
 1

State of the Empirical Knowledge on Testing
Techniques
NATALIA JURISTO, ANA M. MORENO, SIRA VEGAS
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo s/n, 28660 Boadilla del Monte,
Madrid, Spain

__

Engineering disciplines are characterised by the use of mature knowledge by means of which they can achieve
predictable results. Unfortunately, the type of knowledge used in software engineering can be considered to be
of a relatively low maturity, and developers are guided by intuition, fashion or market-speak rather than by facts
or undisputed statements proper to an engineering discipline. Testing techniques determine different criteria for
selecting the test cases that will be used as input to the system under examination, which means that an effective
and efficient selection of test cases conditions the success of the tests. The knowledge for selecting testing
techniques should come from studies that empirically justify the benefits and application conditions of the
different techniques. This paper analyses the maturity level of the knowledge about testing techniques by
examining existing empirical studies about these techniques. For this purpose, we classify testing technique
knowledge according to four categories.

Categories and Subject Descriptors: [Software Engineering] – Testing and debugging.
General Terms: Experimentation, Verification.
Additional Key Words and Phrases: Testing techniques, empirical software engineering.
__

1. INTRODUCTION

Engineering disciplines are characterised by using mature knowledge that can be applied

to output predictable results. Latour and Woolgor [Latour and Woolgor 1986] discuss a

series of intermediate steps on a scale that ranges from the most mature knowledge,

considered as proven facts, to the least mature knowledge, composed of beliefs or

speculations: facts given as founded and accepted by all, undisputed statements, disputed

statements, and conjectures or speculations. The path from subjectivity to objectivity is

paved by testing or empirical comparison with reality. Engineering disciplines apply

knowledge composed of facts and undisputed statements in order to output products with

predictable characteristics.

Unfortunately, software development has been characterised from its origins by a

serious lack of empirical facts tested against reality that provide evidence of the

advantages or disadvantages of using different methods, techniques or tools to build

Authors' addresses: Facultad de Informática. Universidad Politécnica de Madrid. Campus de Montegancedo,
28660 Boadilla del Monte, Madrid, Spain.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the
title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.
© 2001 ACM 1073-0516/01/0300-0034 $5.00

 2

software systems. The knowledge used in our discipline can be considered to be relatively

immature, and developers are guided by intuition, fashion or market-speak rather than by

the facts or undisputed statements proper to an engineering discipline.

This is equally applicable to software testing and is in open opposition to the

importance of software quality control and assurance and, in particular, software testing.

Testing is the last chance during development to detect and correct possible software

defects at a reasonable price. It is a well-known fact that it is a lot more expensive to

correct defects that are detected during later system operation [Davis 1993]. Therefore, it

is of critical importance to rely on knowledge that is mature enough to get predictable

results during the testing process.

The selection of the testing techniques to be used is one of the circumstances during

testing where objective and factual knowledge is essential. Testing techniques determine

different criteria for selecting the test cases that will be used as input to the system under

examination, which means that an effective and efficient selection of test cases conditions

the success of the tests. The knowledge for selecting testing techniques should come from

studies that empirically justify the benefits and application conditions of the different

techniques. However, as authors like Hamlet [Hamlet 1989] have noted, formal and

practical studies of this kind do not abound, as: (1) it is difficult to compare testing

techniques, because they do not have a solid theoretical foundation; (2) it is difficult to

determine what testing techniques variables are of interest in these studies.

In view of the importance of having mature testing knowledge, this paper intends to

analyse the maturity level of the knowledge in this area. For this purpose, we have

surveyed the major empirical studies on testing in order to analyse their results and

establish the factuality and objectivity level of the testing body of knowledge regarding

the benefits of some techniques over others.

The maturity levels that we have used are as follows:

• Laboratory study: An empirical study should be performed to check whether the

perception of the differences between the different testing techniques is subjective or

can be objectively confirmed by measurement. In case such a study has been

performed, we assign a confirmed value to this criteria; in case the study has not used

them, this level of knowledge is pending.

• Formal analysis: Statistical analysis techniques should be applied to the results

output to find out whether the differences observed between the techniques are really

significant and are not due to variations in the environment. In case the study has

 3

used these techniques, we assign a confirmed value to this criteria; in case the study

has not used them, this level of knowledge is pending.

• Laboratory replication: Other investigators should replicate the same experiment to

confirm that they get the same results and that they are not the fruit of any

uncontrolled variation. In case the study has been replicated in laboratory, we assign

a confirmed value to this criteria; in case it has not been, this level of knowledge is

pending.

• Field study: The study should be also replicated using real rather than toy

(laboratory) programs or faults in order to understand how the knowledge behaves in

real situations. In case the study has a field study associated, we assign a confirmed

value to this criteria; in case the study does not have it, this level of knowledge is

pending.

For this purpose, the paper has been structured as follows. Section 2 presents the

chosen approach for grouping the different testing studies. Sections 3, 4, 5, 6 and 7 focus

on each of the study categories described in section 2. Each of these sections will first

describe the studies considered depending on the testing techniques addressed in each

study and the aspects examined by each one. Each study and its results are analysed in

detail and, finally, the findings are summarised. Finally, section 8 outlines the practical

recommendations that can be derived from these studies, along with knowledge maturity

level, that is, how reliable these recommendations are. Section 8 also indicates what

aspects should be addressed in future studies in order to increase the body of empirical

knowledge on testing techniques.

The organisation of this chapter means that it can be read differently by different

audiences. Software practitioners interested in the practical results of the application of

testing techniques will find section 8, which summarises the practical recommendations

on the use of different testing techniques and their confidence level, more interesting.

Researchers interested in raising the maturity of testing knowledge will find the central

sections of this chapter, which contain a detailed description of the different studies and

their advantages and limitations, more interesting. The replication of particular aspects of

these studies to overcome the above-mentioned limitations will contribute to providing

useful knowledge on testing techniques. Researchers will also find a quick reference to

aspects of testing techniques in need of further investigation in section 8.

 4

2. CLASSIFICATION OF TESTING TECHNIQUES

Software testing is the name that identifies a set of corrective practices (as opposed to the

preventive practices applied during software construction), whose goal is to determine

software systems quality. In testing, quality is determined by analysing the results of

exercising the software (there is another type of corrective measures, known as static

analysis, that examine the product under evaluation at rest).

Testing techniques determine different criteria for selecting the test cases that are to be

run on the software system. These criteria can be used to group the testing techniques by

families. Accordingly, techniques belonging to one and the same family are similar as

regards the information they need to generate test cases (source code or specifications) or

the aspect of code to be examined by the test cases (control flow, data flow, typical

errors, etc.).

This is not the place to describe the features of testing techniques or their families, as

this information can be gathered from the classical literature on testing techniques, like,

for example [Beizer 1990], [Myers 1979]. For readers not versed in the ins and outs of

each testing techniques family, however, we will briefly mention each family covered in

this chapter, and the techniques of which they are composed, the information they require

and the aspect of code they examine:

• Random Testing Techniques. The random testing techniques family is composed of

the oldest and intuitive techniques. This family of techniques proposes randomly

generating test cases without following any pre-established guidelines. Nevertheless,

pure randomness seldom occurs in reality, and the other two variants of the family,

shown in Table 1, are the most commonly used.

Table 1. Random techniques family.

TECHNIQUE TEST CASE GENERATION CRITERION

Pure random
Test cases are generated at random, and generation stops
when there appear to be enough.

Guided by the
number of cases

Test cases are generated at random, and generation stops
when a given number of cases has been reached.

Error guessing
Test cases are generated guided by the subject’s knowledge
of what typical errors are usually made when programming.
It stops when they all appear to have been covered.

• Functional Testing Techniques. This family of techniques proposes an approach in

which the program specification is used to generate test cases. The component to be

tested is viewed as a black box, whose behaviour is determined by studying its inputs

and associated outputs.

 5

Of the set of possible system inputs, this family considers a subset formed by the

inputs that cause anomalous system behaviour. The key for generating the test cases

is to find the system inputs that have a high probability of belonging to this subset.

For this purpose, the technique divides the system inputs set into subsets termed

equivalence classes, where each class element behaves similarly, so that all the

elements of a class will be inputs that cause either anomalous or normal system

behaviour. The techniques of which this family is composed (Table 2) differ from

each other in terms of the rigorousness with which they cover the equivalence

classes.

Table 2. Functional testing technique family.

TECHNIQUE TEST CASE GENERATION CRITERION
Equivalence
partitioning

A test case is generated for each equivalence class found.
The test case is selected at random from within the class.

Boundary
value analysis

Several test cases are generated for each equivalence class,
one that belongs to the inside of the class and as many as
necessary to cover the limits (or boundaries) of the class.

