
 1

10. A Process for Identifying Relevant Information for
a Repository: A Case Study for Testing Techniques

S. Vegas1, N. Juristo1, V.R. Basili2

1 Facultad de Informática. Universidad Politécnica de Madrid. Campus de
Montegancedo. 28660 Boadilla del Monte, Madrid, Spain.

2 Department of Computer Science. University of Maryland. College Park, Maryland
20742, USA

Abstract: One major issue in managing software engineering knowledge is the
construction of information repositories for software development artefacts
(techniques, products, processes, tools, etc.). But how does one package each
artefact so that the package contains the appropriate information to understand and
use the artefact? What is the appropriate characterisation schema? This chapter
proposes an empirical and iterative process to identify the information that should
be used to characterise a software engineering artefact, using both theoretical
knowledge, practical experience, and expert opinion to generate a schema. The
ultimate goal is to improve the schema and the package contents based upon it
experience in their application. The proposed process has been applied to define a
characterisation schema for testing techniques. There are nowadays numerous
testing techniques available for generating test cases. However, many of them are
never used, while a few are used over and over again. Testers have little (if any)
information about the available techniques, their usefulness and, generally, how
suited they are to the project at hand. This lack of information means less tuned
decisions on which testing techniques to use. This chapter also shows this
characterisation schema, discussing the information it contains and why it has
been included in the schema.

Keywords: Knowledge management, experience packaging, software testing,
testing techniques.

1 Introduction

The goal of knowledge management (KM) is to take advantage of an
organisation’s intellectual capital [15]. When applied to software development,
this discipline deals with knowledge related to the whole range of software
engineering artefacts (techniques, products, processes, methods, etc.).

To make the best possible use of organisational knowledge, this knowledge
must be created, captured, distributed and applied [15]. Information organisation,

 2

also known as packaging, is a key activity within this process. It is so critical that
a poor information structure has led to the failure of many KM initiatives [11]. If
the available information is well structured, knowledge will be more widely and
better disseminated and applied, as people will be interested in and tend to consult
well structured information and will be clearer about when to use it. The
knowledge generation and capturing activities will also be more effective, as the
format of this knowledge will be defined beforehand, specifying which items of
knowledge need to be gathered.

One possible means of recording and giving access to the knowledge of an
organisation is experience bases [4]. Experience bases are composed of experience
packages. SE experience packages usually contain knowledge on how to use given
artefacts. This knowledge must be associated with information for deciding when
and where a given artefact will be useful. Experience packages are described by
instantiating characterisation schemas. The information reflected by the
characterisation schema is vital for effectively identifying which artefacts are
useful in a given situation. But experience packages should be as compact as
possible, meaning that characterisation schemas should contain the least possible
information, that is, they should include the minimum set of relevant information.
Nevertheless, it is not easy to find out which information these characterisation
schemas should include. On the one hand, the information reflected by a
characterisation schema is totally dependent on the artefact it characterises, which
means that when characterising a new artefact, we cannot benefit from the fact
that other artefacts have already been characterised. On the other, the theoretical
foundation of the artefact in question may not be mature enough to be of
assistance in deciding which information the characterisation schema should
include; if we do not know the parameters that may have an influence on the
behaviour of an artefact, it will be more difficult to develop a characterisation
schema for it than if these parameters were known.

Here, we propose a process for identifying what information a characterisation
schema should include for the purpose of building an experience base. The
proposed process is empirical and iterative. It is empirical because it is not based
purely on how the person who is designing the schema sees the artefact to be
characterised, but also takes into account the view of potential experience base
users and artefact builders. It is iterative because it begins with a preliminary
schema that is refined as different views are incorporated.

The proposed process has been applied to define a characterisation schema for
testing techniques. Besides the generation process, we also show the resulting
characterisation schema for testing techniques, discussing the information it
contains and why it has been included in the schema.

The chapter has been organised as follows. Section 2 presents a series of
approaches described in the literature for developing characterisation schemas for
a range of software artefacts. Section 3 discusses the proposed process for
developing characterisation schemas. Section 4 is an application of the process
presented in section 3 for a particular artefact: software testing techniques. Section
5 presents the evaluation of the proposed process and, finally, section 6 provides
some conclusions.

 3

2 Related Work

Although the activities of which KM is composed are clear, it is not so clear which
methods should be applied within each of these activities. Indeed, while it is
generally accepted that the acquired knowledge needs to be packaged [2], [15],
and several proposals have been made [1], [19], [18], no one has formalised or
standardised what these knowledge packages should be like, not to mention how
they should be built.

Nonetheless, the use of characterisation schemas in SE as an aid for selecting
different artefacts is not new. In the field of software reuse, where there is a
repository of coded software modules ready for use, there is already an emerging
need for characterisation schemas. In the case of reuse, characterisation schemas
summarise the characteristics of the module and then, by inspecting these
characteristics, a decision can be made on which module is or which modules are
best suited. The characteristics encompass both the module attributes, and its
application conditions and the characteristics of the operating environment. Apart
from the reuse field, other areas of SE, like software architectures or software
technology selection, also use characterisation schemas.

Below, we examine a series of characterisation schema proposals described in
the literature, as we have not found any formalised proposal of how to develop
such a schema within KM. For each proposal, we discuss the artefact it aims to
characterise, the characterisation proposal, the process followed for
characterisation and the information proposed for inclusion.

Prieto-Díaz [14] was the first researcher to realise the benefits of using
characterisation schemas for classifying reusable artefacts. In [14], he presents a
characterisation schema for reusable software modules to aid the identification and
later retrieval of such modules (stored in a repository) and find the components
that are less costly, in effort terms, to adapt to the current project. The schema was
constructed by means of discrimination or examination and later classification of
existing reusable modules (what is called literary warrant), analysing the
similarities and differences between these modules. This schema contemplates two
aspects of the modules: (1) functionality of the object (which represents what) and
(2) the environment (which represents where).

Based on the idea that anything related to development, and not just software
products, is reusable [3]. Basili and Rombach [3] present a characterisation
metaschema for any software development element: products, processes,
techniques, etc. Owing to the generality of this metaschema, it needs to be adapted
to the type of artefact to be characterised before it is used. The process they have
followed to design the metaschema is, reflection by the schema designers, based
on a reuse model, which is gradually refined through reasoning. Each step of the
refinement captures the logic of the resulting schema. The schema contemplates
three aspects: it should contain characteristics proper to the artefact (the object),
characteristics of the relationships between the artefact and other artefacts
(interface) or environment, and characteristics of the environment in which the
artefact can be used (the context or problem).

 4

In [10], Henninger proposes a characterisation schema together with a support
tool to capture and, thus, enable later dissemination of different problems related
to software development, alongside their solution. The process followed for
creating the schema is not fully explained, from which we infer that it is
developed from the reflections of the schema designer. The aspects included in the
schema are: descriptions of problems, which are associated with resources (or
solutions to the problem, possibly tools, development methods, people, process
models, technology, etc.) and which constitute the object, and projects or the
environment associated with the object. Accordingly, one can start from any of the
three aspects to arrive at any of the other two.

Bass et al. [5] provide in a catalogue of architectural design styles, which
means that the schema is already completely instantiated. The catalogue has been
designed following a process of discrimination by studying and classifying
numerous designs. This means that the different designs were observed and, on
this basis, the authors deduced which characteristics differentiate one style from
another. The catalogue contemplates not only the characteristics proper to the
styles (the object), but also characteristics of the application requirements (the
problem) and characteristics of the environment in which the design is to be
implemented (the context), which can place restrictions on the developer when
using the style.

