - β)
4
5
6

4.44
5.55
6.66

2.11
2.36
2.58

15
20
25

0.30
0.15
0.04

0.70
0.85
0.96

Therefore, at least n=6 replications are required to get a test with the desired power.
Remember that the experiment will be better defined, the greater the power
obtained.

15.4. THE VALUE OF THE DIFFERENCE BETWEEN TWO MEANS OF
THE ALTERNATIVES TO BE USED TO REJECT H0 IS KNOWN

The only problem with the above approach is that it is usually difficult to select the
set of alternative means on which the decision concerning replication will be based.
One possible option is to select the number of replications so that the null
hypothesis is rejected if the difference between any pair of alternative means is over
a particular value (D). This value can be obtained from several sources, such as
cost/benefit analyses of the alternatives in question or more informal inquiries that
determine as of when it is worth identifying differences between alternatives.

If the difference between two alternative means is no more than D, it can be
demonstrated that the least value of φ2 is:

 φ2 =
nD2

2aσ 2

As this is the least value of φ2, the value of the number of respective replications
yielded by the operating characteristic curves is conservative, that is, provides a
power at least equal to the one specified by the experimenter.

To illustrate this method, suppose that we want to reject the null hypothesis of the
inspection technique problem with a probability of at least 0.90, if the difference
between any pair of technique means is at most equal to 10%. Supposing that σ =
3%, the least value of φ2 is:

342 How many times should an experiment be replicated?

 φ2 =
n(10)2

2(5)(32)
= 1.11n

and analysing the above example, we find that n=6 replications are needed to get the
desired level of sensitivity when α = 0.01.

15.5. THE PERCENTAGE VALUE TO BE EXCEEDED BY THE
STANDARD DEVIATION TO BE USED TO REJECT H0 IS KNOWN

The specification of an increase in the standard deviation of the means is sometimes
useful for selecting the number of replications. If there is no difference in the
alternative means, the standard deviation of an observation selected at random is σ.
On the other hand, if the means of the alternatives are different, the standard
deviation of an observation selected at random is:

 σ 2 + τ i
2 / a

i =1

a

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

If we select P as the percentage not to be exceeded by the standard deviation of the
observation (if it is over, the hypothesis that all the alternative means are equal will
be rejected) is equivalent to selecting:

)percentageP(P01.01

a

1i

2
i

2

a/
=+=

σ

⎟
⎠

⎞
⎜
⎝

⎛
τ

+σ
∑

=

or

τ i
2 / a

i=1

a

∑
σ

= (1+ 0.01P)2 − 1

therefore,

 φ =

τ i
2 / a

i=1

a

∑
σ / n

= (1+ 0.01P)2 − 1(n)

Basics of Software Engineering Experimentation 343

Thus, the value of φ can be calculated using this equation for a specific value of P,
and the operating characteristic curves in Annex III can then be used to determine
the number of replications.

Consider the techniques problem addressed in the preceding section and suppose
that we intend to detect an increase of 20% in the standard deviation (that is, 20%
variations can be detected in the response variable) with a probability of at least
0.90 (1-β=0.9) and that α = 0.05. Then:

 φ = (1.2)2 −1(n) = 0.66 n

As far as the operating characteristic curves are concerned, n=9 is found to be
necessary to get the desired sensitivity.

15.6. THE DIFFERENCE BETWEEN THE MEANS OF THE
ALTERNATIVES TO BE USED TO REJECT H0 IS KNOWN FOR MORE
THAN ONE FACTOR

operating characteristic curves can also be used as an aid for experimenters to
determine the number of replications, n, in a factorial design having more than one
factor. Indeed, the value of φ2 are presented in Table 15.3, together with the degrees
of freedom of the numerator and denominator for two-factor experiments having a
and b alternatives, respectively, and n replications.

A very efficient means of using these curves is to determine the least value of φ2,
which corresponds to a specified difference between two alternative means. For
example, if the difference between two means of factor A is D, the least value of φ2
will be:

 φ2 =
nbD2

2aσ 2

whereas if the difference between two means of factor B is D, the least value of φ2
will be:

 φ2 =
naD2

2bσ 2

Finally, the least value of φ2, which corresponds to a difference equal to D between
any pair of interacting effects will be:

344 How many times should an experiment be replicated?

 φ2 =
nD2

2σ 2[(a − 1)(b − 1) + 1]

Table 15.3. Parameters of the operating characteristic curve for the graphs in Annex
III: two-factor fixed-effects model

Factor φ2 Degrees of freedom of
the numerator

Degrees of freedom of
the denominator

A bn τ i
2

i=1

a

∑
a σ 2

a – 1

ab(n – 1)

B an β j
2

j=1

b

∑
bσ 2

b – 1 ab(n – 1)

AB n (τβ)ij
2

j=1

b

∑
i=1

a

∑
σ 2[(a −1)(b−1)+1]

(a – 1)(b – 1) ab(n – 1)

Consider, as an illustration of these equations, a two-factor experiment, whose goal
is to determine the time it takes programmers with three levels of experience and
using three different programming languages to program one and the same
algorithm. Suppose that, before running the experiment, it was decided that the null
hypothesis was highly likely to be rejected if the maximum difference in
implementation time of any pair of languages was equal to 40 minutes. For example,
the experimenters may have obtained this difference by placing constraints on the
development times used.