• Control Flow Testing Techniques. Control flow testing techniques require knowledge

of source code. This family selects a series of paths1 throughout the program, thereby

examining the program control model. The techniques in this family vary as to the

rigour with which they cover the code. Table 3 shows the techniques of which this

family is composed, giving a brief description of the coverage criterion followed, in

ascending order of rigorousness.

Table 3. Control flow testing technique family

TECHNIQUE TEST CASES GENERATION CRITERION

Sentence coverage
The test cases are generated so that all the program sentences
are executed at least once.

Decision coverage
(branch testing)

The test cases are generated so that all the program decisions
take the value true or false.

Condition
coverage

The test cases are generated so that all the conditions
(predicates) that form the logical expression of the decision
take the value true or false.

Decision/condition
coverage

Decision coverage is not always achieved with condition
coverage. Here, the cases generated with condition coverage
are supplemented to achieve decision coverage.

Path coverage
Test cases are generated to execute all program paths. This
criterion is not workable in practice.

• Data Flow Testing Techniques. Data flow testing techniques also require knowledge

of source code. The objective of this family is to select program paths to explore

1 A path is a code sequence that goes from the start to the end of the program.

 6

sequences of events related to the data state. Again, the techniques in this family vary

as to the rigour with which they cover the code variable states. Table 4 reflects the

techniques, along with their associated coverage criterion.

Table 4. Data flow testing techniques

TECHNIQUE TEST CASES GENERATION CRITERION

All-definitions
Test cases are generated to cover each definition of each variable
for at least one use of the variable.

All-c-uses/
some-p-uses

Test cases are generated so that there is at least one path of each
variable definition to each c-use2 of the variable. If there are
variable definitions that are not covered, use p-uses.

All-p-uses/
some-c-uses

Test cases are generated so that there is at least one path of each
variable definition to each p-use of the variable. If there are
variable definitions that are not covered, use c-uses.

All-c-uses
Test cases are generated so that there is at least one path of each
variable definition to each c-use of the variable.

All-p-uses
Test cases are generated so that there is at least one path of each
variable definition to each p-use of the variable.

All-uses
Test cases are generated so that there is at least one path of each
variable definition to each use of the definition.

All-du-paths
Test cases are generated for all the possible paths of each
definition of each variable to each use of the definition.

All-dus
Test cases are generated for all the possible executable paths of
each definition of each variable to each use of the definition.

• Mutation Testing Techniques. Mutation testing techniques are based on modelling

typical programming faults by means of what are known as mutation operators

(dependent on the programming language). Each mutation operator is applied to the

program, giving rise to a series of mutants (programs that are exactly the same as the

original program, apart from one modified sentence, originated precisely by the

mutation operator). Having generated the set of mutants, test cases are generated to

examine the mutated part of the program. After generating test cases to cover all the

mutants, all the possible faults should, in theory, be accounted for (in practice,

however, coverage is confined to the faults modelled by the mutation operators).

The problem with the techniques that belong to this family is scalability. A mutation

operator can generate several mutants per line of code. Therefore, there will be a

sizeable number of a mutants for long programs. The different techniques within this

family aim to improve the scalability of standard (or strong) mutation to achieve

greater efficiency. Table 5 shows the techniques of which this family is composed

and gives a brief description of the mutant selection criterion.

 7

Table 5. Mutation testing technique family

TECHNIQUE TEST CASES GENERATION CRITERION
Strong
(standard)
mutation

Test cases are generated to cover all the mutants generated by
applying all the mutation operators defined for the programming
language in question.

Selective (or
constrained)
mutation

Test cases are generated to cover all the mutants generated by
applying some of the mutation operators defined for the
programming language. This gives rise to selective mutation
variants depending on the selected operators, like, for example, 2,
4 or 6 selective mutation (depending on the number of mutation
operators not taken into account) or abs/ror mutation, which only
uses these two operators.

Weak
mutation

Test cases are generated to cover a given percentage of mutants
generated by applying all the mutation operators defined for the
programming language in question. This gives rise to weak
mutation variants, depending on the percentage covered, for
example, randomly selected 10% mutation, ex-weak, st-weak,
bb-weak/1, or bb-weak/n.

Our aim is to review the empirical studies designed to compare testing techniques in

order to identify the maturity level of their knowledge, based on the kind of empirical

studies performed for getting that knowledge. We have grouped the empirical studies

reviewed into several subsets taking into account which techniques they compare:

• Intra-family studies, which compare techniques belonging to the same family to find

out the best criterion, that is, which technique of all the family members should be

used. We have found:

o Studies on the data flow testing techniques family

o Studies on the mutation testing techniques family

• Inter-family studies, which study techniques belonging to different families to find

out which family is better, that is, which type of techniques should be used. We have

identified:

o Comparative studies between the control flow and data flow testing

techniques families

o Comparative studies between the mutation and data flow testing techniques

families

o Comparative studies between the functional and control flow testing

techniques families.

2 There is said to be a c-use of a variable when the variable appears in a computation
(right-hand side of an assignation). There is said to be a p-use of a variable when the
variable appears as a predicate of a logical expression.

 8

In the following sections, we examine all these sets of studies, together with the

empirical results obtained.

3. STUDIES ON THE DATA FLOW TESTING TECHNIQUES FAMILY

The objective of this series of studies is to analyse the differences between the techniques

within the data flow testing techniques family. Table 6 shows which aspects were studied

for which testing techniques. The table can be read as follows: Weyuker analysed the

criterion compliance and the number of test cases generated by four techniques (all-c-

uses, all-p-uses, all-uses and all-du-paths), whereas Bieman and Schultz studied the

number of test cases generated for the all-du-paths technique alone.

Table 6. Studies on data flow testing techniques.

 STUDY [Weyuker
1990]

[Bieman and
Schultz 1992]

Criterion compliance X ASPECT
STUDIED Number of test cases generated X X

All-c-uses O

All-p-uses O

All-uses O

TESTING
TECHNIQUE

All-du-paths O O

Weyuker [Weyuker 1990] (see also [Weyuker 1988]) conducts a quantitative study to

check the theoretical relationship of inclusion among the test cases generation criteria

followed for each technique. This theoretical relationship can be represented as follows:

all-du-paths ⇒ all-uses

all-uses ⇒ all-c-uses

all-uses ⇒ all-p-uses

all-p-uses and all-c-uses cannot be compared

Which would read as follows. The test cases that comply with the all-du-paths

criterion satisfy the all-uses criterion; the test cases that comply with the all-uses criterion

satisfy the all-c-uses criterion, and so on. Weyuker’s empirical results (obtained by

studying twenty-nine programs taken from a book on Pascal with five or more decision

sentences) reveal that the following, generally, holds:

all-uses ⇒ all-du-paths

all-p-uses ⇒ all-c-uses

all-p-uses ⇒ all-uses

 9

So, the author establishes an inverse relationship with respect to the theory between:

all-uses and all-du-paths and between all-p-uses and all-uses. That is, she concludes that,

in practice, the test cases generated to meet the all-uses criterion, also normally comply

with all-du-paths, and the test cases generated by all-p-uses also comply with all-uses.

According to these results, it would suffice with respect to criterion compliance to use

all-uses instead of all-du-paths and all-p-uses instead of all-uses, as the test cases that

meet one criterion will satisfy the other.

However, the number of test cases generated by each criterion needs to be examined

to account for the cost (and not only the benefits) of these relationships. Analysing this

variable, Weyuker gets the following relationship:

all-c-uses < all-p-uses < all-uses < all-du-paths

which would read as: more test cases are generated to comply with all-p-uses than to

meet all-c-uses and fewer than to satisfy all-uses and all-du-paths. Bearing in mind the

results concerning the number of generated test cases and criteria compliance, we could

deduce that it is better to use all-p-uses than all-uses and it is better to use all-uses than

all-du-paths, as the former generate fewer test cases and generally meet the other

criterion.

With respect to all-c-uses, although it generates fewer test cases than all-p-uses, the

test cases generated by all-c-uses do not meet the criterion of all-p-uses, which means that

it does not yield equivalent results to all-p-uses.

Note that the fact that the set of test cases generated for one criterion is bigger than for

another does not necessarily mean that the technique detects more faults, as defined in

other studies examined later. And the same applies to the relationship of inclusion. The

fact that a criterion includes another, does not say anything about the number of faults it

can detect.

Another of Weyuker’s results is that the number of test cases generated by all-du-

paths, although exponential in theory, is in practice linear with respect to the number of

program decisions. Bieman and Schultz [Bieman and Schultz 1992] partly corroborate

these results using real industrial software system, deducing that the number of test cases

required to meet this criterion is reasonable. Bieman and Schultz indicate that the number

of cases in question appears to depend on the number of lines of code, but they do not

conduct a statistical analysis to test this hypothesis, nor do they establish what

relationship there is between the number of lines of code and the number of generated test

cases.