In [7], Birk proposes a characterisation metaschema for characterising software
technologies. This work is based on the fact that methods, techniques and tools are
not universally applicable, and the goal is to improve the selection of technologies
for use in a software project. The process followed to design the schema is not
made explicit, and it is, therefore, assumed to be the result of the reflection of the
schema designer. This metaschema focuses primarily on reflecting the application
domain (the context) and the problem for which the technology is suited.

Similarly, von Wangenheim proposes a metaschema for characterising software
engineering experiences in [19]. The author recommends asking experts on the
artefact to design the schema. Therefore, the author does not discuss the
information that the metaschema should contain.

Maiden and Rugg present, in [12], a schema for characterising requirements
acquisition methods to improve method selection and help developers to prepare
an acquisition programme. Apart from the schema, they propose a series of tables,
which are actually the instantiation of the schema as a catalogue. With regard to
the process followed to produce the schema, the authors speak of research and
their own experiences. As the developers of the schema are experts in the area,
one can infer that the process was based on observation and discrimination of the
existing methods. However, the authors have added a stage where a series of
experts validate the work they have done. The aspects reflected in the schema are
the object and the problem.

After studying the characterisation area, the findings are as follows:

• There is no proposal that sufficiently formalises the process to be followed for
defining or building experience packages for a knowledge base. This process

 5

must be defined so that other people attempting to build a knowledge base can
follow it.

• The schemas are usually designed either by discriminating existing elements,
asking experts (which are at least justified) or, at worst, on the basis of the
personal opinions of the schema designers and are not checked against reality.
The opinions of other groups, like software developers or other researchers, are
never taken into account.

• Only a few proposals take into account the three desirable aspects: object,
environment and problem. However, although they propose storing information
based on developers’ experiences in using the elements, they do not have an
aspect that asks developers for their personal (subjective) opinions about the
elements.

The process proposed here intends to overcome these problems.

3 Proposed Process for Discovering Relevant Information

Having detected the pitfalls of current characterisation schema construction
processes, we propose a means of determining relevant information about any
particular artefact type for inclusion in an experience repository. Sections 3.1 to
3.5 justify each stage of the proposed characterisation schema construction
process. This process can be divided into two parts: schema generation and
schema testing.

• Schema Generation. Schema generation has been divided into four different
stages. They explicitly state each source of information used to formulate the
schema, and each stage aims to gather different information types. The
generation stages are: development of a theoretical schema, development of an
empirical schema, synthesis of perspectives and expert peer review.

• Schema Testing. Schema testing or start up involves having two different
population groups examine the schema and assess two different facets:
population and use.

Fig. 1 shows the resulting process for developing the characterisation schema.

3.1 Know the Artefact: Development of a Theoretical Schema

As discussed in section 2, there are two usual ways of developing characterisation
schemas:

• Starting from the set of artefacts for characterisation (or as complete as possible
a subset of these artefacts, if this is not feasible), analyse the similarities and

 6

differences between the different artefacts to build a schema that contains the
parameters that reflect the differences.

• On the basis of the knowledge that the people who are building the
characterisation schema have of the artefact type, reflect the most prominent
features of

Fig. 1. Proposed characterisation schema development process.

Revised
schema

Improved
schema

Start UpExpert
peer review

SCHEMA
GENERATION

SCHEMA
TESTING

Theoretical
schema

Synthesis

Development
of a theoretical

schema

Empirical
schema

Preliminary
schema

Development
of an empirical

schema

this artefact type that are likely to vary from one artefact to another.

Therefore, the construction of a schema is guided by deductive reasoning
concerning available artefacts and what relevant characteristics they all have in
common. Here, we propose to use a combination of the two strategies, aiming
primarily to develop a first draft of the characterisation schema to serve as a
starting-point that will be added to and improved in later iterations. A secondary
goal of this stage is to familiarise the people developing the schema as much as
possible with the artefacts they are trying to characterise. This is why this step is
done first. This stage is, therefore, a sort of introduction to the development of
what will be the final characterisation schema.

A strategy of decomposition is followed to build this theoretical schema. First,
the high level information the schema should contain is identified. Then, this
information is refined until an adequate level of granularity is reached.

3.2 Incorporation of Diverse Viewpoints: Development of an Empirical
Schema

Our aim is to facilitate or improve the process of artefact selection in experience
bases and thus contribute to the construction of higher quality software systems.

 7

The proposed process can be considered successful if the resulting characterisation
schema is used; that is, the schema should be workable, which means that the
process must be aimed at promoting (and even guaranteeing) its use. This focus on
schema use is what made us decide to get people related to the artefact area
involved.

During characterisation schema design, the main decision relates to what
information it should contain. This is not an easy task, however, as the schema has
to meet the information needs of a variety of people with different goals. More
precisely, it must be:

• Useful for consumers when selecting the artefacts for their project situation.

• Possible for producers to fill in the information asked for in the schema.

The schema obtained in the first iteration reflects the opinion of the schema
designer on the information that can influence decision-making on which artefacts
should be used in a given project. However, this schema does not necessarily
respond, at least completely, to the consumers’ opinion of selection.

Therefore, the question is What information does the consumer need to select
an artefact from the experience base? One possibility is to think about what one
believes consumers would like to know when deciding on which artefact or
artefacts to use and even gather a collection of information that appears to be more
or less coherent. But, would this collection of information be the real solution to
the selection problem? This problem is far from trivial. If the inclusion of the
information that appears in the schema is not justified by a theory (and no such
theory exists today for most SE artefacts) or is incomplete with respect to the
items required to make the selection, the fitness of the resulting characterisation
schema, or even its validity, could be questioned. By this reasoning, the schema
generated would possibly be of little use and it would take longer to reach a
satisfactory solution.

We need to be pragmatic and have the resulting schema used (in fact, this is the
only way of improving artefact selection). So, in the absence of a theory that
confirms why some information facilitates or is necessary for selection and other
information is not, the schema should reflect the opinion of consumers and
producers (future schema users). But, being a matter of opinion, there is a risk of
the schema being a mere collection of non-convergent information. The process is,
therefore, subject to two restrictions:

1. The thoughts of the schema designer are used as a basis upon which the
opinions of the participants take shape;

2. A study is carried out to see if the theoretical and empirical opinions converge,
i.e. if there is sufficient common ground between the theoretical and empirical
knowledge about the subject to generate an experience base for the artefact
type. If this study were to find that the opinions did not converge, it would
mean that there is not enough common ground between opinions, that is, there
is neither a theory nor empirical knowledge enough about the subject to
generate an experience base for this kind of artefacts.

 8

The empirical schema is developed incrementally. A set of opinions (questions
or information) about the information required to completely select/define an
artefact is gathered for each consumer/producer surveyed. The sets of
questions/information obtained are analysed incrementally. This means that the
producers/consumers are gradually incorporated, making it possible to cover the
total set of possible producers/consumers according to their characteristics. The
process is, therefore, inductive, producing a schema containing the characteristics
desired by producers and consumers.

To be more precise, the iteration for running the analysis is as follows. Taking a
reference set (originally empty) and the opinions of the producer/consumer, the
reference set is updated to include any opinions not included before, and the
respective empirical schema is obtained. The reference set can be updated in
several ways: either by adding new opinions or reformulating others to make them
more generic or more specific (never by deletion). Fig. 2 shows the activities to be
performed to get the i-th empirical schema.

Fig. 2. Activities to get the i-th empirical schema.