Therefore, D=40, and if the standard deviation of the time is assumed to be
approximately equal to 25, the second equation described in this section yields

 φ2 =
naD2

2bσ2 =
n(3)(40)2

2(3)(25)2 = 1.28n

as the least value of φ2. Supposing that α = 0.05, the curves in Annex III can be
used to build Table 15.4.

Basics of Software Engineering Experimentation 345

Table 15.4. Number of replications for two-factor experiments generated using
operating curves

n φ2 φ ω1 = Degrees of freedom
of the numerator

ω2 = Degrees of
freedom of error

β

2
3
4

2.56
3.84
5.12

1.60
1.96
2.26

2
2
2

9
18
27

.45

.18

.06

We find that n=4 replications produce a level close to 0.06 for β or a probability of
roughly 94% of the null hypothesis being rejected if the difference in the mean time
for two experience levels is at most equal to 40 minutes. Therefore, it is concluded
that four replications are sufficient to assure the desired level of sensitivity,
provided that no serious error was made when estimating the standard deviation of
the time. When in doubt, experimenters must repeat the above procedure using
several values of σ to determine the effect of the error on the estimation of this
design sensitivity parameter.

15.7. SUGGESTED EXERCISES

15.6.1. Suppose that we want to analyse the programming languages that we
looked at in section 7.3 again to find out whether there is any difference
between them for a given problem domain. Suppose we intend to reject H0
with a probability of 90% if the means are µA=20 and µB=30, where α
=0.01. At least how many replications will have to be run? Where do we
get the estimate of σ2 from?

Solution: 10; from s2 in the example shown in section 7.3

15.6.2. Suppose that we intend to detect this difference in the above exercise if the
percentage standard deviation of any observation is greater than 30%.
What will be the least number of replications required to detect this value
with a minimum probability of 90%?

Solution: 31

15.6.3. If we wanted to replicate the experiment described in section 8.1 with
programmers from another organisation and wanted to detect significant
differences between the four languages when there is a difference of at
least five errors, with a probability of 0.9 at least, and α=0.01. At least how
many replications would have to be run? How would we get a preliminary
estimate of σ2?

Solution: 5; from the value of MSE in the above-mentioned exercise

346 How many times should an experiment be replicated?

15.6.4. Suppose we have an organisation that intends to examine the better of two
modelling techniques depending on analyst experience. How many
replications would have to be run if we wanted to detect a difference
greater or equal to 10 between the techniques and the number of errors,
with a probability of 80%, where α=0.05? Suppose that the organisation
has already worked with these techniques and suspects that σ2=3?

Solution: 2

16 SOME RECOMMENDATIONS
 ON EXPERIMENTING

16.1. INTRODUCTION

This chapter aims to outline the most important ideas discussed throughout the
book, mainly focusing on some useful points for correctly running and documenting
experiments so that they can be replicated by other people. Section 16.2 groups a
series of precautions, which, although they have been addressed in other chapters of
the book, should be taken into account by readers whenever they experiment.
Section 16.3, on the other hand, provides a set of guidelines to aid novice
experimenters to document their empirical work. These guidelines are designed to
ease external replication. They can also be used to check that the fundamental
design and analysis issues of each experiment have been taken into consideration.

16.2. PRECAUTIONS TO BE TAKEN INTO ACCOUNT IN SE
EXPERIMENTS

This section recalls some points to be taken into account for correctly running SE
experiments. These points are applicable to experiments in any field and not only to
SE. Some of these points have already been remarked upon in other chapters of the
book. Below, they are grouped in one section as a quick reference and reminder for
readers.

These points will be classed according to the phase of the experimental process
(described in Chapter 3) to which they refer: goal definition, experimental design,
experiment execution and data analysis.

1. Defining the goals of the experiment

• Describe the general goals of the experiment, that is, what the experiment
aims to investigate and its motivation. If experimenters are inexperienced in
experimental design and analysis, we recommend that they start by
replicating known experiments. This will help them to formulate hypotheses
and with design, analysis, etc. (Remember that the hypotheses and setting of
the experiment can used unchanged in external replication in order to
confirm earlier results or the two concepts can be varied so as to generalise
or further investigate the results.)

• Determine whether the experiment in question is an external replication of an
existing experiment or a new experiment. Remember that, as discussed in
Chapter 4, the same hypotheses must be used for replication if the goal is to

350 Some Recommendations on Experimenting

validate the results of an earlier experiment or they can be varied if the goal
is to generalise or further investigate the results.

• Deduce the hypotheses to be investigated from the general goals of the
experiment, which should be represented as H0 and H1, where H0 is always
the hypothesis that indicates that there are no differences between the
variables under study and H1 that there are differences.

• Remember that the hypotheses to be tested as a result of the experiments
must be quantifiable, that is, there must be a formal procedure for outputting
the result of the experiment so as to test the hypothesis in question as
objectively as possible. This point was discussed in more detail in Chapter 3.

2. Designing experiments

• Try to use metrics that are as objective as possible to measure the response
variables, where objectivity means that two people measuring the same item
get the same measure. In this respect, the number of lines of code of an
application is more objective than the number of function points, for
example.

• One variation that often occurs in experiments is due to the heterogeneity of
the subjects. Consider the possibility of using blocks to assure that this
variation does not affect the results.