 10

The following conclusions can be drawn from these studies:

• All-p-uses should be used instead of all-uses, and all-uses instead of all-du-paths, as

they generate fewer test cases and generally cover the test cases generated by the

other criteria.

• It is not clear that it is better to use all-c-uses instead of all-p-uses, as, even though

all-c-uses generates fewer test cases, there is no guarantee that the generated test

cases meet the criterion imposed by all-p-uses.

• Both Weyuker, using toy programs, and Bieman and Schultz, using industrial

software, appear to agree that, contrary to testing theory, the all-du-paths technique is

usable in practice, since it does not generate too many test cases.

Notice that these results are affected by the following limitations:

• Weyuker uses relatively simple toy programs, which means that the results cannot be

directly generalised to real practice.

• Bieman and Schultz do not conduct a statistical analysis of the extracted data, and

their study is confined to a qualitative interpretation of the data.

• The response variable used by Weyuker and Bieman and Schultz is the number of

test cases generated. This characteristic merits analysis insofar as the fewer test cases

are generated, the fewer are run and the fewer need to be maintained. However, it

should be supplemented by a study of case effectiveness, which is a variable that

better describes what is expected of the testing techniques.

• What the number of test cases generated by all-du-paths depends on needs to be

examined in more detail, as one study says it is related to the number of decisions

and the other to the number of lines of code, although neither further specifies this

relationship.

The results of these studies are summarised in Table 7.

4. STUDIES ON THE MUTATION TESTING TECHNIQUES FAMILY

This family is examined in three papers, which look at types of mutation that are less

costly than traditional mutation. Generally, these papers aim to ascertain what the costs

and benefits of using different mutation testing techniques are. These studies, along with

the characteristics they examine and the techniques they address, are shown in Table 8.

 11

Table 7. Results of the studies on data flow testing techniques.

 STUDY [Weyuker 1990] [Bieman and Schultz 1992]
Criteria
compliance

- All-p-uses includes all-uses
- All-uses includes all-du-paths

-

A
SP

E
C

T
 S

T
U

D
IE

D

Number of test
cases generated

- All-c-uses generates fewer test
cases than all-p-uses

- All-p-uses generates fewer test
cases than all-uses

- All-uses generates fewer test
cases than all-du-paths

- The number of test cases
generated by all-du-paths is
linear as regards the number of
decisions in the program, rather
than exponential as stated in
theory

- The number of test cases
generated with all-du-paths is not
exponential, as stated in theory,
and is reasonable

- The number of test cases
generated by all-du-paths seems
to depend on the number of lines
of code

P
R

A
C

T
IC

A
L

R

E
SU

L
T

S

- All-p-uses should be used instead of all-uses, and all-uses instead of all-du-paths, as
they generate fewer test cases and generally cover the test cases generated by the other
criteria.

- It is not clear that it is better to use all-c-uses instead of all-p-uses, as, even though all-
c-uses generates fewer test cases, coverage is not assured.

- Contrary to testing theory, the all-du-paths technique is usable in practice, since it does
not generate too many test cases.

L
IM

IT
A

T
IO

N
S

- It remains to ratify the laboratory results of Weyuker’s study in industry.
- The results of Bieman and Schultz’s study have to be corroborated using formal

statistical analysis techniques.
- Technique effectiveness should be studied, as the fact that the test cases generated with

one criterion cover the other criteria is not necessarily related to effectiveness.
- What the number of test cases generated in all-du-paths depends on should be studied

in more detail, as one study says it depends on the number of decisions and the other on
the number of lines of code.

As shown in Table 8, the efficiency of these techniques is measured differently. So,

whereas Offut and Lee [Offut and Lee 1994] (see also [Offut and Lee 1991]) and Offut et

al. [Offut et al. 1996] (see also [Offut et al. 1993]) measure efficiency as the percentage

of mutants killed by each technique, Wong and Mathur [Wong and Mathur 1995]

measure it as the percentage of generated test set cases that detect at least one fault. On

the other hand, all the studies consider the cost of the techniques identified as the number

of generated test cases and/or the number of generated mutants.

The results of the three studies appear to corroborate each other as regards mutation

being much more costly than any of its variants, while there does not appear to be too

drastic a loss of effectiveness for the variants as compared with strong mutation.

After analysing 11 subroutines of no more than 30 LOC, Offut and Lee indicate in this

respect that, for non-critical applications, it is recommendable to use weak as opposed to

strong mutation, because it generates fewer test cases and kills a fairly high percentage of

 12

Table 8. Studies on mutation testing techniques.

 STUDY
[Offut and
Lee 1994]

[Offut et
al. 1996]

[Wong and
Mathur

1995]
% mutants killed3 by each technique X X

No. of generated cases X X

No. of generated mutants X X
A

SP
E

C
T

ST

U
D

IE
D

% generated sets that detect at least 1 fault X

Mutation (strong/standard) O O O

MD EX-WEAK O

MD ST-WEAK O

MD BB-WEAK/1 O

MD BB-WEAK/n O

2-selective mutation O

4-selective mutation O

6-selective mutation O

Random selected 10% mutation O T
E

ST
IN

G
 T

E
C

H
N

IQ
U

E

Constrained (abs/ror) mutation O

mutants. In particular, they suggest that bb-weak-1 and st-weak kill a higher percentage of

mutants, but they also generate more test cases.

Furthermore, Offut et al. analyse 10 programs (9 of which were studied in Offut and

Lee, of no more than 48 LOC) and find that the percentage of strong mutation mutants

killed by each selective variant is over 99% and is, in some cases, 100%. Therefore, the

authors conclude that selective mutation is an effective alternative to strong mutation.

Additionally, selective mutation cuts test costs substantially, as it reduces the number of

generated mutants.

As regards Wong and Mathur, they compare strong mutation with two selective

variants (randomly selected 10% mutation and constrained mutation, also known as

abs/ror mutation). They find, on 10 small programs, that strong or standard mutation is

equally as or more effective than either of the other two techniques. However, these

results are not supported statistically, which means that it is impossible to determine

whether or not this difference in effectiveness is significant.

Finally, Wong and Mathur refer to other studies they have performed, which

determined that abs/ror mutation and 10% mutation generate fewer test cases than strong

mutation. This gain is offset by a loss of less than 5% in terms of coverage as compared

with strong mutation. This could mean that many of the faults are made in expressions

3 A mutant is killed when a test case causes it to fail.

 13

and conditions, which are the questions evaluated by abs/ror mutation. For this reason and

for non-critical applications, they suggest the possibility of applying abs/ror mutation to

get good cost/benefit performance (less time and effort with respect to a small loss of

coverage).

In summary, the conclusions reached by this group of studies are:

• Standard mutation appears to be more effective, but is also more costly than any of

the other techniques studied.

• The mutation variants provide similar, although slightly lower effectiveness, and are

less costly (generate fewer mutants and, therefore, fewer test cases), which means

that the different mutation variants could be used instead of strong mutation for non-

critical systems.

However, the following limitations have to be taken into account:

• The programs considered in these studies are not real, which means that the results

cannot be generalised to industrial cases, and a replication in this context is required

to get greater results reliability.

• Offut et al. and Wong and Mathur do not use formal techniques of statistical analysis,

which means that their results are questionable.

• Additionally, it would be interesting to compare the standard mutation variants with

each other and not only with standard mutation to find out which are more effective

from the cost and performance viewpoint.

• Furthermore, the number of mutants that a technique kills is not necessarily a good

measure of effectiveness, because it is not explicitly related to the number of faults

the technique detects.

Table 9 shows the results of this set of studies.

5. COMPARATIVE STUDIES BETWEEN THE DATA FLOW, CONTROL FLOW
AND RANDOM TESTING TECHNIQUES FAMILIES

The objective of this series of studies is to analyse the differences between three families,

selecting, for this purpose, given techniques from each family. The selected techniques

are the branch testing (decision coverage) control flow technique, all-uses and all-dus

within the data flow family and random in the random testing technique family. Table 10

shows the studies considered, the aspects studied by each one and for which testing

techniques.