Empirical
schema i

Reference
set i-1

Producer/Consumer
opinions i

Reference
set i

Analysis of
reference

set i

Update reference
set i-1

One interesting point is that the characteristics of the participants should be

known, as it is important to be acquainted with what type of producers/consumers
are represented in the schema. Another point (not as important as accounting for
all producer/consumer types) is the number of people that have to participate in
this stage. The number is not essential, as Glaser and Strauss [9] state that the
number of data collected during research is relevant for testing and not for
generating the hypothesis. So, the number of individuals involved will be
important at that point and, as such, will be taken into account later on.

The stopping criterion for this activity is the stability of the characterisation
schema. It will not be possible to stop gathering information from different people
until the rate of change of the schema is zero for at least the last 25% of subjects.
Therefore, what we are examining at this stage is the evolution and change of the
characterisation schema as new producers/consumers are incorporated.

 9

3.3 Synthesis of Perspectives: Theory and Practice

As we now have two independent sets of information about the object to be
characterised, they have to be merged. Accordingly, a synthesis stage will be
required in which the theoretical and empirical schemas are united to produce a
schema that contains the information from both.

In this stage, the two characterisation schemas created earlier (the theoretical
and the empirical schemas) are taken and synthesised into a single characterisation
schema to provide a single view of the information that is relevant for selection.
Rules should be defined to guide this process and ensure that the schemas are
synthesised in an orderly manner and no information is lost. Depending on the
environment in which the schema is to operate, the synthesis rules could vary from
the collection of all the information that appears in the two schemas to the
selection of given types of information if performance or the amount of
information handled for selection are critical factors. However, if there is no
restriction on the amount of information the preliminary schema should contain,
the recommended heuristic is that all information appearing in either the empirical
or theoretical schema should appear in the preliminary schema. This can be
translated into:

• Any information that appears in at least one schema will be directly entered in
the preliminary schema.

• If there is similar information or some information is more generic or more
specific than others, study the best way of adding it to the schema to assure that
no information is lost during synthesis and there is no redundancy.

Once the preliminary schema has been built, it might be of interest to examine
the source of the information of which it is composed so as to analyse the different
viewpoints of the subject types that have contributed to creating this preliminary
schema.

3.4 Expert Peer Review

The schema obtained after the synthesis of the theoretical and empirical schemas
reflects the viewpoint of the schema designer, consumers and producers
concerning the selection problem. However, neither the consumers nor the
producers have so far seen the schema (they were asked for their opinion on
selection, but they were never shown what information had been input). It would,
therefore, appear to be a good idea to get someone else to inspect and give an
opinion on the schema. Also, according to the principles of some sciences (for
example, medicine), it is advisable to get a second opinion about a complex
problem. Therefore, a series of experts in the area the artefact belongs to, should
be asked to give their verdict on the preliminary schema prior to start up. The goal
of this expert peer review is to correct possible schema defects caused by the way

 10

in which it was derived. The typical defects of the schema obtained prior to the
review by experts are as follows:

• Defects of form. Both producers and consumers have given their particular view
of the information they believe to be relevant for selecting that particular
artefact. However, the schema designer alone created the structure that reflects
this information. It would not be amiss to get a second opinion on this structure.

• Defects of substance. The information for the preliminary schema is gathered
indiscriminately. It may contain errors involuntarily introduced by the schema
designer or by the people participating in the research. For example, there may
be redundant information (dependencies between information contained in the
schema), missing or unworkable information not detected by the designer.

The preliminary schema will be modified on the basis of the analysis of the
opinions of the experts to incorporate their suggestions, giving rise to a new,
improved and almost final schema.

The ideal number of experts for an expert peer review is as many as possible,
and no less than three, so that discrepancies among experts can be handled.
However, it is not easy to find experts, and therefore any number would be
acceptable.

3.5 Start Up

Owing to the risk involved in deploying the characterisation schema, a preliminary
evaluation must be run in order to detect possible improvements. The best way of
examining product validity is to put it into operation and observe how well it fits
in with development: what problems users come up against and how the product
could be improved to make it useful for developers. For this purpose, once the
preliminary schema has been built, it will be first instantiated for a range of
artefacts, and, then, potential users of the repository (producers, consumers and
librarians) will be asked to use it under several circumstances. The use of the
schema will provide feedback to the schema designer, which can be used to
improve it.

As mentioned before, the start-up stage consists of two parts: first, a mini
repository is populated with representative artefacts from the whole population;
later, this repository is used by people under different circumstances. A refined
version of the schema is created on the basis of the results of the data analysis.

1. Repository Population. The aim of this part of the start-up stage is to examine
basic schema characteristics, namely, its feasibility and flexibility from the
producer viewpoint.
For this purpose, the characterisation schema will be instantiated over again to
study these aspects. The ideal situation is to have the future producers,
consumers and librarians instantiate the characterisation schema for the
different artefacts. However, if this is not possible, the people who created the

 11

schema are perfectly qualified to do this job. They can act as librarians, getting
the necessary information from books, papers and past projects.

2. Repository Use. This part of the start up involves running the repository
populated during repository population. The primary aim of this part of the
start-up stage is to observe the feasibility and completeness of and user
satisfaction with the schema from the consumer viewpoint.
This second part of the start-up stage is again carried out on the preliminary
schema. Here, a number of subjects will act as consumers and use the schema
to select artefacts. Both quantitative and qualitative data is collected during this
stage, which, after analysis, will be used to again modify and improve the
schema. Again, it would be desirable to have real consumers perform a pre-test
of the schema. If no real consumers are available, however, other types of
developers could be used (students for example).

4 Case Study: Developing a Characterisation Schema for
Software Testing Techniques

The process described in section 3 has been applied to build a characterisation
schema for testing techniques. The construction of this schema is described step
by step throughout this section as an example for readers who are interested in
applying the process for characterising any SE artefact in order to build an
experience base.

4.1 Development of a Theoretical Schema

As discussed in section 3.1, the schema was developed by gradually refining the
information that it is to contain. In this case, the relevant information for selecting
testing techniques (schema attributes) have been grouped around the elements that
are involved in software testing, which are then organised around the levels of
which the testing process is composed.

4.1.1 Schema Levels

The software system testing process can be divided into the following stages:

1. Selection of the quality attributes that are to be tested, as well as the expected
values for each attribute, when they are to be tested, the metrics to be used for
the evaluation, and the parts of the system that will be affected by each test.

2. For each of the attributes identified in the previous stage, the tests identified
above should be performed, which means: generate and execute the test cases,
and evaluate the results obtained, always considering the environment where
the test is to take place.

 12

The main difference between points 1 and 2 lies in the fact that the purpose of
point 1 is to establish a generic framework within which the testing of the software
in question will take place. This stage is necessary because not all software
systems are the same, and a decision must therefore be made on which is the best
way to evaluate each system. As regards stage 2, it is necessary because not all
projects are the same (even if they are building the same software). This means
that neither the characteristics of the developer organisation, nor the team
members, nor the technologies will be the same, and the tests to be run must
therefore be carried out differently.

The characterisation schema must capture all this to assure optimum testing
techniques selection. More formally, we have named these types of information as
tactical and operational information and they correspond to two different levels.

The information contained in the Tactical Level is related to the initial or
tactical planning that will be followed to run the tests, and reflects information
related to the use to which the generated test cases will be put.

As is the case with the industrial manufacturing of some materials, where the
characteristics that the material should have are established by analysing the uses
to which the material is to be put, the use to which the test cases to be generated
will be put will be what determines the characteristics they should have for testing
purposes. Take a plastic, for example, whether it is to be used either to
manufacture the inside of a car, to make plastic bags, to fabricate bottles, etc., will
determine how flexible, how resistant and how malleable it has to be. Likewise,
the fact that a set of test cases is to be used to test the security of a software system
or the correctness of an algorithm implementation will determine whether the
cases should be such that they exhaustively test all sorts of inputs, only the most
common inputs or perhaps the inputs that entail anomalous behaviour on the part
of the user.