• The alternatives of a factor can be quantitative or qualitative. If they are
qualitative, clearly describe each one to make the experiment repeatable. For
example, if we consider experience, whose alternatives are very and little, as
the factor, we should describe exactly what very and little experienced means
so that other experimenters can later replicate the experiment under the same
circumstances.

• Carefully consider the number of internal replications. Remember that if too
few replications are run, the results of the experiment are meaningless, as the
type II error is likely to be high. Therefore, it is important to calculate this
number, ideally a priori, as discussed in Chapter 15. If this is not possible,
the type II error or power of the test has to be calculated a posteriori to
determine how reliable the results yielded are.

• Consider a possible learning effect. If you suspect that your experiment is
open to this problem (regarding both the factor alternatives to be applied and
the experimental units), try to assign different subjects to both the
alternatives and the experimental units.

Basics of Software Engineering Experimentation 351

• Be careful with the boredom effect (subjects get bored as the experiment
progresses). If you suspect that your experiment is open to this problem, try
not to run the experiment over a long period of time and try to motivate the
participant subjects.

• If the alternatives under study are partly distinguished by how formally they
are applied, be careful with the unconscious effect. This can be minimised by
getting different subjects to use the above alternatives or having the same
subjects apply the least formal alternatives first, gradually moving up to the
more formal ones.

• Try to keep the conditions, that is, the characteristics of the days, time, etc.,
under which the experiment is run constant throughout in order to prevent a
possible setting effect.

• Do not forget to assign experimental units to subjects and techniques as
randomly as possible. Otherwise, it is impossible to apply the analysis
techniques.

• Determine the type of experimental design that is best suited to your
particular case (one-factor, factorial, fractional design, etc.). Remember that
the use of simple designs, known as “one factor at a time” (discussed in
Chapter 5), are usually a waste of resources, as they call for many more
experiments to be run to get the same amount of information. Using a suitable
experimental design, the same number of experiments can output narrower
intervals of confidence for the effects on the response variable. Additionally,
simple designs overlook interactions. The effect of one factor often depends
on the level of other factors. This sort of interactions cannot be estimated
with “one factor at a time” designs.

• Do not worry if the experimenter does not know which variables do and
which do not have an influence on the response variable in the early
experimental runs. Indeed, this is usually the case. The important thing is for
experimenters to be conscious of what they do not know and investigate the
experimental error observed in their experiments. Experimental error advises
of uncontrolled variations that can be accounted for in the next run by
including new variables (in an attempt to identify the uncontrolled variation)
or even by removing from the investigation variables that have proven not to
have an effect on the response variable. Remember that a possible stepwise
approach with successive experiments would be as follows:

1. Detect influential factors using fractional design

2. Examine the important factors using two alternatives, that is, by means

352 Some Recommendations on Experimenting

of 2k designs

3. Investigate the important factors that have a significant effect for a
wider range of alternatives.

3. Running experiments

• Try not to disturb or interrupt the subjects when they are running the
experiment. Noise or interruptions can affect the process of executing the
experiment, influencing the results yielded.

• Be sure to remind the subjects who are taking part in an experiment that the
goal of the experiment is to measure not their performance but the
alternatives of the factors under consideration. Suppose, for example, that we
are evaluating estimation techniques, and the response variable to be
measured is the deviation between the estimated and real values. The subjects
could be tempted to state that the deviation is lower than it actually is, if they
suspect that the above measure could somehow be used as an indicator of
their ability to meet particular constraints, making the techniques look more
accurate than they really are.

• Try not to let the subjects know what the hypothesis to be tested is. This can
affect, albeit unconsciously, the way they perform the experiment in an effort
to prove the hypothesis.

• The fact that subjects drop out of the experiment after it has got under way
must be taken into account, as, depending on the factors addressed, this can
invalidate the results. For example, if the subjects are a factor of the
experiment and all the subjects who drop out are representatives of one
alternative, the experiment will not be valid and will have to be repeated.

• Make sure that none of the subjects participating in any combination of
alternatives of an experiment communicate with each other in the course of
the experiment. Such conversations can affect the outcome of the
experiment. Suppose, for example, that two groups of subjects are testing
two different CASE tools (A and B) and the two groups converse during the
experimentation. If, as a result of this conversation, the members of the group
testing tool B get the idea that the productivity of their tool is lower than tool
A, they might not even try to reach the desired productivity level in the belief
that their tool is worse. Alternatively, they could try to boost productivity by
doing things quicker but less correctly. Either circumstance could affect the
results of the experiment.

Basics of Software Engineering Experimentation 353

• Use protocol analysis to be sure about the process enacted by the subjects
while running the experiment. Remember that this is a way of determining
the accuracy with which the subjects apply the SE techniques or process
during the experiment.

4. Analysing data

• Try to use a statistically powerful test. Remember that statistical power is
the likelihood of a test correctly rejecting the null hypothesis. This concept
was addressed in Chapters 6 and 14.

• Carefully validate the assumptions of the different tests. As shown in Part
III of this book, some of the statistical tests used assume samples to be
normally distributed and independent, for example. If these assumptions are
not met, the findings output by the above tests are invalid.

• Take care when extrapolating the results of your experiment to industrial
practice. Carefully consider whether the subjects, experimental units, etc., are
representative of such practice. Indeed, remember that this calls for two
successive levels of experimentation, what we have termed controlled and
quasi experiments. The best thing to do to extrapolate the results of an
experiment to industry is to continue the investigation by running quasi
experiments.