 14

Table 9. Results of the studies on mutation testing techniques

 STUDY [Offut and Lee 1994] [Offut et al. 1996] [Wong and Mathur 1995]

% mutants
killed by
each
technique

The percentage of
mutants killed by
weak mutation is high

Selective mutation
kills more than
99% of the mutants
generated by strong
mutation

-

No. cases
generated

Weak mutation
generates fewer test
cases than strong
mutation

- st-weak/1 and bb-
weak/1 generate
more test cases
than exweak/1
and bb-weak/n

- Although not
explicitly stated,
strong mutation
generates more
test cases than
selective mutation

-

No. mutants
generated -

Selective mutation
generates fewer
mutants than strong
mutation

- 10% mutation generates
fewer mutants than
abs/ror mutation (approx.
half)

- Abs/ror generates from 50
to 100 times fewer
mutants than standard
mutation

A
SP

E
C

T
 S

T
U

D
IE

D

% sets
generated
that detect
at least 1
fault

- -

- Standard mutation is
more effective than 10%
mutation in 90% of cases
and equal in 10%

- Standard mutation is
more effective than
abs/ror in 40% of the
cases and equal in 60%

- Abs/ror is equally or more
effective than 10%
mutation in 90% of the
cases

P
R

A
C

T
IC

A
L

 R
E

SU
L

T
S - Where time is a critical factor, it is better to use weak as opposed to standard

mutation, as it generates fewer test cases and effectiveness is approximately the same.
- Where time is a critical factor, it is better to use selective (exweak/1 and bb-weak/n) as

opposed to standard mutation, as it generates fewer mutants (and therefore fewer test
cases) and its effectiveness is practically the same.

- Where time is a critical factor, it is better to use 10% selective as opposed to standard
mutation, although there is some loss in effectiveness, because it generates much fewer
test cases. In intermediate cases, it is preferable to use abs/ror mutation, because,
although it generates more cases (from 50 to 100 times more), it raises effectiveness by
7 points. If time is not a critical factor, it is preferable to use standard mutation.

L
IM

IT
A

T
IO

N
S - It remains to ratify the laboratory results of these studies in industry.

- The results of the studies by Offut et al. and Wong and Mathur should be corroborated
using formal techniques of statistical analysis.

- It remains to compare the variants of strong mutation with each other.
- The studies should be repeated with another measure of effectiveness, as the number of

mutants killed by a technique is not necessarily a good measure of effectiveness.

 15

Table 10. Comparative studies of the data flow, control flow and random testing

technique families.

 STUDY [Frankl and
Weiss 1993]

[Hutchins
et al. 1994]

[Frankl and
Iakounenko 1998]

Number of test cases generated X X
A

SP
E

C
T

ST

U
D

IE
D

No. of sets with at least 1
fault/no. of sets generated

X X X

All-uses O O

Branch testing (all-edges) O O O

All-dus (modified all-uses) O

T
E

ST
IN

G

T
E

C
H

N
IQ

U
E

Random (null) O O O

Frankl and Weiss [Frankl and Weiss 1993] (see also [Frankl and Weiss 1991] and

[Frankl and Weiss 1991]) and Frankl and Iakounenko [Frankl and Iakounenko 1998]

study the effectiveness of the all-uses, branch testing and random testing techniques in

terms of the probability of a set of test cases detecting at least one fault, measured as the

number of sets of test cases that detect at least one fault/total number of sets generated.

Frankl and Weiss use nine toy programs containing one or more faults to measure

technique effectiveness. The results of the study indicate that the probability of a set of

test cases detecting at least one fault is greater (from a statistically significant viewpoint)

for all-uses than for all-edges in five of the nine cases. Additionally, all-uses behaves

better than random in six of the nine cases and all-edges behaves better than random

testing in five of the nine cases.

Analysing the five cases where all-uses behaves better than all-edges, Frankl and

Weiss find that all-uses provides a greater probability of a set of cases detecting at least

one fault with sets of the same size in four of the five cases. Also, analysing the six cases

where all-uses behaves better than random testing, the authors find that all-uses provides

a greater probability of a set of cases detecting at least one fault in four of these cases.

That is, all-uses has a greater probability of detecting a fault not because it works with

sets containing more test cases than all-edges or random testing, but thanks to the very

strategy of the technique. Note that the diffrence in the behaviour of the techniques (of

nine programs, there are five for which a difference is observed and four for which none

is observed for all-uses and six out of nine for random testing) is not statistically

significant, which means that it cannot be claimed outright that all-uses is more effective

than all-edges or random testing.

 16

Analysing the five cases where all-edges behaves better than random testing, Frankl

and Weiss find that in no case does all-edges provide a greater probability of a set of

cases detecting at least one fault with sets of the same size. That is, in this case, all-edges

has a greater probability of detecting a fault than random testing because it works with

larger sets.

Frankl and Weiss also discern a relationship between technique effectiveness and

coverage, but they do not study this connection in detail. Frankl and Iakounenko,

however, do study this relationship and, as mentioned above, again define effectiveness as

the probability of a set of test cases finding at least one fault, measured as the number of

sets of test cases that detect at least one fault/total number of generated test cases. Frankl

and Iakounenko deal with eight versions of an industrial program, each containing a real

fault. Although the study data are not analysed statistically and its conclusions are based

on graphical representations of the data, the qualitative analysis indicates that, as a

general rule, effectiveness is greater when coverage is higher, irrespective of the

technique. However, there are occasions where effectiveness is not 1, which means that

some faults are not detected, even when coverage is 100%. This means that coverage

increases the probability of finding a fault, but it does not guarantee that it is detected.

Additionally, both all-uses and all-edges appear to behave similarly in terms of

effectiveness, which is a similar result to what Frankl and Weiss found. For high coverage

levels, both all-uses and all-edges behave much better than random testing. Indeed, Frankl

and Weiss believe that the behaviour of random testing is unrelated to coverage. Hence,

as random testing does not improve with coverage, it deteriorates with respect to the other

two.

Note that even when technique coverage is close to 100%, there are programs for

which the technique’s fault detection effectiveness is not close to 1. This leads us to

suspect that there are techniques that work better or worse depending on the fault type.

The better techniques for a given fault type would be the ones for which effectiveness is

1, whereas the poorer ones would be the techniques for which effectiveness is not 1, even

though coverage is optimum. However, Frankl and Weiss do not further research this

relationship.

The study by Hutchins et al. [Hutchins et al. 1994] compares all-edges with all-dus

and with random testing. As shown in Table 10, the authors study the number of test

cases generated by each technique, the effectiveness of the techniques, again measured as

 17

the number of sets that detect at least one fault/the total sets, as well as the relationship to

coverage.

Hutchins et al. consider seven toy programs (with a number of lines of code from 138

to 515), of which they generate versions with just one fault. The results of the study show

that the greater coverage is, the more effective the techniques are. While there is no

evidence of a significant difference in effectiveness between all-edges and all-dus, there is

for random testing.

Furthermore, the authors study the sizes of the test cases generated by all-edges and

all-dus, and how big a set of cases generated using random testing would have to be for a

given coverage interval to be equally effective. They reach the conclusion that the sizes

generated by all-edges and all-dus are similar and that the increase in the size of one set of

cases generated by random testing can vary from 50 to 160% for high coverages (over

90%).

The authors further examine the study, analysing the fault types detected by each

technique. They find that each technique detects different faults, which means that

although the effectiveness of all-edges and all-dus is similar, the application of one

instead of the other is not an option, as they find different faults.

The knowledge that can be drawn from these studies is:

• There does not appear to be a difference between all-uses, all-edges and random

testing as regards effectiveness from the statistical viewpoint, as the number of

programs in which one comes out on top of the other is not statistically significant.

However, from the practical viewpoint, random testing is easier to satisfy than all-

edges and, in turn, all-edges is easier to satisfy than all-uses. On the other hand, all-

uses is better than all-edges and than random testing as a technique, whereas all-

edges is better than random because it generates more test cases. It follows from the

results of the above studies that, in the event of time constraints, the use of the

random testing technique can be relied upon to yield an effectiveness similar to all-

uses in 50% of the cases. Where testing needs to be exhaustive, the application of all-

uses provides assurance, as, in the other half of the cases, this criterion yielded more

efficient results thanks to the actual technique and not because it generated more test

cases.

• A logical relationship between coverage and effectiveness was also detected (the

greater the coverage, the greater the effectiveness). However, effectiveness is not

necessarily optimum in all cases even if maximum coverage is achieved. Therefore, it

 18

would be interesting to analyse in detail the faults entered in the programs in which

the effectiveness of the techniques is below optimum, as a dependency could

possibly be identified between the fault types and the techniques that detect these

faults.

• Hutchins et al. discover a direct relationship between coverage and effectiveness for

all-uses and all-edges, whereas no such relationship exists for random testing. For

high coverage levels, the effectiveness of all-uses and all-edges is similar.

• Frankl and Iakounenko also discover a direct relationship between coverage and

effectiveness for all-uses and all-edges. Again, the effectiveness of both techniques is

similar, although all-edges and all-dus are complementary because they detect

different faults.

• Even when there is maximum coverage, however, there is no guarantee that a fault

will be detected. This suggests that the techniques may be sensitive to certain fault

types.