Finally, we should explain that just as a given material cannot be used on all
occasions and some of its properties have to vary depending on its use (leading to
variations or versions of the material), when a set of test cases is generated for a
given purpose it is very likely that it will not be useful in other circumstances.

The information contained in the Operational Level is related to the optimal
conditions of testing techniques operativeness, once given characteristics of the
environment in which the technique is to be applied have been determined. Just as
certain pressure and temperature conditions are required for a chemical reaction to
take place, the technique application conditions have to be as conducive as
possible for the expected test cases to be generated effectively (in terms of time
and resources) and efficiently during software testing. This means that it may or
may not be appropriate to apply a given technique depending on the knowledge
and experience of the personnel and whether or not the available tools are suitable.
This is equivalent to the reaction not taking place or to the products obtained being
of poor quality.

In other words, the operational level reflects the characteristics of both the
technique and the project environment: tools, knowledge of the personnel,
characteristics of technique applicability, etc., from which it will be possible to

 13

deduce whether or not the technique in question is the best suited for the project
situation in question.

4.1.2 Tactical Level

As mentioned above, the aim of this level is to identify the test to which the code
will be subjected or to choose the tactic to be followed to test the code. There
would appear to be two parameters:

1. The purpose or objective of the test, which defines the software attribute that is
to be evaluated and how rigorously this is to be done.
The set of cases generated when applying a testing technique cannot be used to
test any software quality attribute or to test the same attribute in the same way.
For example, a set of test cases generated to test whether an algorithm is
correctly implemented is not generally useful for checking whether the
implementation of this algorithm is efficient or whether the system is
acceptable. Suppose that one wants to check, on the one hand, system security
and, on the other, system usability. The best way to test security is to use test
cases that represent attacks or unlikely situations rather than the routine use of
the system. To test usability, on the other hand, one looks for test cases that
represent the usual or common uses of the system. And, again, if one wants to
test the correctness of an algorithm, one must use test cases that test both the
normal actions of the algorithm and the exceptional cases (whether or not they
are erroneous).
Furthermore, a technique that generates cases to test security in a safety-critical
system is of no use for generating cases in a non-safety-critical system. And
this is precisely what the purpose of the test will reflect: the software attribute
that is to be evaluated using the test and how rigorously or with what degree of
confidence this is to be done.

2. The scope of the test, which can be defined by saying what part of the software
system is to be tested, when the test is to be run and the components of the
software system that are affected by the test.
Depending on which test is run, it will affect different parts of the software,
ranging from an algorithm, through an entire module, a group of modules that
perform a system function, to a subsystem and even the entire system. Also,
depending on how system development has been organised, the test will take
place at one time or another within the process. We should also specify the part
of the functionality offered by the system that needs to be tested. The scope,
then, refers to the part of the system involved in the test.

4.1.3 Operational Level

As mentioned earlier, the aim at this level is for the application (or use) of the
technique to be as effective as possible, as well as efficient. This will involve a
series of factors, which are discussed below.

 14

Being a software process, the generation of test cases can be represented
generically as shown in Fig. 3 (a). As shown in Fig. 3 (a), a software process
generates a software product, where the techniques used, on the one hand, and the
resources used, on the other, are the controllers of the process. If this generic view
is specified for the case at hand, the process would be the generation of test cases,
the input would be the software (generally, as each testing technique calls for
specific inputs that vary from one technique to another), the output would be the
generated test cases and the controllers would be, on the one hand, the technique
or techniques used and, on the other, the tools and personnel, as shown in Fig. 3
(b).

Fig. 3. Representation of the software process.

PROCESS
(activities
& tasks)

Inputs Product

Resources

Methods (guidelines
& techniques)

(a)

TEST CASE
GENERATION

Tools Personnel

Techniques

Test casesSoftware

(b)
In other words, the test case generation technique that is applied to the software

outputs a series of test cases within an environment that is determined by the tools
available for performing the task and the personnel who carry out the task.

Therefore, according to Fig. 3 (b), it can be said that the information that the
operational level of the characterisation schema should contain has to refer to:

• The people who are to use the technique or agents. The characteristics of these
people can lead to one or another technique being chosen. If the testing
personnel are not very experienced in one technique and there is no time for
training, another is likely to be selected.

• The tools that should or could be used. The fact that a company does or does
not own a given tool that supports the use of a given technique can lead to the
selection of one technique rather than another.

• The software (code) to be tested or object. The code has certain characteristics
that can determine the use or rejection of a technique. For example, the type of
programming language used, the code size, etc.

• The technique. Depending on the characteristics of the technique, a decision
can be made on whether or not to use it at a given time. Characteristics like
complexity, effectiveness, maturity, usability, etc., will be the key for deciding
on its use.

• The generated test cases; that is, the results (and/or consequences) of using the
technique. Some characteristics of the technique are environment dependent,

 15

and these are precisely the ones that reflect its behaviour. How good a
technique is when applied can be ascertained from the generated test cases and
not from the technique. Thus, some characteristics of these test cases will be of
interest for selection purposes.

4.1.4 Attributes of the Theoretical Schema

Table 1 shows the composition of the theoretical schema.

Table 1. Theoretical schema.

LEVEL ELEMENT ATTRIBUTE
Quality attribute Objective Rigour
Phase
Element

Tactical
Scope

Aspect
Experience Agents Knowledge
Tools
Comprehensibility
Cost of application
Sources of information
Dependencies
Repeatability

Technique

Adequacy criterion
Completeness
Cost of execution
Type of defects
Effectiveness
Correctness

Results

Adequacy degree
Software architecture
Software type
Programming language

Operational

Object

Development method

4.2 Development of an Empirical Schema

The tasks to be carried out to get the empirical schema include sending out two
different questionnaires to respondents: a questionnaire that asks the consumer
what information (s)he believes to be relevant for selection purposes, and another
that asks the producer what information (s)he believes to be necessary to define a
testing technique. The responses are then analysed to produce a characterisation
schema that will reflect the opinions of both consumers and producers about the
selection problem. The empirical schema has been built incrementally, as
described in section 3.5. That is, the first version of the empirical schema was

 16

generated with the information received from the first respondent and the schema
version was updated as the information from successive respondents was
analysed.

When working with the empirical schemas, we tried to use the levels and
elements of the theoretical schema as far as possible, because the respondents only
supplied attributes.

An important issue we had to deal with during this stage was the stability
analysis of the empirical schema. This analysis was performed in order to find out
when to stop gathering information. Fig. 4 shows the accumulated growth speed of
the empirical schema. The x-axis shows the different people surveyed ordered
according to time (C stands for consumer and P stands for producer) and the y-
axis shows the size of the empirical schema as a percentage of its final size. It can
be seen that the empirical schema reaches 50% of its final size with the first
respondent. This figure increases to 80% with the second respondent, and
the schema reaches its final size with the tenth respondent. This means that the last
six respondents did not add any new information to the empirical schema and,
therefore, the empirical schema can be considered as stable at this point.

Fig. 4. Schema accumulated growth speed.

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

C1 C2 P1 C3 C4 P2 C5 C6 C7 C8 P3 C9 C10 C11 C12 C13

RESPONDENTS

A
C

C
U

M
. G

R
O

W
T

H

SP
E

E
D

Another of the key tasks for designing the empirical schema was the selection

of the respondents. The characteristics of the people involved in the construction
of the empirical schema can have a significant influence on the resulting schema.
The people involved should be as heterogeneous as possible to assure that the
schema does not reflect a unilateral viewpoint. For this purpose, an attempt was
made to include respondents with a wide variety of characteristics: from a range of
fields, with varying experience and of different nationality. As the set of
participant subjects had to be as heterogeneous as possible, we looked for people
who played different roles in the testing area. Also, respondents are asked for
information starting with the ones that were most likely to give us more useful
one.