• One point must be made regarding the relationships of causality
investigated by the experiment. The cause-effect relationships usually used in
experiments tend to be deterministic, that is, every time we invoke a given
cause, we get the expected effect. As far as software development is
concerned, some authors, like Pfleeger (1999), think that this deterministic
relationship has a tendency to be a bit stochastic owing to the immaturity of
the processes to be enacted and to our actual unfamiliarity with software
development. In this respect, the findings of SE experiments should be
expressed as, for example, “the use of technique A is more likely to reduce
development effort under such and such circumstances than B” rather than
“technique A reduces development effort under such and such circumstances
more than B”.

• Suppose you suspect that the response variable is affected by a variable,
like, for example, the problems to be dealt with, the subjects, etc. One way of
confirming whether or not there is any such variability is to redefine the
experiment considering this possible source of variation as the only factor
and then analysing the response variable output. If the effect of the above
factor is insignificant, the analysis can be conducted without considering it as
a blocking variable; otherwise, the above factor has to be considered as a

354 Some Recommendations on Experimenting

blocking variable and the analysis has to be completed taking this
characteristic into account.

These points have also been called validity threats by some authors. Wohlin et al.
(2000) describe some of these recommendations according to the classification
proposed by Cook and Campbell (1979). According to this classification, they were
divided into threats related to the conclusion (that is, on the process of drawing
conclusions about the data output by the experiments); internal threats (points that
assure that there is a causal relationship between the factors and the response
variable); construct threats (points related to the design of the experiment to assure
that it simulates the real conditions of use of the factors under consideration) and
external threats (points required for experiment replications). Other reading on
validity threats includes (Judd, 1991) or (Cronbach, 1955). Readers are referred to
these sources for further details.

16.3. A GUIDE TO DOCUMENTING EXPERIMENTATION

As mentioned above, the external replication of experiments is essential for
confirming experimental findings and thus building a scientific body of knowledge
in any discipline. One limit to this replication is that experimental findings are
poorly reported. This means that any replications run cannot reproduce the same
conditions as the original experiments, as these conditions have not been published
and, therefore, are unknown. This makes it difficult to achieve the goals of external
replication (consolidate the findings of earlier experiments, if the replication is run
without altering any hypothesis, and generalising the results, if the replication is run
by altering the setting of the experiment).

There are a series of general rules, used to write scientific papers, especially in the
field of applied sciences like biology, which experimenters could use as a basis for
reporting their experimental results. These rules recommend that papers be drafted
starting with an introduction that describes the problem to be addressed, the purpose
of the paper, the motivation, etc., followed by a discussion of the experimental work
carried out, including the materials used and the biological or industrial methods and
statistical methods employed. This discussion is followed by a description of the
results of the planned investigation, addressing the recorded data, measured values,
etc. Although these guidelines can be useful for documenting experiments in areas
like physics or biology, this issue has to be dealt with at more length in SE.

This section aspires to provide a guide indicating the most important points to be
documented in a SE experiment. This guide does not profess to be a mandatory
template. It merely aims to serve as a starting point to assure that novice
experimenters wanting to document their experiments do not forget to describe the
most important points.

Basics of Software Engineering Experimentation 355

Generally, good experimental documentation must cover all the phases of
experimentation (goal definition, experimental design, execution and analysis) and
supply all the information required by third parties to reproduce the above process.

The most important points to be documented for each phase are specified below as
questions to be answered by the experimental documentation. Table 16.1 contains
these questions.

As final remarks we would like to say that there are a lot of things to consider about
experimentation in SE besides the topics covered in this book. For example,
deepening into the differences between experimentation in natural versus social
sciences, including qualitative analysis techniques, meta-analysis techniques, and
many other things. Nevertheless, our intention with this book has not been to cover
all possible topics about experimentation in SE, a task not very realistic for only one
book. Quite the opposite, our intention has been to wake up the interest of the reader
about experimentation in SE, so as he/she can start a long travel through the way of
experimentation in this field. This book would represent the first steps to be walked
in that long way. We hope that, after reading this book, the reader feels more
attractive for this interesting topic.

356 Some Recommendations on Experimenting

Table 16.1. Questions to be addressed by experimental documentation

Goal Definition Motivation for the experiment • Why is investigation in the field with which the experiment is concerned important?
• What information do we intend to gather to add to the knowledge of the field with which

the experiment is concerned?
• What findings need to be justified?

 Earlier experiments • What other experiments have been run in the field in question? What were the results?
• Is this experiment an external replication of an earlier experiment? Is it an exact

replication or is any characteristic to be altered?
 Goals of the experiment • What are the general goals to which this experiment aims to contribute?

• What particular goal is it to satisfy?
• What are the null and what is the alternative hypotheses?

Design Factors • What are the experimental factors?
• Why have these factors been chosen?
• What are the alternatives of each factor?
• How is each alternative defined, that is, when is a factor said to have a particular

alternative?
 Response variables • What are the response variables? Why were these variables chosen instead of others?

• What metrics are to be employed to measure the response variables?
• Is there an objective procedure by means of which to get the value of the above metrics?

What is it?
 Parameters • What are the parameters?