The limitations discovered in these studies are:

• Frankl and Weiss and Hutchins et al. use relatively simple, non-industrial programs,

which means that the results cannot be directly generalised to real practice.

• Of the three studies, Frankl and Iakounenko do not run a statistical analysis of the

extracted data, which means that the significance of the results is questionable.

• The evaluation of the effectiveness of the techniques studied, measured as the

probability of detecting at least one fault in the programs, is not useful in real

practice. Measures of effectiveness like, for example, number of faults detected over

number of total faults are more attractive in practice.

• Besides technique effectiveness, Frankl and Weiss and Frankl and Iakounenko

should also study technique complementarity (as in Hutchins et al.) , in order to be

able to determine whether or not technique application could be considered

exclusive, apart from extracting results regarding similar technique effectiveness

levels.

The conclusions of these studies have been summarised in Table 11.

 19

Table 11. Results of the studies comparing data flow, control flow and random testing

techniques

 STUDY [Frankl and Weiss 1993] [Hutchins et al. 1994] [Frankl and
Iakounenko 1998]

Number
of test
cases
generated

- All uses is a better
technique than all-edges
and random by the
technique itself

- All-edges is better than
random because it
generates more test cases

- All-edges and all-dus
generate approx. the
same number of test
cases

- To achieve the same
effectiveness as all-
edges and all-dus,
random has to
generate from 50% to
160% more test cases

-

A
SP

E
C

T
 S

T
U

D
IE

D

No. of
sets
detecting
at least 1
fault/no.
of sets
generated

- There is no convincing
result regarding all-uses
being more effective than
all-edges and random:
• In approximately 50% of

the cases, all-uses is
more effective than all-
edges and random, and
all-edges is more
effective than random

• In approximately 50% of
the cases, all-uses, all-
edges and random
behave equally

- The effectiveness of
all-edges and all-dus
is similar, but they
find different faults

- Maximum coverage
does not guarantee
that a fault will be
detected

- There is an
effectiveness/covera
ge relationship in
all-edges and all-
uses (not so in
random)

- There is no
difference as regards
effectiveness
between all-uses and
all-edges for high
coverages

P
R

A
C

T
IC

A
L

 R
E

SU
L

T
S

- In the event of time constraints, the use of the random testing technique can be relied
upon to yield an effectiveness similar to all-uses and all-edges (the differences being
smaller the higher coverage is) in 50% of the cases. Where testing needs to be
exhaustive, the application of all-uses provides assurance, as, in the other half of the
cases, this criterion yielded more efficient results thanks to the actual technique, unlike
all-edges, which was more efficient because it generated more test cases.

- All-edges should be applied together with all-dus, as they are equally effective and
detect different faults. Additionally, they generate about the same number of test cases,
and the random testing technique has to generate between 50% and 160% more test
cases to achieve the same effectiveness as all-edges and all-dus.

- High coverage levels are recommended for all-edges, all-uses and all-dus, as this
increases their effectiveness. This is not the case for the random testing technique. Even
when there is maximum coverage, however, there is no guarantee that a fault will be
detected.

L
IM

IT
A

T
IO

N
S

- It remains to ratify the laboratory results of the studies by Hutchins et al. and Frankl and
Ianounenko in industry.

- The results of the studies by Frankl and Weiss should be corroborated using formal
techniques of statistical analysis.

- The type of faults should be studied in the programs where maximum effectiveness is
not achieved despite there being maximum coverage, as this would help to determine
technique complementarity.

- The studies should be repeated for a more practical measure of effectiveness, as the
percentage of test case sets that find at least one fault is not real.

 20

6. COMPARISONS BETWEEN THE MUTATION AND THE DATA FLOW
TESTING TECHNIQUES FAMILIES

We have found two studies that compare mutation with data flow techniques. These

studies, along with the characteristics studied and the techniques addressed, are shown in

Table 12.

Table 12. Comparative studies between the mutation and data flow testing techniques

families.

 STUDY [Frankl et
al.1997]

[Wong and
Mathur 1995]

% mutants killed by each
technique

X ASPECT
STUDIED Ratio of generated sets that

detect at least 1 fault
X X

Mutation (strong or standard) O O

All-uses O O

Random selected 10% mutation O

TESTING
TECHNIQUE

Constrained (abs/ror) mutation O

Frankl et al. [Frankl et al. 1997] (see also [Frankl et al. 1994]) compare the

effectiveness of mutation testing and all-uses. They study the ratio between the sets of test

cases that detect at least one fault vs. total sets for these techniques. The effectiveness of

the techniques is determined at different coverage levels (measured as the percentage of

mutants killed by each technique). The results for 9 programs at high coverage levels with

a number of faults of no more than 2 are as follows:

• Mutation is more effective for 5 of the 9 cases

• All-uses is more effective than mutation for 2 of the 9 cases

• There is no significant difference for the other two cases.

With regard to Wong and Mathur [Wong and Mathur 1995], they compare strong

mutation, as well as two variants of strong mutation (randomly selected 10% and

constrained mutation, also known as abs/ror mutation), with all-uses, studying again the

ratio between the sets of test cases that detect at least 1 fault vs. total sets. For this

purpose, the authors study 10 small programs, finding that the mutation techniques

behave similarly to all-uses.

We cannot conclude from these results that there is a clear difference in terms of

effectiveness between mutation testing and all-uses. Additionally, the authors highlight

that it is harder to get high coverage with mutation as compared with all-uses.

 21

As a general rule, mutation testing appears to be as or more effective than all-uses,

although it is more costly.

The limitations of these results are:

• The results of Frankl et al. can be considered as a first attempt at comparing mutation

testing techniques with all-uses, as this study has some drawbacks. First, the faults

introduced into the programs had faults that, according to the authors, “occurred

naturally”. However, the programs are relatively small (no more than 78 LOC), and it

is not said whether or not they are real. Additionally, the fact that the programs had

no more than two faults is not significant from a practical viewpoint.

• Wong and Mathur do not use real programs or formal techniques of statistical

analysis, which means that their results cannot be considered conclusive until a

formal analysis of the results has been conducted on real programs.

• The use of the percentage of sets that discover at least one fault as the response

variable is not significant from a practical viewpoint.

• Note that a potentially interesting question for this study would have been to examine

the differences in the programs for which mutation and data flow testing techniques

yield different results. This could have identified a possible relationship between

program or fault types and the techniques studied, which would help to define

application conditions for these techniques. There should be a more detailed study of

the dependency between the technique and the program type to be able to more

objectively determine the benefits of each of these techniques.

• In any replications of this study, it would be important to analyse the cost of

technique application (in the sense of application time and number of test cases to be

applied) to conduct a more detailed cost/benefit analysis.

The main results of this group are summarised in ¡Error! La autoreferencia al

marcador no es válida..

7. COMPARISONS BETWEEN THE FUNCTIONAL AND CONTROL FLOW
TESTING TECHNIQUES FAMILIES

The four studies of which this group is composed are reflected in Table 14. These are

empirical studies in which the authors investigate the differences between control flow

testing techniques and the functional testing techniques family. These studies actually

also compare these two testing technique families with some static code analysis

 22

techniques, which are not taken into account for the purposes of this paper, as they are

not testing techniques.

Table 13. Comparisons between mutation and all-uses

 STUDY [Frankl et al 1997] [Wong and Mathur 1995]

% mutants killed by
each technique

- It is more costly to
reach high coverage
levels with mutation
than with all-uses

-

A
SP

E
C

T
 S

T
U

D
IE

D

Ratio of sets generated
that detect at least 1
fault

- There is not a clear
difference between
mutation and all-uses

- Standard mutation is more
effective than all-uses in
63% of the cases and
equally effective in 37%

- Abs/ror is more effective
than all-uses in 50% of the
cases, equally effective in
30% and less effective in
20%

- All-uses is more effective
than 10% mutation in 40%
of the cases, equally
effective in 20% and less
effective in 40%

P
R

A
C

T
IC

A
L

 R
E

SU
L

T
S

- If high coverage is important and time is limited, it is preferable to use all-uses
as opposed to mutation, as it will be just as effective as mutation in about half of
the cases.

- All-uses behaves similarly as regards effectiveness to abs/ror and 10% mutation.

L
IM

IT
A

T
IO

N
S - It remains to ratify the laboratory results of the studies in industry.

- The studies should be repeated for a more practical measure of effectiveness, as
the percentage of sets of cases that find at least one fault is not real.

- It would be of interest to further examine the differences in the programs in
which mutation and the data flow testing technique yield different results.

- The cost of technique application should be studied.