Table 2 shows the contents of the empirical schema. Note that the empirical
schema provides us with some information that did not appear in the theoretical
schema, since practitioners care about practical issues that are very often

 17

overlooked by theoreticians. The main differences of the empirical schema from
the theoretical schema are:

• Use Level. It was not possible to associate the information contained in this
level with any of the two levels in the theoretical schema. Therefore, a new
level was created: the use level. The questions of which this new level is
composed refer to the personal experiences of people who have used the
technique. This level contains two elements:

- Project. The information covered in this element refers to the respondents’
interest in learning about and characterising software projects in which the
technique has been applied in order to compare these earlier projects with the
current situation.

Table 2. Empirical schema.

LEVEL ELEMENT ATTRIBUTE
Quality attribute Objective Rigour
Phase
Element

Tactical
Scope

Aspect
Experience Agents Knowledge
Identifier
Automation
Cost
Environment

Tools

Support
Comprehensibility
Maturity level
Cost of application
Inputs
Adequacy criterion
Test data cost
Dependencies
Repeatability

Technique

Sources of information
Coverage
Effectiveness
Type of defects Results

Number of generated cases
Software type
Software architecture
Programming language
Development method

Operational

Object

Size
Reference projects Use Project
Tools used

 18

 Personnel
Opinion
Benefits

Satisfaction
Problems

- Satisfaction. The information covered in this element complements the above
information on earlier projects. The respondents are also interested in
knowing the results of using the technique in the project from the viewpoint
of what impression it caused on the person who used the technique.

• Tools element. The information covered in the tools element refers to the
characteristics of the tools that can be used when applying the technique.

However, the inclusion of too much information can also lead to difficulties.
Experts will play an essential role during peer review in dealing with this matter.

4.3 Synthesis

At this point, we have two characterisation schemas (a theoretical and an
empirical schema) that reflect different viewpoints or perspectives of the problem
of selecting testing techniques in software projects. These are: theory, represented
by the schema designer, and practice, represented by testing technique producers
and consumers. The next step is to synthesise these two perspectives into one.

The heuristic to be followed for the synthesis is based on the preservation of
information: all information appearing in either the theoretical or empirical
schema will appear in the synthesised schema. In no case has the possibility of
removing information from the characterisation schema been considered at this
stage. The reason is that the fact that the schema designer has not been able to
deduce any attribute mentioned by any respondent from the theory (or vice versa)
does not necessarily mean that this attribute is not important or necessary. The
omission may be due to a mistake or oversight. Likewise, as there is no way of
knowing which attributes are not necessary for selection (this information was
never solicited), it is better to play safe.

Before defining the rules of synthesis, two fundamental concepts related to
these rules must be defined:

• Equality. Two attributes are considered equal if they bear the same name and
belong to the same element and level.

• Similarity. Two attributes are considered similar if they do not bear the same
name or do not belong to the same element or same level, although they
represent the same or similar concepts.

Accordingly, the following rules are defined for synthesis:

1. The levels and elements of the synthesised schema will be the union of the
levels and elements of the original two schemas.

 19

2. Any attributes that appear in just one of the characterisation schemas will
appear unchanged in the synthesised schema.

3. Any attributes that appear in both schemas and are equal will appear unchanged
in the synthesised schema.

4. Any attributes that appear in the two schemas and are similar will be studied to
decide whether they are used to generate one or several attributes.

5. In no case will information be deleted from the characterisation schema.

On the basis of the above rules, the two original characterisation schemas have
been synthesised into what will be termed hereinafter the preliminary schema and
is shown in Table 3. Table 3 also shows the source of the attributes of the
preliminary characterisation schema. Columns 1 to 3 show the schema itself
(levels, elements and attributes). The next two columns indicate whether the
information represented by an attribute is present in either of the two schemas:
theoretical and empirical. Accordingly, the original composition of the two
schemas can be traced back from Table 3.

Table 3. Preliminary schema.

LEVEL ELEMENT ATTRIBUTE THEOR.
SCHEMA

EMPIR.
SCHEMA

Quality attribute Objective Rigour
Phase
Element

Tactical
Scope

Aspect
Experience Agents Knowledge
Identifier
Automation
Cost
Environment

Tools

Support
Comprehensibility
Maturity level
Cost of application
Inputs
Adequacy criterion
Test data cost
Dependencies
Repeatability

Technique

Sources of information
Completeness
Correctness
Effectiveness
Type of defects

Operational

Results

Number of generated cases

 20

 Adequacy degree
Software type
Software architecture
Programming language
Development method

Object

Size
Reference projects
Tools used Project
Personnel
Opinion
Benefits

Use

Satisfaction
Problems

It is interesting to note that 14 of the attributes present in the preliminary
schema do not appear in the theoretical schema. On the other hand, there are only
two attributes that are present in the preliminary schema and not in the empirical
schema. This means that, except for two attributes, the empirical and the
preliminary schema are practically identical. In other words, 58% of the attributes
of the preliminary schema are common to the two original schemas, 5% are
supplied by
the theoretical schema, and 37% by the empirical schema. This is an interesting
point that is worthwhile analysing in more detail. The major omissions of the
theoretical schema are the use level and the tools element. As regards the use
level, one reason why it is not present is possibly that it was assumed during the
investigation that the information provided by the producers with respect to a
testing technique is complete enough for consumers not to have to look for other
sources of information. As regards the tools element, they were considered
important, but details like their automation (part of the technique automated by the
tool), their cost, the support provided by the tool vendor, or the platform
(hardware and software) and programming language (environment) that support
the tools were not taken into account. This could be due to the fact that pragmatic
aspects of the techniques were overlooked. The minor omissions of the theoretical
schema are some attributes of the technique element (maturity level, inputs and
test data cost) and the object attribute (size), which corroborate the above
supposition that pragmatic aspects of the testing techniques were overlooked when
building the theoretical schema.

The empirical schema, on the other hand, has only minor omissions, as the
respondents failed to detect only two attributes of the final schema: adequacy
degree and correctness, both belonging to the results element. The absence of
these concepts in the empirical schema is likely due to the fact that not enough
people were interviewed or that the set of possible respondents was not
satisfactorily covered.

 21

4.3 Expert Peer Review

Taking into account that the experts use open-ended questionnaires, in which their
response is a description rather than a quantification, the opinions are analysed
critically. This means that the opinions of all the experts on a particular subject are
read and understood. Then, the schema designer checks whether the opinions are
contradictory or coincident and, finally, makes a decision on whether or not to
accept the suggestion, and, when accepted, how it can be included. The decision
on whether or not to accept the experts' suggestions is made according to a series
of rules, which are now presented. Table 4 shows the results of this stage.

1. If the experts disagree, the majority view will be respected.

2. If more than one expert recommends a given change, the recommendation will
be taken into account.

3. If only one expert recommends a change, this change will be accepted provided
the proposed change is not due to a misinterpretation of the schema, its logic or
its contents. When only one expert recommends a given change, this change is
not always as evident as when it is recommended by several experts. In this
case, it is the expert’s versus the schema designer’s opinion. It is sometimes
impossible to reconcile the two viewpoints, and it was decided that the opinion
of the schema designer should take precedence. One such case is the suggestion
to replace the attribute cost of application (technique) by complexity, as the
schema designer is of the opinion that a technique can be easy and still take a
long time to use. It is contradictory to make modifications in which the schema
designer does not believe or about which (s)he is not sure.