• When is a parameter assigned a given value?
• What guarantees are there that the parameters are kept constant or at similar values across

all the elementary experiments?
 Blocks • Are there any blocking variables? What are they?

• Why do we need blocks?
• What are the alternatives of the blocks? How are the above alternatives defined?
• How big is the block?

Basics of Software Engineering Experimentation 357

 Experimental units • What are the experimental units?

• How are the values of their related parameters reflected?
• If they are not attached to the experimental documentation, where are they specified?

 Experimental subjects • Who are the experimental subjects?
• Why have these subjects been chosen?
• What, preferably objective, criteria were used to select these subjects? What, preferably

objective, characteristics do these subjects have?
 Data collection • What process is to be enacted to collect the experimental metrics?

• At what point(s) during execution will they be collected? Why?
• If the subjects supply the above metrics, how do the experimenters collect them? On a

form, for example? If this form is not attached to the experimental documentation, where
is it available for consultation?

 Internal replication • How many replications are run of each elementary experiment? Why?
• What subject and experimental unit is used in each replication?

 Randomisation • Is it possible to randomise? If so, how was it done? What variables, subjects,
experimental units, time, etc., have been randomised?

 Subject knowledge of the
alternatives

• How can we assure that the subjects are familiar with the alternatives to be applied?
• Is it necessary to train the subjects in any of or all the alternatives? How is the above

training process run? How long does it take? What documentation is supplied? When
does training take place?

 Schedule • When are the elementary experiments run? How many days do they take? Which
experiments are run on which day?

 Constraints on the validity of the
experimental results

• Is the learning effect likely to appear? If so, can it be avoided? How?
• And the boredom effect?
• And unconscious formalisation?
• And the effect of applying a novel alternative?
• And the enthusiasm effect?
• And the setting effect?

Experiment Execution Monitors • Who controls experiment execution? Exactly what role do they play?

358 Some Recommendations on Experimenting
 Instructions • What spoken and written instructions are given to the subjects? Where are these

instructions available for consultation?
• What checks are run to find out whether the subjects actually follow these instructions?

 Timing • How long have the subjects been given to run the experiment?
 Exceptions • Has any exception been made with regard to the planned design? Why? How has it been

managed?
 Data collected • What were the values of the metrics yielded by each elementary experiment?
Experimental analysis Constraints • What properties do the collected data have, that is, do they meet constraints on normality,

independence, etc.? How have the above constraints been tested?
 Methods of analysis • Have parametric or non-parametric methods been used to determine statistical

significance? Why?
• What methods have been used?
• What confidence level (α) has been used?

 Results of analysis • What are the results?
• What factors are important?
• What factors are statistically significant?
• If statistical significance has been detected, what method has been employed to identify

the best alternative? Why? What was the result?
• If the concept of similarity has been used in the internal replications, for example, with

regard to the subjects or the experimental units, have the possible differences been tested
for statistical significance? What was the result?

 Findings of the experiment • How can the result of the experiment be explained?
• Does the result obtained contradict or support the results of earlier experiments?
• What other experiments could be run on the basis of this one to further investigate the

results yielded?

REFERENCES
Agarwal R, De P, Sinha AP. Comprehending Object and Process Models: An Empirical Study. IEEE
Transactions on Software Engineering 1999; 25 (4): 541-555.

Alston WP. Philosophy of Social Sciences. Foundation in Philosophy Sciences. New Jersey: Prentice
Hall, 1966.

Anderson VL; McLean RA. Design of Experiments: A Realistic Approach. New York: Marcel Dekker
Inc, 1974.

Arisholm E, Sjoberg D. Empirical Assessment of Changeability. Proceedings of the ICSE ´99 Workshop;
1999 May 18; Los Angeles, USA: 62-69

Basili VR, Caldiera G, Rombach HD. “The GQM approach”. In the Encyclopedia of Software
Engineering, Wiley, 1994.

Basili VR, Reiter RW Jr. A Controlled Experiment Quantitatively Comparing Software Development
Approaches. IEEE Transactions on Software Engineering 1981; 7 (3): 299-320.

Basili VR, Selby RW. Comparing the Effectiveness of Software Testing Strategies. IEEE Transactions on
Software Engineering 1987; 13 (12): 1278-1296.

Basili VR, Green S, Laitenberger O, Lanubile F, Shull F, Sorumgard S, Zelkowitz MV. The Empirical
Investigation of Perspective-Based Reading. Empirical Software Engineering 1996, 1(2): 133-164.

Basili VR, Lanubile F, Shull F. Investigating Maintenance Processes in a Framework-Based Environment.
Proceedings of the International Conference on Software Maintenance (ICSM '98); Bethesda, Maryland,
IEEE Computer Society Press, 1998: 256-264.

Basili V, Shull F, Lanubile F. Building Knowledge through Families of Experiments. IEEE Transactions
on Software Engineering 1999; 25 (4): 456-473.

Box G, Hunter W, Hunter J. Statistics for Experimenters. An Introduction to Design Data Analysis and
Model Building. New York: John Wiley & Sons, 1978.

Briand L, El Emam K, Morasca S. On the Application of Measurement Theory in Software Engineering.
Empirical Software Engineering 1996; 1: 61-88.

Briand LC, El Emam K, Freimut B, Laitenberger O. Quantitative Evaluation of Capture-Recapture
Models to Control Software Inspections. Proceedings of the Eighth International Symposium on Software
Reliability Engineering 1997; Albuquerque. Los Alamitos: IEEE Comput. Soc., 1997.