In Myers’ study [Myers 1978], inexperienced subjects choose to apply one control

flow and one functional testing technique, which they apply to a program taken from a

programming book, analysing the variables: number of faults detected, time to detect

faults, time to find a fault/type, number of faults detected combining techniques, and time

taken to combine techniques/fault type.

Myers does not specify which particular techniques were used, which means that this

study does not provide very practical results. One noteworthy result, however, is that the

author does not find a significant difference as regards the number of faults detected by

both technique types. However, the author indicates that different methods detect some

fault types better than others (although this study is not performed statistically).

 23

Table 14. Comparative studies of functional and control testing techniques.

 STUDY [Myers
1978]

[Basili and
Selby 1987]

[Kamsties and
Lott 1995]

[Wood et
al. 1997]

No. faults detected X X X

Time to detect faults X X X

Time to detect faults/fault type X

No. faults detected combining
techniques

X X

Time combining techniques/fault type X

No. faults found/ time X X X X

No. faults isolated/hour X

% faults detected/type X X

% faults isolated/type X

Time to isolate faults X

Total time to detect and isolate X

% faults detected X X X

A
SP

E
C

T
 S

T
U

D
IE

D

% faults isolated X

White box O

Black box O

Boundary value analysis O O O

Sentence coverage O

Condition coverage O T
E

ST
IN

G

T
E

C
H

N
IQ

U
E

Decision coverage (branch testing) O

Myers also studies fault detection efficiency combining the results of two different

people. Looking at Table 14, we find that Wood et al. [Wood et al. 1997] also address

this factor. The conclusions are similar in the two studies, that is, more faults are detected

combining the faults found by two people. However, there are no significant differences

between the different technique combinations.

Of the studies in Table 14, we find that Basili and Selby [Basili and Selby 1987] (see

also [Basili and Selby 1985] and [Selby and Basili 1984]) and Wood et al. [Wood et al.

1997] use almost the same response variables: number of detected faults, percentage of

detected faults, time to detect faults, number of faults detected per hour and percentage of

faults detected per hour for Basili and Selby and number of detected faults, number of

faults detected combining techniques, number of faults detected per hour, and percentage

of detected faults for Wood et al.

Apart from these results, Kamsties and Lott [Kamsties and Lott 1995] also take an

interest in the faults that cause the different failures, studying another set of variables, as

 24

shown in Table 14: number of faults isolated per hour, percentage of faults isolated per

type, time to isolate faults, percentage of faults isolated and total time to detect and isolate

faults, but also time to detect faults, number of faults detected per hour, percentage of

faults detected by type and percentage of detected faults.

Whereas Basili and Selby replicate the experiment with experienced and

inexperienced subjects (two and one replications, respectively), Wood et al., like

Kamsties and Lott, use only inexperienced subjects.

This means that Basili and Selby can further examine the effect of experience on the

fault detection rate (number of faults detected per hour) or the time taken to detect faults.

As regards the first variable, the authors indicate that the fault detection rate is the same

for experienced and inexperienced subjects for both techniques (boundary value analysis

and sentence coverage), that is, neither experience nor the technique influences this result.

With respect to time, Basili and Selby indicate that the experienced subjects take longer to

detect a fault with using the functional technique than with sentence coverage. This

means that experienced subjects detect fewer faults with the structural technique than

with the functional testing technique within a given time. For inexperienced subjects, on

the other hand, the findings are inconclusive, as the results of the replications are not the

same (in one replication no differences were observed between the techniques and in the

other, the functional testing technique took longer to detect faults).

Also as regards time, the study by Kamsties and Lott (who, remember, worked with

inexperienced subjects) indicates that the total time to detect and isolate faults is less

using the functional testing technique than with condition coverage. As these authors

studied the time to detect and isolate faults separately, the authors were able to determine

statistically that it takes longer to isolate the fault using the functional technique than with

condition coverage, but the time to detect the fault is less. Note that this result cannot be

directly compared with the findings of Basili and Selby, where the functional technique

did not take less time to detect faults, as the two consider different structural testing

techniques: sentence coverage (Basili and Selby) and condition coverage (Kamsties y

Lott).

As regards efficiency, Kamsties and Lott indicate that the fault detection rate was

greater for the functional testing technique than for condition coverage.

Kamsties and Lott note that there were no significant differences between the

percentage of isolated and detected faults, that is, both techniques behaved similarly,

because the program was the influential factor. This result was corroborated by studies by

 25

Basili and Selby and Wood et al., who claim that the percentage of detected faults

depends on the program and, according to Wood et al., more specifically, on the faults

present in these programs.

Basili and Selby and Kamsties and Lott have also studied the percentage of faults

detected by the techniques according to fault type. In this respect, whereas Basili and

Selby claim that the functional technique detects more control faults than sentence

coverage, Kamsties and Lott indicate that, generally, there are no significant differences

between the functional testing technique and condition coverage with regard to the

percentage of isolated and detected faults by fault type.

Finally, it should be mentioned that Wood et al. also focus on the study of the number

of detected faults using each technique individually and combining the results of two

people applying the same or different techniques. Individually, they reach the conclusion

that it is impossible to ascertain which technique is more effective, as the program (fault)

is also influential. On the other hand, they find that the number of different faults detected

is higher combining the results of different people, instead of considering only the results

of the individual application of each technique. However, a formal analysis of the data

could show that there is no significant difference between two people applying the same

or different techniques, which might suggest that it is the people and not the techniques

that find different faults (although this claim would require further examination).

The conclusions that can be drawn are:

• The boundary analysis technique appears to behave differently compared with

different structural testing techniques (particularly, sentence coverage and condition

coverage). Note that from the practical viewpoint, condition coverage is more

applicable, which means that future replications should focus on condition coverage

rather than sentence coverage. Nothing can be said about branch testing.

• Basili and Selby, Kamsties and Lott and Wood et al. find effectiveness-related

differences between functional and structural techniques depending on the program

to which they are applied. Wood et al. further examine this relationship, indicating

that it is the fault type that really influences the detected faults (and, more

specifically, the influential factor is the failures that these faults cause in programs),

whereas Kamsties and Lott and Myers find no such difference.

• Also there appears to be a relationship between the programs, or the type of faults

entered in the programs, and technique effectiveness, as indicated by all three studies.

However, this relationship has not been defined in detail. Basili and Selby point out

 26

that the functional technique detects more control faults. Myers also discerns a

difference as regards different faults, but fails to conduct a statistical analysis.

Finally, Kamsties and Lott find no such difference, which means that a more

exhaustive study would be desirable.

• More faults are detected using the same technique if different people are combined

than individually.

• Any possible extensions of these studies should deal, whenever possible, with real

problems and faults in order to be able to generalise the results obtained.

• Finally, it would be recommendable to unify the techniques under study in future

replications to be able to generalise conclusions.

The studies considered in this group generally include an experimental design and

analysis, which means that their results are reliable. However, caution needs to be

exercised when generalising and directly comparing these results for several reasons:

• They use relatively small programs, between 150 and 350 LOC, which are generally

toy programs and might not be representative of industrial software.

• Most, although not all, of the faults considered in these programs are inserted by the

authors ad hoc for the experiments run, which means that there is no guarantee that

these are faults that would occur in real programs.

• The studies by Basili and Selby, Kamsties and Lott and Wood et al. compare the

boundary value analysis technique with three different structural techniques. Hence,

although some results of different studies may appear to be contradictory at first

glance, a more detailed analysis would be needed to compare the structural

techniques with each other.

• The results of Myers’ study are not useful, since it is not clear what are exactly the

techniques the subjects used.

• Although the response variables used in all the studies are quite similar, care should

be exercised when directly comparing the results, because, as mentioned above, the

techniques studied are not absolutely identical.

We have summarised the results of this group in Table 15.

 27

Table 15. Results of the comparison of the functional and control flow testing

technique families.