4. If the solution of the problem stated by the expert goes beyond structural
changes to the schema (for example, build a tool to improve schema use), the
suggestion will be accepted, but the solution will be left for future research.

The changes the four experts involved in the expert peer review made to the
preliminary schema can be briefly summarised as follows:

• Five attributes have been deleted: three from the tactical level (quality
attribute, rigour and phase) and two from the operational level (maturity level
and adequacy degree). This was done because the experts pointed out
dependencies or redundancies with respect to other attributes.

• The correctness attribute of the operational level was replaced by another
named precision.

• Two attributes were moved from the operational level to the tactical level
(effectiveness and defect type).

• A new attribute, termed purpose, was created and placed in the objective
element, as the experts noted that it was missing and justified its need.

• The results element was renamed as test cases.

 22

• The use level was renamed as historical level.

4.4 Start Up

The reviewed characterisation schema has been put into practice according to the
process described in Section 3, for a university environment, using final-year
(sixth grade) students as consumers. The results are presented below.

4.4.1 Repository Population

The first thing to do before starting to populate the repository is to decide which
techniques will be used to check both schema feasibility from the producer
viewpoint and schema flexibility. For this purpose, it was decided to select a
number of technique families, which cover the variation between techniques of
different families, and a number of techniques within each family, which cover the
variation between techniques of the same family. Additionally, we resolved to
choose well-known techniques, as this gives a better understanding of how the
schema is instantiated.

 23

Table 4. Final schema (1/2).

LEVEL ELEMENT ATTRIBUTE DESCRIPTION
Purpose Type of evaluation and quality attribute to be tested in the system
Defect type Defect types detected in the system Objective
Effectiveness Percentage of defects detected by the technique out of the total

number of defects detected
Element Elements of the system on which the test acts

Tactical

Scope Aspect Functionality of the system to be tested
Knowledge Knowledge required to be able to apply the technique Agents Experience Experience required to be able to apply the technique
Identifier Name of the tool and the manufacturer
Automation Part of the technique automated by the tool
Cost Cost of tool purchase and maintenance

Environment Platform (SW and HW) and programming language with which
the tool operates

Tools

Support Support provided by the tool manufacturer
Comprehensibility Whether or not the technique is easy to understand
Cost of application How much effort it takes to apply the technique
Inputs Inputs required to apply the technique
Adequacy criterion Test case generation and stopping rule
Test data cost Cost of identifying the test data
Dependencies Relationships of one technique with another
Repeatability Whether two people generate the same test cases

Operational

Technique

Sources of information Where to find information about the technique

 24

Table 4 (cont.). Final schema (2/2).

LEVEL ELEMENT ATTRIBUTE DESCRIPTION
Completeness Coverage provided by the set of cases
Precision How many repeated test cases the technique generates Test cases
Number of generated cases Number of cases generated per software size unit
Software type Type of software that can be tested using the technique
Software architecture Development paradigm to which it is linked
Programming language Programming language with which it can be used
Development method Development method or life cycle to which it is linked

Operational

Object

Size Size that the software should have to be able to use the technique
Reference projects Earlier projects in which the technique has been used
Tools used Tools used in earlier projects Project
Personnel Personnel who worked on earlier projects
Opinion General opinion about the technique after having used it
Benefits Benefits of using the technique

Historical

Satisfaction
Problems Problems with using the technique

 25

Accordingly, the chosen techniques were:

• Functional testing techniques: Boundary value analysis and random testing.

• Control flow testing techniques: Sentence coverage, decision coverage, path
coverage and thread coverage.

• Data flow testing techniques: All-c-uses, all-p-uses, all-uses, all-du-paths, and
all-possible-rendezvous.

• Mutation testing techniques: Mutation and selective mutation.

The authors of this chapter were responsible for instantiating the above-
mentioned techniques. Table 5 shows the results of instantiating the chosen
technique for feasibility purposes: decision coverage.

The findings of the schema feasibility check were:

• There is information that is difficult to find, especially information related to
reference projects. This is due to the fact that companies do not like to see
their confidential data published. A cultural change has to take place at
companies for it to be possible to get reliable information about the past uses
of a testing technique. Also, companies have to get used to doing post-mortem
analyses of projects to weigh up the results of using the techniques.

• There were also two schema attributes (precision and completeness), whose
value was not found anywhere. This casts doubts upon the advisability of
these two attributes appearing in the schema. However, they are found in both
the theoretical and empirical schemas and the experts did not consider them
unsuitable. This appears to be relevant information that is not available in the
literature on testing techniques. So, it is an omission of the testing literature,
not of the schema, as this information is considered relevant from all
viewpoints (note that there are not many attributes in the schema of which this
can be said), but is, however, not easy to locate.

• Contradictory information is often found about the testing techniques. This is
inevitable, because as long as the parameters that affect the use of a testing
technique are not perfectly defined, some may not be studied. The studies
carried out on testing techniques should be as rigorous as possible and, thus,
reflect the information more correctly in order to output non-contradictory
information.

• The metrics used to fill in some attributes are not easy to interpret. For
example, for technique effectiveness, one often finds probability of finding a
given fault as the associated metric. However, this attribute should really
reflect the percentage of faults that the technique can detect. Can both metrics
really be considered to reflect the same information? Or, contrariwise, do they
reflect different things? This problem has to do with what developers would
like to know and what can be easily collected [8]. This problem could be
solved if the metrics expressly asked for by the schema were used every time
studies were carried out on testing techniques.

 26

Table 5. Decision coverage technique.

LEVEL ELEMENT ATTRIBUTE VALUE
Purpose Find defects
Defect type Control Objective
Effectiveness 48%
Element Units

Tactical

Scope Aspect Any
Knowledge Flow graphs Agents Experience None
Identifier LOGISCOPE
Automation Obtain paths
Cost €3,000-6,000
Environment Windows; C/C++

Tools

Support 24 hour hot-line
Comprehensibility High
Cost of application Low
Inputs Source code
Adequacy criterion Control flow
Test data cost Medium

Dependencies
Supplemented with
techniques that find
processing errors.

Repeatability No

Technique

Sources of information Sommerville
Completeness --
Precision -- Test cases
Number of generated cases Exponential # decisions
Software type Any
Software architecture Any
Programming language Any
Development method Any

Operational

Object

Size Medium
Reference projects --
Tools used -- Project
Personnel --

Opinion OK, but should be
complemented with others

Benefits It is easy to apply
Historical

Satisfaction

Problems

Dynamic analyser should be
avoided when used with real
time and concurrent systems
due to code instrumentation

However, it is important to stress that the potential of the schema, which is now
limited by the existing theory on testing techniques, is much greater. The schema
can be very useful as an aid for looking for information on testing techniques. This
includes information that is at present very disperse and information that is not
now disseminated, like the opinion of other people who have used the technique.

 27

As regards schema flexibility, it was possible to satisfactorily instantiate all the
testing techniques that were originally selected. This means that we were able to
instantiate the schema for thirteen testing techniques from four different families.
Of course, this does not mean that the schema is totally flexible. It would be
necessary to instantiate the schema for all existing testing techniques to make such
a claim. However, the fact that a series of techniques that are representative of
existing techniques have been able to be instantiated without any problem
indicates that the schema is flexible enough to be able to instantiate the huge
majority of, if not all, testing techniques.

4.4.2 Repository Use

Repository use aims to assess schema feasibility, completeness and user
satisfaction from the consumer viewpoint.

The following project was used to check schema feasibility.