Briand LC, Bunse C, Daly J W, Differding C. An Experimental Comparison of the Maintainability of
Object-Oriented and Structured Design Documents. Empirical Software Engineering 1997; 2: 291-312 .

Brown RW, Lennenberg EH. A Study in Language and Cognition. Journal of Abnormal and Social
Psychology 1954; 49: 454-462.

Browne JC, Lee T, Werth J. Experimental Evaluation of a Reusability-Oriented Parallel Programming

360 References

Environment. IEEE Transactions on Software Engineering 1990; 16 (2): 111-120.

Campbell DT, Stanley JC. Experimental and Quasi-Experiental Designs for Research. Boston MA:
Boughton Mifflin Company, 1963.

Cartwright M, Shepperd MJ. An Empirical View of Inheritance. Information and Software Technology
1998; 40 (14): 795-799.

Cohen D. The Secret Language of the Mind. London: Duncan Baird Publishers, 1996.

Cook TD, Campbell DT. Experimental and Quasi-Experiental Designs for Research. Boston MA:
Boughton Mifflin Company, 1979.

Counsell S, Newson P, Harrison R. Use of Friends in C++ Software: An Empirical Investigation.
Proceedings of the International Conference on Software Engineering; 1999 May 18; Los Angeles, USA:
70-74.

Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psychological Bulletin 1955; 5: 281-
303.

Daly A, Brooks A, Miller J, Roper M, Wood M. An External Replication of a Korson Experiment.
Technical Report Empirical Foundations of Computer Science EFoCS-4-94, Departmet of Computer
Science, University of Strathclyde, Glasgow, 1994.

Daly A, Brooks A, Miller J, Roper M, Wood M. The Effect of Inheritance on the Maintainability of
Object-Oriented Software: En Empirical Study. Proceedings of the International Conference on Software
Maintenance, 1995. Los Alamitos: IEEE Comput. Soc. Press, 1995.

Duncan DB. Multiple Range and Multiple F Test. Biometrics 1955; 11: 1-42.

Ebert C. Experiences with Criticality Predictions in Software Development. Proceedings of the 6th ESEC,
held Jointly with the 5th ACM SIGSOFTS Symposium on the FSE; 1997 September; Zurich, Switzerland.
Software Engineering Notes 1997; 22 (6): 278-293.

Ebert C. The Road to Maturity: Navigating Between Craft and Science. IEEE Software, 1997;
November/December: 77-82.

Ericson KA, Simon HA. Protocol Analysis: Verbal Reports as Data. Cambridge: MIT Press, 1984.

Fenton N, Pfleeger SL, Glass RL. Science and Substance: A challenge to software engineers. IEEE
Software 1994; July: 86-95.

Fenton N, Pfleeger SL. Software Metrics: A Rigorous & Practical Approach. 2nd Edition. Boston, MA:
PWS Publishing Company, 1997.

Fox H. The Legacy of Cold Fusion, Truth, History and Status. New Enginery News, 1997; 5 (5): 4-5.

Fusaro P, Lanubile F, Visaggio G. A Replicated Experiment to Assess Requirements Inspection
Techniques. Empirical Software Engineering 1997; 2: 39-57.

Gibbons JD, Chakraborti S. Nonparametric statistical inference. 3rd Edition. New York : Marcel Dekker,

Basics of Software Engineering Experimentation 361

1992

Glass GV, McGraw B, Smith ML. Meta-analysis in Social Research. Beverly Hills, CA: SAGE, 1981.

Harrison R, Samaraweera LG, Dobie MR, Lewis PH. Comparing programming paradigms: an evaluation
of functional and object-oriented programs. Software Engineering Journal 1996; July: 247-254.

Hatton L. Does OO Really Match the Way We Think?, IEEE Software 1998; May: 46-54.

Houdek F, Ernst D, Schwinn T. Comparing Structured and Object-Oriented Methods for Embedded
Systems: A Controlled Experiment. Proceedings of the ICSE ´99 Workshop; 1999 May 18; Los Angeles.

Judd CM, Smith ER, Kidder LH. Research Methods in Social Relations. Orlando, Florida: Harcourt Brace
Jovanovich College Publishers, 1991.

Kamsties E, Lott CM. An empirical evaluation of three defect detection techniques. Technical Report
International Software Engineering Research Network ISERN-95-02, Department of Computer Science
University of Kaiserlautern, May 1995.

Kitchenham B. Software Metrics.Oxford: Blackwell Publishers Inc., 1996.

Korson TD, Vaishnavi UK. An empirical study of the effects of modularity on program modificability.
Proceedings of the First Workshop on Engineering Studies of Programmers; 1986. Ablex Publishig
Corporation, 1986.

Laitenberger O, DeBaud J-M. Perspective-based reading of code documents at Robert Bosch GmbH.
Information and Software Technology 1997; 39: 781-791.

Land LPW, Sauer, C, Jeffery R. Validating the Defect Detection Performance Advantage of Group
Designs for Software Reviews: Report of a Laboratory Experiment Using Program Code. Proceedings of
the 6th ESEC, held jointly with the 5th ACM SIGSOFTS Symposium on the FSE; 1997 September;
Zurich, Switzerland. Software Engineering Notes 1997; 22 (6): 294-309.