 STUDY [Basili and Selby 1987] [Kamsties and Lott
1995]

[Wood et al. 1997]

No. faults
detected

- Experienced subjects:
the functional technique
detects more faults than
the structural technique

- Inexperienced subjects:
• In one case, there is no

difference between
structural and
functional techniques

• In the other, the
functional technique
detects more faults
than the structural
technique

-

The number of
detected faults
depends on the
program/technique
combination

% faults
detected

- Experienced subjects:
The functional
technique detects more
faults than the structural
technique

- Inexperienced subjects:
• In one case, there is no

difference between the
structural and
functional techniques

• In the other case, the
functional technique
detects more faults
than the structural
technique

Depends on the
program, not the
technique

The percentage of
detected faults
depends on the
program/technique
combination

% faults
detected/type

- Boundary value
analysis detects more
control faults than
sentence coverage

- There is no difference
between these
techniques for other
fault types

There is no difference
between techniques

-

No. faults
detected
combining
techniques

- -

Higher number of
faults combining
techniques

A
SP

E
C

T
 S

T
U

D
IE

D

Time to detect
faults

- Experienced subjects:
Boundary value
analysis takes longer
than sentence coverage

- Inexperienced subjects:
Boundary value
analysis takes as long or
longer than sentence
coverage

- Inexperienced
subjects:
• Boundary value

analysis takes less
time than condition
coverage

• The time taken to
faults also depends
on the subject

-

 28

 STUDY [Basili and Selby 1987] [Kamsties and Lott
1995] [Wood et al. 1997]

No. faults
detected/hour

- The fault rate with
boundary value analysis
and sentence coverage
does not depend on
experience

- The fault rate depends
on the program

Boundary value
analysis has a higher
fault detection rate than
condition coverage

Depends on the type
of faults in the
programs

% faults
isolated -

Depends on the
program and subject,
not on the technique

-

No. faults
isolated/hour -

Is influenced by the
subject not by the
technique

-

% faults
isolated/type -

There is no difference
between techniques

-

Time to isolate
faults -

With inexperienced
subjects, boundary
value analysis takes
longer than condition
coverage

-

Total time to
detect and
isolate

-

- With inexperienced
subjects, boundary
value analysis takes
less time than
condition coverage

- Time also depends on
the subject

-

P
R

A
C

T
IC

A
L

 R
E

SU
L

T
S

- For experienced subjects and when there is plenty of time, it is better to use the boundary
value analysis technique as opposed to sentence coverage, as subjects will detect more
faults, although it will take longer. On the other hand, for inexperienced subjects and
when time is short, it is better to use sentence coverage as opposed to boundary value
analysis, although there could be a loss of effectiveness. The time will also depend on the
program.

- It is preferable to use boundary value analysis as opposed to condition coverage, as there
is no difference as regards effectiveness and it takes less time to detect and isolate faults.

- There appears to be a dependency on the subject as regards technique application time,
fault detection and fault isolation.

- There appears to be a dependency on the program as regards the number and type of
faults detected.

- More faults are detected by combining subjects than techniques of the two families.
- If control faults are to be detected, it is better to use boundary value analysis or condition

coverage than sentence coverage. Otherwise, it does not matter which of the three are
used.

- The effect of boundary value analysis and branch testing techniques on effectiveness
cannot be separated from the program effect.

L
IM

IT
A

T
IO

N
S

- It remains to ratify the laboratory results of the studies in industry.
- The studies compare boundary values analysis with three different structural testing

techniques, hence a more detailed analysis is needed to compare the structural testing
techniques with each other.

 29

8. DISCUSION ON TESTING TECHNIQUE KNOWLEDGE MATURITY LEVEL

Despite the difficulties encountered, practitioners can find interesting

recommendations in Table 16, Table 17, Table 18, Table 19 and Table 20. These tables

also show the maturity level and tests pending performance for every statement, which

can be interesting for researchers. Note that there is no statement on testing techniques

that can be accepted as fact, as they are all pending some sort of corroboration, be it

laboratory or field replication or knowledge pending formal analysis.

Furthermore, some points yet to be covered by empirical studies and which might

serve as inspiration for researchers should be highlighted:

• The comparative study of the effectiveness of different techniques should be

supplemented by studies of the fault types that each technique detects and not only

the probability of detecting faults. That is, even if T1 and T2 are equally effective,

this does not mean that they detect the same faults. T1 and T2 may find the same

number of faults, but T1 may find faults of type A (for example, control faults)

whereas T2 finds faults of type B (for example, assignation faults). This would

provide a better understanding of technique complementarity, even when they are

equally effective.

• An interesting question for further examination is the differences between programs

for which different techniques yield different results. That is, given two programs P1

and P2, and two techniques T1 and T2 that behave differently with respect to P1, but

equally with respect to P2 (either as regards the number of detected faults, the

technique application time, etc.), identify what differences there are between these

two programs. This could identify a possible relationship between program types or

fault types and the techniques studied, which would help to define application

conditions for these techniques. It would be a good idea to conduct a more detailed

study of technique dependency on program type to be able to more objectively

determine the benefits of each technique.

 30

Table 16. Conclusions for the data flow family studies.

TECHNIQUE PRACTICAL RECOMMENDATION MATURITY STATUS PENDING KNOWLEDGE

If time is an issue, all-p-uses should be used instead
of all-uses, and all-uses instead of all-du-paths, as
they generate fewer test cases and generally cover
the test cases generated by the other criteria.

- Find out the difference in terms of
effectiveness between all-c-uses, all-
p-uses, all-uses and all-du-paths.

- Compare with the other techniques
in the family.

It is not clear that it is better to use all-c-uses instead
of all-p-uses, as, even though all-c-uses generates
fewer test cases, coverage is not assured.

- Confirmed with laboratory
programs and faults.

- Confirmed formally.

- Pending laboratory replication.
- Pending field study.

- Find out whether the fact that
maximum coverage does not detect a
fault depends on the fault itself.

Data flow

All-du-paths is not as time consuming as stated by
the theory, as it generates a reasonable and not an
exponential number of test cases.

- Confirmed with laboratory
programs and faults.

- Confirmed with field study.

- Pending formal analysis.
- Pending laboratory replication.

- Confirm whether the number of test
cases generated by all-du-paths
depends on the number of sentences
or the number of decisions, as the
two authors disagree.

 31

Table 17. Conclusions for the mutation family studies.

TECHNIQUE PRACTICAL RECOMMENDATION MATURITY STATUS PENDING KNOWLEDGE
Where time is a critical factor, it is better to use
selective (exweak/1 and bb-weak/n) as opposed to
standard mutation, as it generates fewer mutants (and,
therefore, fewer test cases) and its effectiveness is
practically the same.

- Confirmed with laboratory
programs and faults.

- Confirmed formally.

- Pending laboratory replication.
- Pending field study.

Where time is a critical factor, it is better to use weak as
opposed to standard mutation, as it generates fewer test
cases and effectiveness is approximately the same.

Mutation

Where time is a critical factor, it is better to use 10%
selective as opposed to standard mutation, although
there is some loss in effectiveness, because it generates
much fewer test cases. In intermediate cases, it is
preferable to use abs/ror mutation, because, although it
generates more cases (from 50 to 100 times more), it
raises effectiveness by 7 points. If time is not a critical
factor, it is preferable to use standard mutation.

- Confirmed with laboratory
programs and faults.

- Pending formal analysis.
- Pending laboratory replication.
- Pending field study.

- Compare the different mutation
variants with each other.

- Use another metric type for
effectiveness, as the number of
mutants killed by a technique is
only useful for relative
comparisons between mutation
techniques.

 32

Table 18. Conclusions for the data-flow, control-flow and random families studies.

TECHNIQUE PRACTICAL RECOMMENDATION MATURITY STATUS
PENDING

KNOWLEDGE
If time is an issue, the use of the random testing technique can be
relied upon to yield an effectiveness similar to all-uses and all-
edges (the differences being smaller as coverage increases) in 50%
of the cases. Where testing needs to be exhaustive, the application
of all-uses provides assurance, as, in the other half of the cases, this
criterion yielded more efficient results thanks to the actual
technique, unlike all-edges, which was more efficient because it
generated more test cases.

- Confirmed with laboratory
programs and faults.

- Confirmed formally.

- Pending laboratory replication.
- Pending field study.

- Compare with other
techniques of the
family.

- Use a better metric for
effectiveness.

High coverage levels are recommended for all-edges, all-uses and
all-dus, but not for the random testing technique. Even when there
is maximum coverage, however, there is no guarantee that a fault
will be detected.

- Confirmed with laboratory
programs and faults.

- Confirmed by field study.

- Pending formal analysis.
- Pending laboratory replication

- Find out whether the
fact the maximum
coverage does not detect
a fault depends on the
fault itself.

Data flow (all-
uses. all-dus)
vs. Control
flow (all-edges)
vs. Random

All-edges should be applied together with all-dus, as they are
equally effective and detect different faults. Additionally, they
generate about the same number of test cases, and the random
testing technique has to generate between 50% and 160% more test
cases to achieve the same effectiveness as all-edges and all-dus.

- Confirmed with laboratory
programs and faults.

- Confirmed formally.

- Pending laboratory replication.
- Pending field study.

- Compare with other
techniques of the
family.

- Use a better metric for
effectiveness.

 33

Table 19. Conclusions for the mutation and data flow families studies.

TECHNIQUE PRACTICAL RECOMMENDATION MATURITY STATUS PENDING KNOWLEDGE

If high coverage is important and time is limited,
it is preferable to use all-uses as opposed to
mutation, as it will be just as effective as mutation
in about half of the cases.

- Find out whether the cases in which
mutation is more effective than all-
uses is due to the fault type.