A system is to be built to manage a car park (concurrent system). At this stage
of the project, the quality assurance team has identified the key quality
attributes of this software system. These were deduced by examining the
characteristics of the software to be developed, as well as its application
domain. In this particular case, the essential attributes are correctness, security
and timing.
Having examined the quality attributes of interest, the question is to decide
which techniques would be best suited to evaluate the correctness of the
above-mentioned software system, bearing in mind the following project
situation. The system is to be coded in ADA, the development team is quite
experienced in developing similar systems and it has also been found that
almost all the errors that the developers make are proper to concurrent
programs. The testing team is also experienced in testing this type of systems.

When illustrating how the problem is solved, the process defined is also shown:

• Determine bounded variables (attributes of the schema whose value is
determined by the software project and cannot be changed). According to the
problem statement, it is correctness that is to be evaluated, which means that
the purpose would be to detect faults in any type of element. The system is to
be developed in Ada, which is a language for real-time systems. The
development team is experienced in developing this type of systems, which
means that they are unlikely to make many errors. Table 6 shows the associated
variables for the example.

• Pre-select an initial set of techniques. Given the associated variables in Table
6, their value was compared with those of the technique contained in the
repository. The techniques that will be selected are: boundary value analysis,
random, path coverage, all-possible-rendezvous, all-c-uses, all-p-uses, all-uses,
all-du-paths, standard mutation and selective mutation. The techniques
sentence coverage and decision coverage will be rejected because their
effectiveness is low, and the technique threads coverage will be discarded
because it is for object-oriented software.

 28

Table 6. Bounded variables.

LEVEL ELEMENT ATTRIBUTE VALUE
Purpose Find faults
Defect type ANY Objective
Effectiveness >50%
Element ANY

Tactical

Scope Aspect ANY
Software type Real time
Software architecture Concurrent
Programming language Ada
Development method ANY

Operational Object

Size Medium

• Identify the best-suited techniques for selection. Of the pre-selected techniques,
there is one that is specific for Ada-style programming languages (concurrency
implementation using rendezvous). Although there are general-purpose
techniques (for all software types) that are more effective, it appears that the
technique that is specific for concurrent software detects the faults proper to
concurrency better than the other techniques. Furthermore, the technique path
coverage states that when used with concurrent and real-time systems, a
dynamic analyser cannot be used as a tool. Additionally, the techniques all-c-
uses, all-p-uses, all-uses, all-du-paths, standard mutation and selective
mutation cannot be used without a tool (which is not available). Therefore, the
all-possible-rendezvous techniques will be selected. However, the dependency
attribute states that the technique should be supplemented with a black-box
technique. Observing the black-box techniques in the pre-selected set
(boundary value analysis and random), it is found that the random testing
technique is useful for people with experience in the type of tests to be run and
will, therefore, also be selected.

The finding for schema feasibility is, therefore, that it is possible to make at
least one selection using the characterisation schema.

The study of schema completeness addressed both the information the subjects
used during selection and the missing information. The main finding of this study
is that it is important for the characterisation schema to be completely instantiated
for users to be able to take full advantage of the schema and for them to consider it
useful (this can pose a threat to its utility). Another interesting point observed is
that subjects are not always able to ascertain the value of variables that do not
appear in the schema, but whose values can be easily deduced from the schema.
This is the case of the time it will take to apply the technique. If the cost of
application of the technique, the knowledge of the people who are to use the
technique, whether or not tools are to going to be used and the size of the software
are known, it is easy to find out how long it will take to apply the technique.

To assess satisfaction with the schema, the subjects are asked by means of open
questions to subjectively summarise their perceptions of the selection process.
These questions are related to: the advantages and disadvantages the subjects have
seen with the schema, whether they would use it in their work if available, the

 29

improvements they would make to the schema, what they liked and did not like
about the schema, whether their view of the selection problem has changed after
using the schema, what have they learned, and the suitability of the names in the
schema. Generally, the subjects like the schema. However, they do stress the fact
that there are uninstantiated attributes. They also think that the schema contains
too much information. This again suggests the need to build a tool to make the
information the schema contains easier to handle. All the subjects would be
prepared to use the schema, provided they do not have to instantiate it. They miss
some information, although, interestingly, the information they do not find either
refers to things that they can deduce from the schema (like the time it will take to
apply a technique, for example) or information that they should extract from their
project context for comparison with a schema attribute (as is the case of the
experience of the development team, where what they are really looking for are
the defect types to be detected). As regards the suitability of the names, the names
that they allege not to be very intuitive are precisely the ones that refer to non-
intuitive concepts about the techniques (adequacy criterion, precision, etc.), which
suggests that the schema names are suitable.

5 Process Evaluation

Additionally, we wanted to check whether the process followed output a suitable
schema and whether repository use really improves selection. For this purpose, we
ran an experiment with the repository built, as described in section 4.5.1, with 87
students. For details about the experiment, see [17]. The experiment compared
characterisation schema use with books used for selecting testing techniques [6],
[13] and [16]. The findings are reported below.

As regards schema efficiency, the total time required to solve the selection
problem is the sum of the study time, plus the selection time and consultation time
(which is zero if books were used for selection). This experiment found that the
schema helps to reduce both the study and the selection time as compared with
books and that the time spent consulting the schema can be considered negligible
with respect to the other two. Accordingly, it can be concluded that one of the
objectives of this research has been achieved, and this is the construction of a
characterisation schema that makes selection more efficient. However, the results
are subject to the following conditions: non English-speaking and inexperienced
subjects.

After studying schema effectiveness, it was found that the number of original
techniques is lower for books than with the schema and varies from subject to
subject; the number of selected techniques is lower for the schema than for books;
and the subjects select either families of techniques, things that are not techniques
or techniques with which they are very familiar.

Combining these results, the conclusion is that the subjects using books are
unable to distinguish between a technique and a family or something that is not a
technique (which is indicated by the fact that the set of original techniques is

 30

different for the subjects who made the selection using books and who select
things that are not techniques), even though they were given an explanation as to
what a technique is. As none of the subjects is incompetent for performing the task
(they would also have failed in the selection using the schema), this could be
explained by saying that books are confusing as regards the information they
provide. This could also be the reason why the subjects tend to select more
techniques, gaining more assurance that the tests will turn out right, and why they
choose techniques with which they are very familiar. Finally, it should be stressed
that the schema leads to more precise selections.

With respect to schema completeness, it has been observed that the schema
contains more useful information for selection purposes than books. Books focus
on explaining how a technique works rather than when to use it.

As regards schema usability, the number of problems found during selection,
the sort of problems, the number of schema attributes that are problematic for
selection purposes and the sort of attributes were taken into account to evaluate
schema usability. The first two variables provide relative results on schema
behaviour as compared with books, whereas the latter two provide absolute
results, irrespective of books.

From the relative comparison of the schema against books, it was found that the
subjects have fewer problems using the schema than books. It was also discovered
that the frequency of appearance of each problem will be lower and that the main
problems encountered by the subjects using the schema are the result of there
being attributes that are not instantiated in the schema, as well as there being too
much information (a problem that had been predicted by an expert and which
could be solved by building a tool). On the other hand, the problems concerning
the selection with books are well known: poor organisation of the available
information, as well as missing information of interest and the existence of
information that is unnecessary for selection purposes.

From the absolute comparison, it was found that the frequency with which the
meaning of attributes is consulted is low, and that the most often consulted
attributes appear to be the attributes that represent concepts that are not intuitive or
are difficult for the subjects to interpret.