Latour B, Woolgor D. Laboratory Life. The Construction of Schence Facts. Princenton, USA: Princenton
University Press, 1986.

Lennenberg EH. Cognition in Ethnolinguistics. Language 1953; 29: 463-471.

Lewis JA, Henry SM, Kafura DG, Schulman RS. An Empirical Study of the Object-Oriented Paradigm
and Software Reuse. SIGPLAN-Notices 1991; 26 (11): 184-96.

Lewis JA, Henry SM, Kafura DG, Schulman RS. On the Relationship between the Object Oriented
Paradigm and Software Reuse: An Empirical Investigation. Journal of Object Oriented Programming
1992; July/August: 35-41.

Lott CM, Rombach HD. Repeatable Software Engineering Experiments for Comparing Defect-Detection
Techniques. Empirical Software Engineering 1996; 1: 241-277.

Macdonald F, Miller J. A Comparison of Tool-Based and Paper-Based Software Inspections. Technical
Report International Software Engineering Research Network ISERN-98-17, Department of Computer
Science, University of Strathclyde, UK, 1998.

362 References

Maibaum T. What We Teach Software Engineers in the Unviersity: Do We Take Engineering Seriosuly?.
Proceedings of the ESEC/FSE, 1997. Software Engineering Notes, 1997, 22 (6): 40-50.

Matos V, Jalics P-J. An Experimental Analysis of the Performance of Fourth-Generation Tools on PCs.
Communications of ACM 1989; 32 (11): 1340-1350.

Miles MB, Huberman AM. Qualitative Data Analysis, 2nd Edition. London: Sage Publications, 1994.

Miller J, Daly J, Wood M, Roper M, Brooks A. Statistical Power and its subcomponents - missing and
misunderstood concepts in empirical software engineering research. Journal of Information and Software
Technology, 1997; 39 (4): 285 - 295.

Misra SK Jalics PJ. Third-Generation versus Fourth-Generation Software Development. IEEE Software
1988; July: 8-14.

Mizuno O, Kikuno T, Inagaki K, Takagi Y, Sakamoto K. Analyzing Effects of Cost Estimation Accuracy
on Quality and Productivity. Proceedings of the 20th International Conference on Software Engineering
(ICSE´98); 1998 April 19 - 25; Kyoto. Los Alamitos: IEEE Comput. Soc, 1998.

Mizuno O, Kikuno T. Empirical Evaluation of Review Process Improvement Activities with respect to
Post-Release Failure. Proceedings of the 21th International Conference on Software Engineering
(ICSE´98); 1999 May 18-22; Los Angeles. Los Alamitos: IEEE Comput. Soc, 1999.

Mohamed WE, Sadler CJ, Law D. Experimentation in Software Engineering. A New Framework.
Proceedings of the First International Conference on Software Quality Management 1993; Southampton.
Southampton: Comput. Mech. Publications, 1993

Montgomery DC. Design and Analysis of Experiments. New York: John Wiley & Sons, 1991.

Moore GA. Crossing the Chasm. New York: Harper Business, 1991.

Murphy GC, Walker RJ, Baniassad ELA. Evaluating Emerging Software Development Technologies:
Lessons Learned from Assessing. IEEE Transactions on Software Engineering 1999; 25 (4): 438-455.

Myers GJ. A Controlled Experiment in Program Testing and Code Walkthroughs/Inspections.
Communications of ACM 1978; 21 (9): 760-768.

Myrtevil I, Stensrud E. A Controlled Experiment to Assess the Benefits of Estimating with Analogy and
Regression Models. IEEE Transactions on Software Engineering 1999; 25 (4): 510-525.

Naur N, Raudell B (eds.) Software Engineering. Report on a Conference Sponsored by the NATO
Science Committee, 1968 October 7 - 11; Garmish. Brussels: Scientific Affairs Division NATO, 1969.

NSF. Final Report NSF Workshop on a Software Research Program For the 21st Century Greenbelt
Maryland October 1998. Software Engineering Notes 1999; 24 (3): 37-39.

OCDE. The Measurement of Scientific and Technical Activities. Frascati Mannual. Paris. 1970.

Pezzé M. The Maturity of Software Engineering. IEEE Software, 1997; November: 86.

Pfleeger SL. Albert Einstein and Empirical Software Engineering. Computer 1999; October: 32-37.

Basics of Software Engineering Experimentation 363

Pfleeger SL. Experimental design and analysis in software engineering. Annals of Software Engineering
1995; 1: 219-253.

Pierce, ChS. Collected Papers. Vol. I-IV Eds. Hartshorne Ch. and Weis P., Vol. VII-VIII De. Burks AW.
Cambridge: Hardwar University Press, 1958.

PITAC. President Information Technology Advisory Committee. Report to the President. Information
Technology Research: Investing in Our Future. August 1998. http://www.hpcc.gov/ac/interim

Popper KR. The Logic of Scientific Discovery. London: Hutchinson, 1960.

Porter A, Votta LG Jr, Basili V. Comparing Detection Methods for Software Requirements Inspections: A
Replicated Experiment. IEEE Transactions on Software Engineering 1995; 21(6): 563-575.