- Study the costs of both techniques in
terms of application time.

- Use another more significant metric
type to measure effectiveness.

Mutation
(standard) vs.
Data flow (all-
uses)

All-uses behaves similarly as regards effectiveness
to abs/ror mutation and 10% mutation.

- Confirmed with laboratory
programs and faults.

- Pending formal analysis.
- Pending laboratory replication.
- Pending field study.

- Study the number of cases generated
by the three alternatives

 34

Table 20. Conclusions for the functional and control flow families studies.

TECHNIQUE PRACTICAL RECOMMENDATION MATURITY STATUS PENDING KNOWLEDGE
For experienced subjects and when there is time, it is better to
use the boundary value analysis technique as opposed to sentence
coverage, as subjects will detect more faults, although it will take
longer. On the other hand, for inexperienced subjects and when
time is an issue, it is better to use sentence coverage as opposed
to boundary value analysis, although there could be a loss of
effectiveness. The time will also depend on the program.
It is preferable to use boundary value analysis as opposed to
condition coverage, as there is no difference as regards
effectiveness and it takes less time to detect and isolate faults.

- Compare control flow testing
techniques with each other.

There appears to be a dependency on the subject as regards
technique application time, fault detection and fault isolation.

- Check whether it is true for all
techniques.

There appears to be a dependency on the program as regards the
number and type of faults detected.

- Further examine the
combination of fault and failure.

- Check whether it is true for all
techniques.

More faults are detected by combining subjects than techniques of
the two families.

- Further examine the type of
faults detected by each
technique.

- Check whether it is true for all
techniques.

If control faults are to be detected, it is better to use boundary
value analysis or condition coverage than sentence coverage.
Otherwise, it does not matter which of the three are used.

Functional
(boundary
value analysis)
vs. Control flow
(sentence
coverage,
decision
coverage,
branch testing)

It is impossible to ascertain whether boundary value analysis is
more or less effective than branch testing, because effectiveness
also depends on the program (fault).

- Confirmed with laboratory
programs and faults.

- Confirmed formally.

- Pending laboratory

replication.
- Pending field study.

- Classify the faults to which the
techniques are sensitive.

 35

As readers will be able to appreciate, the original intention of extracting empirically

validated knowledge on testing techniques from this survey has been held back for

several reasons. These reasons have been mentioned throughout the article and can be

summarised globally as:

• Dispersion of the techniques studied by the different papers within one and the same

family.

• Dispersion of the response variables examined even for the same techniques.

Additionally, we have also found some limitations that prevent their results from

being generalised. Most of the statements about the techniques are beleaguered by one or

more of the following limitations which makes testing knowledge quite immature:

• Informality of the results analyses (many studies are based solely on qualitative graph

analysis).

• Limited usefulness of the response variables examined in practice, as is the case of

the probability of detecting at least one fault.

• Non-representativeness of the programs chosen, either because of size or the number

of faults (one or two) introduced.

• Non-representativeness of the faults introduced in the programs (unreal faults).

After analysing the empirical studies of testing techniques, the main conclusion is that

more experimentation is needed and much more replication has to be conducted before

general results can be stated. While it is true that this conclusion was to be expected, as

experimental software engineering is not a usual practice in our field, more experimenters

are needed, so that the ideas thrown into the arena can be corroborated and tested and then

used reliably.

BIBLIOGRAPHY

BASILI, V.R., AND SELBY, R.W. 1985 Comparing the Effectiveness of Software Testing Strategies.
Department of Computer Science. University of Maryland. Technical Report TR-1501. College Park.
BASILI, V.R., AND SELBY, R.W. 1987. Comparing the Effectiveness of Software Testing Strategies. IEEE
Transactions on Software Engineering. Pages 1278-1296. SE-13 (12).
BEIZER, B. 1990. Software Testing Techniques. International Thomson Computer Press, second edition.
BIEMAN, J.M., and SCHULTZ, J.L. 1992. An Empirical Evaluation (and specification) of the All-du-paths
Testing Criterion. Software Engineering Journal. Pages 43-51, January.
DAVIS, A. 1993. Software Requirements: Objects, Functions and States. PTR Prentice Hall.
FRANKL, P. and IAKOUNKENKO, O. 1998. Further Empirical Studies of Test Effectiveness. In Proceedings
of the ACM SIGSOFT International Symposium on Foundations on Software Engineering, pages 153-162, Lake
Buena Vista, Florida, USA.
FRANKL, P.G., WEISS, S.N. and HU, C. 1994. All-Uses versus Mutation: An Experimental Comparison of
Effectiveness. Polytechnic University, Computer Science Department. Technical Report. PUCS-94-100.
FRANKL, P.G., WEISS, S.N. and HU, C. 1997. All-Uses vs Mutation Testing: An Experimental Comparison of
Effectiveness. Journal of Systems and Software. Volume 38. Pages 235-253. September.

 36

FRANKL, P.G., and WEISS, S.N. 1991. An Experimental Comparison of the Effectiveness of the All-uses and
All-edges Adequacy Criteria. Proceedings of the Symposium on Testing, Analysis and Verification. Pages 154-
164. Victoria, BC, Canada.
FRANKL, P.G. and WEISS, S.N. 1991. Comparison of All-uses and All-edges: Design, Data, and Analysis.
Hunter College, Computer Science Department. Technical Report. CS-91-03.
FRANKL,. P.G. and WEISS, S.N. 1993. An Experimental Comparison of the Effectiveness of Branch Testing
and Data Flow Testing. IEEE Transactions on Software Engineering. Volume 19 (8). Pages 774-787.
HAMLET, R. 1989. Theoretical Comparison of Testing Methods. In Proceedings of the ACM SIGSOFT ’89
Third Symposium on Testing, Analysis and Verification. Pages 28-37, Key West, Florida, ACM.
HUTCHINS, M., FOSTER, H., GORADIA, T., and OSTRAND, T. 1994. Experiments on the Effectiveness of
Dataflow- and Controlflow-Based Test Adequacy Criteria. Proceedings of the 16th International Conference on
Software Engineering. Pages 191-200. Sorrento, Italy. IEEE.
KAMSTIES, E., and LOTT, C.M. 1995. An Empirical Evaluation of Three Defect-Detection Techniques.
Proceedings of the Fifth European Software Engineering Conference. Sitges, Spain.
LATOUR, B., and WOOLGOR, D. 1986. Laboratory Life. The Construction of Science Facts. Princeton, USA:
Princeton University Press.
MYERS, G.J. 1978. A Controlled Experiment in Program Testing and Code Walkthroughs/Inspections.
Communications of the ACM. Vol. 21 (9). Pages 760—768.
MYERS, G.J. 1979. The Art of Software Testing. Wiley-interscience.
OFFUT, A.J., ROTHERMEL, G., and ZAPF C. 1993. An Experimental Evaluation of Selective Mutation.
Proceedings of the 15th International Conference on Software Engineering. Pages 100—107. Baltimore, USA.
IEEE.
OFFUT, A.J., LEE, A., ROTHERMEL, G., UNTCH, RH., and ZAPF, C. 1996. An Experimental Determination
of Sufficient Mutant Operators. ACM Transactions on Software Engineering and Methodology. Volume 5 (2).
Pages 99-118.
OFFUT, A.J., and LEE, D. 1991. How Strong is Weak Mutation?. Proceedings of the Symposium on Testing,
Analysis, and Verification. Pages 200—213. Victoria, BC, Canada. ACM.
OFFUT, A.J., and LEE, S.D. 1994. An Empirical Evaluation of Weak Mutation. IEEE Transactions on Software
Engineering. Vol. 20(5). Pages 337—344.
SELBY, R.W., and BASILI, V.R. 1984. Evaluating Software Engineering Testing Strategies. Proceedings of the
9th Annual Software Engineering Workshop. Pages 42—53. NASA/GSFC, Greenbelt, MD.
WEYUKER, E. 1988. An Empirical Study of the Complexity of Data Flow Testing. Proceedings 2nd Workshop
on Software Testing, Verification and Analysis. Pages 188—195. Banff, Canada.
WEYUKER, E.J. 1990. The Cost of Data Flow Testing: An Empirical Study. IEEE Transactions on Software
Engineering. Volume 16 (2). Pages 121—128.
WONG, E., and MATHUR, A.P. 1995. Fault Detection Effectiveness of Mutation and Data-flow Testing.
Software Quality Journal. Volume 4. Pages 69—83.
WOOD, M., ROPER, M., BROOKS, A., and MILLER J. 1997. Comparing and Combining Software Defect
Detection Techniques: A Replicated Empirical Study. Proceedings of the 6th European Software Engineering
Conference. Zurich, Switzerland.