From all this, it can be said that characterisation schema usability is acceptable,
although there is room for improvement. It is acceptable insofar as the frequencies
of appearance of problems are lower than for books, and the frequency with which
the meaning of the attributes is consulted is also low. However, schema usability
could be improved, for example, by building a tool to make the information easier
to handle. It could also be improved by assuring that, every time a technique is
added, the entry contains as much information as possible.

From all this, it can be concluded that the use of characterisation schemas
improves selection and also that the proposed process helps in the construction of
characterisation schemas, since it defines a systematic way of identifying relevant
information.

 31

6 Conclusions

Throughout this chapter, we have presented a process for developing
characterisation schemas. As discussed in section 2, the generation of
characterisation schemas is one of the most important activities for creating an
experience base. We also found that no process has yet been defined for their
development.

The proposed process has been applied to a particular artefact type: software
testing techniques. The existence of a large group of testing techniques, the lack of
pragmatic information about these techniques and the lack of a theoretical
foundation makes them a paradigmatic example of the difficulties involved in
building experience bases.

Thanks to the practical application of the proposed process, we have been able
to demonstrate, first, the adequacy of the characterisation schema output by
following the process and, second, the soundness of the process.

We operated a mini repository containing thirteen testing techniques to test the
adequacy of the resulting schema. By setting up and using the repository, we were
able to detect some of the possible schema defects (in this case, none).

Additionally, we ran an experiment to check the soundness of the proposed
process, which compared the use of the mini repository developed from the
schema with the use of testing books. From this experiment, we were able to find
that the schema generated with the process proposed here contains more complete
information than testing books, is easier to use, is more efficient and leads to
better selections than books. Thanks to this experiment, we were also able to
confirm the generic hypothesis that artefact selection improves with the use of
characterisation schemas.

Going back to the more generic problem of using characterisation schemas in
software engineering, it is important to note that the areas that can benefit most
from these conceptual tools are the ones in which:

• There is a wide variety of elements to be characterised.

• There is knowledge to be stored.

While the first bullet represents an essential issue (at the moment there would
be no point in developing a characterisation schema for selecting development
paradigms, since there are only two: structured and OO), the second one
represents an issue that can be somehow overcome by having researchers perform
more research into the issues that are relevant for the characterisation schema (for
example, inspections where there is not much knowledge). However, some
knowledge must always be available about the element that is to be characterised.

 32

References

[1] Althoff, K. D., Birk, A., Hartkopf, S., Müller W., Nick M., Surmann, D. and Tautz, C. .
Systematic population, utilization and maintenance of a repository for comprehensive
reuse. In Learning Software Organizations, Methodology and Applications, 11th
International Conference on Software Engineering and Knowledge Engineering
(SEKE’99). 2000. Springer-Verlag: Berlin. Pages. 25-50.

[2] Basili, V. R., Lindvall M. Costa, P. Implementing the experience factory concepts as a
set of experience bases. In Proceedings of the 13th International Conference on
Software Engineering and Knowledge Engineering. Buenos Aires, Argentina. 13-15
June 2001.

[3] Basili, V. R., Rombach, H. D. Support for comprehensive reuse. Software Engineering
Journal, 303-316, September 1991.

[4] Basili, V. R., Rombach, H. D., Caldiera, G. The Experience Factory. Encyclopedia of
Software Engineering – 2Volume Set, pages 469-476 John Wiley & Sons, Inc. 1994.

[5] Bass, L., Clements, P., Kazman, R. Bass, K. Software Architecture in Practice. SEI
Series in Software Engineering. Addison-Wesley, January 1998.

[6] Beizer, B.. Software Testing Techniques. International Thomson Computer Press,
Second Edition, 1990

[7] Birk, A. Modelling the application domains of software engineering technologies.
Proceedings of the Twelfth International Conference on Automated Software
Engineering (ASE). Lake Tahoe, California, November 1997.

[8] Fenton, N, Krause, P. Neil, M. Software Measurement: uncertainty and causal
modeling. IEEE Software. 2002. 19(4): p. 116-122.

[9] Glaser, B., Strauss, A.. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine de Gruyter, 1967.

[10] Henninger, S. Accelerating the successful reuse of problem solving knowledge through
the domain lifecycle. Proceedings of the Fourth International Conference on Software
Reuse, 124-133, Orlando, Florida, April 1996.

[11] Komi-Sirvio, S., Mäntyniemi, A., Seppänen, V. Toward a practical solution for
capturing knowledge for software projects. IEEE Software, 60-62, May/June 2002.

[12] Maiden, N., Rugg, G. ACRE: Selecting methods for requirements acquisition.
Software Engineering Journal. 11(3):183-192,1996.

[13] Pfleeger, S. L. Software Engineering: Theory and Practice, Mc-Graw Hill. 1999
[14] Prieto-Díaz, R. Software Reusability, Vol 1, Chapter 4. Classification of Reusable

Modules, 99-123. Addison-Wesley, 1989.
[15] Rus, I., Lindvall, M. Knowledge management in software engineering. IEEE Software,

26-38, May/June 2002.
[16] Sommerville, I. Software Engineering, 5th edition. Pearson Education. 1998.
[17] Vegas, S. A Characterisation Schema for Selecting Software Testing Techniques. PhD

Thesis. Facultad de Informática. Universidad Politécnica de Madrid. February 2002.
[18] von Wangenheim, C. G.. REMEX- A Case-Based approach for reusing software

measurement experienceware. In Case-Based Reasoning Research and Development
(LNAI 1650). K.D. Althoff, R. Bergmann andL.K. Branting, Editors. 1999. pp 173-
187.

[19] von Wangenheim, C. G., Althoff, K. D., Barcia, R. M. Goal-oriented and similarity-
based retrieval of software engineering experienceware. In Learning Software

 33

Organizations: Methodology and Applications (LNCS, 1756). G. Ruhe, F. Bomarius,
editors. 2000. Springer-Verlag: Berlin. Pp 118-141.

Author Biography

Dr. Sira Vegas is assistant professor with the Computer Science at the Universidad
Politécnica de Madrid in Spain. She had a summer student grant at the European
Centre for Nuclear Research (Geneva) in 1995. In 1997, she worked at GMV
(Madrid) in the ENVISAT project for the European Space Agency. She has been a
regular visiting scholar at the University of Maryland from 1998 to 2000. Sira has
a BS and PhD in computer science from the Universidad Politécnica de Madrid.
She is a member of IEEE Computer Society and ACM.

Dr. Natalia Juristo is full professor with the Computer Science at the
Universidad Politécnica de Madrid in Spain. She is the Head of the Politecnica
Master of Software Engineering degree program. Natalia has worked at the
European Centre for Nuclear Research (Geneva), and at the European Space
Agency (Rome). In 1992 she was Resident Affiliate at the Software Engineering
Institute (Pittsburgh) on a NATO Fellowship. Natalia has a BS and PhD in
computer science from the Universidad Politécnica de Madrid. She has served as
Member of the Editorial Board of the IEEE Software Magazine from 1997 to
2001. She is a senior member of IEEE Computer Society and member of ACM,
AAAS and NYAS.

Dr. Victor Basili is Professor of Computer Science at the University of
Maryland, College Park, the Executive Director of the Fraunhofer Center
Maryland, and one of the founders and principals in the Software Engineering
Laboratory (SEL) at NASA/GSFC. He works on measuring, evaluating, and
improving the software development process and product. Dr. Basili is the
recipient of the 2000 Outstanding Research Award from ACM SIGSOFT, has
authored over 160 journal and refereed conference papers, and has served as
Editor-in-Chief of the IEEE TSE. He is co-editor-in-chief of the International
Journal of Empirical Software Engineering, and is an IEEE and ACM Fellow.