Porter A. Using Measurement-Driven Modeling to Provide Empirical Feedback to Software Developers.
Journal of Systems and Software 1994; 20(3): 237--254

Porter A, Siy HP, Toman CA, Votta LG. An Experiment to Assess the Cost-Benefits of Code Inspections
in Large Scale Software Development. IEEE Transactions on Software Engineering 1997; 23(6): 329-
346.

Porter A, Votta LG Jr, Basili V. Comparing Detection Methods for Software Requirements Inspections: A
Replication using Professional Subjects. Empirical Software Engineering Journal 1998; 3(4): 355-379.

Rogers GFC. The Nature of Engineering. Hampshire: The Macmillan Press-Ltd, 1983.

Rombach H.D. Systematicy Software Technology Transfer. Experimental Software Engineering Issues
1992: 239-246.

Samaraweera LG, Harrison R. Evaluation of the functional and Object-Oriented Programming Paradigms:
A Replicated Experiment. Software Engineering Notes 1998; 23 (4): 38-43.

Scanlan DA. Structured Flowcharts Outperform Pseudocode: An Experimental Comparison. IEEE
Software 1989; September: 28-36

Scheffé H. The Analysis of Variance. New York: Weley, 1959

Seaman CB, Basili VR. Communication and Organization: En Empirical Study of Discussion in
Inspection Meetings. IEEE Transactions on Software Engineering 1998; 24 (7): 559-572.

Searle SR. Linear Models for Unbalanced Data. New York: Wiley, 1987.

Selby RW, Basili VR, Baker FT. Cleanroom Software Development: An Empirical Evaluation. IEEE
Transactions on Software 1987; 13 (9): 1027-1037.

Shneiderman B, Mayer R, McKay D, Heller P. Experimental Investigations of the Utility of Detailed
Flowcharts in Programming. Communications of the ACM 1977; 20 (6): 373-381.

Shull F, Lanubile F, Basili V. Investigating Reading Techniques for Framework Learning. To be
published in IEEE Transactions on Software Engineering 2000.

364 References

Speed FM, Hocking RR, Hackney OP. Methods for Analysis of Linear Models with Unbalanced Data.
Journal of American Statistical Association 1978; 73: 105-112.

Tortorella M, Visaggio G. Empirical Investigation of Innovation Diffusion in a Software Process.
International Journal of Software Engineering and Knowledge Engineering 1999; 9 (5): 595- 622.

Tukey JW. Comparing Individual Means in the Analysis of Variance. Biometrics 1949; 5: 99-114.

Tichy WF. On Experimental Computer Science. Proceedings of the International Workshop on
Experimental Software Engineering Issues. Critical Assesment and Future Directions; 1993; Berlin.
Heidelberg: Springer-Verlag, 1993.

Tichy WF, Lukowicz P, Prechelt L, Heinz EA. Experimental Evaluation in Computer Science: A
Quantitative Study. Journal of Systems and Software 1995; 28: 9-18.

Tichy WF. Should Computer Scientists Experiment More? IEEE Computer 1998; May: 32-40.

Vessey I, Conger SA. Requirements Specification: Learning Object, Process and Data Methodologies.
Communications of the ACM, 1994; 37 (5): 102-112.

Vincenti WG. What Engineers Know and How They Know It. Baltimore: The Johns Hopkins University
Press, 1990.

Whorf BL. Language thought and reality. Cambridge, MA: The MIT Press, 1962.

Winer BJ, Brown DR, Michels KM. Statistics Principles in Experimental Design. 2ndEdition. New York:
McGraw Hill, 1992.

Wohlin C, Runeson P, Höst M, Ohlsson MC, Egnell B, Wesslen A. Experimentation in Software
Engineering. An Introduction. Boston: Kluwer Academic Publishers, 2000.

Wood M, Roper M, Brooks A, Miller J. Comparing and Combining Software Defect Detection
Techniques: A Replicated Empirical Study. Proceedings of the 6th ESEC, held jointly with the 5th ACM
SIGSOFTS Symposium on the FSE; 1997 September; Zurich. Software Engineering Notes 1997; 22 (6):
262-277.

Yates F. The Analysis of Multiple Classification with Unequal Numbers in the Different Classes. Journal
of the American Statistical Association 1934; 29: 52-66.

Zelkowitz M.V, D. Wallace. Experimental models for validating computer technology, IEEE Computer
May 1998; 31 (5): 23-31.

	PART II: DESIGNING EXPERIMENTS
	PART III: ANALYSING THE EXPERIMENTAL DATA
	PART IV: CONCLUSIONS
	ANNEXES

	capi4b.pdf
	Size
	Schedule deviation

	cp8.pdf
	NOTES

	cp9.pdf
	NOTES

	cp13.pdf
	Between groups
	Groups or ABC
	Error
	Within groups
	A
	B
	C
	AB
	AC

	references off.pdf
	REFERENCES

	Basic of software E.E.pdf
	Indice-inglés-corto.pdf
	PART II: DESIGNING EXPERIMENTS
	PART III: ANALYSING THE EXPERIMENTAL DATA
	PART IV: CONCLUSIONS
	ANNEXES

	capi4b.pdf
	Size
	Schedule deviation

	cp8.pdf
	NOTES

	cp9.pdf
	NOTES

	cp13.pdf
	Between groups
	Groups or ABC
	Error
	Within groups
	A
	B
	C
	AB
	AC

	references off.pdf
	REFERENCES

